10 nm cmos:10 nm cmos: the prospects for iii-vs nm cmos:10 nm cmos: the prospects for iii-vs j. a....

21
10 nm CMOS: 10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim 1 , Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories, MIT 1 Presently with Teledyne Scientific 2010 European Materials Research Society Spring Meeting June 7-10 2010 Sponsors: Intel, FCRP-MSD Acknowledgements: June 7-10, 2010 1 Acknowledgements: Niamh Waldron, Ling Xia, Dimitri Antoniadis, Robert Chau MTL, NSL, SEBL

Upload: dangthu

Post on 30-May-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

10 nm CMOS:10 nm CMOS: The Prospects for III-Vs

J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim

Microsystems Technology Laboratories, MIT1Presently with Teledyne Scientific

2010 European Materials Research Society Spring MeetingJune 7-10 2010

Sponsors: Intel, FCRP-MSD

Acknowledgements:

June 7-10, 2010

1

Acknowledgements:

Niamh Waldron, Ling Xia, Dimitri Antoniadis, Robert Chau

MTL, NSL, SEBL

Outline

• Introduction: Why III-Vs for CMOS?

• What have we learned from III-V HEMTs?

• What are the challenges for III-V CMOS?

• The prospects of 10 nm III-V CMOS

• Conclusions

22

Why III-Vs for CMOS?

• Si CMOS has entered era of “power-constrained scaling”:– CPU power density saturated at ~100 W/cm2

– CPU clock speed saturated at ~ 4 GHz

P N R 2010 http://www chem utoronto ca/ nlipkowi/pictures/cloPop, Nano Res 2010 http://www.chem.utoronto.ca/~nlipkowi/pictures/clockspeeds.gif

3

Why III-Vs for CMOS?• Under power-constrained scaling:

Power = active power + passive power

~ f CVDD2N N ↑ VDD↓

#1 goal

• But, VDD scaling very weakly:

f CVDD N N ↑ VDD ↓V D

D

4V

4Chen, IEDM 2009

Why III-Vs for CMOS?

• Need scaling approach that allows VDD reduction

• Goal of scaling: – reduce footprint – extract maximum ION for given IOFF

III V• III-Vs:– Much higher injection velocity than Si ION ↑ON

– Very tight carrier confinement possible S↓

55

III-V CMOS: What are the challenges?

“To kno here o are going o first ha e to“To know where you are going, you first have to know where you are.”

We are starting from:g

III-V High Electron Mobility Transistors

66

III-V HEMTs

• State-of-the-art: InAs-channel HEMT

- QW channel (tch = 10 nm) :- InAs core (tInAs = 5 nm)

- InGaAs cladding

- n,Hall = 13,200 cm2/V-sec

I AlA b i ( 4 )- InAlAs barrier (tins = 4 nm)

- Two-step recess

7777

- Pt/Ti/Mo/Au Schottky gate- Lg=30 nm Kim, IEDM 2008

III-V HEMTs

0.8

• Lg=30 nm InAs-channel HEMT Kim, IEDM 2008

2.0

0.6

V 0 4 Vm]

VGS = 0.5 V1.5

0.4

VGS = 0.4 V

I D [m

A/

m

1.0

g m [m

S/m

]0 0 0 2 0 4 0 6 0 8

0.0

0.2

-0 2 0 0 0 2 0 40.0

0.5

VDS = 0.5 V

0.0 0.2 0.4 0.6 0.8VDS [V]

• Large current drive: Ion=0.4 mA/µm at VDD=0.5 V

0.2 0.0 0.2 0.4

VGS - VT [V]

888

• Enhancement-mode FET: VT = 0.08 V• High transconductance: gmpk= 1.8 mS/um at VDD=0.5 V

8

III-V HEMTs

• Lg=30 nm InAs-channel HEMT

Kim, IEDM 2008

10-4

10-3

ID 40

50

dB] H21

10-6

10-5

IG

V = 0 5 VI G [A

/m

]

20

30

Ug,

MA

G [d

Ug

MAG

fT=601 GHzfmax=609 GHz

9

10-8

10-7 VDS = 0.5 V

I D, I

VDS = 0.05 V10

H21

, MAG

VDS = 0.5 V, VGS = 0.3 V

-0.50 -0.25 0.00 0.25 0.5010-9

VGS [V]109 1010 1011 1012

0

Frequency [GHz]

DS , GS

999

• S = 73 mV/dec, DIBL = 85 mV/V, Ion/Ioff=~104

• First transistor with both fT and fmax > 600 GHz9

Scaling of III-V HEMTs: Benchmarking with Si

180Si FETs (IEDM)Triple recess: IEDM 07

180Si FETs (IEDM)Triple recess: IEDM 07

180Si FETs (IEDM)*

180Si FETs (IEDM)*

e c a g t S10

iedm06

120

140

160

win

g [m

V/de

c.] Triple recess: IEDM 07

Pt sinking

120

140

160

win

g [m

V/de

c.] Triple recess: IEDM 07

Pt sinking

120

140

160

win

g [m

V/de

c.] Pt sinking: IEDM 08

120

140

160

win

g [m

V/de

c.] Pt sinking: IEDM 08

1iedm07

AY

[pse

c]

80

100

120

bthr

esho

ldsw

80

100

120

bthr

esho

ldsw

80

100

120

bthr

esho

ldsw

80

100

120

bthr

esho

ldsw

iedm06

InAs HEMTs(VCC = 0.5V)

GA

TE D

EL

Si NMOSFETsiedm08

10 10060

Sub

Gate Length [nm]10 100

60

Sub

Gate Length [nm]10 100

60

Sub

Gate Length [nm]10 100

60

Sub

Gate Length [nm]

iedm07iedm08

100 101 1020.1

Gate Length, Lg [nm]

(VCC = 1.1~1.3V) VDD=0.5 V

• Superior short-channel effects as compared to Si MOSFETsOS s

• Lower gate delay than Si MOSFETs at lower VDD

10

Scaling of III-V HEMTs: Benchmarking with Si

• ION @ IOFF=100 nA/µm, VDD=0.5 V: FOM that integrates short-channel effects and drive current

e c a g t S

(scaled to VDD=0.5 V)

III-V HEMTs: higher ION for same IOFF than Si11

What can we learn from III-V HEMTs?

1. Very high electron injection velocity at the virtual source

Evinj

Kim, IEDM 2009

EC

njL0 x

vinj ≡ electron injection

v inj

j

velocity at virtual source

(I G A ) i ith I A f ti i h l• vinj(InGaAs) increases with InAs fraction in channel• vinj(InGaAs) > 2vinj(Si) at less than half VDD

12

What can we learn from III-V HEMTs?2. Quantum-well channel key to outstanding short-channel

effectsKim IPRM 2010Kim, IPRM 2010

D ti i t i l t t ti i t it i thi• Dramatic improvement in electrostatic integrity in thin channel devices

13

What can we learn from III-V HEMTs?3. Quantum capacitance less of a bottleneck

than commonly believed

In0.7Ga0.3As channel tch = 13 nm

InAs channeltch = 10 nm

40 40

30

40

F/ m

2 ]

Experiment (CG)

Cins ( tins = 4 nm) 30

40

F/ m

2 ]

Experiment (CG)

Cins ( tins = 4 nm)

10

20

Cap

acita

nce

[fF

CQ1

CGCcent1 10

20C

apac

itanc

e [fF

Ccent1

CQ1 (m||* = 0.026me )

CG ( 0.07 ) C ( 0 05 )

-0.4 -0.2 0 0.2 0.40

10

VG [V]

C

-0.4 -0.2 0 0.2 0.40

10

VG [V]

C

CG (m||* = 0.026me ) CG ( 0.05 )

G

• Biaxial strain + non-parabolicity + strong quantization increase m||

* CG↑ Jin, IEDM 2009 14

Limit to III-V HEMT Scaling: Gate Leakage Current

10-3

tins

= 10 nmt = 7 nm

Gate ea age Cu e t

InAs HEMTL = 30 nm

10-5

10-4

]

tins = 7 nm t

ins = 4 nm ID

Lg = 30 nmtch = 10 nm

4

10-7

10-6

D, I G

[A/

m]

IG

tins=4 nm

tins=7 nm

10-9

10-8

VDS

= 0.5 V

I D tins 7 nm

tins=10 nm

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.5010-10

DS

VGS [V]

t ↓ I ↑

15

tins ↓ IG↑ Further scaling requires high-K gate dielectric

15

The Challenges for III-V CMOS: III-V HEMT vs Si CMOSIII-V HEMT vs. Si CMOS

Intel’s 45 nm CMOSIII-V HEMT

• Schottky gate MOS gate Critical issues:• Footprint scaling [1000x too big!] • Need self-aligned contacts

16

• Need p-channel device• Need III-V on Si

The High-K/III-V System by ALD

• Ex-situ ALD produces high-quality interface on InGaAs:– Surface inversion demonstrated

11 2 1Al2O3/In0.52Ga0.47As

– Dit in mid ~1011 cm-2.eV-1 demonstrated

Al2O3/In0.52Ga0.47As

f=100 Hz-1 MHz

2 00E 011

2.40E-011 In0.65Ga0.35As MOS-CapCgb on D=75um

Al2O3/In0.65Ga0.35As

1.20E-011

1.60E-011

2.00E-011

fT~55.56KHz

Cap

acita

nce

(F)

Lin, SISC 2008

1717

Ye, 2010-6 -4 -2 0 2 4

4.00E-012

8.00E-012

Bias (V)

In0.7Ga0.3As Quantum-Well MOSFET

• Direct MBE on Si substrate (1.5 µm buffer thickness)• InGaAs buried-channel MOSFET (under 2 nm InP etch stop)

S O / /• 4 nm TaSiOx gate dielectric by ALD, TiN/Pt/Au gate• Lg=75 nm

18Radosavljevic, IEDM 2009

In0.7Ga0.3As Quantum-Well MOSFET

2009 Intel InGaAs MOSFET(scaled to

VDD=0.5 V)

19

What can we expect from10 nm III V NMOS at 0 5 V?~10 nm III-V NMOS at 0.5 V?

With thin InAs channel:

Assume RS as in Si (~80 Ω.µm):

K i tThree greatest worries!

S

ID=1.5 mA/µm

Key requirements:• High-K/III-V interface, thin channel do not degrade vinj

• Obtaining R =80 Ω µm at required footprint

worries!

• Obtaining Rs=80 Ω.µm at required footprint• Acceptable short-channel effects

20

Conclusions• III-Vs attractive for CMOS: key for low VDD operation

– Electron injection velocity in InAs > 2X that of Si at 1/2X VDD

Quantum well channel yields outstanding short channel effects– Quantum well channel yields outstanding short-channel effects– Quantum capacitance less of a limitation than previously believed

• Impressive recent progress on III-V CMOS – Ex-situ ALD and MOCVD on InGaAs yield interfaces with unpinned

Fermi level and low defect densityFermi level and low defect density– Sub-100 nm InGaAs MOSFETs with ION > than Si at 0.5 V

demonstrated

• Lots of work ahead:– Demonstrate 10 nm III-V MOSFET that is better than Si

21

– P-channel MOSFET– Manufacturability, reliability