1 ieee psrcc wg 24 -modification of commercial fault ...€¦ · type-3 wind generator model...

83
1 IEEE PSRCC WG 24 - Modification of Commercial Fault Calculation Programs for Wind Turbine Generators Need for the WG Dr. Sukumar Brahma, Clemson University WG Chair [email protected]

Upload: others

Post on 27-Jul-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

1

IEEEPSRCCWG24- ModificationofCommercialFaultCalculationPrograms

forWindTurbineGeneratorsNeedfortheWG

Dr.SukumarBrahma,ClemsonUniversityWGChair

[email protected]

Page 2: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Scope2

1. TosurveyWTGmanufacturerstodeterminewhatparameterstheycouldprovidethatcouldbeusedbysteadystateshortcircuitprogramdevelopersinvarioustimeframes.

2. Usetheresultofthissurveytoprepareareportthatcanbeusedbysteadystateprogramdeveloperstorefinetheirmodels.

Page 3: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Motivation• TypeIIIandTypeIVwindturbinegenerators(WTGs)connectthroughinverters.

• Highlynonlinearresponseofinverterstofaults.• Conventionalphasordomainshortcircuitanalysisassumes– Linearresponseofsources(TheveninEquivalent)– Loadcurrentsnegligiblecomparedtofaultcurrents.

• Theseassumptionsarenolongervalid.• Invertercontrolsareproprietary– hampersemtpmodelingaswell.

3

Page 4: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

FaultResponse- I4

Gear Box DFIG

C

RSC GSC

Ps,Qs

Pr,Qr

Ecap

Crow bar

Wind Turbine

Coupling Inductor

Controls

Grid

AC/DC DC/AC

• TypeIIIWindTurbineGenerators(WTGs)canhavethemostcomplexbehavior–– oldermodelscrowbarforclose-infaultstoprotecttheconverter

circuit– behaviorsimilartoinductiongenerators.– current-controlledmodefordistantfaults.– canswitchfromonemodetoanotherduringfault.– newermodelscanavoidcrowbaraltogether.

Page 5: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

FaultResponse- II5

• TypeIVWTGsandPVconnecttothesystemthroughinverters– responsedeterminedsolelybyinverter.– typicalfeatures– currentcontrolled,purelypositivesequence

current.– lowvoltageridethroughcanbeimplemented– changeinpower

factorduringfault.– completelynonlinearresponse- voltagecontrolledcurrent

source.

Wind Turbine

PMSG

Controls

Ps, QsGrid

MSC GSC

PV

Page 6: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

FaultResponse– FullConverter6

• Timeforcontroltotakeoverisdifferentfordifferentmodels.• Noticepurelypositivesequencecurrentwithmagnitudecomparableto

loadcurrent.

Model – 1 (Clemson)

Model - 2 (PSRCC C17 WG report)

A-G Fault3-ph Fault

Page 7: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

ShortCircuitBehavior- Example7

• 8– bus4.16kVbalanceddistributionsystem– 3-phfaultatbus3.• Inverter-connectedPVwithLVRTatbuses1,5,6.• Duringfaultpowerfactoranglesatthesebusesareapproximately57,54,and

41degreesleading (generatingkVar).• Conventionally,forsynchronousgenerators,ΔVi

(1)/ΔIi (1) equalsthesourceimpedanceofthegeneratoratbusi,whichhasalargereactiveangle.Inthiscasetheangleis1330.Clearlylinearitydoesnothold.

• TotalfaultcurrentangleusingVPF-3/Zbus(3,3) isverydifferent(almost1800)fromtheobservedcurrent-angle.Anglesofvoltagescalculatedusingthiscurrentinjectionarealsowidelydifferentthanmeasuredvalues.

1

8

2 3

5

4

6

7

Fault

Page 8: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

WGRecommendation8

1. PSRCCWG24hasconsultedwithallstake-holders(utilities,softwaredevelopers,EPRI,consultants)andcomeupwiththefollowingdatarequirementsfrommanufacturersfordifferenttime-frames:

2. EPRIhasalsocontributedfieldtestedgenericmodelsthatcanbeusedinsteadoftables– caution– thesedonotmimicalldesigns.

• Invertersareungrounded– donotcontributezero-sequencecurrents.

Timeframe1,2,3(unit-secondsorcycles) FaultType:Positivesequence

voltage(asspecifiedinitem3)(pu)

Positivesequencecurrent(pu)

Positivesequencecurrentanglewithrespectto

positivesequencevoltage(deg)

1.00.90.80.70.60.50.40.30.20.1

Timeframe1,2,3(unit-secondsorcycles) FaultType:Negativesequence

voltage(asspecifiedinitem3)(pu)

Negativesequencecurrent(pu)

Negativesequencecurrentanglewithrespectto

negativesequencevoltage(deg)

1.00.90.80.70.60.50.40.30.20.1

Page 9: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Implementation9

1. Findfaultcurrentatbusi asVPF-i /Zbus(i,i) – thiswillnotmatchtheactualfaultcurrentbecauseofnonlinearfaultresponsefromrenewables.

2. Adjustcurrentsfromrenewablesbasedonthecalculatedterminalvoltages– usetablesprovided,oruseagenericmodelforthisstep.

3. Adjusttotalfaultcurrentbasedonadjustedcurrentinjectionsfromrenewablesandrecalculatevoltages.

4. Repeatsteps2and3untilthesuccessivevoltagesarecloseenough.

Page 10: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

EvangelosFarantatos,Ph.D.Sr.ProjectManager

TransmissionOperations&PlanningR&DGroupEPRI

Panel“Modelingofconverter-interfacedrenewablesourcesforshortcircuitstudies”2019IEEEPESGeneralMeeting

Atlanta,GAAugust5,2019

1

GenericShort-CircuitModelsofWindTurbine&PhotovoltaicSolarGeneration

Page 11: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Motivation,Challenges&Needs• Continuouslyincreasingpenetrationlevelofinverterbasedresources(IBR),predominantlyrenewables(TypeIII,TypeIVWTGs&PVs)

• Complexfaultresponse• Differssignificantlyfromsynchronousgeneratorshort-circuitcurrent(SCC)

• Accurateshort-circuitmodelsforprotectionstudies• Performanceoflegacyprotectionschemes(distanceprotectionetc.)

Page 12: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

InverterBasedResources

Gearbox

Grid

Step downtransformer

Windturbine

iPMSG

Stator-Side Converter

Grid-Side Converter

ig

IL , PLType III WTG

Slip ringsGearbox

GridStator power

Rotor -Side Converter

Grid-Side Converter

Rotor power

Transformer

Windturbine

Crowbar

Chopper

Type IV WTG

Solar PV

Page 13: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

InverterBasedResourcesFaultResponseCharacteristicsSynchronous Generator

Type IV WTG

• SCC magnitude close to nominal load current (typically 1.1-1.5 pu)

• Initial transient (typical duration 0.5-1.5 cycles) –uncontrolled response – controller “reaction time”

• Fault current can be capacitive, inductive or resistive• Typically low negative sequence current contribution• No zero sequence current

Page 14: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

InverterBasedResourcesShort-CircuitModeling

Synchronous generator classical short circuit model (voltage source behind an impedance) is not applicable

•EPRI Project 173.09 “Impact of Renewables on System Protection” • IEEE PSRC WG C24 “Modification of Commercial Fault Calculation Programs for Wind Turbine Generators”

Page 15: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

EPRIWind/PVPhasorDomainShort-CircuitModel

•Voltage controlled current source• Iterative solution (nonlinear behavior)

• considers the impact of controls on the short circuit response• respects inverter current limits

Page 16: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

InverterGenericControlModeOptionsFunction ControlMode Performance/Description

Reactivepower/voltagecontrolduringride-through

Constantpowerfactor Allowsforinverterinjection/absorptionof

reactivepowerbasedonadesiredpowerfactor

ConstantQ Allowsforinverterfixeddesiredvalueofreactive

powerinjection/absorptionVControl Allowsforinvertercontrolof

voltagetodesiredvalueDynamicreactivecurrentcontrolbasedonreference

curve(FRT)

Allowsforreactivecurrentinjectionbasedona

referencecurve(e.g.gridcode)

FRT Curve

Page 17: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

CurrentLimiter- PQPriority

Assume:Active Power: 1 p.u.Post fault voltage: 0.7 puControl mode: FRT withslope 2Q priorityIlimit=1.1 pu

Example:Desired Currents:Iactive= 1/0.7=1.43 p.uIreactive=2(1-0.7) = 0.6 p.uItotal=1.55 pu (exceedslimit)

Upon current limiter:Iactive= 0.92 (reduced tosatisfy limit)Ireactive= 0.6 p.uItotal= 1.1 pu

Page 18: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

IterativeSolution

Page 19: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

DemonstratingResultsType IV WTG - LLG fault (AB) - BUS 1

Type III WTG - LL fault (AB) - BUS 4

•Here, Type IV WTG/Solar model assumeszero negative sequence currentcontribution

•Type III WTG has negative sequencecurrent contribution due to the DFIG statorconnection to the grid

Page 20: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

NegativeSequenceControl

ControlMode:DynamicReactiveCurrentInjection(k=2),QPriority

Coupled Decoupled Germancode(k=2)

WTGvariable

EMTP-RVSolution

PhasorDomainSolution

EMTP-RVSolution

PhasorDomainSolution

EMTP-RVSolution

PhasorDomainSolution

Vpos0.710(23.9)

0.710(24.1) 0.719(13.8) 0.720(13.6) 0.720(6.9) 0.720(6.9)

Ipos1.135(-10.7)

1.135(-10.4) 0.898(-30.4) 0.893(-30.9) 0.743(-50.4)

0.743(-50.5)

Vneg0.336(-120.1)

0.337(-117.4) 0.281(-132.9)

0.281(-133.5) 0.213(-118.1)

0.213(-118.0)

Ineg0.063(97.2)

0.030(152.6) 0.296(26.8) 0.305(27.7) 0.407(-28.1)

0.407(-28.0)

1.Coupled: Elimination of negative sequence current injection2.Decoupled: Mitigation of second harmonic oscillation by

injection of negative sequence current3.German Grid Code: Negative sequence current injection

proportional to variation in negative sequence voltage

22.5 MVA Solar Plant: I2 & V2

VDE-AR-N 4120

Page 21: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

ModelValidation– 3Approaches1. Generic EMT Models 2. Manufacturer EMT Models

3. Fault Records

Page 22: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Type-IIIWTGWindParkConnectedtoa230-kVSubstation

+VwZ1

230kVRMSLL /_0

PI

+

Line_LATIGO_3BUTTESWP_DFIG1

DFIG AVM110.022MVA230kVQ-control

LFLF1

Slack: 230kVRMSLL/_0Vsine_z:VwZ1

+ Relay_Wind

+ Relay_Transmission

6604_LATIGO

V1:1.00/_-0.00V2:0.00/_102.09V0:0.00/_45.00Va:1.00/_0.00Vb:1.00/_-120.00Vc:1.00/_120.00

11847_THREE_BUTTES

V1:1.00/_0.2V2:0.00/_-89.8V0:0.00/_-89.8Va:1.00/_0.2Vb:1.00/_-119.8Vc:1.00/_120.2

Variable

POI- pu

EMTP-RV PhasorModel

0.825(-39.7) 0.810(-56.4)0.509(1.5) 0.509(0.6)

0.858(105.8) 0.862(98.4)

0.488(0.4) 0.486(0.1)

I +

V +

I -

V -

Phasor Model

EMTP Model

• Windfarmwith66x1.5MWtype-IIIwindturbinegenerators

• B-CphasetophasefaultonthetielinetothePOIsubstation

Page 23: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

IEEEPSRC&VendorEngagement

•Goal: Vendor engagement and implementation of the models in commercial platforms (CAPE, ASPEN OneLiner, CYME, Powerfactory, etc).

•Contribution to IEEE PSRC WG C24 “Modification of Commercial Fault Calculation Programs for Wind Turbine Generators”

Timeframe1(secondsorcycles) FaultType:Positivesequencevoltage(asspecified

initem3)(pu)

Positivesequencecurrent(pu)

Positivesequencecurrentanglewithrespectto

positivesequencevoltage(deg)

0.90.70.50.30.1

Page 24: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Contact: [email protected]

Q&A

• EPRI project is conducted in collaboration with Polytechnique Montreal (Prof. Ilhan Kocar, Prof. Jean Mahseredjian, Dr. Aboutaleb Haddadi, Dr. Thomas Kauffmann)

References

Acknowledgements

1. T. Kauffmann, U. Karaagac, I. Kocar, S. Jensen, E. Farantatos, A. Haddadi, and J. Mahseredjian, “Short-circuit model for Type-IV wind turbine generators with decoupled sequence control”, IEEE Transactions on Power Delivery (Early access), DOI: 10.1109/TPWRD.2019.2908686, Apr. 2019

2. T. Kauffmann, U. Karaagac, I. Kocar, S. Jensen, J. Mahseredjian, and E. Farantatos “An accurate Type III wind turbine generator short circuit model for protection applications”, IEEE Transactions on Power Delivery, vol. 32. No. 6, Dec 2017

Page 25: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

1

Implementation of Converter-Interfaced Generator ModelType-3 Wind Generator Model in Short Circuit Programs

Presented bySherman Chan ASPEN

Page 26: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Converter Interfaced Generator Model

• For solar plants• For Type-4 wind plants• For other generating plants that has a

converter as the interface

2

Page 27: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Converter Interfaced Generator Model

• Perfect current source with infinite internal impedance.

• Injects no zero- or negative-sequence fault current now. Negative-sequence current will be added in a future update.

3

Page 28: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Converter Interfaced Generator Model

• Within the voltage deadband, the generator maintains constant power.

• The deadband width is adjustable.

4

Page 29: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Converter Interfaced Generator Model

• Outside the deadband, control options are:1. Constant power2. Fault-ride-through (FRT) control method3. Constant voltage (by setting the FRT slope to

the impedance of the network as seen from the generator).

5

Page 30: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Converter Interfaced Generator Model

• All the control options are subject to a current limit, usually 1.1 or 1.2 pu.

• User can set a lower current limit when the terminal voltage is low.

6

Page 31: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Converter Interfaced Generator Dialog Box

7

Page 32: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Converter Interfaced Generator Simulation

8

Page 33: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Type-3 Wind Generator Model

• Based on EPRI’s phasor-domain model.• Injects positive- and negative-sequence fault

currents, but no zero-sequence current.

9

Page 34: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Type-3 Wind Generator Model

The user must decide to simulate:1. The controlled mode, or2. The crowbarred state

10

Page 35: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Type-3 Wind Generator Model

The fault current in the controlled mode is usually limited to 1.1 or 1.2 pu.The fault current in the crowbarred state is usually around 5 pu, plus dc offset.

11

Page 36: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Type-3 Wind Generator Model Dialog Boxes

12

Page 37: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Type-3 Wind Generator Model Simulation

13

Page 38: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Voltage Controlled Current Source

14

Wasdesignedtosimulatevoltagesourceconverters.

Page 39: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

1

Short Circuit Models for Wind and PV Generation in CAPE

Presented at 2019 IEEE PES GM Panel Session“Modeling of converter-interfaced renewable sources for

short circuit studies,” August 5, 2019

Donald MacGregorSiemens Industry, Inc.

Ann Arbor, [email protected]

Page 40: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

ObjectiveCalculate current contributions from wind and solar generators during external faults. Use a steady-state phasor model. Use manufacturer’s data where possible.

2

Page 41: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

AG 2019

Three-Phase Fault

Solar Generator

EPRI Test Network

Page 42: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Outline • CAPE Algorithms for Type III, Type IV, and

Voltage-Controlled Current Source• Special Cases• Reporting Options

4

Page 43: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

CAPE Algorithms for Type III, Type IV, and Voltage-Controlled

Current Source

5

Page 44: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Synchronous Generator• A synchronous generator has an internal EMF proportional

to prefault load, or 1.0 pu for a classical flat voltage profile.• After a fault or disturbance, the shunt impedance

immediately decreases from steady-state to subtransient; the EMF is unchanged.

• Fault current Ifault= (Prefault voltage)/ (Thevenin equivalent impedance) at fault bus

• In a linear network, change of Vbus is proportional to Ifault .

Page 45: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Inverter-Based Generator

Page 46: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Type III: Doubly Fed Induction Generator

Diagram provided by Electric Power ResearchInstitute, Palo Alto, CA

Page 47: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Inverter-BasedGenerator Type III

Doubly-Fed Induction Generator treated as synchronous withchosen impedance, for currents up to a fixed limit (e.g. 0.5 pu)Magnitudes of other phase currents kept in proportion to first to reach limit; phase angles heldconstant; zero sequence removed

Page 48: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Type III with CrowbarRotor circuit is shorted for overcurrentsMachine becomes an induction generator, with constant EMF behind the given impedance The current limit is set at 999 perunit Optional for all or selected generators

10

Page 49: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Type IV Generator with Full-Power Conversion

Diagram and data provided by Electric Power ResearchInstitute, Palo Alto, CA, and by Southern Company, Atlanta, GA.

Page 50: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Type IV Model from LV to MV 12

VLV, ILV

Diagram and data provided by Electric Power ResearchInstitute, Palo Alto, CA, and by Southern Company, Atlanta, GA.

Page 51: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Inverter-Based Generator Type IV13

Page 52: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

TYPE IV Power Converter• Start iteration (k) • P = Prefault real power • Desired current Îd = P / |Vd

(k-1)|• Derive quadrature current Îq from the controls

(chosen from Q, PF, V, Fault-Ride-Through)• Limit the d-q (Direct & Quadrature) currents

14

Page 53: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

TYPE IV Power Converter• Transform Id + j Iq to positive sequence phasor

Ip = (Id + j Iq ) exp j [ arg (Vp (k-1)) ]

• Inject current into faulted network and compute three-phase voltage (Va, Vb, Vc) for iteration (k)

15

Page 54: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Type IV Limits of |I|, Id, and Iq• Î = √(Id

2 + Iq2)

• With P control priority, reduce Id with constant Iq, then reduce Î, and finally reduce Iq.

• With Q control priority, reduce Iq with constant Id, then reduce Î, and finally reduce Id.

16

Page 55: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Remote-Fault Option• Power penetration into network depends on local load • Without the loads, the computed short-circuit current is

too high at remote buses• Remove generators having Vpu in the dead-band:

VMIN_REMOTE < Vpu < VMAX_REMOTE (e.g. 0.95 < Vpu < 1.1)

• Or remove the dead-band with VMAX_REMOTE = -999 and keep all generators

17

Page 56: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Eliminate Neg. & Zero Sequences

| Ia' | | Ia | | Ib' | = A * W * A-1 * | Ib | | Ic' | | Ic |

18

Page 57: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Eliminate Neg. & Zero sequences| 0 0 0 | 0seq

W = | 0 1 0 | +seq| 0 0 0 | -seq

| 1 1 1 | A = | 1 a2 a |

| 1 a a2 | a = 1.0 @ 120 deg

19

Page 58: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Available DataKey parameters: machine MVA and bus voltageTypes III & IV limits fixed in perunitIdlim = 1.0 Iqlim = 1.0 |I| = 1.1 puTransformer and filter impedances in perunitType IV control mode and priority

20

Page 59: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

TYPE VCCS: Voltage Controlled Current Source

Page 60: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

TYPE VCCS: Voltage Controlled Current Source

22

Current and Power Factor are tabulated functions of bus voltage.Different tables apply at specified times.Positive-sequence only.Values are supplied by manufacturer.

Page 61: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Special Cases

23

Page 62: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Desired Power Factor not Compatible with Controls

24

• Current angle arg(I/V) has a range with no solution. • To help borderline cases to converge, smooth the

differences between iterations using interpolation.• After 20 iterations, inject current at the Iq limit, lagging

the voltage by 90ο. This is the “Iq Injection” state.• After 20 more iterations, remove the generator.

Page 63: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Type IV Generator Isolated by Open Breakers

25

No convergence after 40 steps

Page 64: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Generator Islanded by FaultCompute postfault +seq apparent impedance as Zp = Vp/Ip

If Zp is constant in the first three iterations, the generator is islandedby the fault. Replace arg(Vp) by arg(Vprefault)

when converting (d,q) currents to positive sequence

26

Page 65: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Reporting Options

27

Page 66: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Reports• Reports show which generators operate and

their current sources: • One-Line Diagram Branch currents and voltages

• Report_IBG Details for single generator

• Report_Active_IBGs List of operating IBGs

• Report_All_IBGs List all IBGs: local and remote

28

Page 67: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Report Single GeneratorGenerator status: Switched to limited-Iq injection; Iter 11 Convergence Report THREE_PHASE at 3 Loop Iter bus CCT VP_MV .... P,Q MVA 2 1 8 1 0.26 @ 20.9 17.40 9.17 2 2 8 1 0.37 @ -0.7 18.72 21.93 2 3 8 1 0.42 @ -14.8 14.75 29.47 2 4 8 1 0.44 @ -24.3 10.36 32.92 2 5 8 1 0.44 @ -30.7 6.89 34.29 2 6 8 1 0.44 @ -35.1 4.41 34.74 2 7 8 1 0.44 @ -38.0 2.71 34.81 2 8 8 1 0.44 @ -40.0 1.56 34.76 2 9 8 1 0.44 @ -41.3 0.78 34.67 2 10 8 1 0.44 @ -42.2 0.26 34.59 2 11 8 1 0.44 @ -42.2 0.26 34.59

29

Page 68: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Report Active IBGsSummary of controlled generation

Bus Shunt # P,Q MVA Status1 24580 1 1.16, 81.67 Iq injection at current limit2 9634 1 0.00, 0.00 Remote fault3 8869 1 1.13, 80.91 Iq injection at current limit4 8464 1 0.00, 0.00 Remote fault...81 11700 1 0.00, 0.00 Remote fault82 11701 1 0.00, 0.00 Remote fault85 7235 1 0.00, 22.50 Radial line (islanded)86 11728 1 34.99, 14.37 Converged normally...

113 11775 1 0.00, 83.22 Iq injection at current limit114 11779 1 100.87, 41.55 Converged normally

30

Page 69: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Summary• EPRI has provided algorithms for fault contributions

from wind and solar generators. • In CAPE, Type III (DFIG) uses a fixed current limit.• Type IV (full-power converter) follows EPRI algorithm.• CAPE has detailed reports for each generator or

summary reports for a large network (e.g. 100 or more wind or solar generators).

Page 70: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Summary• With limited data, user supplies desired real power

and control type.

• Default per-unit parameters give current limits.

• Type VCCS (voltage-controlled current source) uses tables of I-V characteristics.

Page 71: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Discussion

33

Page 72: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

34

Page 73: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

MohammadDadash Zadeh,Ph.D.,SMIEEE,PEETAP,Irvine,CA,USA

ShortCircuitModelsforWindandPVGenerationinETAP

1

Page 74: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Content• ConverterModelforShortCircuitStudies• HigherLevelCurrentLimiter• FaultRightThroughControl• ConverterControlModes• ANSIvsIEC• User-definedModel• Negative-sequenceCurrentInjection

2

Page 75: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

ConverterModelforShortCircuitStudies• InverterandWTGType4• f()isnonlinear• f()dependsonconvertercontrolsettingsandlimits

• Iterativesolutionvstime-domain• Steady-statevsdynamic

3

I1=f(V1,V1Prefault,PPrefault)

I2=0

I0=0

Page 76: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

ConverterModelforShortCircuitStudies

• InverterandWTGType3

4

I1=f(V1,V1Prefault,PPrefault)

I2=0

I0=0

Z2

Z0

Crowbarnotactivated Crowbarisactivated

SimilartoTypes1&2

ANSI:Crowbarresistanceisadded

IEC:SpecialCalculation

Page 77: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

HigherLevelCurrentLimits5

Page 78: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

FaultRightThroughControl6

𝐼" = 𝐼"$%"×'()*+,-./0

'(

Page 79: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

ConverterControlModes• ReactiveCurrentSupport:Iq ismetfirstandthenId• ActiveCurrentSupport:Id ismetfirstandthenIq• User-DefinedPF:– Id iscalculatedfirst.– Iq iscalculatedbasedontheuser-definedPF.– Id andIq arescaledproportionallytomeetthelimits.

7

Page 80: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

ANSIvsIEC8

Page 81: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

User-DefinedModel• Genericmodelmaynotmeetspecificconverterresponse

• Time-domainsimulationusing– WECCmodel– User-definedmodel

9

Page 82: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Negative-sequenceCurrentInjection10

I1=f(V1,V1Prefault,PPrefault)

I0=0

I2=f(V2)

Page 83: 1 IEEE PSRCC WG 24 -Modification of Commercial Fault ...€¦ · Type-3 Wind Generator Model •Based on EPRI’s phasor-domain model. •Injects positive-and negative-sequence fault

Question?

11