18-bit, 2-msps isolated data acquisition reference … · sar adc avdd dvdd ref5045 reference ......

48
I²C Sample clock generator logic (FPGA) 1P8V_ISO 3P3V_ISO EMAC Integrated IEEE 1588 AM3359 ARM CortexA8 Core USB 2.0 / OTG PHY Memory interface Gigabit transceiver USB connector Flash DDR2 SPI System bus I 2 C Beagle Bone Router or hub Ethernet Ethernet connector EEPROM SPI FPGA OSC 3P3V 1P8V 2P5 Isolation barrier TI-PHI EVM controller (PHI2) USB Vcm OPA625 + + 18-Bit 2-MSPS SAR ADC 1P8V_ISO DVDD AVDD REF5045 Reference 4.5 V Vcom ADS9110 SDO-1 SDO-2 SDO-3 SDO-0 SCLK SCS SDI Input protection LMK61E2 OSC I 2 C TPS70933 TPS7A4700 LDO 3P3V_ISO 5V_ISO 5P5V_ISO TPS70933 TPS7A4700 LDO 3P3V 1P8V 1P8V_ISO 1P2V_ISO LMZ14203TZ DC-DC Buck 12-V DC SN6505 Push pull driver + ISO_GND GND 5-V DC 5-V DC CONVST 5V_ISO 5V_ISO 5-V DC Optional ISO78xx ISO78xx SN65LVDS4RSET LVDS receiver Copyright © 2016, Texas Instruments Incorporated TI-PHI EVM controller (PHI1) RVS 1 TIDUB85A – April 2016 – Revised May 2016 Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated 18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNR and Sampling Rate TI Designs 18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNR and Sampling Rate All trademarks are the property of their respective owners. TI Designs This TI Design illustrates how to overcome performance-limiting challenges typical of isolated data acquisition system designs by: maximizing sampling rate by minimizing propagation delay introduced by digital isolator maximizing high-frequency AC signal chain performance (SNR) by effectively mitigating ADC sampling clock jitter introduced by the digital isolator Design Resources TIDA-00732 Design Folder ADS9110 Product Folder ISO7840, ISO7842, ISO1541 Product Folders REF5045, TLV3012 Product Folders OPA376, OPA378, OPA625 Product Folders TPS7A4700 Product Folder TPS70918, TPS70912 Product Folder LMZ14203, SN6505A Product Folders SN74LVC1G17, SN74LVC1G08 Product Folders LMK61E2 Product Folder ADS9110EVM-PDK Associated Design ASK Our E2E Experts Design Features Isolated 18-Bit, 2-MSPS, Single-Channel, Differential Input Data Acquisition (DAQ) System Leverages multiSPI™ Digital Interface of ADS9110 to Achieve 2-MSPS Sampling Rate While Maintaining Low SPI CLK Speed ADC Clock Master Mode and Source-Synchronous SPI Data Transfer Minimizes Digital Isolator Propagation Delay and Increases Throughput Optimized Jitter Reduction Techniques Employed Results in 12-dB SNR Improvement (100-kHz f IN , 2-MSPS) Includes Theory, Calculations, Component Selection, PCB Design, and Measurement Results Featured Applications Modular DAQ Systems Data Logging Design Validation and Verification Remote Process Monitoring and Control

Upload: ngokhuong

Post on 29-Jul-2018

244 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

I²C

Sample clock

generator logic

(FPGA)

1P8V_ISO 3P3V_ISO

EMACIntegrated

IEEE 1588

AM3359ARM

CortexA8Core

USB 2.0 / OTG PHY

Memory interface

Gigabit transceiver

USB connector

Flash

DDR2

SPI

System bus

I2C

Beagle Bone

Router or hub

Ethernet

Ethernet connector

EEPROM

SPI

FPGA

OSC

3P3V 1P8V 2P5

Isolation barrier

TI-PHIEVM controller

(PHI2) USB

Vcm

OPA625

± +

±

+

18-Bit 2-MSPS

SAR ADC

1P8V_ISO

DVDDAVDD

REF5045Reference

4.5 V

Vcom

ADS9110

SDO-1SDO-2SDO-3

SDO-0

SCLKSCSSDI

Input protection

LMK61E2OSC

I 2 C

TPS70933TPS7A4700

LDO

3P3V_ISO

5V_ISO 5P5V_ISOTPS70933

TPS7A4700LDO

3P3V1P8V1P8V_ISO

1P2V_ISO

LMZ14203TZDC-DCBuck

12-V DCSN6505

Push pull

driver

+

ISO_GND GND

5-V DC

5-V DC

CONVST

5V_ISO

5V_ISO

5-V DC

Optional

ISO78xx

ISO78xx

xx

xx

SN65LVDS4RSETLVDS receiver

Copyright © 2016, Texas Instruments Incorporated

TI-PHIEVM controller

(PHI1)

RVS

1TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

TI Designs18-Bit, 2-MSPS Isolated Data Acquisition ReferenceDesign for Maximum SNR and Sampling Rate

All trademarks are the property of their respective owners.

TI DesignsThis TI Design illustrates how to overcomeperformance-limiting challenges typical of isolated dataacquisition system designs by:• maximizing sampling rate by minimizing

propagation delay introduced by digital isolator• maximizing high-frequency AC signal chain

performance (SNR) by effectively mitigating ADCsampling clock jitter introduced by the digitalisolator

Design Resources

TIDA-00732 Design FolderADS9110 Product FolderISO7840, ISO7842, ISO1541 Product FoldersREF5045, TLV3012 Product FoldersOPA376, OPA378, OPA625 Product FoldersTPS7A4700 Product FolderTPS70918, TPS70912 Product FolderLMZ14203, SN6505A Product FoldersSN74LVC1G17, SN74LVC1G08 Product FoldersLMK61E2 Product FolderADS9110EVM-PDK Associated Design

ASK Our E2E Experts

Design Features• Isolated 18-Bit, 2-MSPS, Single-Channel,

Differential Input Data Acquisition (DAQ) System• Leverages multiSPI™ Digital Interface of ADS9110

to Achieve 2-MSPS Sampling Rate WhileMaintaining Low SPI CLK Speed

• ADC Clock Master Mode and Source-SynchronousSPI Data Transfer Minimizes Digital IsolatorPropagation Delay and Increases Throughput

• Optimized Jitter Reduction Techniques EmployedResults in 12-dB SNR Improvement (100-kHz fIN,2-MSPS)

• Includes Theory, Calculations, ComponentSelection, PCB Design, and Measurement Results

Featured Applications• Modular DAQ Systems• Data Logging• Design Validation and Verification• Remote Process Monitoring and Control

Page 2: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

Key System Specifications www.ti.com

2 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and otherimportant disclaimers and information.

1 Key System Specifications

Table 1. Key System Specifications

PARAMETER SPECIFICATIONSNumber of channels SingleInput type DifferentialInput range ±5-V fully differentialInput Impedance 1 KΩResolution 18 bitsSNR 95.5 dB at 100-kHz signal inputENOB 15.5 bits

Power supply isolation 250-V DC (continuous) basic insulation5000-V AC for 1 minute (withstand)

Digital channel isolation 5.7-kVRMS isolation for 1 minute per UL 1577Operating temperature 0°C to 60°CStorage temperature –40°C to 85°C

ConnectorsTwo, 60-pin Samtec high density connector for PHI moduleinterface2x46-pin 2.54-mm header for Beaglebone Black™ interface

Power 12- V DC, 250 mAForm factor (L × W) 228 mm × 106 mm

Page 3: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

Sensor

I/P protection

Amp FilterDigitizer

(A/D)

MCUor

FPGA

Control circuitD/A Digital IO

Volt or Current IO

Direct sensor interface

Optional

DAQ

Data processing

Plottingand

data logging

Host

Physical phenomena

Measurement Types Form Factors Host Interfaces

1. Voltage, current and resistance2. Temperature ± Thermocouple, RTD, thermistor3. Displacement ± LVDT4. Force, Weight ± Strain gauge5. Flow sensor, pressure sensor

1. Standalone ± USB, LAN, Wi-)L�2. Open modular ± PXI, PXIe, VXI, AXI, and LXI3. Embedded modular ± PCI, PCIe4. Proprietary modular ± USB, LAN

1. Desktop PC or laptop2. Embedded controller

www.ti.com System Description

3TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

2 System DescriptionA DAQ system measures an electrical or physical phenomenon such as voltage, current, temperature,pressure, or sound with an integrated or external host computer.

A DAQ system consists of sensors, DAQ measurement hardware-signal conditioning ADC, and anembedded or host computer with programmable software. Figure 1 shows a generic DAQ system blockdiagram.

Figure 1. Generic DAQ System Block Diagram

The DAQ system can be found in following applications:• Voltage, current, and resistance measurement• Temperature measurement• Force measurement• Position, distance, or rotation• Sound and vibration monitor

The DAQ system can be classified according to functions• Analog input (isolated or non-isolated)• Multifunction• Universal input• Direct sensor input

Page 4: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

Input protection

AmpADC driver

LPF

ADC MCU or FPGA

USB or LAN

PXI or PCI

VXI or LXI

HMI

VCOM REF

DC-DC

DC-DC

LDO

LDO

DC-DC

OSC

RAM

Isolation Barrer

LDO

LDO

LDO

LDO

12-V DC

3.3 V

2.5 V

1.8 V

1.2 V

(15 or 5 V)

(5 or 3.3 V)

(3.3 or 1.8 V)

(±15 or ±5 V)

+VCC

AVDD

DVDD

±VEE

Isolated power rail

Non-isolated power rail

Isolation Transformer

Digital Isolator

Serial or parallel

interface

Sample clock control

lines

Integrated AFE

±VEE ±VEE

+VCC +VCC

SPI or I2C

Host interface

AVDD DVDD

AVDD DVDDIN+

IN±

Gain selection

Optional

System Description www.ti.com

4 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

The TIDA-00732 is developed based on an isolated analog input type. Figure 2 shows the generic block diagram of an isolated analog inputmodule.

Figure 2. Generic Illustration of Isolated Analog Input DAQ Module

Page 5: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

www.ti.com System Description

5TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

SensorAs discussed earlier, the DAQ system accepts direct electrical signal or physical parameters liketemperature, pressure, and force. If it is a physical parameter, an appropriate sensor can convert thephysical parameter to electrical signals; these electrical signals (volt or current) can be used as input toDAQ system.

Analog Front-EndThis device contains an input protection circuit at the front end, which protect inputs from surge voltageand feeds to a programmable gain amplifier that scales signals to the required level of the ADC dynamicrange. Followed by PGA, signals are fed to an anti-aliasing low-pass filer through the ADC driver. Here,anti-aliasing filters remove unwanted signals and limits input bandwidth of the analog front-end.

The ADC converts the time varying analog input to either a serial or parallel binary bit stream. These bitstreams are processed by a local embedded controller (MCU) or FPGA.

The ADC has onboard voltage reference, which provides high precision and low noise. Some versions ofADCs have integrated voltage reference as well.

In isolated DAQ systems, the isolation can be accomplished either with an analog or digital end dependingon system requirements. Typically, digital ends can isolate due to low costs and easy implementationcompared to analog isolation. In Figure 1, ADC data lines pass through the digital isolator and areconnected to embedded controller.

Host Computer InterfaceThe host or embedded controller is interfaced with ADC through a serial or parallel interface. The acquireddata are processed and displayed in a physical format.

The embedded controller has a human machine interface (HMI) with an embedded GUI for localmonitoring and data logging. The DAQ module also supports LXI, VXI, PCI, and PXI open architectureplatforms and USB interface, which can be used for further monitoring and analysis.

2.1 DAQ Signal Chain Design ChallengesDAQ systems use isolation in the signal chain because it breaks ground loops, thereby improvingmeasurement accuracy and safety. The isolation can be either at the analog input side or can be at thedigital interface. Analog isolation typically decides (and limits) the signal chain performance (analogisolation typically has an A/D-digital isolation-D/A chain). The digital isolator works fine for mediumresolution and medium sampling rates. However, for higher resolution (>16 bits), higher speed (>1 MSPS),and higher input BW (>100 kHz), the digital isolators present few design challenges to be considered tomatch the ADC performance with the complete signal chain performance.

2.1.1 Isolated Analog Input Module Signal Chain Design ChallengesDAQ systems typically use digital isolators at the serial peripheral interface (SPI) of the ADC for functionalisolation. The digital isolator presents two main design challenges: propagation delay and additive jitter.The propagation delay of the isolator limits the maximum clock of the SPI and hence limits the samplingrate of the ADC. The digital isolator adds jitter to the sampling clock that is generated at the host side. TheSNR degradation of the signal chain due to jitter in sampling clock is proportional to the input signalfrequency.

2.1.1.1 Propagation Delay in Digital IsolatorThe SPI bus is a synchronous, full duplex, serial data link commonly used for onboard short distance dataexchange between a master device, such as a microcontroller unit (MCU) or FPGA, and one or multipleslave devices, such as data converters, digital I/O devices, temperature sensors, and power managementcontrollers.

In SPI communication, data transfer transmission and reception happens on the same clock period. Inisolated systems, the digital isolator is placed in between master and slave devices. The round trippropagation delay of the digital isolator results in the delayed receive of ADC data at MCU. The round-trippropagation delay must be less than the half serial clock period to ensure an error-free data transfer.

Page 6: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

11.7 MSPS

50.2

13

=é ùæ ö

+ç ÷ê úè øë û

0.3

20

æ öç ÷è ø

20

13

æ öç ÷è ø

1570 kHz

200.2

13

æ öç ÷ç ÷ @ç ÷æ ö

+ç ÷ç ÷è øè ø

( )1

13 MHz2 2 16 6.5

@´ ´ +

MCUDigital

IsolatorADC

SPI_CLK

MOSI

MISO

D0 D1 D2MOSI

SPI_CLK

D0 D1 D2MISO

D0 D1 D2MOSI

SPI_CLK

D0 D1 D2MISO

SPI

SPI_CLK_ISO

MOSI_ISO

MISO_ISO

Both Data and Clock are delayed, so no problem here

Clock to output delay of ADCReceive data timing error

( )SCLK _ min ISO _pd ADC_CKDOt 2 2 t t= ´ ´ +

System Description www.ti.com

6 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

(1)

Figure 3 shows the isolator propagation delay affecting the SPI receive timing.

Figure 3. Propagation Delay Affecting SPI Receive Timing

ISO7842 and ADS9110 ExampleConsider a signal chain with the ADS9110 and ISO7842 for an 18-bit, 2-MSPS sampling rate DAQsystem.• ISO7842: tISO_pd = 16 ns max• ADS9110: tADC_CKDO = 6.5 ns max and 20 SCLKs per sample

• fSCLK_max limited by isolator will be

For one MISO SPI, 13 MHz of SCLK results in of ADC sampling rate, where

is the data transfer time and 0.2 μs is the acquisition time for the ADC.

Any delay added in the SPI data path will further reduce the sampling rate. Therefore, at system level, themaximum sampling rate is limited by the delays and not by the ADC.

To achieve the sampling rate of 2 MHz, the SCLK should be at least or ~67 MHz, which requires anisolator propagation delay of ~4 ns max.

One way to relax the isolator’s propagation delay requirement is to use multiple SDO lines on the ADC. Byusing all four SDO lines of the ADS9110, the max throughput can be increased to

—still lesser than the 2 MSPS rated throughput of the ADS9110. However, threeadditional channels of isolation are required, and the host needs to support four SDI lines.

Page 7: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

( ) ( )IN JITTERSNR   20log 2 f t 10log OSR= - p ´ +

Input Frequency (kHz)

SN

R (

dB)

SNR vs Input Signal Frequency (Jitter = 500 psRMS)

1 10 100 100050

60

70

80

90

100

110

120

Sampling error

Voltage measurement error

www.ti.com System Description

7TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

Another approach is to use the multi-SPI digital interface Clock Master Mode to perform a source-synchronous data transfer. In this mode, the ADC generates the SCLK signal on the RVS pin so that it isin sync with the data on the SDO pins, eliminating the effect of the isolator induced timing delays (see theADS9110 datasheet (SBAS629) or watch the multiSPI overview video for more details). To use this mode,the host side must support a SPI slave operation.

In summary, the propagation delay of the isolator affects the SPI receive data timing and limits the SCLKof the SPI. Limiting the SCLK, results in lower ADC sampling rate. The propagation delay could behandled by using lower SCLK for SPI. Slower SCLK is possible by using more SDO lines for SPI. Thepropagation delay can also be addressed by using source-synchronous mode of data transfer from ADC.

2.1.1.2 ADC Sampling Clock JitterThe SNR performance of the ADC at a higher input signal frequency is affected by the jitter in thesampling clock of the ADC. The sampling clock, which is the conversion start signal (CONVST), istypically generated by the host. Since the CONVST signal is passed through the isolator, jitter gets addedto the CONVST signal. The data convertor uses the convert start signal (CONVST) to sample the inputsignal, and any deviation in sample point creates a measurement error and increases the noise floor,which results in SNR degradation (see Figure 4 and Figure 5).

An acceptable clock jitter depends on the targeted system SNR, frequency of the input signal, and oversampling ratio (OSR) for sigma-delta ADC.

Figure 4. Error due to Jitter on Sampling Clock—Data Figure 5. Error due to Jitter on Sampling Clock—Graph

The SNR of the ADC with sampling clock jitter can be expressed as,

(2)

where• fIN: Input signal frequency• tJITTER: Total jitter of ADC (internal clock + external clock)• OSR: Over sampling ratio (only for sigma-delta ADC)

Page 8: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

D

Hostcontroller

ADC

Isolator

Round trip delay period

D0 D1 D2MOSI

SCLK

D0 D1 D2MISO_1

SCLK_3

D0 D1 D2MOSI_1

D0 D1 D2MISO_1

SCLK_1

SCLK_2

SCLK

MOSI

MISO_1

SCLK_3

SCLK_1

MOSI_1

MISO(SDO0)

SCLK_2

Source synchronous mode at ADC

System Description www.ti.com

8 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

The datasheet SNR performance of the ADS9110 at 100-kHz input signal is 95.5 dB. The maximumallowed sampling clock jitter to achieve desired SNR can be calculated as shown in Table 2.

Table 2. Allowed Jitter-Desired SNR

PARAMETER VALUE UNITInput frequency 100 kHz

Target SNR 95.5 dBcAperture jitter 100 fs rms

Total jitter 26.72 ps rmsSample clock jitter 26.72 ps rms

Equation 2 clearly shows that the SNR of the signal chain will be limited if the jitter introduced by anisolator on the sample clock is greater than 27 ps rms.

2.2 Possible Solutions

2.2.1 Compensating the Propagation DelayThe ADS9110 has a multiSPI digital interface that allows the host controller to operate at slower SPISCLK and still achieve the required sampling rate. The multiSPI module offers the following options toreduce SCLK speed:1. Option to increase the width of the output data bus: 1, 2, and 4 SDO lines2. Source-synchronous mode

The multiSPI option allows the SPI SCLK to be reduced and thus reducing the impact of propagationdelay on the sampling rate. If the reduced SCLK rate is still above the loopback delay, then source-synchronous mode will be useful.

In source-synchronous mode, the SCLK from the host is looped back by the ADC along with the data. Theclock and data are synchronous in source-synchronous mode; therefore, the propagation delay of theisolator has no impact on the data rate.

As Figure 6 shows, in ADC-master or source-synchronous mode, the device provides asynchronousoutput clock (on the RVS pin) along with the output data (on the SDO-x pins). The ADC-master or source-synchronous mode completely eliminates the effect of isolator delays and the clock-to-data delays, whichare typically the largest contributors in the overall delay.

Figure 6. ADS9110 SPI Source-Synchronous Mode With Host and Slave End Timing Waveform

Page 9: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

Prog- OSC

CONVST

#CS

SCLK

SDI

SDO 0 - 3

(READY or CLK) RVS

Isolator

ADC

60-Pin (30x2) 6DPWHF��

connector

I2C

I2C

OSC

#CS

SCLKSDO

SDI(0-3)

FPGA2

FRQ generator

DelayRCLK

PHI2 FPGA1

#CS_1

SCLK_1

SDO_1

SDI(0 ± 3)_1

#CS_2

SCLK_2

SDI_2

SDI(0 ± 3)_2

RCLK_2

#CS_3

SCLK_3

SDO_3

RCLK_3

SDI(0 ± 3)_3

CONVST_3 CONVSTCONVST_2

Option

RVS_1

CONVST_1

www.ti.com System Description

9TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

2.2.2 Mitigating SNR Degradation due to JitterAs per the analysis, the jitter on the conversion clock "CONVST" signal degrades the performance of ADC SNR at higher input signal frequencyand will impact the system performance.

As shown in Figure 7, the ADC sample clock CONVST is generated locally using CPLD or FPGA, and this signal is sent back to host forsynchronization. Further, this CONVST signal is synchronized with low jitter oscillator, which eliminates the jitter on the CONVST signal generatedby CPLD or FPGA.

Figure 7. Jitter Mitigation by Sampling CONVST With Ultra-low Jitter Clock

2.3 TIDA-00732 SolutionThe solution discussed in Section 2.2 is implemented in the TI Design TIDA-00732 and showcases the following features:• Compares SNR performance of the ADC side generated CONVST with the host generated CONVST• Demonstrates that the ADC side generated CONVST signal with low jitter clock has better SNR performance for high frequency input signal• Confirms that the host generated CONVST SNR performance is limited by digital isolator jitter

Page 10: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

I²C

Sample clock

generator logic

(FPGA)

1P8V_ISO 3P3V_ISO

EMACIntegrated

IEEE 1588

AM3359ARM

CortexA8Core

USB 2.0 / OTG PHY

Memory interface

Gigabit transceiver

USB connector

Flash

DDR2

SPI

System bus

I2C

Beagle Bone

Router or hub

Ethernet

Ethernet connector

EEPROM

SPI

FPGA

OSC

3P3V 1P8V 2P5

Isolation barrier

TI-PHIEVM controller

(PHI2) USB

Vcm

OPA625

± +

±

+

18-Bit 2-MSPS

SAR ADC

1P8V_ISO

DVDDAVDD

REF5045Reference

4.5 V

Vcom

ADS9110

SDO-1SDO-2SDO-3

SDO-0

SCLKSCSSDI

Input protection

LMK61E2OSC

I 2 C

TPS70933TPS7A4700

LDO

3P3V_ISO

5V_ISO 5P5V_ISOTPS70933

TPS7A4700LDO

3P3V1P8V1P8V_ISO

1P2V_ISO

LMZ14203TZDC-DCBuck

12-V DCSN6505

Push pull

driver

+

ISO_GND GND

5-V DC

5-V DC

CONVST

5V_ISO

5V_ISO

5-V DC

Optional

ISO78xx

ISO78xx

xx

xx

SN65LVDS4RSETLVDS receiver

Copyright © 2016, Texas Instruments Incorporated

TI-PHIEVM controller

(PHI1)

RVS

Block Diagram www.ti.com

10 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

3 Block Diagram

Figure 8. TIDA-00732 System Block Diagram

Page 11: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

www.ti.com Block Diagram

11TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

3.1 Highlighted ProductsThe system contains the following highlighted parts, which determine the overall system performance.

These parts can be grouped as flowing sections:• Signal chain• Clock• Power

3.1.1 Signal Chain• OPA625

The OPAx625 is designed to drive precision (16-bit and 18-bit) SAR ADCs at sample rates up to 1MSPS. The combination of low output impedance (1 Ω at 1 MHz), low THD, low noise, and fast settlingtime (4-V step, 16-bit levels with 280 ns) make the OPAx625 the ideal choice for driving both the SARADC inputs and the reference input to the ADC.

• ADS9110The module has a single-channel differential analog input and uses the ADS9110, 18-bit, 2-MSPS SARADC.

• REF5045The onboard reference REF5045 (ultra-low noise, low drift, and high precision) followed by low noise,low temperature drift, and low output impedance buffer provide a 4.5-V reference to ADC core.

• ISO784x and ISO1541The digital isolation for the host SPI and control signal is achieved using the ISO7840 and ISO7842digital isolators. The host controller communicates with the LMK61E2-SIAR (ultralow programmableclock oscillator) through the ISO1541, which isolates the I2C bus.

3.1.2 ClockThe LMK61E2 programmable oscillator has the following features:• Ultralow noise, high performance (90-fs RMS jitter at > 100 MHz)• Frequency tolerance ±50 ppm• Frequency output 10 MHz to 1GHz• I2C interface

3.1.3 Power• SN6505

The isolated power supply power is generated using the SN6505, low-noise, low-EMI push-pulltransformer driver.

• DC-DC and LDOThe power supply rail for both the isolated and non-isolated sections is generated by the DC-DCconvertor and LDO, which are shown in Table 3.

Table 3. Supply Rails

SINO TYPE PART NO SUPPLY RAIL1 DC-DC LMZ14203 5.5 V2 LDO TPS7A4700RGWR 5 V, 3.3 V3 LDO TPS709XXDBVT 1.8 V, 1.2 V

Page 12: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

+

Gain Network

SAR

ADC

BufferVoltage

ReferenceRC Filter RC Filter

Anti-Aliasing

Filter

Input Driver

Reference Driver

VREF Output: Value and Accuracy

Low Temp & Long-Term Drift

Low Noise

Band-limiting

Reference Noise

Low Output Impedance

Low Offset Error

Low Temp & Long-Term Drift

VREF Load

Regulation

18-bit

1MSPS

+

Gain Network

REFP

VINP

VINM

Full Scale

10-kHz Sinewave

Band-limit the noise from front-end circuit

Attenuate ADC kick-back noise

“Isolation” resistor for amplifier stability

Rail-to-rail IO Swing

Low Power

Low Noise & Distortion

Differential

Voltage

Source

1

2

3

Circuit Design www.ti.com

12 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

4 Circuit DesignThe DAQ analog front-end consists of the high-speed signal chain and the power supply section. Thissection describes various circuit blocks, performance requirement, and the component selectionmethodology.

4.1 Signal Chain Circuit DesignOne of the major and essential building blocks for DAQ is the analog front-end, which consists of the inputdriver followed by an anti-aliasing filter, an ADC, and reference circuit. The TI Precision Design 18-Bit,1-MSPS Data Acquisition (DAQ) Block Optimized for Lowest Power is taken as a reference, and all thedesign equations can be referred to the same (SLAU513).

The TIDA-00732 highlights the signal chain design challenges in an 18-bit, 2-MSPS DAQ system. Thisdesign uses TI’s 18-bit, 2-MSPS SAR ADC, ADS9110. The ADS9110 is a fully differential SAR ADC withexcellent dynamic performance and low power. The device consumes only 15 mW of power whenoperating at the full 2 MSPS throughput. The ADS9110 features the new multiSPI digital interface, whichreduces the SPI clock rate for the full sample rate.

To optimize the performance of the 18-bit, 2-MSPS DAQ system, the input buffer, anti-aliasing filter, andreference driver must be designed in such a way that the performance is equal to or greater than the ADCperformance.

To meet the performance goals of the AFE design, follow these steps:1. Select an appropriate amplifier with sufficient small-signal bandwidth and low power, which minimally

degrades the noise and distortion performance of the ADC.2. Design a low-pass anti-aliasing RC filter to band-limit the noise contribution from the front-end circuitry

while paying attention to the stability of the driving amplifiers.3. Design a high precision reference driver circuit, which should provide the required value of VREF with

low offset, drift, and noise contributions.

Figure 9. Analog Front-End Circuit of DAQ

Page 13: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

3dB

FLT FLT

1f

2 R C-

=

p ´ ´

www.ti.com Circuit Design

13TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

4.1.1 Input Driver Circuit

4.1.1.1 Input Buffer AmplifierThe input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a fly-wheel RC filter. The amplifier is used for signal conditioning of the input signal, and its low outputimpedance provides a buffer between the signal source and the switched capacitor inputs of the ADC. TheRC filter helps attenuate the sampling charge injection from the switched capacitor input stage of the ADCand functions as an antialiasing filter to band-limit the wideband noise contributed by the front-end circuit.Carefully design the front-end circuit to meet the linearity and noise performance of the ADS9110.

The input op amp must support following key specifications:1. Rail-to-rail input and output (RRIO)2. Low power, low noise3. High small-signal bandwidth with low distortion at high frequencies

The OPAx625 is designed to drive precision (16-bit and 18-bit) SAR ADCs at sample rates up to 2 MSPS.The combination of low output impedance (1 Ω at 1 MHz), low THD, low noise (2.5 nV/√Hz), and fastsettling time (4-V step, 16-bit levels with 280 ns) make the OPAx625 the ideal choice for driving both theSAR ADC inputs as well as the reference input to the ADC.

Settling TimeFor DC signals with fast transients that are common in a multiplexed application, the input signal mustsettle within an 18-bit accuracy at the device inputs during the acquisition time window. This condition iscritical to maintain the overall linearity performance of the ADC. Typically, the amplifier datasheets specifythe output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the desired 18-bit accuracy. Therefore, always verify the settling behavior of the input driver by TINA™-SPICEsimulations before selecting the amplifier.

Antialiasing FilterConverting analog-to-digital signals requires sampling an input signal at a constant rate. Any higher-frequency content in the input signal beyond half the sampling frequency is digitized and folded back intothe low-frequency spectrum. This process is called aliasing. Therefore, an analog antialiasing filter mustbe used to remove the harmonic content from the input signal before being sampled by the ADC. Anantialiasing filter is designed as a low-pass, RC filter, where the 3-dB bandwidth is optimized based onspecific application requirements.

For DC signals with fast transients (including multiplexed input signals), a high-bandwidth filter is designedto allow accurate settling of the signal at the inputs of the ADC during the small acquisition time window.

For AC signals, keep the filter bandwidth low to band-limit the noise fed into the input of the ADC, therebyincreasing the SNR of the system. Besides filtering the noise from the front-end drive circuitry, the RC filteralso helps attenuate the sampling charge injection from the switched-capacitor input stage of the ADC. Afilter capacitor, CFLT, is connected from each input pin of the ADC to the ground (as shown in Equation 3and Figure 10).

This capacitor helps reduce the sampling charge injection and provides a charge bucket to quickly chargethe internal sample-and-hold capacitors during the acquisition process. Generally, the value of thiscapacitor must be at least 15 times the specified value of the ADC sampling capacitance. For theADS9110, the input sampling capacitance is equal to 60 pF, thus it is recommended to keep CFLT greaterthan 900 pF. The capacitor must be a COG- or NPO-type because these capacitor types have a high-Q,low-temperature coefficient, and stable electrical characteristics under varying voltages, frequency, andtime.

(3)

Page 14: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

O

FLT

R 1R   0.111

9 9

W³ = =

FLT SHC 20    C 20    60 pF 1.2  nF³ ´ = ´ =

AINP

AINM

Device

GNDC FLT ��900 pF

C FLT ��900 pF

R FLT ��10

R FLT ��10

Circuit Design www.ti.com

14 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

Figure 10. Anti-aliasing Filter Configuration—Diagram

Note that driving capacitive loads can degrade the phase margin of the input amplifiers, thus making theamplifier marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used atthe output of the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, butadds distortion as a result of interactions with the nonlinear input impedance of the ADC. Distortionincreases with source impedance, input signal frequency, and input signal amplitude. Therefore, theselection of RFLT requires balancing the stability and distortion of the design. For the ADS9110, limiting thevalue of RFLT to a maximum of 10 Ω is recommended to avoid any significant degradation in linearityperformance. The tolerance of the selected resistors must be kept less than 1% to keep the inputsbalanced. The driver amplifier must be selected such that its closed-loop output impedance is at least fivetimes lesser than the RFLT.

4.1.1.2 RC Filter Passive Components SelectionThe critical passive components are resistor (RFLT) and capacitor (CFLT) for RC filter. The resistor tolerancemust be 1% because use of differential capacitor at input balances the effect due to any resistormismatch. The type of capacitor should be COG (NPO) because it has high Q and low temperaturecoefficient and stable electrical characteristics over voltage and frequency and time variations.

To Select CFLT

The input capacitance for the ADS9110 is 60 pF. The filter capacitor CFLT should be 20 times greater thatsampling capacitor of ADC.

(4)

For common mode, the capacitor value selected was 10 nF for optimum design performance.

To select RFLT

The output resistance of OPA625 is RO = 1 Ω and substituted in following formula:

(5)

So, the value of RFLT can be chosen greater than 0.1 Ω.

Page 15: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

VCM

-

+

-

+

18-Bit 2-MSPS

SAR ADC

1P8V_ISO

DVDDAVDD

ADS9110

5 VISO

5 VISO

RF =1 N��

CF =1 nF

RFLT = 2.2 ��

C FLT = 10 nF

1 N��

1 N��

OPA625

OPA625

10 nF

Anti- aliasing filter, band limit noise from

front-end circuit

Input buffer with 160-kHz band limiting filter

Differential input filter to remove external noise

C FLT = 10 nF

R FLT = 2.2 ��

RF = 1 N��

CF = 1 nF

VIN+

VIN-

GND

6 9

 

12.27

2      2  10   1  0   10  -

= = W

´ p ´ ´ ´ ´

FLTRC _ CUTOFF FLT

1R

2     F     C=

´ p ´ ´

3dB _RC _ CUTOFFFLT FLT

1F

2        R    C-

=

´ p ´ ´

www.ti.com Circuit Design

15TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

The RFLT and CFLT are calculated for 7-MHz, –3-dB cutoff frequency with above R and C valueconsideration. For the RC filter cut-off frequency:

(6)

where• CFLT = 10 nF• F–3dB_RC_CUTOFF = 7 MHz

(7)

4.1.1.2.1 Input Low-Pass Band Limiting FilterThe overall input signal bandwidth is limited by the input buffer amplifier configured as 160-kHz anti-aliasing filter formed 1-kΩ resistor and 1-nF capacitor at amplifier feedback.

Figure 11. TIDA-00732 Analog Front-End

Page 16: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

(4.5 V)(2.25 V)

CLOSED

OPENBUFFER

REFOUTOPA625_CM

OPA625_CM R110

499

R106

20.0 k

R109

280 k

R111

20.0 k

R11420.0 k

R11210.0 k

4

3

12

J11

87898-0204

AGND_ISO

5 V_ISO

C74

1 µF

C77

0.1 µF

C801 µF

87898-0204

J10

AGND_ISO

12

2U23

OPA376AIDBVR1

5

AGND_ISO

AGND_ISO

Circuit Design www.ti.com

16 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

4.1.2 Common-Mode Voltage (VCM)The onboard reference REF5045 (ultra-low noise, low drift and high precision) generates both ADCcommon-mode voltage and ADC reference voltage.

To exercise the complete dynamic range of the ADS9110, the common-mode voltage at the ADS9110inputs is established at a value of 2.25 V (4.5 V / 2) by using the non-inverting pins of the OPA625amplifier’s on-board reference REF5045 (ultra-low noise, low drift, and high precision) used to generate4.5 V.

Figure 12. Common-Mode Voltage

Page 17: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

REFERENCE

REFERENCE BUFFER

5 V_ISO

AGND_ISO

C 791 µF

3

2U22A

VIN

TEMP

VOUTTRIM/NR

GND

REF5045AIDGKTAGND_ISO

65

4

5

AGND_ISO

AGND_ISO

R1130.22

R85

1.00 k C53

1 µF

C8110 µF

REFOUT

5 V_ISO

AGND_ISOAGND_ISO

AGND_ISO

AGND_ISO

AGND_ISO

AGND_ISO

REFOUT

3

4

52

1

U14OPA378AIDBVT

5

3

4

26

R91

1.00 k

R884.99k

R880.1 µF

R86

2.49 k

C55 0.1 µF

C60 0.1 µFAGND_ISO

AGND_ISO

R94

30.0 k

C61

10 pF

R92

499

R89

4.75

C52 0.22 µF

R2760.1

R2680.1

C57

22 µF

C58

22 µF

C49

10 µF

1

5 V_ISO

www.ti.com Circuit Design

17TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

4.1.3 Reference Buffer CircuitThe reference driver circuit, illustrated in Figure 13, generates a voltage of 4.5-V DC using a single 5-V supply. This circuit is suitable to drive thereference of the ADS9110 at higher sampling rates up to2 MSPS. The reference voltage of 4.5 V in this design is generated by the high-precision, low-noise REF5045 circuit. The output broadband noiseof the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 160 Hz.

The reference buffer is designed with the OPA625 and OPA378 in a composite architecture to achieve superior DC and AC performance at areduced power consumption, compared to using a single high-performance amplifier. The OPA625 is a high-bandwidth amplifier with a very lowopen-loop output impedance of 1 Ω up to a frequency of 1 MHz. The low open-loop output impedance makes the OPA625 a good choice fordriving a high capacitive load to regulate the voltage at the reference input of the ADC. The relatively higher offset and drift specifications of theOPA625 are corrected by using a DC-correcting amplifier (OPA378) inside the feedback loop. The composite scheme inherits the extremely lowoffset and temperature drift specifications of the OPA378.

Figure 13. Reference Buffer Circuit

Page 18: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

nRSTCONVST

nCSSCLK

SDISDO-0SDO-1SDO-2SDO-3

RVS

nRSTCONVSTnCSSCLKSDOSDI-0SDI-1SDI-2SDI-3RCLK

ADS9110 HOSTISOLATOR

SPI

PXOWL63,��

Circuit Design www.ti.com

18 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

4.1.4 ADC SPI (multiSPI)The ADS9110 has a integrated multiSPI that is backward compatible with the traditional SPI andconfigurable SDO lines (1, 2, and 4) . The configurable feature simplifies board layout, timing and firmwareand achieves high throughput at lower clock speeds, thus allowing easy interface with embeddedmicrocontrollers, digital signal processors (DSPs), and field programmable gate arrays (FPGAs). Figure 14shows multiSPI and detailed information can be found in ADS9110 datasheets.

Figure 14. multiSPI

4.2 Clock Circuit SectionThe clock source is an essential component in signal chain specifically when driving the sample clockinput of ADC. The clock optimization is a big challenge in system design.

The clock jitter directly impacts ADC SNR performance greatly at higher input signal frequency. Therefore,select the right clock source to optimize signal chain performance.

This design has two master clock sources that can be used for ADC sample clock generation, jittercleaner logic, and host interface synchronization:1. Crystal oscillator (3.3 V, 125 MHz, 50 ppm, low jitter, 1.9-ps jitter)2. LMK61E2: Programmable crystal oscillator (3.3 V, 150 MHz, 90-fs jitter)

Table 4 shows resistor jumpers selecting one of these clock sources:

Table 4. Master Clock Selection

SLNO MASTER CLOCK RESISTOR MOUNTING REMARKS

1 Crystal oscillator R167 — PopulateR269 — Do not populate 3.3 V, 125 MHz, 50 ppm, low jitter, 1.9-ps jitter

2 Programmable crystal oscillator R167 — Do not populateR269 — Populate

3.3 V, 150 MHz, 90-fs jitter(Frequency of oscillator must be programmedto 125 MHz through I2C interface)

4.3 Isolator SectionThe TIDA-00732 uses TI's ISO784x and ISO1541 series isolators to establish digital isolation in thesystem. The ISO784x series supports signaling rate up to 100 Mbps with typically low propagation delay(11 ns) and wide supply voltage (2.25 to 5.5 V). These isolators are reinforced with very high immunityand a 5.7-kVRMS isolation voltage with very low jitter.

The system requires six isolation channels for standard SPI communication and ten isolation channels formultiSPI.

The ISO784x isolators used for SPI, ADC control lines and ISO1541 bi-directional isolator is used for I2Cisolation.

Page 19: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

BT

BB

RF 51 5.25

RF 0.8

æ ö= - =ç ÷

è ø

EN2

EN1LDO

LDO

LDO

LDO

LDO 5V_ISO1

3P3V_ISO

1P8V_ISO1

A1P8V_ISO

1P2V_ISO

DC-DCLMZ14203TZ-ADJ/NOPB

5.5 V

LDO

LDO

LDO

TPS7A4700RGWR

TPS70918DBVT

TPS70912DBVT

3P3V

1P8V1

+12-V DC

1P2V_ISO

5.5 V5.4-V DC

EVM1_DVDD

1P8V_ISO

EVM1_REG_5V5

5V_ISO OPAMPREFERENCE

EVM2_DVDD

1P8V

D1

D2SN6505A

+

ISOLATORLOGIC,FPGA IO

VDD(ADC)LOGIC,FPGA IO

FPGA CORE

AVDD(ADC)

FPGA IO

FPGA IO

FPGA CORE

TPS7A4700RGWR

TPS70918DBVT

TPS70912DBVT

TPS7A4700RGWR

TPS70918DBVT

Non-isolated power supply rail Isolated power supply rail

www.ti.com Circuit Design

19TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

4.4 Power SectionThe design requires isolated and non-isolated power rails to various components. The block diagram in Figure 15 describes the power supply treefor both isolated and non-isolated sections.

Figure 15. Power Supply Block Diagram of TIDA-00732

4.4.1 DC-DC

4.4.1.1 LMZ14203TZ-ADJThe LMZ14203TZ-ADJ simple switcher is capable of accepting 6- to 46-V DC input and deliver a0.8- to 6-V output with 90% efficiency. The undervoltage lockout is selected at 7.97 V, which helps to enable the LMZ4203TZ-ADJ.

To Set 5-V Output VoltageThe resistor RFBT (R220) and RFBB (R223 + R225) decide the output voltage of the LMZ14203TZ-ADJ.

For a 5-V output, the ratio for

(8)

Page 20: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

FB

118kR219

20.5kR224

249kR221

0.022µFC42

0.01µF

C41

10µF

C39

10µFC40 22µF

C91

600 ohm

L2VIN

1

EN3

SS5

GND4

FB6

RON2

VOUT7

EP8

U3

LMZ14203TZ-ADJ/NOPB

+12VDC 5VDC

5.62kR220

1.07kR223

0.01R225

Red

21

D7

1.2kR222

GNDGND GNDGND

GND

GNDGND

5016

TP16

5016

TP32

Copyright © 2016, Texas Instruments Incorporated

UVLO set resisitors Output set resisitors

BT

5.62KRF 1.07K

5.25= =

Circuit Design www.ti.com

20 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

Select

So R220 = 5.62K , R223 = 1.07K, and R225 = 0 Ω

Figure 16. DC-DC Power Supply

4.4.2 LDO

4.4.2.1 TPS7A4700RGWRThe TPS7A4700 is a positive voltage (36 V), ultralow-noise (4 μVRMS) LDO capable of sourcing a 1-A load.The TPS7A470x is designed with bipolar technology primarily for high-accuracy, high-precisioninstrumentation applications where clean voltage rails are critical to maximize system performance. Thisfeature makes the device ideal for powering op amps, ADCs, DACs, and other high-performance analogcircuitry.

The TPS7A4700RGWR has ANY-OUT™ programmable pins to program desired output voltage. The sumof the internal reference voltage (VREF = 1.4 V) plus the accumulated sum of the respective voltages isassigned to each active pins.

The ANY-OUT™ pins (Pin8, Pin1, and Pin12) are programmed to active low to get 3.3 V at output.

4.4.2.2 TPS7091XDBVTThe TPS709 series of linear regulators are ultralow, quiescent current devices designed for powersensitive applications. A precision band-gap and error amplifier provides 2% accuracy over temperature.The TPS709 series accepts 2.7- to 30-V input voltage and deliver fixed output voltage 1.2 to 6.5 V withmaximum 200-mA output current. The TPS70918DBVT and TPS70912 generate 1.8 V and 1.2 V,respectively, from 5-V DC of the LMZ14203TZ-ADJ DC-DC.

These supply rails power up both FPGA cores and IOs of the isolated and non-isolated section.

4.4.3 Transformer (750315240) and Push-Pull Transformer Driver (SN6505A)The SN6505 is a transformer driver designed for low-cost, small form-factor, isolated DC-DC convertersusing push-pull topology. The device includes an oscillator that feeds a gate-drive circuit. The gate drive,comprising a frequency divider and a break-before-make (BBM) logic, provides two complementary outputsignals that alternately turn the two output transistors on and off.

The SN6505 transformer driver is designed for low-power push-pull converters with input and outputvoltages in the range of 3 to 5.5 V. While converter designs with higher output voltages are possible, takecare that higher turns ratios do not lead to primary currents that exceed the SN6505 specified currentlimits.

Page 21: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

www.ti.com Circuit Design

21TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

The TIDA-00732 uses the recommended transformer inform the SN6505A datasheet. For transformerselection and isolation power supply design, see the SN6505A datasheet. Table 5 shows key parametersof the transformer.

Table 5. Transformer Specification(Part No: 750315240, Mfr: WE)

PARAMETER VALUEVoltage-time 23 µsTurns ratio 1.1:1 ±2%

Switching frequency 150 kHz minDi-electric 6250 RMS, 1 sec

4.5 Host InterfaceThis design supports the following host interfaces to evaluate system performance:• Precision host interface (PHI)

PHI is TI’s SAR ADC evaluation platform, which supports the entire TI SAR ADC family. By using PHI,the TIDA-00732 easily communicates with the host PC using a USB interface. PHI supports theADS9110 multiSPI and onboard configuration I2C EEPROM interface.PHI GUI software can be used to evaluate both AC and DC parameter of the ADS9110. For moreinformation on PHI, refer to ADS9110 EVM-PDK.

• Beaglebone Black interfaceThe TIDA-00732 has Beaglebone Black interface, which can be used to interface the Sitara™ ARM®embedded processor and make the DAQ system with an embedded platform.

Page 22: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

Isolated power supply ADC-side isolated power supply

12-V DC input

Digital isolatorHost interface connector (PHI)

ADC-side glue logic

Isolated analog inputs

BeagleBone Black interface connectors

ADC and front-end

Host-side power supply

(non-isoloated)

2

13

4

5

6789

10

11

Getting Started Hardware www.ti.com

22 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

5 Getting Started Hardware

Figure 17. TIDA-00732 Hardware

5.1 Hardware Functional BlockFigure 17 shows various hardware functional blocks of the TIDA-00732 and function of each block:1. 12-V DC power supply input connector accepts 9- to 12-V DC input to power the TIDA-00732.2. The host side DC-DC buck convertor generates 5 V from the 12-V input.3. An isolation transformer for power supply isolation and isolated power is generated with the SN6506

push pull transformer driver.4. Isolated power supply rails block that generates 5-V, 3.3-V, 1.8-V and 1.2-V power rails.5. Differential analog inputs connector.6. Analog front-end circuits (ADC ADS9110, OPA625, REF4505).7. FPGA that holds CONVST signal generation logic and glue logic for the interface.8. Digital isolator for data isolation (SPI and I2C).9. PHI interface connector, which uses the TIDA-00732 to communicate with the host through USB

interface.10. Beaglebone Black interface, which allows the TIDA-00732 to communicate with the embedded

platform.11. FPGA to implement glue logic for PHI and Beaglebone Black interface selection.

Page 23: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

www.ti.com Getting Started Hardware

23TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

5.2 Headers and Jumper SettingThe TIDA-00732 has a number of jumpers that must be selected properly before powering up the module.1. Input common-mode jumper (see Table 6)

Table 6. Input Common-Mode Selection

J10 J11 DESCRIPTIONCLOSE OPEN 2.25-V select (default)CLOSE CLOSE See the ADS9110 EVM (Section 2.2.2) for

other common-mode settings.EVM Jumper reference J10 and J11corresponding to TIDA-00732 reference ofJ1 and J2, respectively.

OPEN CLOSE

OPEN OPEN

2. Power supply jumper (see Table 7)

Table 7. Power Supply Selection

REFERENCE DEFAULT DESCRIPTION

J17 2,31P8V source selectionPin 1,2—From PHI boardPin 2,3—Onboard

J12 2,35-V source selectionPin 1,2—From PHIPin 2,3—Onboard

J13 2,31P8V_ISO—Source selectionPin 1,2—From PHIPin 2,3—Onboard

J24 2,3FPGA (U24C)—IO Bank0 voltage selectionPin 1,2—3.3 VPin 2,3—1.8 V

J4 OPENEEPROM (U21)—Write protect enableOPEN—Write protect enableCLOSE—Write protect disable

J21 OPENEEPROM (U28)—Write protect enableOPEN—Write protect enableCLOSE—Write protect disable

3. Mode selection jumperThis mode selection jumper configures the TIDA-00732 in any one of the modes shown in Table 8.

Table 8. Mode Selection Switch

J16 J22 DESCRIPTION1,2 1,2 PHI without jitter logic (default)1,2 2,3 Reserved2,3 1,2 PHI with jitter2,3 2,3 Reserved

Page 24: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

Getting Started Hardware www.ti.com

24 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

4. Programming headerThe programming of Xilinx FPGA can be done using the 6-pin header listed in Table 9.

Table 9. FPGA Programming Header

REFERENCE DESCRIPTIONJ14 FPGA(U24) JTAG HeaderJ19 FPGA(U25) JTAG Header

Page 25: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

www.ti.com Getting Started Firmware

25TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

6 Getting Started Firmware

6.1 PHI GUI PanelThe PHI GUI software, which is based on the LabView™ platform, validates the TIDA-00732. Figure 18shows the available test options in PHI GUI.

Figure 18. PHI GUI Demonstrate AC Parameter—SpectralAnalysis

Figure 19. PHI GUI Demonstrate AC Parameter—TimeDomain Display

The PHI GUI can be used to validate the following system key specifications:1. Linearity analysis

• DNL• INL• Accuracy

2. Histogram analysis• Effective resolution

3. Spectral analysis• SNR• THD• SFDR• SINAD• ENOB

PHI GUI software can be found at http://www.ti.com/product/ADS9110/toolssoftware.

Page 26: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

PC or Laptop

USB Interface

DC Power Supply

Ultra Low Distortion Function

Generator

100-kHz Band Pass

Filter

TIDA-00732

12-V DC

PHI Debug ModuleDifferential Input Signal

5 VPP, 100 kHz

Test Setup www.ti.com

26 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

7 Test SetupFigure 20 shows the TIDA-00732 test setup to validate complete signal chain performance of isolatedhigh-speed, high SNR (18-bit, 2-MSPS) analog input DAQ module.

The test needs to evaluate the performance of a high-speed (2-MSPS) and high-resolution (18-bit) systemthat is compliant with testing requirements. The setup has a DS360, Standard Research Systemsprecision ultralow distortion waveform generator, which is capable of generating a sine pattern with asignal frequency range of 10 mHz to 200 kHz. The device needs high precision with very low ripple powersupply to power entire system. This design requires 9- to 12-V DC at 250 mA with high precision and lowripple power. The 12-V DC voltage is generated using Keithley triple output power supply (2230G). It iscapable of generating up to 30 V with 0.03% voltage accuracy and 0.1% current accuracy withsimultaneous voltage and current indication.

The data capturing is established using USB 2.0 interface. The testing computer must have one USB portand support USB 2.0 specification.

Sometimes the signal source may also have noise on top of the signal while generating a sine wave with100 kHz. To remove this unwanted noise, a 100-kHz differential band pass filler is connected in betweenthe signal source and TIDA-00732 input connector. This will attenuate input noise at a 100-kHz band.

Figure 20. TIDA-00732 Test Setup

The PHI GUI software must be installed in the host computer before testing.1. Plug the PHI interface board to the Samtec connector (J18).2. Connect 12-V DC of power to the J5 connector. Ensure the positive terminal is connected to the

positive input (Pin 2 of J5) and the negative terminal is connected to the negative input (Pin 1 of J5).3. Connect the differential output of function generator to the differential input terminal (J7 and J8 SMA

connector) of the TIDA-00732 board (for a 100-kHz input signal frequency, connect the 100-kHz bandpass filter in between signal source and the TIDA-00732 board). Also, make sure both differentialsignals are balanced and configure as shown in Table 10.

4. Connect the PHI module to the PC or laptop using microUSB cable.5. Switch on the power supply.6. Switch on the signal source and set the signal source parameter. Then, enable the output.7. Run the PHI GUI software, go to spectrum analysis tab and capture result with various input signal

frequency.

Page 27: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

www.ti.com Test Setup

27TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

Table 10. Test Conditions

FUNCTION GENERATORPattern Sine

Voltage 7.23 VPP(Adjust to cover full input dynamic range)

Frequency 2 kHz and 100 kHzSource impedance 150 Ω

POWER SUPPLY12-V DC at 250 mA

To evaluate jitter mitigation and SNR performance improvement in the TIDA-00732, the following testcases were created:1. Configure the TIDA-00732 as no jitter cleaning mode by using mode switch (J16, J22).2. Generate a sine wave with 7.32 VPP (adjust to cover full input dynamic range), 2 kHz.3. Run PHI software in debug mode.4. Go to the FFT tab and capture SNR, THD, ENOB.

The test results are taken for both 2-kHz and 100-kHz input frequency with and without jitter cleanermode.

NOTE:1. While testing with a 100-kHz input signal frequency, bandpass filter is used in

between the signal source and the TIDA-00732 module.2. Load the corresponding FPGA MCS file for with or without jitter mode.

Page 28: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

Input Signal Frequency (kHz)

SN

R (

dB)

1 10 10070

75

80

85

90

95

100

105

110With Jitter CleaningWithout Jitter Cleaning

Test Data www.ti.com

28 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

8 Test DataTable 11 shows test results for with and without jitter cleaning mode with input signal frequencies of 2 kHzand 100 kHz. The datasheet SNR performance of the ADS9110 at a 100-KHz input signal is 95.5 dB.Table 10 shows that the SNR performance of the host generated CONVST (without jitter cleaning mode)is 82 dB while the locally generated CONVST (with jitter cleaning mode) is 94.34 dB, which is close to thedatasheet’s specification. This result shows that signal chain performance degraded due to isolator jitter,and the solution provided in the TIDA-00732 gives almost a 12-dB improved SNR performance.

Also, the serial data rate of SPI can be reduced to 49 MHz by using multiSPI while operating theADS9110 with a maximum sample rate of 2 MSPS.

Table 11. Test Result Comparison

PARAMETERTIDA-00732 TEST RESULT

HOST GENERATED CONVST(WITHOUT JITTER CLEANING)

LOCALLY GENERATED CONVST(WITH JITTER CLEANING)

fIN (kHz) 2 100 2 100 100SCLK (MHz) 49 49 49 49 49MODE QSDO QSDO QSDO QSDO QSDOSample rate (MSPS) 1.64 1.64 1.64 1.64 2SNR (dB) 98.89 82.00 99.32 94.34 94.28THD (dB) 121.01 112.64 120.78 113.86 113.72ENOB 15.61 13.32 16.20 15.37 15.36

Figure 21. SNR Performance Comparison

Page 29: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15

17

19

21

23

25

27

29

31

33

35

37

39

16

18

20

22

24

26

28

30

32

34

36

38

40

41 42

43 44

45 46

J1

TSW-123-07-G-D

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15

17

19

21

23

25

27

29

31

33

35

37

39

16

18

20

22

24

26

28

30

32

34

36

38

40

41 42

43 44

45 46

J2

TSW-123-07-G-D

GND10.0R110.0R310.0R510.0R710.0R910.0R1110.0R1310.0R1510.0R1710.0R1910.0R2110.0R2310.0R2510.0R2710.0R2910.0R3110.0R3310.0R3510.0R3710.0R3910.0R4110.0R43

10.0R210.0R410.0R610.0R810.0R1010.0R1210.0R1410.0R1610.0R1810.0R2010.0R2210.0R2410.0R2610.0R2810.0R3010.0R3210.0R3410.0R3610.0R3810.0R4010.0R4210.0R44

GPIO_38GPIO_34GPIO_66GPIO_69PRUO_15_OUTGPIO_23GPIO_47GPIO_27GPIO_22PRU1_12GPIO_36GPIO_32PRU1_8PRU1_9GPIO_10GPIO_9GPIO_8GPIO_78PRU1_6PRU1_4PRU1_2PRU1_0

GPIO_39GPIO_35GPIO_67GPIO_68PRUO_14_OUTGPIO_26GPIO_46GPIO_65PRU1_13GPIO_37GPIO_33GPIO_61PRU1_10PRU1_11GPIO_11GPIO_81GPIO_80GPIO_79PRU1_7PRU1_5PRU1_3PRU1_1

BBB (P8)

BBB (P9) GND

GNDGND

VDD_3V3 VDD_3V3VDD_5VSYS_5VPWR_BUT VDD_5V SYS_5V

VDD_ADC GNDA_ADC

10.0R12410.0R12610.0R12810.0R13010.0R13210.0R13410.0R13610.0R13810.0R14010.0R142

10.0R14610.0R14810.0R15010.0R152

10.0R12310.0R12510.0R12710.0R12910.0R13110.0R13310.0R13510.0R13710.0R13910.0R14110.0R14310.0R14410.0R14510.0R14710.0R14910.0R151

GPIO_30GPIO_31GPIO_48GPIO_5BBB_I2C2_SCLGPIO_3GPIO_49PRUO_7PRUO_5PRUO_1PRUO_0AIN4AIN6AIN2AIN0PRUO_6

BBB_SYS_RESETNGPIO_60GPIO_50GPIO_51GPIO_4BBB_I2C_SDAGPIO_2GPIO_15PRU1_16_INPRUO_3PRUO_2

AIN5AIN3AIN1PRUO_4

BBB_ADC_SDIBBB_ADC_CSnBBB_ADC_SCLK

BBB_ADC_RESETnBBB_ADC_RVS

BBB_ADC_SDO0BBB_ADC_SDO1BBB_ADC_SDO2BBB_ADC_SDO3

BBB_GPIO0BBB_GPIO1BBB_GPIO2BBB_GPIO3BBB_GPO0BBB_GPIO4BBB_GPIO5BBB_GPIO6BBB_GPIO7BBB_GPIO8BBB_GPIO9

BBB_GPIO10BBB_GPIO11BBB_GPIO12BBB_GPIO13BBB_GPIO14BBB_GPIO15BBB_GPIO16

BBB_GPIO32BBB_GPIO17BBB_GPIO18BBB_GPIO19

BBB_GPIO20BBB_GPIO21BBB_GPIO22BBB_GPIO23BBB_GPIO24BBB_GPIO25BBB_GPIO26BBB_GPIO27BBB_GPIO28BBB_GPIO29BBB_GPIO30BBB_GPIO31

BBB_GPO1

BBB_GPIO44

BBB_GPIO47BBB_GPIO48BBB_GPIO49BBB_GPIO50BBB_GPIO54BBB_GPI0

BBB_GPIO52

BBB_GPIO53

BBB_GPIO35BBB_GPIO36BBB_GPIO37BBB_GPIO38BBB_GPIO39BBB_GPIO40

BBB_GPIO42BBB_GPIO43

BBB_SYS_RESETN

11

TP21

11

TP18

11

TP19

11

TP20

11

TP22

11

TP23

11

TP24

5VDC VDD_5V

11TP15

VDD_3V3

VDD_5V

SYS_5V

PWR_BUT

11TP25

11TP30

11TP31

11

33

55

77

99

1111

1313

1515

1717

1919

2121

2323

2525

2727

2929

3131

3333

3535

3737

3939

4141

4343

4545

4747

4949

5151

5353

5555

5757

5959

22

44

66

88

1010

1212

1414

1616

1818

2020

2222

2424

2626

2828

3030

3232

3434

3636

3838

4040

4242

4444

4646

4848

5050

5252

5454

5656

5858

6060

GNDMP1

GNDMP2

GNDMP3

GNDMP4

J18

QTH-030-03-L-D-A

EVM2_PRESENTn

EVM2_ADC_RVS

EVM2_DVDD

10µFC89

GND GND

GND

GND

EVM2_REG_5V5

10µFC87

EVM2_ID_SCL

EVM2_ID_SDA

EVM2_ADC_SDIEVM2_ADC_CONVST

EVM2_ADC_CSnEVM2_ADC_SCLK

EVM2_ADC_RESETn 0R186

0R189

0R190

0R193

0R195

0R200

EVM2_ADC_SDO0EVM2_ADC_SDO1EVM2_ADC_SDO2EVM2_ADC_SDO3

0R210

0R212

0R213

0R215

0R199

GND

11

33

55

77

99

1111

1313

1515

1717

1919

2121

2323

2525

2727

2929

3131

3333

3535

3737

3939

4141

4343

4545

4747

4949

5151

5353

5555

5757

5959

22

44

66

88

1010

1212

1414

1616

1818

2020

2222

2424

2626

2828

3030

3232

3434

3636

3838

4040

4242

4444

4646

4848

5050

5252

5454

5656

5858

6060

GNDMP1

GNDMP2

GNDMP3

GNDMP4

J3

QTH-030-03-L-D-A

EVM1_PRESENTn

EVM1_ADC_SDIEVM1_ADC_CONVST

EVM1_ADC_RVS

EVM1_ADC_SCLKEVM1_ADC_CSn

EVM1_ADC_SDO0EVM1_ADC_SDO1EVM1_ADC_SDO2EVM1_ADC_SDO3

EVM1_ADC_RESETn

EVM1_DVDD

10µFC83

AGND_ISO AGND_ISO

AGND_ISO

AGND_ISO

EVM1_REG_5V5

EVM1_ID_PWR

10µFC84

AGND_ISO

10µFC82

AGND_ISO

EVM1_ID_SCL

EVM1_ID_SDA

0R160

0R1620R163

0R1640R166

0R169

0R170

0R171

0R1720R1730R175

5V INPUT SUPPLY FOR BBB

TI-PHI PLATFORM INTERFACEWITHOUT ISOLATION

TI-PHI PLATFORM INTERFACEWITH ISOLATION

BEAGLE BONE BLA CK INTERFACE WITH ISOLATION

1P8V

EVM2_ID_PWR

10µFC90

GND

A01

A12

A23

VSS4

SDA5

SCL6

WP7

VCC8

U21

BR24G32FVT-3AGE2

WP

0.1µF

C75

0.1µFC78

AGND_ISO

AGND_ISO

AGND_ISO

EVM1_ID_SCL

EVM1_ID_SDA

10.0k

R246

WP

A01

A12

A23

VSS4

SDA5

SCL6

WP7

VCC8

U28

BR24G32FVT-3AGE2

EVM2_ID_PWR

EVM2_ID_PWR

10.0k

R251

WP1

0.1µF

C220

0.1µFC222

EVM2_ID_PWR

EVM2_ID_SCL

EVM2_ID_SDA

GND

GND

GNDWP1

1

2

J4

61300211121

1

2

J21

61300211121

600 ohm

L1

BBB_GPIO33 BBB_GPIO45BBB_GPIO46BBB_GPIO34

11

TP51

11

TP50

EVM1_ID_PWREVM1_ID_PWR

EVM1_ID_PWR

Copyright © 2016, Texas Instruments Incorporated

www.ti.com Design Files

29TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

9 Design Files

9.1 SchematicsTo download the schematics, see the design files at TIDA-00732.

Figure 22. Connector Schematic

Page 30: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

D11

D23

VCC2

GND4

EN5

CLK6

U1

SN6505ADBVR

3

2

1

4

5

6

110µH

T1D1

MBR0520LT1G

D3

MBR0520LT1GGND

1µFC2

AGND_ISO

0.1µFC3

47µFC5

10µFC4

1000pFC7

AGND_ISO

0

R51

LDO_IN_ISO

0R53DNP

0R54DNP

0R550R56

DNP0R57

DNP0R580R59

DNP0R60

DNP

AGND_ISO

0.1R52

47µFC9

1µFC10

AGND_ISO

AGND_ISO

AGND_ISO

5V_ISO1

0.1µFC11 0.1µFC12

AGND_ISOGND

3P3V 3P3V_ISO

GND AGND_ISO

CONVST

CSn

SRESETn ISO_ADC_RESETn

ISO_ADC_CSn

ISO_ADC_CONVST

ISO_ADC_RVS

10.0k

R61

3P3V

10.0k

R623P3V_ISO

0.1µFC25 0.1µFC26

GND

3P3V 3P3V_ISO

GND AGND_ISO

SDI

SCLK ISO_ADC_SCLK

ISO_ADC_SDI

10.0k

R72

10.0k

R73

3P3V_ISO

0.1µFC440.1µFC43

ISO_ADC_SDO3

ISO_ADC_SDO2

ISO_ADC_SDO1SDO1

SDO2

SDO3

10.0k

R75

10.0k

R74

GND AGND_ISO

3P3V 3P3V_ISO

GND

TP1TP2

AGND_ISO

AGND_ISO

3P3V

3P3V

10µFC8

GND

+12VDC_IN

+12VDC_IN

1

2

J5

ED120/2DS

MBRS4201T3G

200V

D2

FB

118kR219

20.5kR224

249kR221

0.022µFC42

0.01µF

C41

10µF

C39

10µFC40 22µF

C91

600 ohm

L2VIN

1

EN3

SS5

GND4

FB6

RON2

VOUT7

EP8

U3

LMZ14203TZ-ADJ/NOPB

+12VDC 5VDC

5.62kR220

1.07kR223

0.01R225

Red

21

D8

1.2kR226

GND

Red

21

D7

1.2kR222

GNDGND GNDGND

GND

GNDGND

5016

TP16

5016

TP325016

TP3

ISOLATIONBARRIER

5016TP35

5016TP42

5016TP45

5VDC

3P3V

1P8V

5016TP461P2V

5016

TP26

5016

TP27

5016

TP28

5016

TP29

GND

5V_ISO

1P8V_ISO

3P3V_ISO1P2V_ISO

A1P8V_ISO5016

TP40

5016TP44

5016TP47

5016TP41

5016TP43

5016

TP36

5016

TP37

5016

TP38

5016

TP39

AGND_ISO

VCC11

GND12

INA3

INB4

OUTC5

OUTD6

EN17

GND18

GND29

EN210

IND11

INC12

OUTB13

OUTA14

GND215

VCC216

U9

VCC11

GND12

INA3

INB4

INC5

IND6

NC7

GND18

GND29

EN210

OUTD11

OUTC12

OUTB13

OUTA14

GND215

VCC216

U12

ISO7840DWR

SDO0 ISO_ADC_SDO03P3V_ISO

33.0

R207ADC_CONVST1ADC_CONVST_FPGA

VCC11

SDA12

SCL13

GND14

GND25

SCL26

SDA27

VCC28

U35

ISO1541DR

3P3V

0.1µFC229

GND

0.1µFC230

AGND_ISO

3P3V_ISO

GND AGND_ISO

1.5kR50

1.5k

R205

1.5kR204

1.5k

R206

NISO_SDA

NISO_SCL

ISO_SDA

ISO_SCL

33.0

R260

1000pF

C236

AGND_ISOGND

VCC11

GND12

INA3

INB4

INC5

IND6

NC7

GND18

GND29

EN210

OUTD11

OUTC12

OUTB13

OUTA14

GND215

VCC216

U5

ISO7840DWR

RVS

1 2

J25

61300211121

OUT1

NC2

SENSE3

6P4V24

6P4V15

3P2V6

GND7

1P6V8

0P8V9

0P4V10

0P2V11

0P1V12

EN13

NR14

IN15

IN16

NC17

NC18

NC19

OUT20

PAD21

U2

TPS7A4700RGWR

+12VDC

10µF

C6

100µF

C237

PLACE GND TESTPOINS FOUR CORNER OF PCBCORRESPOINDING LOCATION PLACE AGND_ISO TESTPOINS FOUR CORNER OF

PCBCORRESPOINDING LOCATION

Copyright © 2016, Texas Instruments Incorporated

Design Files www.ti.com

30 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Figure 23. Power and Isolators Schematic

Page 31: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

SDO-218

CONVST1

RST2

DVDD16

REFM4

SDO-317

REFP5

NC6

AVDD14

GND15

AVDD13

NC3

EP25

SDO-119

SDO-020

RVS21

SDI22

SCLK23

CS24

REFP7

REFM8

AINP9

AINM10

NC12

GND11

U19

ADS9110IRGER

3

1

2

4

6

5

V+

V-

U18OPA625IDBVR

2 4

53

U16SN74LVC1G17DCKR

3P3V_ISO

0.1µF

C50

100kR87

10.0k

R90

1µFC56

12

S1

EVQPNF04M

3P3V_ISO

ADC_RESETn

ADC_CSnADC_SCLKADC_SDIADC_RVS

ADC_SDO0ADC_SDO1ADC_SDO2ADC_SDO3

1µF

C63

1µFC62

1P8V_ISO

2

4

1

53

U17

SN74LVC1G08DCKR

ADC_MRESETn

ADC_SRESETn

0.1µF

C51

1P8V_ISO

10.0kR93

5V_ISO

AGND_ISO1.00k

R99

AGND_ISO

1.00k

R98

1000pFC67

1µFC65

AGND_ISO

OPA625_CM

2.21

R95

3

1

2

4

6

5

V+

V-

U20OPA625IDBVR

5V_ISO

AGND_ISO

1.00kR105

AGND_ISO

1.00k

R104

1000pFC73

1µFC70

AGND_ISO

2.21

R101

0.01µFC66

AGND_ISO

0.01µFC71

AGND_ISO

AGND_ISO

0

R102DNP

1µFC72DNP

10.0k

R100DNP

10µFC69DNP

AGND_ISO

AGND_ISO

5V_ISOAGND_ISO

AGND_ISO AGND_ISOAGND_ISO

AGND_ISO AGND_ISO

1

2 3 4 5

J7

142-0701-801

1

2 3 4 5

J8

142-0701-801

0

R97

0

R103

0.01µFC68

AGND_ISO

AGND_ISO

1

2

3

J6TSM-103-01-L-SV

AGND_ISO

100R96

10µFC64

1

2

3

J9

TSM-103-01-L-SV

AGND_ISO

100

R108

10µFC76

REFOUTTEST_4.3V

VIN+

VIN-

TEST_0.2V

AGND_ISO

ADC_CSn

ADC_SCLK

ADC_SDI

ADC_RVS

ADC_SDO0

ADC_SDO1

ADC_SDO2

ADC_SDO3

ADC_SRESETn

A1P8V_ISO

1P8V_ISO

AGND_ISO

BCLK_ISO

0R261

ADC_CONVST

0R45DNP

0.01µFC214DNP

10µF

C219

AGND_ISO

10µF

C228

AGND_ISO

0

R208

REFOUT

OPA625_CM

REFBUF

OPA625_CM

OPA625_CM

REFOUT

D1

CLK2

GND3

~Q4

VCC5

U33

SN74AUP1G80DCK

0.1µF

C192

AGND_ISO

ADC_MRESETn

ADC_RESETn511

R244

ADC_RESETn

Copyright © 2016, Texas Instruments Incorporated

www.ti.com Design Files

31TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Figure 24. Analog Front-End and ADC Schematic

Page 32: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

IO_L01P_0110

IO_L01N_0111

IO_L02P_0/VREF_0112

IO_L02N_0113

IO_L04P_0114

IO_L03P_0115

IO_L04N_0116

IO_L03N_0117

IO_L05P_0120

IO_L05N_0121

IO_L06P_0/GCLK4124

IO_L07P_0/GCLK6125

IO_L06N_0/GCLK5126

IO_L07N_0/GCLK7127

IO_L08P_0/GCLK8129

IO_L09P_0/GCLK10130

IO_L08N_0/GCLK9131

IO_L09N_0/GCLK11132

IO_L10P_0134

IO_L10N_0135

IO_L11P_0138

IO_L11N_0139

IO_L12P_0/VREF_0141

IO_0142

IO_L12N_0/PUDC_B143

BA

NK

0

U24A

XC3S50AN-5TQG144C

IO_L02P_1/LDC175

IO_L01P_1/HDC76

IO_L02N_1/LDC077

IO_L01N_1/LDC278

IO_179

IO_L03P_182

IO_L04P_1/RHCLK083

IO_L03N_184

IO_L04N_1/RHCLK185

IO_L05P_1/RHCLK287

IO_L05N_1/TRDY1/RHCLK388

IO_L06P_1/RHCLK490

IO_L07P_1/IRDY1/RHCLK691

IO_L06N_1/RHCLK592

IO_L07N_1/RHCLK793

IO_L08P_196

IO_L08N_198

IO_L09P_199

IO_L09N_1101

IO_L10P_1102

IO_L11P_1103

IO_L10N_1104

IO_L11N_1105

BA

NK

1

U24B

XC3S50AN-5TQG144C

IO_L01P_2/M137

IO_L01N_2/M038

IO_L02P_2/M239

IO_L02N_2/CSO_B41

IO_L03P_2/RDWR_B42

IO_L04P_2/VS243

IO_L03N_2/VS144

IO_L04N_2/VS045

IO_L05P_246

IO_L06P_247

IO_L05N_2/D748

IO_L06N_2/D649

IO_L07P_2/D550

IO_L07N_2/D451

IO_L08P_2/GCLK1454

IO_L08N_2/GCLK1555

IO_L09P_2/GCLK057

IO_L10P_2/GCLK258

IO_L09N_2/GCLK159

IO_L10N_2/GCLK360

IO_2/MOSI/CSI_B62

IO_L11P_2/AWAKE63

IO_L11N_2/DOUT64

IO_L12P_2/INIT_B67

IO_L12N_2/D368

IO_L13P_2/D269

IO_L14P_2/D170

IO_L13N_2/D0/DIN/MISO71

IO_L14N_2/CCLK72

BA

NK

2

U24C

XC3S50AN-5TQG144C

IO_L02P_33

IO_L01P_34

IO_L02N_35

IO_L01N_36

IO_L03P_37

IO_L03N_38

IO_L04P_310

IO_L04N_3/VREF_311

IO_L05P_3/LHCLK012

IO_L05N_3/LHCLK113

IO_L06P_3/LHCLK215

IO_L06N_3/IRDY2/LHCLK316

IO_L07P_3/LHCLK418

IO_L08P_3/TRDY2/LHCLK619

IO_L07N_3/LHCLK520

IO_L08N_3/LHCLK721

IO_L09P_324

IO_L09N_325

IO_L10P_327

IO_L11P_328

IO_L10N_329

IO_L11N_330

IO_L12P_331

IO_L12N_332

BA

NK

3

U24D

XC3S50AN-5TQG144C

IP_L13P_333

IP_L13N_3/VREF_335

IP_2/VREF_253

IP_1/VREF_180

IP_1/VREF_197

IP_0/VREF_0123

IP_0140

U24E

XC3S50AN-5TQG144C

TMS1

TDI2

DONE73

TDO107

TCK109

PROG_B144

SUSPEND74

U24F

XC3S50AN-5TQG144C

VCCAUX36

VCCAUX66

VCCAUX108

VCCAUX133

VCCINT22

VCCINT52

VCCINT94

VCCINT122

VCCO_0119

VCCO_0136

VCCO_186

VCCO_195

VCCO_240

VCCO_261

VCCO_314

VCCO_323

U24G

XC3S50AN-5TQG144C

GND9

GND17

GND26

GND34

GND56

GND65

GND81

GND89

GND100

GND106

GND118

GND128

GND137

U24H

XC3S50AN-5TQG144C

AGND_ISO

3P3V_ISOVCCO_0

1P2V_ISO

AGND_ISO

ISO_ADC_CONVST

ISO_ADC_SCLK

ISO_ADC_SDI

ADC_CONVST

ADC_CSn

ADC_SCLK

ADC_SDI

ADC_RVSADC_SDO0

ADC_SDO1ADC_SDO2

ADC_SDO3

1P8V IO 3P3 V IO/ 3P3VI O

3P3V_ISO

5

4

1

2

3

6

J14

PEC06SAAN

3P3V_ISO

AGND_ISO

100R115100R116

100R117100R118TMS_ISO

TDI_ISOTDO_ISOTCK_ISO

TMS_ISOTCK_ISOTDO_ISOTDI_ISO

1.00kR119

1.00kR120

1.00kR121

X_SUSPENDX_DONE

X_PROG_B

Red

2 1

D5

3P3V_ISO

1.00kR122 X_INIT

X_SUSPEND

X_DONE

X_PROG_B

AGND_ISO

X_INIT

3P3V_ISO

33

R167

AGND_ISO

0.1µF

C85

AGND_ISO

33

R161

BCLK_ISO

ISO_ADC_RESETn

ISO_ADC_CSn

X_VS0

X_VS1

X_VS2

X_VS0X_VS1

X_VS2

3P3V_ISO1.00kR174

1.00kR1761.00kR178

1.00kR177

AGND_ISO

DNP33 MHz READ CLOCK

1.00kR165

X_M0X_M1

X_M2

X_M0X_M1X_M2

1.00kR154

1.00kR1561.00kR158

3P3V_ISO

AGND_ISO

DNP

TDI_ISOTCK_ISO

TDO_ISO

3P3V_ISO1.00kR153

1.00kR155

1.00kR157

1.00kR168

1.00kR159 TMS_ISO

ISO_ADC_SDO0

ISO_ADC_SDO3

ISO_ADC_SDO2

ISO_ADC_SDO1

1nF

C102

1nF

C103

1nF

C104

1nF

C105

47nF

C108

47nF

C109

47nF

C110

47nF

C111

10µF

C106

10µF

C107

AGND_ISO

1P2V_ISO

1nF

C92

1nF

C93

1nF

C94

1nF

C95

47nF

C98

47nF

C99

47nF

C100

47nF

C101

10µF

C96

10µF

C97

AGND_ISO

3P3V_ISO

1nF

C112

1nF

C113

1nF

C114

1nF

C115

47nF

C124

47nF

C125

47nF

C126

47nF

C127

10µF

C120

10µF

C121

AGND_ISO

1nF

C134

1nF

C135

1nF

C136

1nF

C137

47nF

C146

47nF

C147

47nF

C148

47nF

C149

10µF

C142

10µF

C143

AGND_ISO

1nF

C116

1nF

C117

1nF

C118

1nF

C119

47nF

C129

47nF

C130

47nF

C131

47nF

C132

10µF

C122

10µF

C123

AGND_ISO

3P3V_ISO

1nF

C138

1nF

C139

1nF

C140

1nF

C141

47nF

C151

47nF

C152

47nF

C153

47nF

C154

10µF

C144

10µF

C145

AGND_ISO

3P3V_ISO1P8V_ISO

3P3V_ISO

VCCAUX

VCCINT

VCCO_0VCCO_2

VCCO_1VCCO_3

Red

21

D9

330R227

3P3V_ISO

Red

21

D10

330R228

3P3V_ISO

Red

21

D11

330R229

3P3V_ISO

Red

21

D12

330R230

3P3V_ISO

STS0_LEDSTS1_LEDSTS2_LEDSTS3_LED

STS0_LEDSTS1_LEDSTS2_LEDSTS3_LED

1.00kR243

1

2

3

J22

HT

SW

-10

3-0

7-G

-S

AGND_ISO

3P3V_ISO

1.00kR107

1

2

3

J16

HT

SW

-10

3-0

7-G

-S

AGND_ISO

3P3V_ISO

MODE_SW1MODE_SW0

MODE_SW1

MODE_SW0

11

TP48

BCLK_ISO

EVM1_ADC_RESETn

EVM1_ADC_CONVSTEVM1_ADC_RVS

EVM1_ADC_SCLK

EVM1_ADC_CSn

EVM1_ADC_SDI

EVM1_ADC_SDO0EVM1_ADC_SDO3

EVM1_ADC_SDO2EVM1_ADC_SDO1

1

2

3

J24

HTSW-103-07-G-S

DNP

1P8V_ISO 3P3V_ISOVCCO_0

VCCO_0

1P8V_ISO

1P8V IO3P3 V IO

VCC4

E/D1

GND2

OUT3

125 MHz

Y1

MCLK

BCLK_ISO

ADC_CONVST1

ADC_SRESETn

ISO_ADC_RVS

ADC_MRESETn

Pin 2,3 Short(default)

Copyright © 2016, Texas Instruments Incorporated

Design Files www.ti.com

32 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Figure 25. FPGA 1—Isolated End Schematic

Page 33: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

IO_L01P_0110

IO_L01N_0111

IO_L02P_0/VREF_0112

IO_L02N_0113

IO_L04P_0114

IO_L03P_0115

IO_L04N_0116

IO_L03N_0117

IO_L05P_0120

IO_L05N_0121

IO_L06P_0/GCLK4124

IO_L07P_0/GCLK6125

IO_L06N_0/GCLK5126

IO_L07N_0/GCLK7127

IO_L08P_0/GCLK8129

IO_L09P_0/GCLK10130

IO_L08N_0/GCLK9131

IO_L09N_0/GCLK11132

IO_L10P_0134

IO_L10N_0135

IO_L11P_0138

IO_L11N_0139

IO_L12P_0/VREF_0141

IO_0142

IO_L12N_0/PUDC_B143

BA

NK

0

U25A

XC3S50AN-5TQG144C

IO_L02P_1/LDC175

IO_L01P_1/HDC76

IO_L02N_1/LDC077

IO_L01N_1/LDC278

IO_179

IO_L03P_182

IO_L04P_1/RHCLK083

IO_L03N_184

IO_L04N_1/RHCLK185

IO_L05P_1/RHCLK287

IO_L05N_1/TRDY1/RHCLK388

IO_L06P_1/RHCLK490

IO_L07P_1/IRDY1/RHCLK691

IO_L06N_1/RHCLK592

IO_L07N_1/RHCLK793

IO_L08P_196

IO_L08N_198

IO_L09P_199

IO_L09N_1101

IO_L10P_1102

IO_L11P_1103

IO_L10N_1104

IO_L11N_1105

BA

NK

1

U25B

XC3S50AN-5TQG144C

IO_L01P_2/M137

IO_L01N_2/M038

IO_L02P_2/M239

IO_L02N_2/CSO_B41

IO_L03P_2/RDWR_B42

IO_L04P_2/VS243

IO_L03N_2/VS144

IO_L04N_2/VS045

IO_L05P_246

IO_L06P_247

IO_L05N_2/D748

IO_L06N_2/D649

IO_L07P_2/D550

IO_L07N_2/D451

IO_L08P_2/GCLK1454

IO_L08N_2/GCLK1555

IO_L09P_2/GCLK057

IO_L10P_2/GCLK258

IO_L09N_2/GCLK159

IO_L10N_2/GCLK360

IO_2/MOSI/CSI_B62

IO_L11P_2/AWAKE63

IO_L11N_2/DOUT64

IO_L12P_2/INIT_B67

IO_L12N_2/D368

IO_L13P_2/D269

IO_L14P_2/D170

IO_L13N_2/D0/DIN/MISO71

IO_L14N_2/CCLK72

BA

NK

2

U25C

XC3S50AN-5TQG144C

IO_L02P_33

IO_L01P_34

IO_L02N_35

IO_L01N_36

IO_L03P_37

IO_L03N_38

IO_L04P_310

IO_L04N_3/VREF_311

IO_L05P_3/LHCLK012

IO_L05N_3/LHCLK113

IO_L06P_3/LHCLK215

IO_L06N_3/IRDY2/LHCLK316

IO_L07P_3/LHCLK418

IO_L08P_3/TRDY2/LHCLK619

IO_L07N_3/LHCLK520

IO_L08N_3/LHCLK721

IO_L09P_324

IO_L09N_325

IO_L10P_327

IO_L11P_328

IO_L10N_329

IO_L11N_330

IO_L12P_331

IO_L12N_332

BA

NK

3

U25D

XC3S50AN-5TQG144C

IP_L13P_333

IP_L13N_3/VREF_335

IP_2/VREF_253

IP_1/VREF_180

IP_1/VREF_197

IP_0/VREF_0123

IP_0140

U25E

XC3S50AN-5TQG144C

TMS1

TDI2

DONE73

TDO107

TCK109

PROG_B144

SUSPEND74

U25F

XC3S50AN-5TQG144C

VCCAUX36

VCCAUX66

VCCAUX108

VCCAUX133

VCCINT22

VCCINT52

VCCINT94

VCCINT122

VCCO_0119

VCCO_0136

VCCO_186

VCCO_195

VCCO_240

VCCO_261

VCCO_314

VCCO_323

U25G

XC3S50AN-5TQG144C

GND9

GND17

GND26

GND34

GND56

GND65

GND81

GND89

GND100

GND106

GND118

GND128

GND137

U25H

XC3S50AN-5TQG144C

GND

3P3V1P8V

1P2V

GND

1P8V IO

Text String

3P3VI O

3P3V

5

4

1

2

3

6

J19

PEC06SAAN

3P3V

GND 100R192100R194100R197100R198

TMSTDITDOTCK

TMSTCKTDOTDI

1.00kR184

1.00kR188

1.00kR191

X1_SUSPENDX1_DONE

X1_PROG_B

Red

2 1

D6

3P3V

1.00kR196 X1_INIT

X1_SUSPEND

X1_DONE

X1_PROG_B

X1_INIT

3P3V

33

R180

GND

0.1µF

C86

GND

33

R179

BCLK

BCLK

X1_VS0

X1_VS1

X1_VS2

X1_VS0X1_VS1

X1_VS2

3P3V1.00kR214

1.00kR2161.00kR218

1.00kR217GND

DNP33 MHz READ CLOCK

1.00kR185

X1_M0X1_M1

X1_M2

X1_M0X1_M1X1_M2

1.00kR181

1.00kR1821.00kR183

3P3V

GND

DNP

TDITCK

TDO

3P3V1.00kR201

1.00kR2021.00kR203

1.00kR187

1.00kR211 TMS

BBB_ADC_SDI

BBB_ADC_CSnBBB_ADC_SCLK

BBB_ADC_RESETn

BBB_GPIO8

BBB_GPIO9BBB_GPIO10

BBB_GPIO11

BBB_GPIO16

BBB_GPIO44

BBB_SYS_RESETN

GND

1nF

C166

1nF

C167

1nF

C168

1nF

C169

47nF

C172

47nF

C173

47nF

C174

47nF

C175

10µF

C170

10µF

C171

1P2V

1nF

C156

1nF

C157

1nF

C158

1nF

C159

47nF

C162

47nF

C163

47nF

C164

47nF

C165

10µF

C160

10µF

C161

3P3V

1nF

C176

1nF

C177

1nF

C178

1nF

C179

47nF

C188

47nF

C189

47nF

C190

47nF

C191

10µF

C184

10µF

C185

1P8V

1nF

C198

1nF

C199

1nF

C200

1nF

C201

47nF

C210

47nF

C211

47nF

C212

47nF

C213

10µF

C206

10µF

C207

3P3V

1nF

C180

1nF

C181

1nF

C182

1nF

C183

47nF

C193

47nF

C194

47nF

C195

47nF

C196

10µF

C186

10µF

C187

3P3V

1nF

C202

1nF

C203

1nF

C204

1nF

C205

47nF

C215

47nF

C216

47nF

C217

47nF

C218

10µF

C208

10µF

C209

3P3V

VCCAUX

VCCINT

VCCO_0

VCCO_2

VCCO_1

VCCO_3

11

TP49

EVM2_ADC_SDO0

EVM2_ADC_SDO3

EVM2_ADC_SDO2

EVM2_ADC_SDO1

EVM2_ADC_CSn

11

TP33

11

TP34

EVM2_ADC_CONVST

EVM2_ADC_RVS

EVM2_ADC_SCLKEVM2_ADC_SDI

EVM2_ADC_RESETn

BBB_GPIO23

CONVST

SDO0

SDO1

SDO2

SDO3

SCLK

RVS

SRESETn

BBB_ADC_SDO0

BBB_ADC_SDO1

BBB_ADC_SDO2BBB_ADC_SDO3

BBB_GPO1

GND

GND

GND

GND GND

GND

SDI

CSn

BBB_GPIO27

BBB_GPIO26BBB_GPIO25

BBB_GPIO24

BBB_GPIO7BBB_GPIO6

BBB_GPIO22

BBB_GPIO5BBB_GPIO21

BBB_GPIO4BBB_GPIO20

BBB_GPO0

BBB_GPIO19

BBB_GPIO3

BBB_GPIO2

BBB_GPIO18

BBB_GPIO1

BBB_GPIO17

BBB_GPIO0

BBB_GPIO32

BBB_GPIO35

BBB_GPIO47

BBB_GPIO36

BBB_GPIO48

BBB_GPIO37

BBB_GPIO49BBB_GPIO38

BBB_GPIO50BBB_GPIO39

BBB_GPIO54BBB_GPIO40

BBB_GPI0

BBB_GPIO42BBB_GPIO52

BBB_GPIO43

BBB_GPIO53

BBB_ADC_RVS

BBB_GPIO12BBB_GPIO29

BBB_GPIO13

BBB_GPIO30

BBB_GPIO14

BBB_GPIO31

BBB_GPIO28

BBB_GPIO15

NISO_SDA

NISO_SCL

Red

21

D22

330R209

Red

21

D23

330R264

Red

21

D24

330R265

Red

21

D25

330R266

3P3V 3P3V 3P3V 3P3V

VCC4

E/D1

GND2

OUT3

125 MHz

Y2

ADC_CONVST_FPGA

FSTS0_LEDFSTS1_LEDFSTS3_LEDFSTS2_LED

BBB_GPIO33BBB_GPIO45BBB_GPIO46BBB_GPIO34

BBB_GPIO33

BBB_GPIO45BBB_GPIO46

BBB_GPIO34

Copyright © 2016, Texas Instruments Incorporated

www.ti.com Design Files

33TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Figure 26. FPGA 2—Non-Isolated End Schematic

Page 34: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

TP5

0.1µF

C16

TP4

10µF

C15

1µF

C13

0.1µF

C14

1P2V5VDC TP10

0.1µF

C30

TP9

10µF

C29

IN1

GN

D2

EN3

NC

4O

UT

5U6

TPS70918DBVT

1µF

C27

0.1µF

C28

1P8V_15VDC

GNDGND

OUT1

NC2

SENSE3

6P4V24

6P4V15

3P2V6

GND7

1P6V8

0P8V9

0P4V10

0P2V11

0P1V12

EN13

NR14

IN15

IN16

NC17

NC18

NC19

OUT20

PAD21

U13

TPS7A4700RGWR

47µF

C45

1000pF

C46

5VDC

0R77DNP

0R78DNP

0R79DNP

0R800R81

DNP0R82

DNP0R830R84

0.1R76

47µFC47

1µFC48

3P3V

GND

GND GND

TP17

GND

GND

TP13

0.1µF

C34

TP11

10µF

C33

1µF

C31

0.1µF

C32

A1P8V_ISOLDO_IN_ISO

TP8

0.1µF

C22

TP7

10µF

C21

IN1

GN

D2

EN3

NC

4O

UT

5

U4

TPS70912DBVT

1µF

C19

0.1µF

C20

1P2V_ISOLDO_IN_ISO

AGND_ISO

AGND_ISO

TP14

0.1µF

C38

TP12

10µF

C37

1µF

C35

0.1µF

C36

1P8V_ISO1LDO_IN_ISO

AGND_ISO

47µF

C17

1000pF

C18

AGND_ISO

LDO_IN_ISO

0R64DNP

0R65DNP

0R66DNP

0R670R68

DNP0R69

DNP0R700R71

0.1R63

47µFC23

1µFC24

3P3V_ISOTP6

AGND_ISO AGND_ISO

AGND_ISOAGND_ISO

Red

21

D16

3

1

2

Q2CMPT3904 LEAD FREE

GND

1P2V

3P3V

1.2kR235

330

R237

Red

21

D18

3

1

2

Q4CMPT3904 LEAD FREE

GND

1P8V

3P3V

1.2kR239

330

R241

Red

21

D15

3

1

2

Q1CMPT3904 LEAD FREE

1.2kR233

330

R234

Red

21

D17

3

1

2

Q3CMPT3904 LEAD FREE

1.2kR236

330

R238

Red

21

D19

3

1

2

Q5CMPT3904 LEAD FREE

1.2kR240

330

R242

Red

21

D14

3P3V

1.2kR232

GND

Red

21

D13

3P3V_ISO

1.2kR231

1P2V_ISO1P8V_ISOA1P8V_ISO

AGND_ISOAGND_ISOAGND_ISO

3P3V_ISO 3P3V_ISO3P3V_ISO

AGND_ISO

5V_ISO

5V_ISO1

1P8V_ISO

EVM1_DVDD 1P8V_ISO1

EVM1_REG_5V5

1P8V

1 2 3

J17HTSW-103-07-G-S

EVM2_DVDD 1P8V_1

NON-ISOLATED POWER RAIL ISOLATED POWER RAIL

IN1

GN

D2

EN3

NC

4O

UT

5

U8

TPS70918DBVT

IN1

GN

D2

EN3

NC

4O

UT

5

U10

TPS70918DBVT

IN1

GN

D2

EN3

NC

4O

UT

5

U11

TPS70912DBVT

OUT1

NC2

SENSE3

6P4V24

6P4V15

3P2V6

GND7

1P6V8

0P8V9

0P4V10

0P2V11

0P1V12

EN13

NR14

IN15

IN16

NC17

NC18

NC19

OUT20

PAD21

U7

TPS7A4700RGWR

1 2 3

J1261300311121

1 2 3

J1361300311121

Pin 2,3 Short(default)

Pin 2,3 Short(default)

Pin 2,3 Short(default)

Copyright © 2016, Texas Instruments Incorporated

Design Files www.ti.com

34 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Figure 27. Isolated and Non-Isolated LDOs Schematic

Page 35: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

3

4

1

62

V+

V-

5

U26TLV3012AIDCKR

3

4

1

62

V+

V-

5

U29TLV3012AIDCKR

2

4

1

53

U27SN74LVC1G08DCKR

LDO_EN1

0.1µF

C133

0.1µF

C128

0.1µF

C155

EVM1_ID_PWR

EVM1_ID_PWR

EVM1_1.25V_1

EVM1_1.25V_1

EVM1_1.25V_2

EVM1_1.25V_2

EVM1_ID_PWR

10.0kR249

10.0k

R252

32.4k

R248

25.5kR253

0.1µFC150

0.01µFC221

EVM1_DVDD

1

23

Q6NX3020NAKW,115

APT2012LZGCK

Gre

en

12

D20

10.0kR247

10.0kR250

1.8V

5.5V

1.3V

1.3V

3

4

1

62

V+

V-

5

U30TLV3012AIDCKR

3

4

1

62

V+

V-

5

U32TLV3012AIDCKR

2

4

1

53

U31SN74LVC1G08DCKR

LDO_EN2

0.1µF

C224

0.1µF

C223

0.1µF

C226

EVM2_ID_PWR

EVM2_ID_PWR

EVM2_1.25V_1

EVM2_1.25V_1

EVM1_2.25V_2

EVM2_1.25V_2

EVM2_ID_PWR

10.0kR256

10.0k

R258

32.4k

R255

25.5kR259

0.1µFC225

0.01µFC227

EVM2_DVDD

1

23

Q7NX3020NAKW,115

GND

APT2012LZGCK

Gre

en

12

D21

5VDC

5VDC

10.0kR254

10.0kR257

1.8V

5.5V

1.3V

1.3V

AGND_ISO AGND_ISO

AGND_ISO

AGND_ISO

AGND_ISO AGND_ISO

AGND_ISO AGND_ISO

AGND_ISO

AGND_ISO

AGND_ISO

PHI BOARD-1 POWER SENSING

PHI BOARD-2 POWER SENSING

LDO_IN_ISO

LDO_IN_ISO

GND

GND

GND

GND

GND GNDGND

GNDGND

GND

AGND_ISO

GND

Copyright © 2016, Texas Instruments Incorporated

www.ti.com Design Files

35TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Figure 28. Power Sense—PH1 and PH2 Interface Schematic

Page 36: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

REF6045_BUF 0R48DNP

0R49

22µFC57

22µFC58

AGND_ISO

REFBUF

3

1

2

4

6

5

V+

V-

U15OPA625IDBVR1.00k

R85

1µFC53

0.1µFC55

0.1µFC60

0.1µFC54

2.49k

R86

4.99kR88

1

2

3

4

5

U14OPA378AIDBVT

AGND_ISO

AGND_ISO

5V_ISO

AGND_ISO

AGND_ISO

0.22µFC52

AGND_ISO

4.75R89

499

R92

5V_ISO

AGND_ISO

AGND_ISO

1.00k

R91

AGND_ISO

10pF

C61

10µF

C49

30.0k

R94

D4CUS05S40,H3F

5V_ISO

0.22R46

10µFC88

1µFC197

0.22R47

47µFC1

VIN1

EN2

FILT3

SS4

OUT_S5

OUT_F6

GND_F7

GND_S8

U34

REF6041AIDGK

5V_ISO

AGND_ISO

AGND_ISO AGND_ISO

AGND_ISO

REF5045_BUF

OE1

ADD2

GND3

SCL8

OUTP4

OUTN5

VDD6

SDA7

U36

LMK61E2-SIAR

3P3V_ISO

AGND_ISO

0.1µF

C232

10µF

C233

AGND_ISO

4.7kR270

4.7kR271

GND1

A2

B3

NC4

VCC5

NC6

GND7

R8

NC9

VDD10

U37

SN65LVDS4RSET

0.1µF

C234

0.1µF

C235

100R274

1P8V_ISO

BCLK_N

BCLK_P

MCLK33

R273

3P3V_ISO

AGND_ISO

BCLK_ISO33

R269

ISO_SDA

ISO_SCL

20.0k

R111

20.0kR114

280k

R109

10.0kR112

1

2

J11

87898-0204

12

J10

87898-0204

AGND_ISO

1µFC80

AGND_ISO

1

2

3

4

5

U23OPA376AIDBVR

1µF

C7420.0k

R106

499

R110

5V_ISO

0.1µF

C77

AGND_ISO

AGND_ISOOPA625_CM

REFOUT

REFBUF

OPA625_CM

VIN2

TEMP3

GND4

TRIM/NR5

VOUT6

U22A

REF5045AIDGKT1µFC79

10µFC81

0.22R113

5V_ISO

AGND_ISO

AGND_ISO

AGND_ISO

0.1R268

0.1R276

4.7kR267

3P3V_ISO

0.1µFC59

0.1µFC231

1P8V_ISO 3P3V_ISO

AGND_ISO AGND_ISO

4.7kR277

REF5045

REF6041

COMMON MODE REFERENCE GENERATION

PROG MASTER CLOCK GENERATION

REFOUT

Copyright © 2016, Texas Instruments Incorporated

Design Files www.ti.com

36 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Figure 29. ADC Reference Selection Schematic

white space

Page 37: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

www.ti.com Design Files

37TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

9.2 Bill of MaterialsTo download the bill of materials (BOM), see the design files at TIDA-00732.

Table 12. BOM

ITEM DESIGNATOR QTY VALUE PARTNUMBER MANUFACTURER DESCRIPTION PACKAGEREFERENCE

1 !PCB1 1 TIDA-00732 Any Printed Circuit Board

2 C1 1 47uF GRM32ER71A476KE15L MuRata CAP, CERM, 47 µF, 10 V, +/-10%, X7R, 1210 1210

3C2, C10, C24, C48, C53, C56,C62, C63, C65, C70, C74, C79,C80

13 1uF GRM188R71E105KA12D MuRata CAP, CERM, 1 µF, 25 V, +/-10%, X7R, 0603 0603

4

C3, C11, C12, C25, C26, C43,C44, C51, C59, C75, C78, C85,C86, C128, C133, C150, C155,C192, C220, C222, C223,C224, C225, C226, C229,C230, C231

27 0.1uF GRM155R71C104KA88D MuRata CAP, CERM, 0.1 µF, 16 V, +/-10%, X7R, 0402 0402

5 C4, C64, C76, C81, C82, C83,C84, C87, C89, C90 10 10uF GRM21BR71A106KE51L MuRata CAP, CERM, 10 µF, 10 V, +/-

10%, X7R, 0805 0805

6 C5, C9, C17, C23, C45, C47 6 47uF C3216X5R1E476M160AC TDK CAP, CERM, 47 µF, 25 V, +/-20%, X5R, 1206_190 1206_190

7 C6, C8 2 10uF C3216X7R1E106M160AE TDK CAP, CERM, 10 µF, 25 V, +/-20%, X7R, 1206_190 1206_190

8 C7, C18, C46, C67, C73 5 1000pF GRM1885C1H102FA01J MuRata CAP, CERM, 1000 pF, 50 V,+/- 1%, C0G/NP0, 0603 0603

9 C13, C19, C27, C31, C35 5 1uF 08055C105KAT2A AVX CAP, CERM, 1uF, 50V, +/-10%, X7R, 0805 0805

10 C14, C16, C20, C22, C28, C30,C32, C34, C36, C38 10 0.1uF C0603C104K5RACTU Kemet CAP, CERM, 0.1uF, 50V, +/-

10%, X7R, 0603 0603

11 C15, C21, C29, C33, C37 5 10uF 0805YD106MAT2A AVX CAP, CERM, 10uF, 16V, +/-20%, X5R, 0805 0805

12 C39, C40 2 10uF UMK325AB7106KM-T Taiyo Yuden CAP, CERM, 10 µF, 50 V, +/-10%, X7R, 1210 1210

13 C41 1 0.01uF C0603C103J5RACTU Kemet CAP, CERM, 0.01uF, 50V, +/-5%, X7R, 0603 0603

14 C42 1 0.022uF 08055C223KAT2A AVX CAP, CERM, 0.022uF, 50V,+/-10%, X7R, 0805 0805

Page 38: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

Design Files www.ti.com

38 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Table 12. BOM (continued)

ITEM DESIGNATOR QTY VALUE PARTNUMBER MANUFACTURER DESCRIPTION PACKAGEREFERENCE

15

C49, C96, C97, C106, C107,C120, C121, C122, C123,C142, C143, C144, C145,C160, C161, C170, C171,C184, C185, C186, C187,C206, C207, C208, C209,C219, C228, C233

28 10uF ZRB18AD71A106KE01L MuRata CAP, CERM, 10 µF, 10 V, +/-10%, X7T, 0603 0603

16 C50 1 0.1uF 0603YC104JAT2A AVX CAP, CERM, 0.1 µF, 16 V, +/-5%, X7R, 0603 0603

17 C52 1 0.22uF 0805YC224JAT2A AVX CAP, CERM, 0.22 µF, 16 V,+/- 5%, X7R, 0805 0805

18 C54, C55, C60, C77, C232 5 0.1uF C0603C104J3RACTU Kemet CAP, CERM, 0.1 µF, 25 V, +/-5%, X7R, 0603 0603

19 C57, C58 2 22uF GRM188R60J226MEA0J MuRata CAP, CERM, 22 µF, 6.3 V, +/-20%, X5R, 0603 0603

20 C61 1 10pF C0603C100F5GAC7867 Kemet CAP, CERM, 10 pF, 50 V, +/-1%, C0G/NP0, 0603 0603

21 C66, C71, C221, C227 4 0.01uF GRM155R71H103KA88D MuRata CAP, CERM, 0.01 µF, 50 V,+/- 10%, X7R, 0402 0402

22 C68 1 0.01uF C0805C103F1GACTU Kemet CAP, CERM, 0.01 µF, 100 V,+/- 1%, C0G/NP0, 0805 0805

23 C88 1 10uF GRM21BR71A106KE51L MuRata CAP, CERM, 10uF, 10V, +/-10%, X7R, 0805 0805

24 C91 1 22uF C3225X5R1A226M TDK CAP, CERM, 22uF, 10V, +/-20%, X5R, 1210 1210

25

C92, C93, C94, C95, C102,C103, C104, C105, C112,C113, C114, C115, C116,C117, C118, C119, C134,C135, C136, C137, C138,C139, C140, C141, C156,C157, C158, C159, C166,C167, C168, C169, C176,C177, C178, C179, C180,C181, C182, C183, C198,C199, C200, C201, C202,C203, C204, C205

48 1000pF C1005X7R1H102M TDK CAP, CERM, 1000 pF, 50 V,+/- 20%, X7R, 0402 0402

Page 39: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

www.ti.com Design Files

39TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Table 12. BOM (continued)

ITEM DESIGNATOR QTY VALUE PARTNUMBER MANUFACTURER DESCRIPTION PACKAGEREFERENCE

26

C98, C99, C100, C101, C108,C109, C110, C111, C124,C125, C126, C127, C129,C130, C131, C132, C146,C147, C148, C149, C151,C152, C153, C154, C162,C163, C164, C165, C172,C173, C174, C175, C188,C189, C190, C191, C193,C194, C195, C196, C210,C211, C212, C213, C215,C216, C217, C218

48 0.047uF GRM155R61A473KA01D MuRata CAP, CERM, 0.047 µF, 10 V,+/- 10%, X5R, 0402 0402

27 C197 1 1uF GRM188R71A105KA61D MuRata CAP, CERM, 1uF, 10V, +/-10%, X7R, 0603 0603

28 C234, C235 2 0.1uF GRM155R61E104KA87D MuRata CAP, CERM, 0.1 µF, 25 V, +/-10%, X5R, 0402 0402

29 C236 1 1000pF 202R18W102KV4E Johanson Technology CAP, CERM, 1000 pF, 2000V, +/- 10%, X7R, 1206_190 1206_190

30 C237 1 100uF 293D107X9020E2TE3 Vishay-Sprague CAP, TA, 100 µF, 20 V, +/-10%, 0.5 ohm, SMD 7343-43

31 D1, D3 2 20V MBR0520LT1G ON Semiconductor Diode, Schottky, 20 V, 0.5 A,SOD-123 SOD-123

32 D2 1 200V MBRS4201T3G ON Semiconductor Diode, Schottky, 200V, 4A,SMC SMC

33 D4 1 40V CUS05S40,H3F Toshiba Diode, Schottky, 40 V, 0.5 A,SOD-323 SOD-323

34D5, D6, D7, D8, D9, D10, D11,D12, D13, D14, D15, D16, D17,D18, D19, D22, D23, D24, D25

19 Red 150060RS75000 Wurth Elektronik LED, Red, SMD LED_0603

35 D20, D21 2 Green APT2012LZGCK Kingbright LED, Green, SMD LED_0805

36 FID4, FID5, FID6, FID7, FID8 5 N/A N/A Fiducial mark. There isnothing to buy or mount. Fiducial

37H1, H2, H3, H4, H17, H18, H21,H22, H23, H24, H25, H26, H27,H28, H29

15 PMSSS 440 0025 PH B&F Fastener Supply MACHINE SCREW PANPHILLIPS 4-40

Machine Screw, 4-40, 1/4"

38 H5, H6, H7, H8, H13, H14, H15,H16 8 9774050360R Wurth Elektronik ROUND STANDOFF M3

STEEL 11MMROUND STANDOFF

M3 STEEL 11MM

39 H9, H10, H11, H12, H19, H20,H30 7 1902C Keystone Standoff, Hex, 0.5"L #4-40

Nylon Standoff

40 J1, J2 2 TSW-123-07-G-D Samtec Header, 2.54 mm, 23x2, Gold,TH

Header, 2.54 mm,23x2, TH

Page 40: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

Design Files www.ti.com

40 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Table 12. BOM (continued)

ITEM DESIGNATOR QTY VALUE PARTNUMBER MANUFACTURER DESCRIPTION PACKAGEREFERENCE

41 J3, J18 2 QTH-030-03-L-D-A Samtec Header(Shrouded), 19.7mil,30x2, Gold, SMT

Header (Shrouded),19.7mil, 30x2, SMT

42 J4, J21, J25 3 61300211121 Wurth Elektronik eiSos Header, 2.54 mm, 2x1, Gold,TH

Header, 2.54mm,2x1, TH

43 J5 1 ED120/2DS On-Shore Technology TERMINAL BLOCK 5.08MMVERT 2POS, TH

TERM_BLK, 2pos,5.08mm

44 J6, J9 2 TSM-103-01-L-SV Samtec Header, 100mil, 3x1, Gold,SMT

Samtec_TSM-103-01-X-SV

45 J7, J8 2 142-0701-801 Johnson Connector, End launch SMA,50 ohm, SMT End Launch SMA

46 J10, J11 2 87898-0204 Molex Header, 2.54 mm, 2x1, Gold,R/A, SMT

Header, 2.54 mm,2x1, R/A, SMT

47 J12, J13 2 61300311121 Wurth Elektronik eiSos Header, 2.54 mm, 3x1, Gold,TH

Header, 2.54mm,3x1, TH

48 J14, J19 2 PEC06SAAN Sullins ConnectorSolutions Header, 100mil, 6x1, Tin, TH

TH, 6-Leads, Body608x100mil, Pitch

100mil

49 J16, J17, J22 3 HTSW-103-07-G-S Samtec Header, 100mil, 3x1, Gold, TH Header, 100mil, 3x1,TH

50 L1 1 600 ohm HZ0805E601R-10 Laird-Signal IntegrityProducts

Ferrite Bead, 600 ohm @ 100MHz, 0.5 A, 0805 0805

51 L2 1 600 ohm MPZ2012S601A TDK Ferrite Bead, 600 ohm @100MHz, 2A, 0805 0805

52 LBL1 1 THT-14-423-10 BradyThermal Transfer PrintableLabels, 0.650" W x 0.200" H -10,000 per roll

PCB Label 0.650"Hx 0.200"W

53 Q1, Q2, Q3, Q4, Q5 5 40 V CMPT3904 LEAD FREE Central Semiconductor Transistor, NPN, 40 V, 0.2 A,SOT-23 SOT-23

54 Q6, Q7 2 30V NX3020NAKW,115 NXP Semiconductor MOSFET, N-CH, 30 V, 0.18A, SOT-323 SOT-323

Page 41: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

www.ti.com Design Files

41TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Table 12. BOM (continued)

ITEM DESIGNATOR QTY VALUE PARTNUMBER MANUFACTURER DESCRIPTION PACKAGEREFERENCE

55

R1, R2, R3, R4, R5, R6, R7,R8, R9, R10, R11, R12, R13,R14, R15, R16, R17, R18, R19,R20, R21, R22, R23, R24, R25,R26, R27, R28, R29, R30, R31,R32, R33, R34, R35, R36, R37,R38, R39, R40, R41, R42, R43,R44, R123, R124, R125, R126,R127, R128, R129, R130,R131, R132, R133, R134,R135, R136, R137, R138,R139, R140, R141, R142,R143, R144, R145, R146,R147, R148, R149, R150,R151, R152

74 10.0 CRCW040210R0FKED Vishay-Dale RES, 10.0, 1%, 0.063 W,0402 0402

56 R46, R47 2 0.22 ERJ-3RQFR22V Panasonic RES, 0.22 ohm, 1%, 0.1W,0603 0603

57 R49, R97, R103 3 0 ERJ-3GEY0R00V Panasonic RES, 0, 5%, 0.1 W, 0603 0603

58 R50, R204, R205, R206 4 1.5k CRCW08051K50JNEA Vishay-Dale RES, 1.5 k, 5%, 0.125 W,0805 0805

59 R51 1 0 CRCW12060000Z0EA Vishay-Dale RES, 0, 5%, 0.25 W, 1206 120660 R52, R63, R76 3 0.1 ERJ-3RSFR10V Panasonic RES, 0.1, 1%, 0.1 W, 0603 0603

61

R55, R58, R67, R70, R71, R80,R83, R84, R160, R162, R163,R164, R166, R169, R170,R171, R172, R173, R175,R186, R189, R190, R193,R195, R199, R200, R208,R210, R212, R213, R215

31 0 ERJ-2GE0R00X Panasonic RES, 0, 5%, 0.063 W, 0402 0402

62R61, R62, R72, R73, R74, R75,R90, R93, R247, R250, R254,R257

12 10.0k ERJ-2RKF1002X Panasonic RES, 10.0 k, 1%, 0.1 W, 0402 0402

63 R85, R91, R98, R99, R104,R105 6 1.00k RG1608P-102-B-T5 Susumu Co Ltd RES, 1.00 k, 0.1%, 0.1 W,

0603 0603

64 R86 1 2.49k RG1608P-2491-B-T5 Susumu Co Ltd RES, 2.49 k, 0.1%, 0.1 W,0603 0603

65 R87 1 100k CRCW0402100KFKED Vishay-Dale RES, 100 k, 1%, 0.063 W,0402 0402

66 R88 1 4.99k RG1608P-4991-B-T5 Susumu Co Ltd RES, 4.99 k, 0.1%, 0.1 W,0603 0603

67 R89 1 4.75 CRCW06034R75FKEA Vishay-Dale RES, 4.75, 1%, 0.1 W, 0603 060368 R92, R110 2 499 RG1608P-4990-B-T5 Susumu Co Ltd RES, 499, 0.1%, 0.1 W, 0603 0603

Page 42: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

Design Files www.ti.com

42 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Table 12. BOM (continued)

ITEM DESIGNATOR QTY VALUE PARTNUMBER MANUFACTURER DESCRIPTION PACKAGEREFERENCE

69 R94 1 30.0k RG1608P-303-B-T5 Susumu Co Ltd RES, 30.0 k, 0.1%, 0.1 W,0603 0603

70 R95, R101 2 2.21 CRCW06032R21FKEA Vishay-Dale RES, 2.21, 1%, 0.1 W, 0603 0603

71 R96, R108, R115, R116, R117,R118, R192, R194, R197, R198 10 100 RG1608P-101-B-T5 Susumu Co Ltd RES, 100, 0.1%, 0.1 W, 0603 0603

72 R106, R111, R114 3 20.0k RG1608P-203-B-T5 Susumu Co Ltd RES, 20.0 k, 0.1%, 0.1 W,0603 0603

73

R107, R119, R120, R121,R122, R153, R154, R155,R156, R157, R158, R159,R165, R168, R174, R176,R177, R178, R181, R182,R183, R184, R185, R187,R188, R191, R196, R201,R202, R203, R211, R214,R216, R217, R218, R243

36 1.00k RC0603FR-071KL Yageo America RES, 1.00 k, 1%, 0.1 W, 0603 0603

74 R109 1 280k RG2012P-2803-B-T5 Susumu Co Ltd RES, 280 k, 0.1%, 0.125 W,0805 0805

75 R112, R249, R252, R256, R258 5 10.0k RG1608P-103-B-T5 Susumu Co Ltd RES, 10.0 k, 0.1%, 0.1 W,0603 0603

76 R113 1 0.22 ERJ-3RQFR22V Panasonic RES, 0.22, 1%, 0.1 W, 0603 0603

77 R161, R167, R179, R180,R269, R273 6 33 CRCW040233R0JNED Vishay-Dale RES, 33, 5%, 0.063 W, 0402 0402

78 R207, R260 2 33.0 RC0603FR-0733RL Yageo America RES, 33.0, 1%, 0.1 W, 0603 0603

79R209, R227, R228, R229,R230, R234, R237, R238,R241, R242, R264, R265, R266

13 330 RC0603JR-07330RL Yageo America RES, 330, 5%, 0.1 W, 0603 0603

80 R219 1 118k RT0805BRD07118KL Yageo America RES, 118k ohm, 0.1%,0.125W, 0805 0805

81 R220 1 5.62k RT0805BRD075K62L Yageo America RES, 5.62 k, 0.1%, 0.125 W,0805 0805

82 R221 1 249k CRCW0805249KFKEA Vishay-Dale RES, 249k ohm, 1%, 0.125W,0805 0805

83 R222, R226, R231, R232,R233, R235, R236, R239, R240 9 1.2k CRCW06031K20JNEA Vishay-Dale RES, 1.2 k, 5%, 0.1 W, 0603 0603

84 R223 1 1.07k RT0805BRD071K07L Yageo America RES, 1.07 k, 0.1%, 0.125 W,0805 0805

85 R224 1 20.5k CRCW080520K5FKEA Vishay-Dale RES, 20.5 k, 1%, 0.125 W,0805 0805

86 R225 1 0.01 WSL0805R0100FEA18 Vishay-Dale RES, 0.01, 1%, 0.25 W, 0805 0805

Page 43: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

www.ti.com Design Files

43TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Table 12. BOM (continued)

ITEM DESIGNATOR QTY VALUE PARTNUMBER MANUFACTURER DESCRIPTION PACKAGEREFERENCE

87 R244 1 511 RC0603FR-07511RL Yageo America RES, 511, 1%, 0.1 W, 0603 060388 R246, R251 2 10.0k CRCW060310K0FKEA Vishay-Dale RES, 10.0 k, 1%, 0.1 W, 0603 0603

89 R248, R255 2 32.4k RG1608P-3242-B-T5 Susumu Co Ltd RES, 32.4 k, 0.1%, 0.1 W,0603 0603

90 R253, R259 2 25.5k RG1608P-2552-B-T5 Susumu Co Ltd RES, 25.5 k, 0.1%, 0.1 W,0603 0603

91 R261 1 0 CRCW04020000Z0ED Vishay-Dale RES, 0, 5%, 0.063 W, 0402 0402

92 R267, R270, R271, R277 4 4.7k CRCW04024K70JNED Vishay-Dale RES, 4.7 k, 5%, 0.063 W,0402 0402

93 R268, R276 2 0.1 ERJ-2BSFR10X Panasonic RES, 0.1, 1%, 0.125 W, 0402 040294 R274 1 100 CRCW0402100RJNED Vishay-Dale RES, 100, 5%, 0.063 W, 0402 0402

95 S1 1 EVQPNF04M Panasonic Switch, Tactile, SPST-NO,0.05A, 12V, SMD

SMD, 2-Leads, Body6x4mm

96 T1 1 110uH 750315240 Wurth Elektronik Transformer, 110 uH, SMT 10.41x12.32mm

97TP1, TP2, TP4, TP5, TP6, TP7,TP8, TP9, TP10, TP11, TP12,TP13, TP14, TP17

14 STD STD STD Test Point 40mil pad 20mildrill

98

TP3, TP16, TP26, TP27, TP28,TP29, TP32, TP35, TP36,TP37, TP38, TP39, TP40,TP41, TP42, TP43, TP44,TP45, TP46, TP47

20 SMT 5016 Keystone Test Point, Compact, SMT Testpoint_Keystone_Compact

99

TP15, TP18, TP19, TP20,TP21, TP22, TP23, TP24,TP25, TP30, TP31, TP33,TP34, TP48, TP49, TP50, TP51

17 STD STD STD Test Point, O.025"

100 U1 1 SN6505ADBVR Texas Instruments

LOW-NOISE 1ATRANSFORMER DRIVERSFOR ISOLATED POWERSUPPLIES, DBV0006A

DBV0006A

101 U2, U7, U13 3 TPS7A4700RGWR Texas Instruments36-V, 1-A, 4.17-µVRMS, RFLDO Voltage Regulator,RGW0020A

RGW0020A

102 U3 1 LMZ14203TZ-ADJ/NOPB Texas Instruments

3A SIMPLE SWITCHER®Power Module with 42VMaximum Input Voltage, 7-pinTO-PMOD, Pb-Free

TZA07A

103 U4, U11 2 TPS70912DBVT Texas Instruments IC REG LDO 1.2V 0.15ASOT23-5 DBV0005A

Page 44: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

Design Files www.ti.com

44 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Table 12. BOM (continued)

ITEM DESIGNATOR QTY VALUE PARTNUMBER MANUFACTURER DESCRIPTION PACKAGEREFERENCE

104 U5, U12 2 ISO7840DWR Texas InstrumentsHigh-Performance, 8000 VPKReinforced Quad-ChannelDigital Isolator, DW0016B

DW0016B

105 U6, U8, U10 3 TPS70918DBVT Texas Instruments IC REG LDO 1.8V 0.15ASOT23-5 DBV0005A

106 U9 1 ISO7842DWR Texas InstrumentsHigh-Performance, 8000 VPKReinforced Quad ChannelDigital Isolator, DW0016B

DW0016B

107 U14 1 OPA378AIDBVT Texas Instruments

Low-Noise, 900 kHz, RRIO,Precision OperationalAmplifier, Zerø-Drift Series,2.2 to 5.5 V, -40 to 125 degC,5-pin SOT23 (DBV0005A),Green (RoHS & no Sb/Br)

DBV0005A

108 U15, U18, U20 3 OPA625IDBVR Texas Instruments

High-Bandwidth, High-Precision, Low THD+N, 16-Bitand 18-Bit Analog-to-DigitalConverter (ADC) Drivers,DBV0006A

DBV0006A

109 U16 1 SN74LVC1G17DCKR Texas Instruments SINGLE SCHMITT-TRIGGERBUFFER, DCK0005A DCK0005A

110 U17, U27, U31 3 SN74LVC1G08DCKR Texas Instruments Single 2-Input Positive-ANDGate, DCK0005A DCK0005A

111 U19 1 ADS9110IRGER Texas Instruments18-Bit, 2-MSPS, 20-mW, SARADC with Enhanced SerialInterface, RGE0024H

RGE0024H

112 U21, U28 2 BR24G32FVT-3AGE2 Rohm I2C BUS EEPROM (2-Wire),TSSOP-B8 TSSOP-8

113 U22 1 REF5045AIDGKT Texas Instruments

Low Noise, Very Low Drift,Precision Voltage Reference, -40 to 125 degC, 8-pin MSOP(DGK), Green (RoHS & noSb/Br)

DGK0008A

114 U23 1 OPA376AIDBVR Texas Instruments

Precision, Low Noise, Low IqOperational Amplifier, 2.2 to5.5 V, -40 to 125 degC, 5-pinSOT23 (DBV0005A), Green(RoHS & no Sb/Br)

DBV0005A

115 U24, U25 2

Spartan-3AN Non-VolatileFPGA, 108 User I/Os, 144-PinTQFP, Standard Performance,Commercial Grade

TQ144

Page 45: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

www.ti.com Design Files

45TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for Maximum SNRand Sampling Rate

Table 12. BOM (continued)

ITEM DESIGNATOR QTY VALUE PARTNUMBER MANUFACTURER DESCRIPTION PACKAGEREFERENCE

116 U26, U29, U30, U32 4 TLV3012AIDCKR Texas InstrumentsNanopower, 1.8V, Comparatorwith Voltage Reference,DCK0006A

DCK0006A

117 U33 1 SN74AUP1G80DCK SN74AUP1G80DCK TI IC, Single Positive-Edge-

Triggered D-Type Flip-Flop SC-70

118 U34 1 REF6041AIDGK Texas Instruments

High-Precision VoltageReference with IntegratedHigh-Bandwidth Buffer,DGK0008A

DGK0008A

119 U35 1 ISO1541DR Texas Instruments Low-Power Bidirectional I2CIsolators, D0008A D0008A

120 U36 1 LMK61E2-SIAR Texas InstrumentsUltra-Low Jitter ProgrammableOscillator with InternalEEPROM, SIA0008B

SIA0008B

121 U37 1 SN65LVDS4RSET Texas Instruments

500 Mbps High-SpeedDifferential Line Driver /Receivers with LVDS Inputand LVTTL / LVCMOSOutput, 1 Rx, -40 to +85degC, 10-pin UQFN (RSE),Green (RoHS & no Sb/Br)

RSE0010A

122 Y1, Y2 2 ASTMLPE-125.000MHZ-LJ-E-T ABRACON OSC, 125 MHz, 3.3V, SMD 3.2x2.5mm

123 C69 0 10uF GRM21BR71A106KE51L MuRata CAP, CERM, 10 µF, 10 V, +/-10%, X7R, 0805 0805

124 C72 0 1uF GRM188R71E105KA12D MuRata CAP, CERM, 1 µF, 25 V, +/-10%, X7R, 0603 0603

125 C214 0 0.01uF GRM155R71H103KA88D MuRata CAP, CERM, 0.01 µF, 50 V,+/- 10%, X7R, 0402 0402

126 FID1, FID2, FID3 0 N/A N/A Fiducial mark. There isnothing to buy or mount. Fiducial

127 J24 0 HTSW-103-07-G-S Samtec Header, 100mil, 3x1, Gold, TH Header, 100mil, 3x1,TH

128 R45 0 0 CRCW04020000Z0ED Vishay-Dale RES, 0, 5%, 0.063 W, 0402 0402129 R48 0 0 ERJ-3GEY0R00V Panasonic RES, 0, 5%, 0.1 W, 0603 0603

130R53, R54, R56, R57, R59, R60,R64, R65, R66, R68, R69, R77,R78, R79, R81, R82, R102

0 0 ERJ-2GE0R00X Panasonic RES, 0, 5%, 0.063 W, 0402 0402

131 R100 0 10.0k ERJ-2RKF1002X Panasonic RES, 10.0 k, 1%, 0.1 W, 0402 0402

Page 46: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

Design Files www.ti.com

46 TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

18-Bit, 2-MSPS Isolated Data Acquisition Reference Design for MaximumSNR and Sampling Rate

9.3 Layout PrintsTo download the layer plots, see the design files at TIDA-00732.

9.4 Altium ProjectTo download the Altium project files, see the design files at TIDA-00732.

9.5 Layout Guidelines

Figure 30. Board Layout Guidelines

9.6 Gerber FilesTo download the Gerber files, see the design files at TIDA-00732.

9.7 Assembly DrawingsTo download the assembly drawings, see the design files at TIDA-00732.

10 Software FilesTo download the software files, see the design files at TIDA-00732.

11 References

1. Texas Instruments, 18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion andNoise, TIPD115 Design Guide (SLAU515)

12 About the AuthorANBU MANI is a Systems Engineer at Texas Instruments where he is responsible for developingreference design solutions for the industrial segment. Anbu has fifteen years of experience in analogcircuit design and digital circuit design for the Automatic Test Equipment in Modular platform. He is alsoengaged with the design and development of embedded products.

Page 47: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

www.ti.com Revision A History

47TIDUB85A–April 2016–Revised May 2016Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Revision History

Revision A HistoryNOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (April 2016) to A Revision .......................................................................................................... Page

• Changed from preview page............................................................................................................. 1

Page 48: 18-Bit, 2-MSPS Isolated Data Acquisition Reference … · SAR ADC AVDD DVDD REF5045 Reference ... TIDUB85A–April 2016–Revised ... The ADC converts the time varying analog input

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (‘TI”) reference designs are solely intended to assist designers (“Designer(s)”) who are developing systemsthat incorporate TI products. TI has not conducted any testing other than that specifically described in the published documentation for aparticular reference design.TI’s provision of reference designs and any other technical, applications or design advice, quality characterization, reliability data or otherinformation or services does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, andno additional obligations or liabilities arise from TI providing such reference designs or other items.TI reserves the right to make corrections, enhancements, improvements and other changes to its reference designs and other items.Designer understands and agrees that Designer remains responsible for using its independent analysis, evaluation and judgment indesigning Designer’s systems and products, and has full and exclusive responsibility to assure the safety of its products and compliance ofits products (and of all TI products used in or for such Designer’s products) with all applicable regulations, laws and other applicablerequirements. Designer represents that, with respect to its applications, it has all the necessary expertise to create and implementsafeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen thelikelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any systemsthat include TI products, Designer will thoroughly test such systems and the functionality of such TI products as used in such systems.Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a specialcontract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would causeserious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Suchequipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices andequivalent classifications outside the U.S.Designers are authorized to use, copy and modify any individual TI reference design only in connection with the development of endproducts that include the TI product(s) identified in that reference design. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BYESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY ORINTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right,copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products orservices are used. Information published by TI regarding third-party products or services does not constitute a license to use such productsor services, or a warranty or endorsement thereof. Use of the reference design or other items described above may require a license from athird party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectualproperty of TI.TI REFERENCE DESIGNS AND OTHER ITEMS DESCRIBED ABOVE ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMSALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING THE REFERENCE DESIGNS OR USE OFTHE REFERENCE DESIGNS, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILUREWARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNERS AGAINST ANY CLAIM, INCLUDING BUT NOTLIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS ASDESCRIBED IN A TI REFERENCE DESIGN OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT,SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITHOR ARISING OUT OF THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, AND REGARDLESS OF WHETHER TIHAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.TI’s standard terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integratedcircuit products. Additional terms may apply to the use or sale of other types of TI products and services.Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2016, Texas Instruments Incorporated