1939 carslaw & jaeger - on green's functions in the theory of heat conduction

Upload: jbtren

Post on 06-Apr-2018

248 views

Category:

Documents


3 download

TRANSCRIPT

  • 8/2/2019 1939 Carslaw & Jaeger - On Green's Functions in the Theory of Heat Conduction

    1/7

    ON GREEN'S FUNCTIONS IN THE THEORYOF HEAT CONDUCTION*

    H . S. CARSLAW AND J. C. JAEGER1. Introduction. In this Bulletin (vol. 44 (1938), p. 125) Lowan

    discusses the Green's function for a line source at (r', 0') for the caseswhere the solid (i) is an infinite cylinder r = a, and (ii) is boundedinternally by r = a y radiation taking place at r = a into a medium atzero temperature.

    He uses the method of the Laplace transformation. The solutionfor the first problem agrees with that already obtained by contour in-tegration, f There are some obvious mispr ints in his discussion of thesecond problem, and in his solution on page 133 he seems to have usedas boundary condition G = 0 on r = a, instead of dG/dr+hG = 0, in hisnotation. His result on that page should read

    1 ^ f ff(1)(ofo)G = u + v = 2 j COS n(e 0o) I ae-ka l4 7 T n a, J - o o U n(oiO) ijn(ar)Un(aa) - Hn^ (ar) \a Jn{z ) + * ( * ) ] Ida,{ L d% Jz=aa)

    whereUn(aa) = [ a Hn (s) + hHn ()] .L UZ J z = a a

    Put in this form it can be reduced to the simpler form given below in(16) , except for the difference in the sign of h.In this paper we discuss this second problem, first by contour

    integration, and second by the Laplace transform. In the latter weuse what appears to us a much simpler notation and a more rapidapproach to the solution.

    We remark also that we have used this notation and method in anumber of other questions J and believe that it will be found in-creasingly useful and much simpler than the operational methods,

    * Presented to the Society, September 6, 1938.t Carslaw, Conduction of Heat, 2d edition, 1921, 88, 89. This book will be re-ferred to below as C.H.% Cf. Carslaw, Operational methods in mathematical physics, Mathemat ica l Ga-zette, vol. 22 (1938), pp. 264-280; Carslaw and Jaeger, Some problems in the mathematical theory of the conduc tion of heat t Philosophical Magazine, (7), vol. 26 (1938),pp . 473-495.407

  • 8/2/2019 1939 Carslaw & Jaeger - On Green's Functions in the Theory of Heat Conduction

    2/7

    4 0 8 H. S. CARSLAW AND J . C. JAEGER [Juned u e t o H e a v i s i d e a n d B r o m w i c h , e x p o u n d e d i n J e f f r e y s ' w e l l k n o w nt r a c t . *

    2 . Solution using contour integration. W e t a k e t h e li ne s o u r c e a t( r ' , 0 ) , a n d w e r e q u i r e t h e s o l u t i o n o f t h e e q u a t i o ndv / d2v 1 dv 1 d 2v \(1) = kl 1 + ), * > 0, r > a,W dt \dr2 r dr r2 dB 2)w hic h sh a l l t e n d to ze ro wh en />0 in r>a, e x c e p t a t (V ', 0 ) , w h e r e

    i t i s to be in f in i te as(2) (47T&/)-1 e xp { - (r2 + r'2 - 2rr ' cos d)/4kt}.A l s o , w h e n r*a, v i s to s a t i s f y

    dv(3) h hv = 0 , / > 0 .drL e t

    (4) u = (Awkt)-1 exp { - (r 2 + r'2 - 2rr ' cos 6)/4kt} .P u t v u-\-w. T h e n w i s to s a t i s fy

    dw (d 2w 1 dw 1 d 2w\(5) = kl h - H J , / > 0 , r > a ,W dt \dr 2 r dr r2 dd 2J(6) lim w = 0 , r > a ,dw du(7) h hw = hu, r = a, t > 0 .d r o r

    I t i s k n o w n f t h a t(8) ^ = X) c o s 0 I 0Le-ka hJ n{ar r)J n{ar)da

    2T T W = _ O O / oi r(9) X co s (9 ae-ka2tJ n(ar')H nW (ar)da, r > r ' ,i r(10) = ^ cos nd \ ae-k2 tJ n{ar)IU (ar')da, r < r',47T n^-oo J

    t h e i n t e g r a l s b e i n g t a k e n o v e r t h e p a t h P of F i g . 1 i n t h e a - p l a n e .* Operational Methods in Mathematical Physics, Cambridge Tracts in Mathematics and M athem atical Physics, no. 23.t C.H., p p . 184-185.

  • 8/2/2019 1939 Carslaw & Jaeger - On Green's Functions in the Theory of Heat Conduction

    3/7

    1939] G R E E N 'S F U N C T IO N S A N D H E A T C O N D U C T IO N 4 0 9

    F o r t h e p a t h a t i n f i n i t y o n t h e r i g h t t h e a r g u m e n t of 4 a i s l e ss t h a n 7r,a n d o n t h e le f t i t i s g r e a t e r t h a n Sir. L e t(11) 4ww = X ) COS7Z0 f ae-k2 tA v(a)H nM(ar')H nW(ar)da,n = - o o *w h e r e An(a ) i s t o b e c h o s e n s o t h a t w s a ti s fi e s ( 7 ) . T h u s , u s i n g ( 1 0 ) ,w e h a v e(12) A n{a)[aH nM '(aa) - hH n (aa)] = aJj (aa) - hJn(aa).A l s o(13) 4TTV = X) cosw0 f ae-k2 tH nW(ar')[An(a)H nM(ar ) - Jn(ar)]da,w h e n rr'.

    OF I G . 1

    T h i s v a l u e o f v s a t is f ie s ( 1) a n d ( 3 ) . W e s h a l l n o w s h o w t h a t i ts a ti s fi e s ( 2 ) ; i n o t h e r w o r d s , w e s h a l l sh o w t h a t lim * _ 0 ^ = 0 , w h e nr>a.T h e i n t e g r a l in ( 11 ) is c o n t i n u o u s w h e n / ^ 0 . W e s h o w t h a t i tv a n i s h e s w h e n / = 0 . T a k e t h e c l o s e d c i r c u i t of F i g . 2 , c o n s i s t i n g of

    ,y

    +JL

    F I G . 2t h e p a t h P a n d t h e p a r t o f a c i r c l e , c e n t e r a t t h e o r i g i n , l y i n g a b o v et h e p a t h P.T h e r e a r e n o z e r o s o f aH ^ '(aa)}iH^ (aa) f o r w h i c h t h e i m a g i n a r y p a r t of a i s p o s i t i v e o r z e r o .* F u r t h e r t h e a s y m p t o t i c e x p a n s i o n sf o r t h e B e s s e l f u n c t i o n s s h o w t h a t t h e i n t e g r a l

    * See the footnote to 6.

  • 8/2/2019 1939 Carslaw & Jaeger - On Green's Functions in the Theory of Heat Conduction

    4/7

    410 H. S. CARSLAW AND J . C. JAEGER [June(14 ) f affnU> (of )F w ( 1 ) (ar')A n(a)dao v e r t h e c i r c u l a r a r c a b o v e P t e n d s t o z er o w h e n t h e r a d i u s t e n d s t oi n f i n i t y . I t f o l l o w s t h a t t h e i n t e g r a l o v e r t h e p a t h P t e n d s t o z e r o .W e h a v e t h u s i n (1 4 ) o b t a i n e d a s o l u t i o n in t h e f o r m of a n i n t e g r a lo v e r t h e p a t h P .

    3 . C o n s i d e r t h e c lo s e d c i r c u i t of F i g . 3 , f o r m e d b y t h e r e a l a x is ,t h e p a t h P , a n d t h e a r c s of a c i rc l e w i t h c e n t e r a t t h e o r ig i n a n dr a d i u s R ( w h i c h w i ll t e n d t o oo) j o i n i n g t h e r e a l a x i s a n d t h e p a t h P .

    F I G . 3W h e n > 0 , t h e i n t e g r a l of 2 , ( 1 3 ) ,

    f ae-k2 tH nM ( , ' ) [ 4 n( a)ffnU > (ar) - J n(ar)]dao v e r t h e c i r c u l a r a r c s t e n d s t o z e r o w h e n R > oo, r b e i n g le s s t h a n r ' .A l s o t h e r e a r e n o p o l e s o f t h e i n t e g r a n d i n s i d e t h i s c i r c u i t . I t f o l l o w st h a t t h e i n t e g r a l o v e r t h e p a t h P i s e q u a l t o m i n u s t h e i n t e g r a l f ro m oo t o oo o v e r t h e r e a l a x i s . T h u s w e h a v e(15) 4wv = X) cos 7*0 I ae-k2 tH nM (o r7) [J n(ar) - A n(a)H n (ar)]da

    n c o ^ oow h e n r

  • 8/2/2019 1939 Carslaw & Jaeger - On Green's Functions in the Theory of Heat Conduction

    5/7

    1939] GR EEN 'S FUNCTIONS AND HEAT CONDUCTION 4 1 1w h e r eUn(ar) = J n(ar)[aYn(aa) hY n(aa)] Yn(ar) [oJ' (aa) hJ n(aa)];a n d t h i s , b e i n g s y m m e t r i c a l i n r a n d r ' , h o l d s b o t h f o r r r'.

    5. Solution using the Laplace transformation. W e s t a r t fro m e q u a t i o n s ( 1) t o ( 7 ) of 2 ; b y e q u a t i o n ( 8 ) , u i s g iven in the fo rm u =^2n^-ooUn c o s nd ; s o w e s e e k a s o l u t i o n o f t y p e

    00

    (17) V = U + W = ^2 (Un + W n) COS 0 ,n=oo

    w h e r e(18) lim w n = 0 , r > a ,*->o

    d 2w n 1 dwn n 2 1 d w n(19) + w n - = 0 ,dr 2 r dr r2 k dta n d t h e b o u n d a r y c o n d i t i o n ( 3) i s s a ti s fi e d b y (u n+wn). N o w a p p l yt h e L a p l a c e t r a n s f o r m a t i o n , u s i n g , v, f or t h e L a p l a c e t r a n s f o r m s o f u, v , a n d s o o n . T h u s , * w r i t i n g q (p/k)11 2 , w e h a v e

    = f er**udt = { exp - pt (r2 + r'2 - 2rr ' cos d)11 2J o 4TkJ0 L U t J1

    = K 0[q(r2 + r'2 - 2 r r ' c o s 0 ) 1 / 2]2irk

    dtt

    (20) = \ jf 1 : 2 3 In(qr)K n(qr') cos ^0 , r < r '27T& n ^ - o o

    Z ) In(qr')K n(qr) cos 0, r > r ' ,Z 7 T / c w = o o

    00

    2 3 ^ n COS ^ 0 ,

    w h e r e t h e n a r e g iv e n b y ( 2 0 ) . A l s o f ro m ( 1 8 ) a n d ( 1 9 )d 2w n 1 dw ndr2

    1 dw n /n 2 \

    * W e use successively th e resu lts, 6.22, (15), and 11.41, (8), of Watson, Theory ofBessel Functions.

  • 8/2/2019 1939 Carslaw & Jaeger - On Green's Functions in the Theory of Heat Conduction

    6/7

    412 H. S. CARSLAW AND J . C. JAEGE R [JuneS o w n = B n(q)K n(qr), w h e r e Bn(q ) i s t o b e d e t e r m i n e d f r o m t h e s u r f a c ec o n d i t io n ( 3 ) . T h i s r e q u i r e s

    dv (- hv = 0 , r == a .drH e n c e , f o r r

  • 8/2/2019 1939 Carslaw & Jaeger - On Green's Functions in the Theory of Heat Conduction

    7/7

    1939] G R E E N 'S F UN C T I O N S A N D H E A T C O N D U C T IO N 4 1 3c o n t o u r . * T h e i n t e g r a l r o u n d y t e n d s t o z e r o a s e >0. A l s o , u s i n g t h ea s y m p t o t i c e x p a n s i o n s o f t h e B e s s e l f u n c t i o n s , w e f i n d t h a t t h e i n t e g r a l r o u n d T t e n d s t o z e r o a s R >oo . So in t h e l im i t R o, e>0,

    F I G . 4v n e q u a l s t h e s u m o f t h e i n t e g r a l s a l o n g C D a n d EF . P u t t i n g X = ka 2e iri n t h e f o r m e r , a n d \ = ka2e~ iT i n t h e l a t t e r , w e o b t a i n , o n r e d u c t i o n ,( 1 6 ) .

    7 . T h e p a t h P of F i g . 1 i n t h e c e -p la n e c o r r e s p o n d s t o a p a t h i n t h eX- plan e (X = ka 2) w h i c h s t a r t s a t i n f i n it y w h e r e a r g X l ie s b e t w e e n 7T a n d 7r/2, p a s s e s t o t h e r i g h t o f t h e o r i g i n , a n d e n d s a t i n f i n i t y ,w h e r e a r g X l ie s b e t w e e n TT/2 a n d T . T h i s i s t h e p a t h V of Je f f reys 't r a c t , Operat ional M ethods in M athemat ical Physics ( 2 d e d i t i o n , 1 9 3 1 ,p . 2 9 ) a n d n o t t h e p a t h L ( f rom c i t o c + i o o ) a s s t a t e d b yB r o m w i c h i n t h e P r o c e e d i n g s of t h e C a m b r i d g e P h i lo s o p h i c a l S o c i e ty ,v o l . 2 0 (1 9 2 1 ) , p . 4 1 2 . T h e c o n n e c t i o n b e t w e e n t h e t w o m e t h o d s e m p l o y e d in t h i s p a p e r is t h u s c le a r . T h e r e m a y b e a n a d v a n t a g e in t h ef o r m e r a s i t s e e m s t o g i v e a s i m p l e r v e r i f ic a t i o n t h a t t h e e x p r e s s io n a sf o u n d d o e s i n f a c t s a t i s f y a l l t h e c o n d i t i o n s o f t h e p r o b l e m .

    T H E U N I V E R S I T Y O F S Y D N E Y A N DT H E U N I V E R S I T Y O F T A S M A N I A

    * T o s h o w t h a t zKl (z)bK n(z), w h e r e b>0, h a s n o z e r o s f o r R(z) ^ 0 , w e m a y ,s i n c e K -n(z) K n(z), t a k e n^O. T h a t t h e r e a r e n o r e a l p o s i t i v e z e r o s f o ll ow s f ro m t h er e c u r r e n c e f o r m u l a a n d t h e f a c t t h a t K n(x)>0 f o r r e a l p o s i t i v e x. T h a t t h e r ea r e n o c o m p l e x z e r o s f o ll ow s fr o m t h e f o r m u l a ( G r a y a n d M a t t h e w s , Treatiseon Bessel Functions, 2 d e d i t i o n , 1 9 2 2 , p . 7 0 , ( 3 0 ) ) : (\*-ix*)f?xKn(\x)K n(ixx)dx=a[iJLKn(^a)Kn (tJLa) \K n(fxa)Kn ( X a )] , - R ( ^ + / 0 > 0 . T o sh o w t h e r e a r e n o p u r e i m a g i n a r y z e r o s z = iy , w e h a v e iyK.1 (iy) bK n(iy) %ivieZnivl2 [ yJl (y) -\-bJn(y) -\-iy F (y )i bYn(y)], a n d t h e r e a l a n d i m a g i n a r y p a r t s o f t h i s m u s t v a n i s h . T h i s r e q u i r e sM y) Yr! (y) - Yn(y)Jn (y ) = 0 , b u t i t i s 2/iry.