13.3 experimental demonstration of ferroelectric spiking ...@aef34>7ef3f7ef:7d7;@3@6...

4
JB7D;?7@F3> 7?A@EFD3F;A@ A8 7DDA7>75FD;5 *B;=;@9 &7GDA@E 8AD ,@EGB7DH;E76 >GEF7D;@9 0:7@9 .3@9 D;3@ D38FA@ "AD97 A?7L )G;<G3@ /G ;>77@ $GA 0AD3@ #D;HA=3B;5 $3@7 %3DF;@ *G?3@ 3FF3 D;<;F )3K5:AI6:GDK E;8 !E>3? #:3@ *5:AA> A8 7AD9;3 !@EF;FGF7 A8 +75:@A>A9K ,* ?3;> M LI 3E;8=:3@757N93F75:76G 7BF A8 ,@;H7DE;FK A8 &AFD7 3?7 &AFD7 3?7 !& ,* 7BF A8 %* ,@;H7DE;FK A8 3>;8AD@;3 7D=7>7K ,* 7 -3DA@3 (> *3@F3 >3D3 ,* %3F7D;3> *5;7@57 ;H;E;A@ $3ID7@57 7D=7>7K &3F;A@3> $34AD3FADK 7D=7>7K ,* Q.7 D7BADF F:7 8;DEF 7JB7D;?7@F3> 67?A@EFD3F;A@ A8 87DDA7>75FD;5 8;7>678875F FD3@E;EFAD + 43E76 EB;=;@9 @7GDA@E G@;CG7 873FGD7 A8 F:7 87DDA7>75FD;5 @7GDA@ 67?A@EFD3F76 :7D7;@ ;E F:7 3H3;>34;>;FK A8 4AF: 7J5;F3FADK 3@6 ;@:;4;FADK ;@BGF 5A@@75F;A@E ;@ F:7 5A?B35F ++ EFDG5FGD7 I:;5: ;E 3>EA D7BADF76 8AD F:7 8;DEF F;?7 8AD 3@K @7GDA@ ;?B>7?7@F3F;A@E *G5: 6G3> @7GDA@ 8G@5F;A@3>;FK ;E 3 =7K D7CG;D7?7@F 8AD 4;A?;?7F;5 @7GD3> @7FIAD=E 3@6 D7BD7E7@FE 3 4D73=F:DAG9: 8AD ;?B>7?7@F3F;A@ A8 F:7 F:;D6 97@7D3F;A@ EB;=;@9 @7GD3> @7FIAD=E *&&EQ3>EA D7BADF76 :7D7;@ 8AD G@EGB7DH;E76 >73D@;@9 3@6 5>GEF7D;@9 A@ D73> IAD>6 63F3 8AD F:7 8;DEF F;?7 +:7 =7K FA AGD 67?A@EFD3F;A@ ;E F:7 53D78G> 67E;9@ A8 FIA ;?BADF3@F 67H;57 >7H7> 873FGD7E 34DGBF :KEF7D7F;5 FD3@E;F;A@E A8 F:7 + I;F: @A EF34>7 EF3F7E F:7D7;@ 3@6 F:7 6K@3?;5 FG@34;>;FK A8 F:7 + :KEF7D7E;E 4K 4;3E 5A@6;F;A@E I:;5: 3>>AIE 8AD F:7 ;@:;4;F;A@ 8G@5F;A@3>;FK JB7D;?7@F3>>K 53>;4D3F76 ?G>F;6A?3;@ (D7;E35: 43E76 + ?A67>E I7D7 GE76 FA 355GD3F7>K E;?G>3F7 F:7 @7GDA@E 3@6 BDA<75F F:7;D B7D8AD?3@57 3F E53>76 @A67E .7 3>EA ;?B>7?7@F 3@ *&& 8AD G@EGB7DH;E76 5>GEF7D;@9 3@6 47@5:?3D= F:7 @7FIAD= B7D8AD?3@57 35DAEE 3@3>A9 %'* 3@6 7?7D9;@9 F75:@A>A9;7E 3@6 A4E7DH7 G@;8;53F;A@ A8 7J5;F3FADK 3@6 ;@:;4;FADK @7GD3> 5A@@75F;A@E *+( 43E76 >73D@;@9 >AI7EF D7BADF76 BAI7D @. 6GD;@9 5>3EE;8;53F;A@ 3@6 3 5>3EE;8;53F;A@ 355GD35K A8 !@ EB;F7 A8 EF3997D;@9 EG557EE7E A8 677B @7GD3> @7FIAD=E &&E F:7 E75A@6 97@7D3F;A@ A8 @7GD3> @7FIAD=E &&E I7 :3H7 5A?7 FA F:7 D73>;L3F;A@ F:3F FDG7 36H3@57E ;@ 5A9@;F;H7 EKEF7?E I;>> D7CG;D7 3GFA@A?AGE 397@FE FA >73D@ 8DA? F:7 7@H;DA@?7@F I;F:AGF F:7 @776 8AD >347>>76 63F3 ,@EGB7DH;E76 >73D@;@9 BDAH;67E EG5: 3 B3D36;9? !@ B3DF;5G>3D G@EGB7DH;E76 >73D@;@9 3@6 5>GEF7D;@9 ;@ EB;=;@9 @7GD3> @7FIAD=E *&&EP I:;5: D7BD7E7@F F:7 F:;D6 97@7D3F;A@ A8 &&EP7?G>3F7 @7GD3> BDAB7DF;7E H;3 F:7;D 5AGB>76 6K@3?;5E )757@F 36H3@57E ;@ @7GDAE5;7@57E 3E I7>> 3E 7EF;?3F;A@ F:7ADK :3H7 D7H73>76 F:7 36H3@F397E A8 63F37@5A6;@9 F:DAG9: EB;=7F;?;@9 5A?B35F@7EE EB3DE;FK 3@6 F:7 34;>;FK FA >73D@ H;3 >A53> GB63F7E A@>K *+( 3>> A8 I:;5: :3H7 >76 FA 788;5;7@F :3D6I3D7 ;?B>7?7@F3F;A@E A8 *&&E 12 !@ B3D3>>7> 7?7D9;@9 @3@A67H;57E EG5: 3E D7E;EF;H7 )%E ?7?D;EFADE EB;@ 3@6 ?7F3>;@EG>3FAD FD3@E;F;A@ 67H;57E A887D E;9@;8;53@F 47@78;FE ;@ F7D?E A8 BAI7D B7D8AD?3@57 3@6 3D73 3E B:KE;53> :3D6I3D7 B>3F8AD?E 8AD ;?B>7?7@F;@9 &&EQF:3@=E FA F:7;D G@;CG7 BDAB7DF;7E F:3F 3D7 @AF ;@FD;@E;5 FA F:7 %'* F75:@A>A9K F7?B>3F7 >73=K;@F79D3F73@68;D7 $! @7GDA@ ;?B>7?7@F76 I;F: 3@K A8 F:7E7 F75:@A>A9;7E BDAH;67E BDA?;E;@9 ABBADFG@;F;7E 4GF F:7K 3>> EG887D 8DA? 3 8G@63?7@F3> E:ADF5A?;@9 >> F:7E7 @7GDA@E 3D7 7J5;F3FADK I:;5: ?73@E F:3F ;@BGFE 5A?;@9 FA F:7E7 @7GDA@E D7EG>F ;@ 3 EB;=7 97@7D3F;A@ AI7H7D ;F ;E I7>> =@AI@ ;@ @7GDA4;A>A9K 3@6 3>EA ;@ 4;A?;?7F;5 @7GDA?ADB:;5 3D5:;F75FGD7E F:3F 7J5;F3FADK @7GDA@E @776 FA 47 B3;D76 I;F: ;@:;4;FADK 5A@@75F;A@E FA 7@34>7 :A?7AEF3E;E :;9: 355GD35K ;@ G@EGB7DH;E76 >73D@;@9 3@6 ;@5D73E76 EB3DE;FK ;@ EB;=;@9P3>> A8 I:;5: 3D7 7EE7@F;3> FA ;?B>7?7@F 8G@5F;A@3>>K 5ADD75F 3@6 788;5;7@F 5A?BGF7 ?A67>E !@ F:;E B3B7D I7 ;@FDA6G57 87DDA7>75FD;5 8;7>678875F FD3@E;EFAD + 3E F:7 G@67D>K;@9 67H;57 F75:@A>A9K 8AD ;?B>7?7@F;@9 *&&E 3@6 67?A@EFD3F7 8AD F:7 8;DEF F;?7 87DDA7>75FD;5 EB;=;@9 @7GDA@EQF:7 8G@5F;A@3> G@;F A8 *&&EQ I;F: 4G;>F;@ 7J5;F3FADK 7J5 3@6 ;@:;4;FADK ;@: ;@BGF 5A@@75F;A@E I:;5: ;@:7D7@F>K 67?A@EFD3F7 4;A?;?7F;5 6K@3?;5E 3@6 >736E FA 5A?B35F 3@6 788;5;7@F ;?B>7?7@F3F;A@ A8 @7GDA@E 3@6 :7@57 F:7 EK@3BF;5 I7;9:FE +:7 5AD7 EFDG5FGD7 A8 F:7 @7GDA@ 5A@E;EFE A8 3 87DDA7>75FD;5 + + 3@6 3 %'*+ F:7 6;E5:3D97 + 8;9 3 @ ;?BADF3@F 873FGD7 A8 AGD 67?A@EFD3F;A@ ;E F:3F + 47;@9 3 F:D77 F7D?;@3> @7GDA?ADB:;5 67H;57 I;F: 3@ ;@FD;@E;5 FD3@E;EFAD 93;@ 3>>AIE 8AD :3@6>;@9 4AF: 7J5;F3FADK 3@6 ;@:;4;FADK ;@BGF 5A@@75F;A@E ;@ F:;E E;?B>7 3D73 788;5;7@F FIA FD3@E;EFAD @7GDA@ EFDG5FGD7 +:7 7J5;F3FADK 3@6 F:7 ;@:;4;FADK ;@BGFE 3@6 D7EB75F;H7>K 3D7 5A@@75F76 FA F:7 93F7 F7D?;@3>E A8 F:7 6;E5:3D97 + 3@6 + D7EB75F;H7>K F:DAG9: D7EB75F;H7 >73=K ;@F79D3FADE 8;9 3 +:7 AGFBGF A8 @7GDA@ ;E 3F F:7 HA>F397 35DAEE F:7 53B35;FAD I:;5: ;E 6;9;F;L76 4K 3@ ;@H7DF7D 3F +:7 + I3E 5A@E;EFE A8 3 @? @;@+ I;F: 8;@E I;F: ;FE 93F7 F7D?;@3> 5A@@75F76 FA 3@ 7B;F3J;3> @? F:;5= (40D+;' (0+ 87DDA7>75FD;5 +:7 =7K FA AGD 67?A@EFD3F;A@ A8 EB;=7 97@7D3F;A@ 3@6 ;@:;4;F;A@ ;@ @7GDA@ ;E FIA8A>6 F:7 7J;EF7@57 A8 34DGBF FD3@E;F;A@E ;@ F:7 :KEF7D7E;E 7697E A8 F:7 5GDD7@FHA>F397 5:3D35F7D;EF;5E A8 AGD + ?G5: 47>AI F:7 F:7D?3> >;?;F I;F: 978-1-7281-1987-8/18/$31.00 ©2018 IEEE 13.3.1 IEDM18-300

Upload: others

Post on 26-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 978-1-7281-1987-8/18/$31.00 ©2018 IEEE 13.3.1 IEDM18-300

  • 13.3.2IEDM18-301

  • Fig. 1: Neuron implementation using Ferroelectric FETs and associated spiking neural network. (a) The circuit topology of a ferroelectric

    spiking neuron with excitatory and inhibitory inputs. (b) A biological neuron. (c) A schematic representation of spiking neural network (SNN)

    with an excitatory and an inhibitory neuron layer. (d) The concept of unsupervised clustering on unlabeled, raw data using an SNN .

    Fig. 3: Operating principle and Load line analysis of the experimental ferroelectric neuron (a)

    Operating principle of the ferroelectric neuron and circuit diagram of the leaky integrator. (b)

    Load-line analysis. Measured d.c. ID-VN characteristics of FEFET at VGF=1 V and 1.6 V and

    VD=VDD=3.3 V and output characteristic (IM-VS) of the discharge FET. At VGF=1.6 V, the hysteresis

    in ID-VS characteristics shifts to the right compared to that at VGF=1 V. The neuron generates spikes

    when the discharge FET load lines intersect the FEFET ID-VS curves in the unstable transition

    regions (i.e., BC and DA @VGF=1 V). For VGF=1.6V, the hysteretic transition is not abrupt enough

    to travel around the hysteresis (i.e., move back and forth between S and P).

    Fig. 4: Experimental demonstration of a ferroelectric neuron. (a) Measured waveforms of the excitatory input Vx and the neuron output voltage

    VN in response to excitatory input Vx spike train with period T=28 ms and no inhibitory input spikes at Vi. The output spikes have a reverse polarity

    compared to the usual polarity of biological neurons. The output spike period is 27.9 ms. Also shown in a zoomed in version of two spikes. During

    a spike, the state of the FEFET approximately traverses the path ABCD as shown in the load line analysis shown in fig. 3(b). (b) The neuron output

    voltage VN in response to excitatory input spike trains with periods T=26, 32, 35, and 300 ms and no inhibitory input spikes. The output spike

    period is 24.8, 63.8, 114.1 ms for T=26, 32, 35 ms, respectively. The neuron do not output any spikes for T>100 ms.

    Fig. 2: Device characterization. Measured

    d.c. ID-VGS characteristics of the FEFET.

    Polarization-voltage and switching current-

    voltage characteristics of epitaxial PZT

    ferroelectric in the FEFET structure at 150

    Hz (inset). The transitions for VDS=2.6V and

    2.8V are abrupt. However, for VDS=2.4V,

    only the downward transition is abrupt.

    y y y ( ) p p g g

    Fi 3 O ti i i l d L d li l i f th i t l f l t i ( )Fi 2 D i h t i ti M d

    13.3.3 IEDM18-302

  • Fig. 5: Demonstration of Inhibition in Ferroelectric Neuron. (a) Measured waveforms of the excitatory input Vx, inhibitory input Vi, and the

    neuron output voltage VN in response to excitatory input spike train with period T=32 ms and inhibitory input spike train of 0.18 s duration starting

    at t=1.025 s. When both inhibitory and excitatory input is present, the neuron do not fire and do not generate any spikes. The crests and troughs of

    the inhibited neuron output correspond to point S and P in the load-line analysis shown in Fig. 2(b). (b,c) A large spike in the excitatory input Vxgenerates a chirped output spike train (fig. c) which is be inhibited when an inhibitory pulse at Vi is arrives during this spiking mode (fig. c).

    Fig. 6: SPICE Simulation of Ferroelectric Neuron. (a) SPICE model of the FE neuron. (b, c, d) Simulated the ID-VG (b) and ID-VS (c)

    characteristics for the FEFET and the neuron waveforms (c) under similar experimental conditions presented in Fig. 5(a) showing reasonable

    agreement between experiment and simulation. (e) Input Frequency versus firing frequency of the neuron. (f) Simulated power spectrum density of

    a FE neuron projected at 45 nm node. (g,h) The neuromorphic topology of interconnected neurons (g) used in SNN simulation in Fig. 7 and its

    SPICE simulated behavior (h) when either of the excitatory (red) and inhibitory (green) connections are active or both of them are neutral (black).

    Fig. 7:Ferroelectric Spiking Neural Network. (a) Ferroelectric spiking neural network architecture. (b) Illustration of MINST over training

    epochs of 1k, 10k, 50k, and 150k. (c,d) Average ( )2 (c) and %accuracy (d) versus number of examples. (e) Benchmark table.

    =32 ms

    0 0.2 0.4 0.6 0.8 1

    510

    0.4

    0.6

    0.8

    1

    1.2

    0.4

    0.6

    0.8

    1

    1.21.52.500

    4

    1.52

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

    0.51

    510

    1.52.50

    3 ms

    2.8 V

    3 ms

    1.35 V

    32 ms6 ms

    3 ms11 V

    3 ms1.1 V

    3 ms11 V

    13.3.4IEDM18-303

    Select a link belowReturn to Previous ViewReturn to Main Menu