10.1 single-phase converters - upv/ · pdf file10.1 single-phase converters ... ct fully...

22
ELEC4240/9240 Power Electronics Lectures 10&11 – Overlap in AC-DC Converters 10&11-1 F. Rahman Lectures 10-11 Effect of source inductance on phase controlled AC-DC converters 10.1 Single-phase converters 10.1.1 Overlap in single-phase, CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance The presence of source inductance means that commutation of load current from one thyristor to the next, as they are triggered with a firing angle α, can not be instantaneous. This source inductance, L s , is invariably because of the inductance of the supply lines and the leakage inductance of the input transformer. For this circuit, the overlap of conduction for the duration µ makes the output voltage zero (which is the mean of the overlapping input voltages) during this period . i 2 T 1 L s V max sin ω t v s i p R L i L v o L s T 2 i 1 v i

Upload: phamdiep

Post on 04-Mar-2018

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-1 F. Rahman

Lectures 10-11 Effect of source inductance on phase controlled AC-DC converters

10.1 Single-phase converters

10.1.1 Overlap in single-phase, CT fully controlled converter

Figure 10.1 Single-phase C-T converter with source inductance The presence of source inductance means that commutation of load current from one thyristor to the next, as they are triggered with a firing angle α, can not be instantaneous. This source inductance, Ls, is invariably because of the inductance of the supply lines and the leakage inductance of the input transformer. For this circuit, the overlap of conduction for the duration µ makes the output voltage zero (which is the mean of the overlapping input voltages) during this period .

i2

T1Ls

Vmaxsinωt vs

ip R

L

iL

vo

LsT2

i1

vi

Page 2: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-2 F. Rahman

Figure 10.2 Waveforms in the converter of figure 10.1, commutation overlap and

commutation notches, for α = 45°.

i 2

T 1L s

V m a x s in ω t v s

i p R

L

i L

v o

L sT 2

i 1

v i

Page 3: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-3 F. Rahman

i2

T1Ls

Vmaxsinωt vs

ip R

L

iL

vo

LsT2

i1

vi

Figure 10.3 Waveforms in the converter of figure 10.1, commutation overlap and

commutation notches, for α = 130°.

Page 4: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-4 F. Rahman

The part of the input voltage waveform which is missing from the output voltage is given by

max sdiV sin t Ldt

ω = 10.1

( ) ( )Id

max s0

V sin t d t L diα µ

αω ω ω

+=∫ ∫ 10.2

where Vmax is the peak of the input ac voltage and Id is the dc level of the output (load) current.

Note that in each half cycle of the above waveform, the input current through the incoming thyristor rises from zero to Id in time µ/ω, starting from the instant of firing. Thus, integrating equation 10.2,

( )max s dV cos cos L Iα µ α ω− + − =

( ) sd

max

Lcos cos IVωα µ α+ = − 10.3

The commutation or overlap angle µ can be found from expression 10.3. It increases with load current Id at any firing angle. The output dc voltage is then given by

( ) ( ) ( ) ( )d max max

max sd

1 1V V sin t d t V sin t d t

2V Lcos I

π α α µ

α αω ω ω ω

π π

ωα

π π

+ += −

= −

∫ ∫ 10.4

(b)

Figure 10. 4 Variation of Vd and commutation angle µ with Id and firing angle α.

(a)

α = −120°

α = 30°

Id

Vd µ°

Id

α = 30°

Page 5: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-5 F. Rahman

10.1.2 Overlap in single-phase, fully controlled bridge converter

Without overlap, two thyristors conduct at all times, if turned on. With overlap, all four thyristors conduct during overlap (or commutation of current from the out going pair to the incoming pair of thyristors).

(a)

(b) Figure 10.5 (a) Single-phase, F-C, bridge converter with source inductance and

(b) its waveforms, for α = 45°.

vo

Id

Vd

ip

Vmaxsinωt

T1

T4T2

T3

Load

Lsi

vsi

v o

iL

v p

v si

v s-v si

ipip

v p

Page 6: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-6 F. Rahman

Figure 10.5(c) Waveforms in the converter of figure 10.5(a) for α = 145° The part of the input voltage waveform which is missing from the output during overlap is given by

max sdiV sin t Ldt

ω = 10.5

As before

( ) ( )Id

max s s dId

V sin t d t L di 2 L Iα µ

αω ω ω ω

+

−= =∫ ∫

( ) sd

max

2 Lcos cos IVωα µ α+ = − 10.6

vs

vo

iL

vp

vsi

vs-vsi

α =145o

ip

ip

vp

vs

-vs

Page 7: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-7 F. Rahman

Note that during overlap, the input current i, which flows through Ls, changes by 2Id. The overlap angle µ can be found from the above expression. The angle µ increases when larger load current is commutated. The dc output voltage of the converter with overlap is given by

( ) ( ) ( ) ( )d max max1 1V V sin t d t V sin t d t

α π α µ

α αω ω ω ω

π π

+ += −∫ ∫

max s

d2V 2 Lcos Iωα

π π= − 10.7

Figure 10.6(a) Variation of Vd and commutation angle µ with load current and firing angle α for the converter of figure 10.5.

Id

Vd µ°

Id

α = 30°

α = 125°

α = 30°

Page 8: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-8 F. Rahman

10.1.3 Overlap in single-phase, half-controlled converter

Figure 10.7

The commutation of the load current through the thyristors and the diodes occur in two stages. At first, the load current commutates to the freewheeling diode at the zero crossings of the input voltage. When the incoming thyristor is triggered, the freewheeling load current commutates to this thyristor. The part of the input voltage waveform missing from the output is thus dropped across the source inductance due to the load current rising to Id during the commutation overlap angle µ when a thyristor is triggered. Consequently, the overlap angle µ and the dc output voltage Vd for this converter with source inductance Ls are given by,

Id

max s0

1 V sin td( t ) L diα µ

αω ω

ω

+=∫ ∫

∴ ( ) sd

max

Lcos cos I

α µ α+ = − 10.8

The dc output voltage is given by

d max max1V V sin td( t ) V sin td( t )

π α µ

α αω ω ω ω

π

+ = −

∫ ∫

∴ [ ]max sd d

V LV 1 cos Iωαπ π

= + − 10.9

vo

iL Vd

ip

Vmaxsinωt

T1

D4D2

T3

LOAD Df

Ls

Page 9: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-9 F. Rahman

For α = 45°

Figure 10.8. Waveforms in the H-C converter with source inductance; for α = 45°.

vs

vo

iL

iDf

vp

vsi

vs-vsi

ip

500

-500

Page 10: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-10 F. Rahman

For α = 145°

Figure 10.9. Waveforms in the H-C converter with source inductance; for α =

145°

vs

vo

iL

iDf

vp

vsi

vs-vsi

ip

0 π 2π 3π

Page 11: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-11 F. Rahman

10.2 Three-phase converters

10.2.1 Overlap in a three-phase, CT, fully-controlled converter,

Figure 10.10

In this circuit, the converter output voltage during overlap is half of the incoming and outgoing voltages. For instance, when T1 is triggered with angle α, after the crossover of van and vcn, the output voltage vo is given by

an cn

ov v

v2+

= 10.10

The voltage pulse missing from the output voltage waveform is bounded by va and vo. This is given by

an cn an cn acl l

oL anv v v v v

v v2 2 2

−− −= − = = 10.11

By expressing maxol

3V sin tv

= where Vmax is the peak of the line-neutral

voltage.

( )Idmax

s0

3V1 sin td t L di2

α µ

αω ω

ω

+=∫ ∫

Hence ( ) s sd d

max l lmax

2 L 2 Lcos cos I cos I

V3 Vω ω

α µ α α−

+ = − = − 10.12

from which µ can be found. The dc output voltage is given by

( ) ( )56 max

d max6

1 3 VV V sin td t sin td t2 / 3 2

π α α µ

π α αω ω ω ω

π

+ +

+

= − ∫ ∫

c

n van

vbn

vcn

a

bT2

T1

T3

L

R vo

iL

vab vabi

ic

ia

ib

Ls

Ls

Ls

Page 12: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-12 F. Rahman

max sd

3 3V 3 Lcos I2 2

ωαπ π

= − 10.13

Figure 10.11 Waveforms in the circuit of figure 10.10 for α = 45°

Page 13: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-13 F. Rahman

Figure 10.12 Waveforms in the circuit of figure 10.10 for α = 130°

Page 14: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-14 F. Rahman

10.2.2 Overlap in 3-φ, fully-controlled bridge converter

Figure 10.13

In this converter, overlap due to source inductance occur every 60°. When a thyristor connected with the positive voltage is triggered, the positive dc bus voltage becomes the average of the incoming and the outgoing phase voltages. The same happens when one of the thyristors connected with the negative dc bus is triggered. During the commutation angle µ, current in the outgoing line falls gradually to zero, while the current in the incoming line rises to Id. The voltage pulse missing from the output voltage waveform is the difference between the incoming line voltage minus the average of the incoming and the outgoing line voltages. For instance, when thyristor T1 is triggered with angle α, this voltage is given by,

an cn an cn acl l

o anLv v v v v

v v2 2 2

−+ −= − = = from α to α + µ on the vac

waveform. Using a similar analysis as in the previous section, it can be shown that for this converter,

( ) sd

max l l

2 Lcos cos I

α µ α−

+ = − 10.14

and max l l sd d

3V 3 LV cos Iωαπ π

−= − 10.15

Load R

L

Vd

vo

T1 T3 T5

T4 T6 T2

iL Ls

ibic

van

vbn

vcn n

+VD/2

−VD/2

Ls

ia

Page 15: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-15 F. Rahman

Figure 10.14 Waveforms in the converter of figure 10.13; α = 45°

Page 16: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-16 F. Rahman

Figure 10.15 Waveforms in the converter of figure 10.13; α = 130°

Page 17: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-17 F. Rahman

10.2.3 Overlap in 3-φ, half-controlled bridge converter

Figure 10.16

It can be shown that

[ ]max l l sd d

3V 3 LV 1 cos I2 2

ωαπ π

−= + − 10.16

The above equation assumes that load current transfers to the free-wheeling diode completely before the next thyristor is triggered, and that the load current transfers from the free-wheeling diode to the incoming thyristor when it is triggered.

T1 T3 T5

T4 T6 T2

Load R

L

Vd

vo

iL Ls

ib

ic

van

vbn

vcn n

+VD/2

−VD/2

Ls

ia

Df

iDf

Page 18: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-18 F. Rahman

10.3 Converter voltage regulation due to source inductance The commutation overlap affects the performance of all converter circuits, including the rectifiers which rely for their operation on natural commutation. The overlap phenomenon affects the operation of the converter in many ways, such as introducing a voltage regulation characteristic. The voltage regulation characteristic of the converter is in general given by d dcmax L LV V cos X Iα= − for fully controlled converters 10.17 and d dc max L LV V (1 cos ) X Iα= + − for half controlled converters. 10.18 Here Vdcmax is the maximum dc output voltage for the converter circuit and XL is a parameter determined by the input source inductance Ls and the converter circuit.

0

α = 0°

α = 30°

α = 60°

α = 75°

α = 90°

α = 110°

α = 130°

α = 160°

V d

V dm ax

− V dm ax

Id

Figure 10.17 Voltage regulation characteristic of the fully-controlled converter

Page 19: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-19 F. Rahman

10.3.1 Other effects

A. Output voltage ripple The output voltage waveform of the converter is modified by the loss of voltage pulses due to overlap. Analysis of the output voltage waveforms shows that the output ripple frequencies remain the same as for the converter without overlap. Only the output ripple voltage amplitudes are affected. The overlap actually reduces the amplitudes of the ripples. For a p-pulse converter the output ripple voltages, assuming continuous conduction, are given by

( )( ) ( )

( ) ( )

d max

n 2

nV cos nsina sinn t cos cosn tpv t

n 1 nsin sinn t cos cosn t

πω µ α ω µ

α µ ω α µ ω

× + − + =

− + + − + 10.19

where α = firing angle µ = commutation angle n = order of the output voltage ripple B Input current harmonics The input current waveforms of the converter have gentler rise and fall of current, rather than the abrupt changes in the converter without overlap. It is obvious that the harmonic amplitudes of the input current are reduced as a result of overlap. Assuming linear transitions, of duration m, the input current harmonics of a six-pulse converter is given by

n

n n2 sin sin3 2b nn

2

π µ

µπ

= × 10.20

C. Commutation notches

During commutation overlap, simultaneous conduction of two thyristors makes the line to line voltage of the two input lines under commutation zero. Other line to line voltages are found by obtaining the difference of their potentials taking into account the commutation. If the converter input voltage terminals are shared with other loads, (these voltages are invariably used as signals which control the triggering of the thyristors), then adequate filter circuits must be used to reduce the commutation notches to acceptable levels. If these notches are not adequately filtered out, firing angles vary from thyristor to thyristor, leading to uneven output voltage ripples and thyristor currents.

Page 20: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-20 F. Rahman

10.4 Converter characteristics with discontinuous load current In analyzing ac-dc converter circuits we have so far assumed that the load current was continuous, i.e., positive at all times. This allowed the output voltage to be described in terms of the firing angle α and the input ac voltage, Vmax. When load current becomes discontinuous, the output voltage becomes either zero or equal to the voltage of the active dc source in the load. In general, it results in an increased output dc voltage (because of the removal of part of the negative voltage of the ac source in the load). The dc output voltage of a fully-controlled converter with discontinuous conduction and input source inductance are thus of the form as in the figure below. Consider the figure below in which a single-phase bridge supplies a load with a back emf of Eb.

Figure 10.18 Single-phase bridge rectifier with discontinuous current.

vo

Id

Vd

ip

Vmaxsinωt

T1

T4 T2

T3

R is

L

Eb

Page 21: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-21 F. Rahman

For this circuit,

max bdiL Ri V sin t Edt

ω+ = − 10.21 The solution for i is

( )R / L t max bV E

i Ae sin( t )Z R

ω ϕ−= + − − 10.22

where 2 2Z R ( L )ω= + 10.23

and 1 Ltan

Rωϕ − =

10.24

The instantaneous load current i is obtained by noting that i = 0 at the effective firing angle α which is either the actual firing angle (when Eb < Vmaxsinα) or the

angle sin− 1(Eb/Vmax) Thus

max b

max

V ERi sin( t )R Z V

ω ϕ = − −

+

R ( t )b L

max

E R sin( ) eV Z

ω αωα ϕ

− − − −

10.25 Current i falls to zero at angle β which is obtained by equating the above equation to zero. Thus

b

R / L R / Lmax

b

max

Ecos sin( )Ve eEcos sin( )V

β ω α ωϕ β ϕ

ϕ α ϕ

− −× =

− − 10.26

The extinction angle β is found by solving the above transcendental equation. Vd can then be calculated. By solving for β for a firing angle α, the Vd - IL characteristic of the converter for different load parameter values (R, L and Eb) can be obtained. The boundary between continuous and discontinuous conduction is a semicircle. The Vd - IL

Page 22: 10.1 Single-phase converters - UPV/ · PDF file10.1 Single-phase converters ... CT fully controlled converter Figure 10.1 Single-phase C-T converter with source inductance ... ip Vmaxsinωt

ELEC4240/9240 Power Electronics

Lectures 10&11 – Overlap in AC-DC Converters 10&11-22 F. Rahman

characteristics of a half controlled and a fully controlled converter are shown in figures below. These also include the effect of commutation overlap.

Figure 10.19 Converter Vd vs α and regulation characteristic with source

inductance and discontinuous conduction.

0

α = 0°

α = 30°

α = 60°

α = 75°

α = 90°

α = 110°

α = 130°α = 160°

Vd

Vdmax

− Vdmax Id