10 fire protection design (2)

55
1 10 Passive Fire Protection to Steel Beams and columns  P r o f e s s o r R ic har d L iew Department of Civil & Environmental Engineering  National University of Singapore

Upload: kew-mun-seng

Post on 23-Feb-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 1/55

1

10 Passive Fire Protection to

Steel Beams and columns 

Professor Richard Liew

Department of Civil & Environmental Engineering

 National University of Singapore

Page 2: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 2/55

Why protect from fire ?

 All commonly used building materialslose some strength when exposed to

fire

Concrete - spalls to expose reinforcement

Wood - depletes by charring

Steel - loses design margin of safety around

550°C.

Page 3: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 3/55

The Result

Page 4: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 4/55

Structural Fire Protection – The Options

1. Active

•Sprinklers•Water Sprays

•Deluge Systems

2. Passive

Construction materials or coatings which limit the

temperature rise of a steel structure in the event of a

fire

Page 5: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 5/55

Types of Passive Fire Protections

1 Concrete 2.Spray Vermiculite 3. Fire insulation Board

4.Intumescents paint

Page 6: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 6/55

6

Composite beams with fire protection

Page 7: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 7/55

Sprayed Vermiculite Protection

Vermiculite or sprayed mineral fibre

Page 8: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 8/55

Fire Insulation Board

Page 9: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 9/55

Intumescent coatings

“reactive”, swelling to

many times their originalthickness when exposed to

fire., with the resultant char

insulating the steel

Up to 120 mins fire resistance time for thin

film intumescent coatings

Up to 240 mins fire resistance time for thick

film intumescent coatings (epoxy coatings)

Page 10: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 10/55

Intumescent Coating

Page 11: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 11/55

Fire Code

Occupancy Type

Requirement for fire rating

Section Factor A / V

 A: expose sect.

surface

V: volume of steelsect. 

Manufacturer’s Design Manual

Thickness for Fire Protection

Fire resistance design : design process of prescriptive approach

Page 12: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 12/55

12

Section factor

Section factor = Hp / A (in m-1)Hp is the heated perimeter (in m);

 A is the gross cross-sectional area of the section (in m2).

The section factor is thus a measure of the rate at which a

section will heat up in a fire. The higher its value, the greaterwill be the protection thickness is required.

Page 13: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 13/55

13

Section factor

 A steel section with a large perimeter (Hp) will receive moreheat than one with a smaller perimeter.

The greater the cross sectional area (A) of the section, the

greater is the heat sink. The lower the steel temperature. 

Hp1  > Hp2 

 A1  < A2 

TDesign1 > TDesign2 

Page 14: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 14/55

14

Section factor (m-1)- I sections and H sections

Typical range:

60 ~ 300

Page 15: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 15/55

15

Section factor (m-1)- Hollow sections

Typical range:

60 ~ 300

Page 16: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 16/55

16

Design of Passive fire protection

Sprayed fire protection- Wet site operation, economical but lack control in thickness.

Board fire protection- dry site operation, better control on material and installation.

Intumescent paint fire protection- shop operation, expensive but good control on material and

application of paint.

Page 17: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 17/55

17

Sprayed fire protection- CAFCOTE 280

Page 18: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 18/55

18

Sprayed fire protection- CAFCOTE 280

Page 19: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 19/55

19

Board fire protection- VICUCLAD

Page 20: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 20/55

20

Board fire protection- VICUCLAD

Page 21: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 21/55

21

Intumescent fire protection- NULLIFIRE SYSTEM S

Page 22: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 22/55

22

Intumescent paint fire protection- NULLIFIRE SYSTEM S

Page 23: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 23/55

23

Example : A steel beam under fire- with concrete topping and fire protection

DD = 19 kN/m LL = 9 kN/m

Section: UB 457 x 152 x 52

Steel grade 355

Span = 8 m

 Assume enough lateral restraints are provided to avoid lateral torsional buckling.

  Applied load:

Live load: 9 kN/m

Dead load: 19 kN/m

FRP = 1 hr

8 m

Page 24: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 24/55

24

Design procedure 

Section factor = Hp / A

= (3B+2D-2t) / A

= (3 x 152.4 + 2 x 449.8 – 2x 7.6) / 6620

= 1341.6 / 6620 mm -1

= 202.6 m-1 

Selected required thickness of fire protection

material.

FRP = 1 hr

Page 25: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 25/55

25

Sprayed fire protection- CAFCOTE 280

Page 26: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 26/55

26

Board fire protection- VICUCLAD

Page 27: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 27/55

27

Intumescent paint fire protection- NULLIFIRE SYSTEM S

Page 28: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 28/55

28

Summary 

Type of fire

protection

Sprayed fire

protection

Board fire

protection

Intumescent paint

fire protectionThickness of

fire protection

(mm)

16 16 – 18 1.0

UB 457 x 152 x 52 FRP = 1 hr

Page 29: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 29/55

29

Example 2 A steel column with fire protection

50 kNm

50 kNm

750 kNSection: UC 203x203x46

Steel grade 355

System height = 3 m

 Applied load:

 Axial load: 750 kN

Bending moment: 50 kNm

FRP = 1 hr

Page 30: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 30/55

30

Design procedure 

Section factor = Hp / A

= (4B+2D-2t) / A

= (4 x 203.2 + 2 x 203.2 – 2 x 7.3) / 5880

= 1611 / 5880 mm-1

= 273.9 m-1 

Selected required thickness of f ire protectionmaterial.

FRP = 1 hr

St l l t t d b t

Page 31: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 31/55

31

Steel column protected by concrete

encasement

Minimum concrete cover, c = 50 mm

(mins)

EC4 – Part 1: 1-2

Page 32: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 32/55

32

Summary 

Type of fire

protection

Concrete

cover

Sprayed fire

protection

Board fire

protection

Intumescent

fire

protection

Thickness offire protection

(mm)

50 18 16 – 18 1.23

UC 203 x 203 x 46 FRP = 1 hr

Page 33: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 33/55

33

Comments on passive fire protection Passive fire protections aim to provide insulation of the

structural members under the standard fire exposes; i.e.

to keep the temperature down

No information on the final temperature and deflection ofthe structural members

 Any crack in the passive fire protection system?

 Any detachment of the passive fire protection systemdue to member deformation during heating i.e.

“stickability”?

Same thickness of passive fire protection system isapplied to all members irrespective of the memberlengths or the load ratios, hence, this approach is very

conservative.

Page 34: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 34/55

34

Composite beam Eurocode 4: Part 1.2 (2005)

Page 35: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 35/55

35

Composite beamwith partial concrete encasement (ηfi, t< 0.5)

ηfi, t is the load ratio.

= Rfi, t / Rd 

Table 4.1

b= minimum width of concrete encasement

Min b

 As / Af  

Table 4.2: Minimum axis distance for additional reinforcement of composite beams.

Page 36: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 36/55

36

Composite beamwith partial concrete encasement (minimum cover)

Table 4.2 Minimum axis distance for additional reinforcement of composite beams

 b

u 1u2

Standard Fire

Resistance

Min. Axis

Distance

[mm]

Profile

Width

 b [mm]

> 300

250

200

170  u 1

u 2

u 2

u 2

u 1

u 1

u 1

u 2

100 120 - -

--6045

35

40

(25)

50

50

45

60

70

60

80 100 120 -

40 55 60   -

60 75 90 12060

90

60

R180R120R90R60

 _ 

Page 37: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 37/55

37

Composite beamwith ful l concrete encasement

Table 4.3

Standard Fire

Resistance 

R30  R60  R90  R120  R180 Concrete cover c [mm] 0 25 30 40 50

Concrete

for Insulation

Slab

c

c

Page 38: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 38/55

38

Design procedure for composite beams 

Evaluate the load ratio.

Select the minimum amount of steel reinforcement

according to required FRP.

Select the required concrete cover to steel

reinforcement.

Page 39: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 39/55

39

Load ratio in fire

Relative to ambient-temperature

design resistance

t .d . fi

 fi R

 E =η 

Either …..

Relative to ambient-temperature

design load (more conservative) Or more

usefully…..

t .d . fi

 fi E 

 E =η 

1.k 1.Qk G

1.k 1.1k GA fi

QG

QG

γ γ 

ψ γ η 

+

+=

Page 40: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 40/55

40

EC3 partial safety factors

In Fire limit state 

γ GA = 1,0  Permanent loads; accidental design situationsψ 1.1 = 0,5 Combination factor; variable loads, offices

 Ambient temperature strength design 

γ G = 1,35  Permanent loads;

γ Q.1 = 1,5 Combination factor; variable loads

Qk.1 /Gk    1 2 3 4

η  fi   0,53 0,46 0,43 0,41

1.k 1.Qk G

1.k 1.1k GA fi

QG

QG

γ γ 

ψ γ η 

+

+=

Page 41: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 41/55

41

Example 2: A composite beam with partial concrete

encasement

Concrete section: 1000 x 125 mm

Steel section: UB 457 x 152 x 52

Steel grade 355

Span = 8 m

FRP = 1 hr

Load ratio, ηfi,, t = 0.5

75 

457 

50 

152 × 10.9 

152 × 10.9

7.65 

1000 

Y10 

 As u1 u2 

Page 42: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 42/55

42

Composite beamwith partial concrete encasement (ηfi, t< 0.5)

h=449.8 b=152.4, min b = 100, As/Af  =0

 As / Af    As / Af    As / Af   As / Af    As / Af  

Page 43: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 43/55

43

Composite beamwith partial concrete encasement (minimum cover)

Example 6

Page 44: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 44/55

44

Composite beamwith partial concrete encasement

u1  = 100 mm

u2  = 45 mm

From the table in s lide 79

Min b = 100 mm

 Actual b = 152 mm ok

 As  = 0 x Af  mm2 

75 

457 

50 

152 × 10.9 

152 × 10.9

7.65 

1000 

Y10 

 As 

u1 

u2 

Design summary

Provide nominal reinforcement

Page 45: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 45/55

45

Composite Column Eurocode 4: Part 1.2 (2005)

Page 46: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 46/55

46

Composite column sectionsbc 

cy cy  b

d

cz 

cz 

dc tw 

t f  

bc 

b

dc 

tf

tw 

dc tw 

tf  

b= bc 

b

d

t

t

d

t

d

Page 47: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 47/55

47

Steel column with full concrete encasement

Page 48: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 48/55

48

Design procedure for composite column 

Evaluate the load ratio.

Select the minimum amount of steel reinforcement

according to required FRP.

Select the minimum cross-sectional conf iguration

and concrete cover to steel reinforcement.

Page 49: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 49/55

49

Composite Column- concrete filled hollow sections (ηfi, t< 0.28)

ηfi, t is the load ratio.

= Rfi, t / Rd 

Table 4.7

Page 50: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 50/55

50

Composite Column- concrete filled hollow sections (ηfi, t< 0.47)

ηfi,, t is the load ratio.

= Rfi, t / Rd 

Table 4.7

Page 51: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 51/55

51

Composite Column- Concrete filled hollow sections (ηfi, t< 0.66)

ηfi, t is the load ratio.

= Rfi, t / Rd 

Table 4.7

Page 52: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 52/55

52

Example 7: A concrete filled hollow section 

FRP = 1 hr

Load ratio, ηfi,, t = 0.5

550

 All dimensions are in mm. 

550

us 

 As 

 Ac 

Need to determine As and

concrete cover for 1 hr FRP

Page 53: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 53/55

53

Composite Column

- Concrete fil led hollow sections (ηfi, t< 0.66)

Page 54: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 54/55

54

Composite Column- Concrete fil led hollow sections

Minimum ratio of reinforcement:

 As / (As + Ac) = 0.06

 As  = 550 x 550 x 0.06

= 18150 mm2 

us  = 30 mm

 5  5  0  

550

us 

 As 

 Ac 

Page 55: 10 Fire Protection Design (2)

7/24/2019 10 Fire Protection Design (2)

http://slidepdf.com/reader/full/10-fire-protection-design-2 55/55

Overall comments

Limiting temperature method is of very limiteduse and fire protection is often needed.

Passive fire protection system is simple to use

but conservative with limited control on thermaland structural behaviour of structural members.