18 propulsion hevert rev c 2008 (pptmin)

31
  An Introduction to Space Propulsion Stephen Hevert Visiting Assistant Professor Metropolitan State College of Denver http://my.execpc.com/~culp/space/as07_lau.jpg

Upload: roughrush

Post on 10-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 1/31

An Introduction to

Space Propulsion

Stephen HevertVisiting Assistant Professor

Metropolitan State College of Denver

http://my.execpc.com/~culp/space/as07_lau.jpg

Page 2: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 2/31

What Is Propulsion?

• Initiating or changing the motionof a body

• Translational (linear, moving faster or slower)

• Rotational (turning about an axis)•

Space propulsion• Rocket launches• Controlling satellite motion• Maneuvering spacecraft

• Jet propulsion• Using the momentum of ejected mass

(propellant) to create a reaction force ,inducing motion

At one time it was believed that rocketscould not work in a vacuum -- they

needed air to push against!!

www.hearlihy.com

Page 3: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 3/31

Jet Propulsion Classifications

• Air-Breathing Systems• Also called duct propulsion .• Vehicle carries own fuel;

surrounding air (an oxidizer )is used for combustion andthrust generation

• Gas turbine engines onaircraft…

• Rocket Propulsion• Vehicle carries own fuel and

oxidizer, or other expelledpropellant to generate thrust:

• Can operate outside of theEarth’s atmosphere

Launch vehicles, upper stages,Earth orbiting satellites andinterplanetary spacecraft …or

www.gadgets-reviews.com

…or go karts!

www.the-rocketman.com

… a rocketpoweredscooter!

Page 4: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 4/31

Space Propulsion Applications

• Launch Vehicles• Ballistic Missiles• Earth Orbiting Satellites• Upper Stages• Interplanetary Spacecraft• Manned Spaceflight

www.army-technology.com

en.wikipedia.org

www.britannica.com blog.wired.comwww.psrd.hawaii.edu

Page 5: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 5/31

Space Propulsion Functions

• Primary propulsion• Launch and ascent• Maneuvering

• Orbit transfer, station keeping, trajectory correction• Auxiliary propulsion

• Attitude control• Reaction control• Momentum management

www.nasm.si.edu

www.ksc.nasa.gov

Page 6: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 6/31

A Brief History of Rocketry• China (300 B.C.)

• Earliest recorded use of rockets• Black powder

• Russia (early 1900’s)• Konstantin Tsiolkovsky• Orbital mechanics, rocket equation

• United States (1920’s)• Robert Goddard• First liquid fueled rocket (1926)

• Germany (1940’s)• Wernher von Braun• V-2• Hermann Oberth

Wan-Hu who tried to launchhimself to the moon byattaching 47 black powder rockets to a large wicker chair!

onenew.wordpress.com

Prof. Tsiolkovsky

Dr. Goddardgoddard.littletonpublicschools.net

Dr. von Braun

www.britannica.com

www.geocities.com

Page 7: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 7/31

Space Propulsion System Classifications

Stored Gas Chemical Electric Advanced

• Electrothermal• Electrostatic• Electrodynamic

• Nuclear • Solar thermal• Laser • Antimatter

LiquidSolid Hybrid

Pump FedPressure Fed

MonopropellantBipropellant

Space propulsionsystems are classifiedby the type of energysource used.

Page 8: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 8/31

Stored Gas Propulsion

• Primary or auxiliary propulsion.• High pressure gas ( propellant ) is

fed to low pressure nozzlesthrough pressure regulator.

• Release of gas through nozzles

(thrusters ) generates thrust.• Currently used for momentum

management of the Spitzer Spacetelescope.

• Propellants include nitrogen,helium, nitrous oxide, butane.

• Very simple in concept.

P

Gas

FillValve

PressureGage

High Pressure IsolationValve

PressureRegulator

Filter

Thruster

PropellantTank

Low PressureIsolationValve

Page 9: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 9/31

Chemical Propulsion Classifications• Liquid Propellant

• Pump Fed• Launch vehicles, large

upper stages• Pressure Fed

• Smaller upper stages,spacecraft

• Monopropellant• Fuel only

• Bipropellant• Fuel & oxidizer

• Solid Propellant• Launch vehicles, Space

Shuttle, spacecraft• Fuel/ox in solid binder

• Hybrid• Solid fuel/liquid ox• Sounding rockets, X Prize

www.aerospaceweb.org

en.wikivisual.com

news.bbc.co.uk

Page 10: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 10/31

Monopropellant Systems

Hydrazine fuel is mostcommon monopropellant.

• N2H4

• Decomposed in thruster using catalyst to producehot gas for thrust.

• Older systems usedhydrogen peroxide beforethe development of hydrazine catalysts.

• Typically operate in

blowdown mode (pressurant and fuel incommon tank).

PFuel Fill Valve PressureGage

Isolation Valve

Filter

Thrusters

PropellantTank

Nitrogen or helium

Hydrazine

Page 11: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 11/31

Monopropellant Systems

www.ampacisp.com

www.aerojet.com

Page 12: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 12/31

Bipropellant Systems

• A fuel and an oxidizer are fed tothe engine through an injector and combust in the thrust chamber .

• Hypergolic : no igniter needed --propellants react on contact inengine.

• Cryogenic propellants includeLOX (-423 ºF) and LH2 (-297 ºF).

• Igniter required• Storable propellants include

kerosene (RP-1), hydrazine,nitrogen tetroxide (N2O4),monomethylhydrazine (MMH)

FUEL OX

P P

Isolation Valves

Engine

Chamber

Nozzle

Page 13: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 13/31

Liquid Propellant Systems

• Pump fed systems• Propellant delivered to engine using

turbopump• Gas turbine drives centrifugal or

axial flow pumps• Large, high thrust, long burn

systems: launch vehicles, spaceshuttle

• Different cycles developed.

Photos history.nasa.govF-1 Engine Turbopump

H-1 Engine Turbopump

F-1 engine turbopump:• 55,000 bhp turbine drive• 15,471 gpm (RP-1)•

24,811 gpm (LOX)

A 35’x15’x4.5’ (ave.depth) backyard

pool holds about 18,000 gallons of water. How quickly

could the F-1 pumpempty it?

Ans: In 27 seconds!

Page 14: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 14/31

Rocket Engine Power Cycles• Gas Generator Cycle

• Simplest• Most common• Small amount of fuel and

oxidizer fed to gas generator • Gas generator combustion

products drive turbine• Turbine powers fuel and

oxidizer pumps• Turbine exhaust can be

vented through pipe/nozzle,or dumped into nozzle

Saturn V F-1 engine used gasgenerator cycle

www.aero.org/publications/crosslink/winter2004/03_sidebar3.html

www.answers.com

Page 15: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 15/31

Rocket Engine Power Cycles - cont

• Expander • Fuel is heated by nozzle and

thrust chamber to increaseenergy content

• Sufficient energy providedto drive turbine

• Turbine exhaust is fed toinjector and burned inthrust chamber

• Higher performance thangas generator cycle

Pratt-Whitney RL-10

www.aero.org/publications/crosslink/winter2004/03_sidebar3.html

science.nasa.gov

Page 16: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 16/31

Page 17: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 17/31

The Big Engines…

F-1 EngineSaturn V

1.5 million lbs thrust (SL)LOX/Kerosene

www.flickr.com

Main Engine

Space Shuttle374,000 lbs thrust (SL)

LOX/H 2 spaceflight.nasa.gov

RD-1701.78 million lbs thrust (SL)

LOX/Kerosenewww.aerospaceguide.net

Page 18: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 18/31

www.nationalmuseum.af.mil

Solid Propellant Motors• Fuel and oxidizer are in solid

binder.• Single use -- no restart

capability.• Lower performance than liquid

systems, but much simpler.•

Applications include launchvehicles, upper stages, andspace vehicles.

www.aerospaceweb.org

www.propaneperformance.com

Page 19: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 19/31

Hybrid Motors

• Combination liquid-solidpropellant

• Solid fuel• Liquid oxidizer

• Multi-start capability•

Terminate flow of oxidizer • Fuels consist of rubber or

plastic base, and are inert.• Just about anything that

burns…• Oxidizers include LO

2,

hydrogen peroxide (N 2O 2) andnitrous oxide (NO 2)

• Shut-down/restart capability.

SolidPropellant

Oxidizer Tank

Ox Control Valve

Nozzle

Page 20: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 20/31

Rocket Performance Calculations

• Thrust & Specific Impulse• Thrust is the amount of force generated by

the rocket.• Specific impulse is a measure or engine

performance (analogous to miles per gallon)• Units are seconds

• Rocket Equation

∆ V = gI sp ln mim f

I sp

= F w

F =rocket thrust

w=weight flowrate of propellant

g = 9.8 m/s 2 mi = mass of vehicle before burnm f

= mass of vehicle after burnm p

= mass of propellant for ∆ V= mi

− m f

m p =mi 1 −e

−∆ V gI sp

Rocket equation assumes no losses (gravity effects, aerodynamic drag). Actually very accurate for short burns in Earth orbit or in deep space!

Page 21: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 21/31

Specific Impulse Comparison

• Stored gas• Monopropellant hydrazine• Solid rocket motors• Hybrid rockets• Storable bipropellants• LOX/LH2

• 60-179 sec• 185-235 sec• 280-300 sec• 290-340 sec• 300-330 sec• 450 sec

Specific impulse dependson many factors: altitude,nozzle expansion ratio,mixture ratio (bipropellants),combustion temperature.

This thruster was used on theViking Lander. It has a specificimpulse of about 225 seconds.www.rocketrelics.com

Page 22: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 22/31

Mission Delta-V Requirements

Mission (duration) Delta-V (km/sec)Earth surface to LEO 7.6

LEO to Earth Escape 3.2

LEO to Mars (0.7 yrs) 5.7

LEO to Neptune (29.9 yrs) 13.4

LEO to Neptune (5.0 yrs) 70

LEO to alpha-Centauri (50 yrs) 30,000

LEO = Low Earth orbit (approx. 274 km)

Page 23: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 23/31

Propellant Calculation Exercise

• Determine the mass of propellant to send a 2500kg spacecraft from LEO to Mars (0.7 yr mission).

• Assume the 2500 kg includes the propellant on-board atthe start of the burn.

• Assume our engine has a specific impulse of 310 sec(typical of a small bipropellant engine).

• Use the rocket equation:

m p= 2500() 1 − e

− 5700

9 . 8() 310() = 2117 kg

Most of our spacecraft is propellant! Only 383 kg is left for structure,etc! How could we improve this?

Page 24: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 24/31

Electric Propulsion• Classifications

• Electrothermal• Electrostatic• Electromagnetic

• Characteristics• Very low thrust•

Very high Isp• > 1000 sec

• Requires large amounts of power (kilowatts)

This image of a xenon ion engine , photographedthrough a port of the vacuum chamber where it wasbeing tested at NASA's Jet Propulsion Laboratory,shows the faint blue glow of charged atoms beingemitted from the engine. The ion propulsion engineis the first non-chemical propulsion to be used asthe primary means of propelling a spacecraft.

www-ssc.igpp.ucla.edu

Page 25: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 25/31

Electrothermal Propulsion

• Electrical power is used to add

energy to exhaust products• Resistojet

• Catalytic decomposition of hydrazine is augmented withhigh power electric heater

• 800 – 5,000 W• Arcjet

• High voltage arc at nozzlethroat adds thermal energy toexhaust

• Various gaseous or vaporizedpropellants can be used.

rocket.itsc.uah.edu

www.waynesthisandthat.comwww.nasa.gov

www.fathom.com

Page 26: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 26/31

Electrostatic Propulsion

• Xenon Ion Thruster • Xenon propellant• Electrostatic forces are used

to accelerate charged particlesto very high velocities

• Xenon is ionized by electron

bombardment• Thermionic cathode

• Positively charged particlesaccelerated by grid

• Electrons routed to second

anode and injected into beamto neutralize

www.plasma.inpe.br

aerospace.engin.umich.edu ESA’s SMART-1 uses a xenon ion propulsion system (XIPS)

Page 27: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 27/31

Electromagnetic Propulsion

• Electromagnetic forces are used toaccelerate a plasma

• A gas consisting of positive ions,electrons

• 5000 – 9000 ºR

• Neutral beam is produced• Higher thrust per unit area than

electrostatic thruster • Classifications

• Magnetoplasmadynamic• Pulsed plasma

• Electric discharge creates plasamfrom solid Telfon

• Hall effect • Developed in Russia• Flew on U.S. STEx mission (1998)www.nasa.gov

Page 28: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 28/31

The Future

• Interplanetary travel willrequire advanced forms of propulsion technology:

• Antimatter • Nuclear fusion• Non-rocket methods

Page 29: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 29/31

References

• Theory and design• Sutton, G. P. and Biblarz, O., Rocket Propulsion Elements,

7th ed. ,Wiley, 1987• A classic; covers most propulsion technologies

• Huzel, D.K, and Huang, D. H., Modern Engineering for Design of Liquid Propellant Rocket Engines (revised

edition), Progress in Aeronautics and Astronautics, Vol.147, American Institute for Aeronautics and Astronautics,1992

• Dieter Huzel was one of the German engineers whocame to the U.S. after WW II.

• Humble, R. W., et. al., Space Propulsion Design and

Anaylsis (revised edition), McGraw-Hill, 1995• Covers chemical (liquid, solid, hybrid), nuclear, electric,

and advanced propulsion systems for deep space travel

Page 30: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 30/31

References - cont

• Rocket engine history• Macinnes, P., Rockets: Sulfur, Sputnik and Scramjets,

Allen & Unwin, 2003• Clary, D. A., Rocket Man: Robert H. Goddard and the Birth

of the Space Age , Hyperion Special Markets, 2003•

Ordway, F. I. and Sharpe, M., The Rocket Team , ApogeeBooks, 2003• The story of Werner von Braun, the V-2 and the

transition of the German engineers to the UnitedStates following WW II

Sutton, G. P., History of Liquid Propellant Rocket Engines , American Institute for Aeronautics andAstronautics, 2006

• New, over 800 pages of rocket engine history

Page 31: 18 Propulsion Hevert Rev C 2008 (PPTmin)

8/8/2019 18 Propulsion Hevert Rev C 2008 (PPTmin)

http://slidepdf.com/reader/full/18-propulsion-hevert-rev-c-2008-pptmin 31/31

When things go bad…

http://www.youtube.com/watch?v=gDnkEOKR1BE