12847

9
3/3/08 www.irf.com 1 HEXFET  Power MOSFET Benefits Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche  SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free Applications High Efficiency Synchronous Rectification in SMPS Uninterruptible Power Supply High Speed Power Switching Hard Switched and High Frequency Circuits S D G V DSS 60V R DS(on)  typ. 3.3m  max. 4.2m I D (Silicon Limited) 160A I D (Package Limited) 120A G D S G ate D rai n Sour ce TO-247AC S D G D IRFP3306PbF Absolute Maximum Ratings Symbol Parameter Units I D  @ T C  = 25°C Continuous Dra in Current, V GS  @ 10V (Silicon Limited) I D  @ T C  = 10C Continuous Dr ai n Current, V GS  @ 10V (Silicon Limited) I D  @ T C  = 25°C Continuous Dra in Current, V GS  @ 10V (Wire Bond Limited) I DM Pulsed Drain Current P D  @T C  = 25°C Maximum Power Dissipation W Linear Derating Factor W/°C V GS Gate-to-Source Voltage V dv/dt Peak Diode Recovery V/ns T J Operating Junction and T STG Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw Avalanche Characteristics E AS (Thermally limited) Single Pulse Avalanche Energy mJ I AR Avalanche Current  A E AR Repetitive Avalanche Energy mJ Thermal Resistance Symbol Parameter Typ. Max. Units R θJC Junction-to-Case ––– 0.67 R θCS Case-to-Sink, Flat Greased Surface 0.24 ––– °C/W R θJA Junction-to-Ambient 40 -55 to + 175  ± 20 1.5 10lbin (1.1Nm) Max. 160 110 620 120 A °C 300 184 See Fig. 14, 15, 22a, 22b, 220 14

Upload: lucia-oprea

Post on 08-Mar-2016

218 views

Category:

Documents


0 download

DESCRIPTION

bits and pieces

TRANSCRIPT

7/21/2019 12847

http://slidepdf.com/reader/full/12847 1/83/3/0www.irf.com 1

HEXFET 

Power MOSFET

Benefits Improved Gate, Avalanche and Dynamic dV/dt

Ruggedness Fully Characterized Capacitance and Avalanche  SOA

Enhanced body diode dV/dt and dI/dt Capability Lead-Free

Applications High Efficiency Synchronous Rectification in SMPS Uninterruptible Power Supply High Speed Power Switching Hard Switched and High Frequency Circuits

S

D

G

VDSS 60VRDS(on)  typ. 3.3m  max. 4.2m

ID (Silicon Limited) 160A

ID (Package Limited) 120A

G D S

Gate Drain Source

TO-247AC

SD

G

D

IRFP3306PbF

Absolute Maximum RatingsSymbol Parameter Units

ID

 @ TC

 = 25°C Continuous Drain Current, VGS

 @ 10V (Silicon Limited)

ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)

ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited)

IDM Pulsed Drain Current

PD @TC = 25°C Maximum Power Dissipation W

Linear Derating Factor W/°C

VGS Gate-to-Source Voltage V

dv/dt Peak Diode Recovery V/ns

TJ Operating Junction and

TSTG Storage Temperature Range

Soldering Temperature, for 10 seconds

(1.6mm from case)

Mounting torque, 6-32 or M3 screw

Avalanche CharacteristicsEAS (Thermally limited) Single Pulse Avalanche Energy mJ

IAR Avalanche Current  A

EAR Repetitive Avalanche Energy mJ

Thermal Resistance

Symbol Parameter Typ. Max. Units

RθJC Junction-to-Case ––– 0.67

RθCS Case-to-Sink, Flat Greased Surface 0.24 ––– °C/W

RθJA Junction-to-Ambient ––– 40

-55 to + 175

 ± 20

1.5

10lbin (1.1Nm)

Max.

160

110

620

120A

°C300

184

See Fig. 14, 15, 22a, 22b,

220

14

7/21/2019 12847

http://slidepdf.com/reader/full/12847 2/8

7/21/2019 12847

http://slidepdf.com/reader/full/12847 3/8

www.irf.com 3

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics Fig 4.  Normalized On-Resistance vs. Temperature

Fig 2.  Typical Output Characteristics

Fig 6.  Typical Gate Charge vs. Gate-to-Source VoltageFig 5.  Typical Capacitance vs. Drain-to-Source Voltage

0.1 1 10 100

VDS, Drain-to-Source Voltage (V)

10

100

1000

   I   D ,   D  r  a   i  n  -   t  o  -   S  o  u  r  c  e   C  u  r  r  e  n   t   (   A   )

≤ 60μs PULSE WIDTHTj = 25°C

4.5V

VGSTOP 15V

10V8.0V6.0V5.5V5.0V4.8V

BOTTOM 4.5V

0.1 1 10 100

VDS, Drain-to-Source Voltage (V)

10

100

1000

   I   D ,   D  r  a   i  n  -   t  o  -   S  o  u  r  c  e   C  u  r  r  e  n   t   (   A   )

≤ 60μs PULSE WIDTHTj = 175°C

4.5V

VGSTOP 15V

10V8.0V6.0V5.5V5.0V4.8V

BOTTOM 4.5V

2.0 3.0 4.0 5.0 6.0 7.0 8.0

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

   I   D ,   D  r  a   i  n  -   t  o  -   S  o  u  r  c  e   C  u  r  r  e  n   t     (     Α   )

VDS = 25V

≤ 60μs PULSE WIDTH

TJ = 25°C

TJ = 175°C

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

   R

   D   S   (  o  n   ) ,   D  r  a   i  n  -   t  o  -   S  o  u  r  c  e   O  n   R  e  s   i  s   t  a  n  c  e

 

   (   N  o  r  m  a   l   i  z  e   d   )

ID = 75A

VGS = 10V

1 10 100

VDS, Drain-to-Source Voltage (V)

0

2000

4000

6000

8000

   C ,   C  a  p  a  c   i   t  a  n

  c  e   (  p   F   )

Coss

Crss

Ciss

VGS = 0V, f = 1 MHZ

Ciss = Cgs + Cgd, Cds SHORTED

Crss = CgdCoss = Cds + Cgd

0 20 40 60 80 100 120 140

 QG Total Gate Charge (nC)

0

4

8

12

16

20

   V   G   S ,   G  a   t  e  -   t  o  -   S  o  u

  r  c  e   V  o   l   t  a  g  e   (   V   )

VDS= 48V

VDS= 30VVDS= 12V

ID= 75A

7/21/2019 12847

http://slidepdf.com/reader/full/12847 4/8

4 www.irf.com

Fig 8.  Maximum Safe Operating Area

Fig 10.  Drain-to-Source Breakdown Voltage

Fig 7.  Typical Source-Drain Diode

Forward Voltage

Fig 11.  Typical COSS Stored Energy

Fig 9. Maximum Drain Current vs.Case Temperature

Fig 12.  Maximum Avalanche Energy Vs. DrainCurrent

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

   I   S   D ,

   R  e  v  e  r  s  e   D  r

  a   i  n   C  u  r  r  e  n   t   (   A   )

TJ = 25°C

TJ = 175°C

VGS = 0V

0 10 20 30 40 50 60

VDS, Drain-to-Source Voltage (V)

0.0

0.5

1.0

1.5

   E  n  e  r  g  y

   (       μ   J   )

0.1 1 10 100

VDS, Drain-toSource Voltage (V)

0.1

1

10

100

1000

10000

   I   D ,   D  r  a   i  n  -   t  o  -   S  o  u

  r  c  e   C  u  r  r  e  n   t   (   A   )

Tc = 25°CTj = 175°CSingle Pulse

1msec

10msec

OPERATION IN THIS AREALIMITED BY RDS(on)

100μsec

DC

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

50

60

70

80

   V   (   B   R   )   D   S   S

 ,   D  r  a   i  n  -   t  o  -   S  o  u  r  c  e   B  r  e  a   k   d  o  w  n   V  o   l   t  a  g

  e

ID = 5mA

25 50 75 100 125 150 175

 TC , Case Temperature (°C)

0

20

40

60

80

100

120

140

160

180

   I   D ,     D  r  a   i  n   C  u  r  r  e  n   t   (   A   )

Limited By Package

25 50 75 100 125 150 175

Starting TJ, Junction Temperature (°C)

0

200

400

600

800

   E   A   S ,

   S   i  n  g   l  e   P  u   l  s  e   A  v  a   l  a  n  c   h  e   E  n  e  r  g  y   (  m   J   )

  I DTOP 13A  18ABOTTOM 96A

7/21/2019 12847

http://slidepdf.com/reader/full/12847 5/8

www.irf.com 5

1E-006 1E-005 0.0001 0.001 0.01 0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

   T   h  e  r  m  a   l   R  e  s  p  o  n  s  e   (   Z   t   h   J   C

   )0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE( THERMAL RESPONSE )

Notes:1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14.  Typical Avalanche Current vs.Pulsewidth

Fig 15.  Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15:(For further info, see AN-1005 at www.irf.com)1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far inexcess of T jmax. This is validated for every part type.

2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded.3. Equation below based on circuit and waveforms shown in Figures 16a, 16b4. PD (ave) = Average power dissipation per single avalanche pulse.5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase

during avalanche).6. Iav = Allowable avalanche current.

7. ΔT = Allowable rise in junction temperature, not to exceed T jmax (assumed as

25°C in Figure 14, 15).tav = Average time in avalanche.D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC

Iav = 2T/ [1.3·BV·Zth]

EAS (AR) = PD (ave)·tav

Ri (°C/W) τι (sec)

0.249761 0.00028

0.400239 0.005548

τJ

τJ

τ1

τ1

τ2

τ2

R1

R1R2

R2

τC

Ci= τi/Ri

25 50 75 100 125 150 175

Starting TJ , Junction Temperature (°C)

0

40

80

120

160

200

   E   A   R

 ,   A  v  a   l  a  n  c   h  e

   E  n  e  r  g  y   (  m   J   )

TOP Single PulseBOTTOM 1% Duty CycleID = 96A

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

tav (sec)

1

10

100

   A  v  a   l  a  n  c   h  e   C  u  r  r  e  n   t   (   A   )

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche

pulsewidth, tav, assuming ΔΤ j = 25°C andTstart = 150°C.

0.01

Allowed avalanche Current vs avalanche

pulsewidth, tav, assuming ΔTj = 150°C andTstart =25°C (Single Pulse)

7/21/2019 12847

http://slidepdf.com/reader/full/12847 6/8

6 www.irf.com

   Fig 16.  Threshold Voltage Vs. Temperature

       

   

-75 -50 -25 0 25 50 75 100 125 150 175

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

   V   G   S   (   t   h   )   G  a   t  e   t   h  r  e

  s   h  o   l   d   V  o   l   t  a  g  e   (   V   ) ID = 1.0A

ID = 1.0mA

ID = 250μA

ID = 150μA

100 200 300 400 500 600 700 800 900 1000

dif / dt - (A / μs)

0

4

8

12

16

   I   R   R   M   -   (   A   )

IF = 30A

VR = 51V

TJ = 125°C

TJ = 25°C 

100 200 300 400 500 600 700 800 900 1000

dif / dt - (A / μs)

0

4

8

12

16

   I   R   R   M   -   (   A   )

IF = 45A

VR = 51V

TJ = 125°C

TJ = 25°C 

100 200 300 400 500 600 700 800 900 1000

dif / dt - (A / μs)

0

50

100

150

200

250

300

350

   Q   R   R

  -   (  n   C   )

IF = 30A

VR = 51V

TJ = 125°C

TJ = 25°C 

100 200 300 400 500 600 700 800 900 1000

dif / dt - (A / μs)

0

50

100

150

200

250

300

350

   Q   R   R

  -   (  n   C   )

IF = 45A

VR = 51V

TJ = 125°C

TJ = 25°C 

7/21/2019 12847

http://slidepdf.com/reader/full/12847 7/8

www.irf.com 7

Fig 23a.  Switching Time Test Circuit Fig 23b.  Switching Time Waveforms

VGS

VDS

90%

10%

td(on) td(off)t

r tf

VGS

Pulse Width < 1μsDuty Factor < 0.1%

VDD

VDS

LD

D.U.T

+

-

Fig 22b. Unclamped Inductive WaveformsFig 22a. Unclamped Inductive Test Circuit

tpV(BR)DSS

IAS

RG

IAS

0.01Ωtp

D.U.T

LVDS

+- VDD

DRIVER

15V

20VVGS

Fig 24a. Gate Charge Test Circuit Fig 24b.  Gate Charge Waveform

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2 Qgd Qgodr

Fig 21. for N-ChannelHEXFET Power MOSFETs

  •

  •

  •

 

P.W.  Period

di/dt

Diode Recoverydv/dt

Ripple ≤  5%

Body Diode Forward Drop

Re-AppliedVoltage

Reverse

RecoveryCurrent

Body Diode ForwardCurrent

VGS=10V

VDD

ISD

Driver Gate Drive

D.U.T. ISD Waveform

D.U.T. VDS Waveform

Inductor Curent

D =P.W.

Period

   

+

-

+

+

+-

-

-

  •

•  

D.U.T.  VDS

IDIG

3mA

VGS

.3μF

50KΩ

.2μF12V

Current Regulator

Same Type as D.U.T.

Current Sampling Resistors

+

-

7/21/2019 12847

http://slidepdf.com/reader/full/12847 8/8

8 www.irf.com

Data and specifications subject to change without notice This product has been designed and qualified for the Industrial market

Qualification Standards can be found on IR’s Web site

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 03/08

TO-247AC packages are not recommended for Surface Mount Application.

LINE H

INTERNATIONAL

LOGO

RECTIFIER

ASSEMBLY

56 57

IRFPE30

 135H

YEAR 1 = 2001

DATE CODE

PART NUMBER

indicates "Lead-Free" WEEK 35LOT CODE

IN THE ASS EMBLY LINE "H"

ASSEMBLED ON WW 35, 2001

Note: "P" in ass embly line position

EXAMPLE:WITH ASSEMBLYTHIS IS AN IRFPE30

LOT CODE 5657