1_application of the methods of analytical dynamics to the theory of optimal flights

Upload: lurzizare

Post on 03-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 1_Application of the Methods of Analytical Dynamics to the Theory of Optimal Flights

    1/22

    .

    b

    N A S A T T F-9294,

    A P P L I C A T I O N OF T H E M E T H O D S OF A N A L Y T I C A L D Y N A M I C S

    T O

    THE

    THEDRY OF O P T I M A L F ' L I G H T S

    V.S.Novoselov

    N6 5 - 1 9 5 1 0

    ITIIRUI

    8

    ..

    -

    /

    i

    TO

    (CATIQORYI

    NASA CR OR

    TMX

    OR

    AD

    NUMBER)

    ~

    -

    ~~

    Transla t ion

    of

    nPrimeneniye metodov analiticheskoy

    dinamiki

    v

    t e o r i i optimalfnykh poletov".

    Vestn. Len. Univ., s e re mat. mekhan.

    i astron.,

    NO

    -3

    9 pp -133-146, 1964.

    N A T I O N A L A E R O N A U T I C S

    AND

    S P A C E A D M I N I S T R A T I O N

    W A S H IN G T O N MARCH 1965

  • 8/12/2019 1_Application of the Methods of Analytical Dynamics to the Theory of Optimal Flights

    2/22

    NASA TT F-9294

    . -

    3

    PPLICATION

    OF

    THE MJ3l"ODS

    OF

    ANALYTICAL DYNAMICS

    TO THE

    THEDRY

    OF OPTIMAL FUGHTS

    V

    .

    Novo s elov

    \ q s i o

    i

    I

    I

    The author gives an exposition of th e theory of optimal pro-

    v

    I

    I

    ' ,

    ce sses, based on t h e methods

    of

    analytical dynamics.

    teg rat ing th e varia t ional . foxmula of th e act ion fun ct ional

    o ve r t h e t r a j e c t o r i e s o r

    arcs

    of

    a

    s p e c i a l f i e l d o f

    extremals,

    the

    m a x b u m

    p r in c ip l e

    i s

    proved, and th e suf fi ci en t conditions

    of the extremum are established. The po ssi bl e appl icat ion of

    t h e Hamilton-Jacobi method t o the construction of optimal

    re-

    l3y in-

    _ _

    ' i I gimes

    i s

    poin ted ou t ; s ta r t ing

    f r o m

    t h a t method, equations

    - ', i

    -.. b i t s are obtained.

    2 5

    defining

    th e optimal

    impulse transfers

    between mplanar or-

    I

    - ,

    ,Sect ion 1. The Conditions of Stationarity

    y .

    Given: a control la ble device whose motion i s described by t h e system of

    .?

    > '

    ,ordinary

    di f fe ren t ia l equa t ions

    :

    1.1

    + ( I

    ;where th e 4

    t )

    are t h e c o n t ro l s o r th e cont rol functions, which may be piece-

    / :

    2

    wise

    continuous; and t i s th e time.

    I

    , '

    The controls must

    sa t is fy

    t h e

    conditions:

    ' I - 1

    ' 4

    ' ,

    u 1

    \< uk

    < I

    -

    - 7

    :>

    1

    - 2

    4

    L e t th e functional.

    J

    have

    a

    smooth

    maximum.

    Then,

    by equating AU

    t o z er o

    :we a r r ive

    a t

    th e necessary conditions of th e

    extremum

    ) .

    -

    :)

    j

    i t :

    gS

    expressing, i n eq.(1.9), th e t o t a l var ia t ion s

    of

    t h e v a r i a b le s xi

    in

    -

    ,terms

    of isochronous var ia t ion s by the formulas ibq

    = 6 +

    q

    A t ,

    and equating

    i t o z e ro t h e

    terms i n A t and 6- a t

    the

    times to

    and

    T,

    the conditions (1.9)

    , I

    a -

    {will e reduced t o t h e form of

    /1

  • 8/12/2019 1_Application of the Methods of Analytical Dynamics to the Theory of Optimal Flights

    5/22

    The conditions

    1=7),

    1.81, and

    1.10)

    are necessary conditions

    for

    t h e

    v a r i a ti o n a l problem of Bolza (Bibl.4).

    o f the

    system

    1.10) must be omitted and i f

    T i s

    prescribed, t h e second

    equa-

    If

    to

    i s

    prescribed, the f i r s t

    e q u a t i o

    -

    - t i on of th at system.

    1

    ) +

    ' d

    W e now no te t h e important problem when t h e f un ct io na l t o be minimized nee

    '

    0 .

    , ; ' n o t

    have

    a smooth minimurn. T h i s

    i s

    a rapid -acti on problem. I n this case, Fo

    1 2 '

    -

    T

    Hence we obt ain t h e e qu al it y

    and t h e condit ions of t ransversal i ty

    =

    HT

    =

    -1, as well as eqs.(1.7), (1.8)

    The function R , - i n

    this

    case, i s defined by th e fonnula

    I

    The necessary cond ition s f o r other optim al problems

    w i t h

    a

    non-smooth ex-

    t remum

    of

    the fundamental functional are obtained similarly.

    I f a

    la rg er number of contr ols are being considered, then eqs.(l.8) a r e

    replaced by the re la t ion s

    (1.81

    Now

    l e t

    the con t ro ls

    yk

    not be introduced, and

    l e t us

    inves t iga te the p ro

    l e m with only th e or igi nal controls

    .

    I n t h i s case, eqs.(l.8)must be re-

    placed by the conditions

  • 8/12/2019 1_Application of the Methods of Analytical Dynamics to the Theory of Optimal Flights

    6/22

    -ote 1.

    The system of equations 1.1)and

    (1.7)

    i s a canonical system

    ' ,

    ith t h e Hamiltonian H, the pulses h i , and th e coordinates

    -

    - and

    in

    that the add i t iona l va r iab les 4 and yk a re present .

    . T h i s canonical

    system dif fe rs from the

    usual

    canonical system i n that

    H

    depends linearly on

    A:

    L

    \

    i

    Since the system of equations 1.1) and (1.7) i s canonical, w h i l e t h e

    1

    7

    1 :

    I :

    1

    boundary controls

    funct ion H

    w i l l

    be equal t o t h e pa r t i a l time d e r iv a t iv e o f this function with

    t he group of v aria bles 1 ,

    4

    t.

    ject ory with continuous contro ls, w e shall have:

    1 and 1+2 a r e c on st an t, t h e to t a l time de ri va ti ve of the,&

    I -

    ,

    Hence,

    on

    any phase of th e opt imal tra-

    (1 . l l

    ,

    .

    2 .where h

    =

    const and

    i s t h e i n i t i a l

    time

    of that phase.

    If th e func t ions Fo and

    Fi

    do not e xp li ci tl y depend on t , then H w i l l be

    consta nt on any such por tion .

    i

    i

    s

    -- -

    1-

    - \

    ' ,

    Note 2. A point

    a t

    which

    t h e

    controls undergo

    a

    discon t inu i ty i s c a l l e d

    I

    . a

    corner.

    L e t

    us

    vary the pos i t ion

    and

    time

    of

    some corne r po in t by th e

    quan-

    Then, from eq.(1.5), t h e va ri at io n of th e fundamental func

    . >

    t i t i e s

    hxi and AT.

    4

    - < #

    dtional

    U,

    taken on th e opt imal ar c before and a f t e r th e comer,

    w i l l

    be

    I

    4 1

    This vari a t io n of t he funct ional must vanish f o r th e op timal a rc .

    w e

    ob ta in th e well-known Weierstrass-Erdmann co nd iti on s of cont inu i ty of i an

    H

    along th e en t i re opt imal a rc .

    Hence

    7 4

    I

    i '

    1 ,

    '

    I

    For

    t h i s

    reason, when

    t h e

    functions

    F,,

    and F1

    are s t a t io n a ry , t h e Hamil-

    \ I

    1

    I t oni an H

    w i l l

    be one and th e same constant fo r th e en ti re optimal arc.

    For ex

    ~

  • 8/12/2019 1_Application of the Methods of Analytical Dynamics to the Theory of Optimal Flights

    7/22

    1

    ample, f o r th e rapid-action problem, as follows from t h e above discu ssion, it

    1

    ,

    w i l l be equa l t o minus unity .

    - 4

    ,

    ( ,

    ,S ec tion 2. The

    M a x i m u m

    Pr inc ip le

    -

    4

    -

    1

    O 1

    ,

    , over the tubes o f t he t ra jec t o r ie s i s widely used i n an aly tic al mechanics (se e

    1 'Etibl.4).

    The method of in teg ra tin g th e var ia tio na l formula of th e acti on fun ctio

    i

    i .?

    Let us apply i t t o f ind t he necessary and suff ic i ent conditions of

    1 ,

    I

    t h e

    extremum.

    Consider any admissible arc AB of the system

    1.1)

    and

    (1.7)

    w i t h t h e con-,

    This

    a r c i s made t o pas s through any two points A and B satisfyin4

    1

    '

    y

    t r o l s {h

    .

    eqs.(l.3)

    a t

    cert a in t imes To

    and

    T.

    I

    ( 1

    2

    In p a r t i c u l a r , t h e points A and

    B,

    a s

    2 ) 1

    - - 1

    well

    as

    the times

    %

    and?, may coincide with

    t h e i n i t i a l

    and f i na l pos i t ions 1

    2 )

    _ -

    i

    -

    1

    c :E 3 of the opt imal arc-

    1

    ;and times of th e opt imal arc , a n d t h e a r c AB can

    di f f e r

    from

    the optimal only

    iover a cer t a in in te rva l fo r which the con t rols

    1

    _ I ) ~-

    differ f rom the controls

    ~

    I c,

    I

    Let

    us

    now pass through

    t h e

    point

    A

    and the

    i n i t i a l

    point of t he optimal

    .- 1

    - I

    .,

    a rc

    i n

    t h e

    (2n

    + 1)-dimensional space of configurations of the coordinates

    a,

    impulses h i and time t , a certain curve

    (.$:

    I

    ~

    +) iWe note th at f o r th e t ime being e q ~ ~ ( 2 . 1 )ay be ar bi t r ar i l y ass igned, subject

    - 0

    ? A X ~ - X ~ ( Q ~ ) ,

    - i = ~ ~ ( ~ p ) ,

    o = t ( a p , go), a p = a p ( p J . p a -* -1.

    2.1

    .

    ,

    a t

    3V

    ,:

    : t o t h e requirements that-> 0, and that the contour of ($ passes through the

    ( i

    I

    I -

    r ;below.

    above two points.

    The addit ional res tr ic t ions on t h e choice of

    C$ w i l l

    be

    giv

    I

    I

    We s ha ll apply the term extremal t o any ar c of t h e

    system 1.1)

    and

    . 1.7).

    ;curve t included between the

    in i t ia l

    point

    of

    th e optimal curve and th e point

    Let us now pas s through po in ts

    of

    the curve

    AB

    and

    that

    p a r t o f t h e

    I

    -

    i

    7

  • 8/12/2019 1_Application of the Methods of Analytical Dynamics to the Theory of Optimal Flights

    8/22

    , A , t h e

    extremals corresponding t o cont ro ls equa l t o th e con t ro ls { & I on the

    .opt imal arc .

    itremals

    crossing th e curve

    AB

    shall

    i n t e r s e c t

    i t .

    Let us continue the contour C$ beyond the point A

    so

    that t h e ex

    I

    L e t t h e r e l a t io n s

    2.1)

    be such

    that

    for

    v = v

    th e curve

    6 shall

    be

    ,

    . transformed

    by

    t h e se extremals in to the curve

    Gr

    passing through the end point

    ,o f t he opt imal a rc and the po in t

    B.

    ,

    Lo

    .

    1 1

    The contour of G

    w i l l

    be defined by the

    2.2

    1

    Through th e poi nt s of this segment of t h e curve

    I

    l e t us draw extremals

    w i t h c o n t ro l s

    ctst)

    such t h a t

    t h e s e

    extremals, for v

    =

    v, shall completely f ix

    th at segnent of t he curve G

    between t h e end point

    of

    th e op t imal a r c and the

    point

    B, i f

    th e following condit ions are s a t i s f i e d : ~

    -

    a;

    t

    Q p

    (PI,

    uo))=u&

    u;

    ( p(l.4*4

    k t ap(PI.

    d .

    (PI, *),

    A t

    any t h e

    t

    t h e

    boundary

    values

    f o r t h e c on tr ol s

    {d]

    i l l be and

    - Gj.

    * I

    1 % +

    \

    I

    1- final

    condition:

    Let

    us

    now sub je ct th e choice of the curve

    and the controls

    {d]

    o thc

    I ,

    - i

    Let

    us

    write out the condit ion (2.3) i n t h e expanded form:

    ( 2 . 3

    2.4,

    I

    7

  • 8/12/2019 1_Application of the Methods of Analytical Dynamics to the Theory of Optimal Flights

    9/22

    The following notation

    has

    been used in

    eq. 2.4):

    I

    A l l th e above conditions can be sa ti sf ie d, because of t he f ac t that t h e A

    functional dependence

    of x

    and

    1 on aP is

    arb i t ra rg , the func tions

    up

    of the

    parameter

    P

    and of th e time t a r e ar bi tr ar y, and th e funct ion t(Q',, v)

    i s

    - l ikewise a rb i t ra ry .

    - t

    -

    ..

    i l

    1

    4

    For any

    poss ible in te rp lane ta ry f l ig h ts , th e acce le ra t ion

    developed by

    modern rocket engines considerably exceeds the other terms on the r igh t s ides

    of eqs.(L.l).

    impulsive c r i t er i on of veloci ty:

    1

    Therefore, f or t he boost phase, l e t us take t h e equations of t h

    I

  • 8/12/2019 1_Application of the Methods of Analytical Dynamics to the Theory of Optimal Flights

    14/22

    ~-

    ~ ~ Z , I - = ~ ~ C O S + . vF==i j s int , i = ~ ,if=o. (4.1

    Star t ing ou t from the capab i l i t i e s

    of

    rocket engineering and th e allowabl

    accelera t ions,

    a

    r e s t r i c t i o n on th e c o nt ro l r e l a t i v e t o t h e

    value

    of

    B

    m u s t

    be

    adopted :

    - I

    '

    -

    '

    0

    (4.2

    I i

    ' I

    The equations of motion

    on

    the passive phases a re obtained f rom the sys te

    I _

    ,

    '

    (4.1) by s e tt i n g

    = 0.

    Understanding the term optimal i n the sense of minimizing

    t h e

    consumption

    of mass, w e

    s h a l l minimize

    t h e

    functional

    T

    (4.3

    _ I

    .

    where

    i s

    t he i n i t i a l

    mass

    and

    mrc tne

    final mass of t h e ship, while and T

    - 1

    ~~

    - ,

    ' a r e the respective times of s t a r t and flnish.

    I

    The fu nc ti on al (4.3) must be minimiized by means of th e co ns tr ai nt s

    4.1)

    2 ) .

    :,>

    -

    .

    ~

    'or 4 , l v ) , r e s t r i c t i o n of th e con t rol o f i n t h e form

    of

    eq.(4.2), and th e

    - I

    . boundary conditions (Bibl.8):

    Here the subscript H i n d ic at e s t he c h a ra c t e r i s t i c s of t h e in i t i a l o rb i t

    and

    the subscr ip t K those of th e terminal o rb i t .

    used i n eqs.(h.l+) and (4.5): e

    =

    eccentr ic i ty ; p = parameter; w = angular d i s -

    tance of the per icen ter f r o m t h e polar

    ax i s ;

    f = true anomaly.

    I n t he case under consideration,

    "I,,

    =

    0

    and the

    boundary

    condit ions are

    The following notation

    i s

    expressed by the exp lic i t re la t i ons (4.4) and (4.5).

    not introduce t he indeterminate constants Vp, and shall use t he conditions

    of

    t r a n sv e r sa l i t y i n t h e g e n eral form:

    For this reason w e s h a l l

    ~~ ~

    0.

    I

    13

    I

  • 8/12/2019 1_Application of the Methods of Analytical Dynamics to the Theory of Optimal Flights

    15/22

    ~~ ~

    Here the to ta l va r ia t ions of the var iables ar e calcula ted along the limit

    -

    '

    except

    A t

    are

    expressed respectively

    i n

    terms of

    A f

    and

    bfK

    .

    In formulating

    in g o rb i ts .

    I n

    v i e w

    of eqs.(4.4) and

    (4.5),

    th e var ia t ions of all var iab les

    -

    th e problem w e do not consider t h e specif i c motions a long the l im it i ng o rbi t s ,

    so that th e var ia t ions of AfH ,

    AK ,At and A t w i l l be independent.

    obtain & , H K =

    0

    and, s in ce eqs.(l+.l) a r e st ati on ar y, we obt ain H = 0 along

    the en t i re op timal t ra jec to ry .

    the l imi t ing or bi ts are proport ional to the r ight s ide s of eqs .(4.1) , calcu-

    Hence w e

    The variations of vel oci t ie s and coordinates o

    .

    l a t e d on th e l imi t in g o rb i t s f o r B = 0.

    W e

    a r r i v e

    a t

    the following conditions

    of

    t ransversa l i ty :

    -i

    j

    2 :bits, respec t ivdy .

    - I

    - t

    S t a rt i n g out from eqs.(L.l') l e t

    us

    set up

    1

    1

    t i v e phases:

    H=b(--- l

    +A,cos*j,+).,s

    the funct ion

    H

    for the ac- A

    We now w r it e th e Hamilton-Jacobi equat ion:

    * .

    +I(-]W

    +2;F;W

    at

    The complete i n t e g r a l of

    th i s

    equation

    is

    The i n t eg r a l s of e q ~ ~ ( 3 . 3 )nd

    (3.4)

    y i e l d

    f

    (4.7

    W e reca l l the condi t ions of nxdmm H on the opt imal t ra jectory.

    Writing

    out t h e

    f i r s t

    and second p a r t i a l derivatives of th e function

    (4.7)

    with respec

  • 8/12/2019 1_Application of the Methods of Analytical Dynamics to the Theory of Optimal Flights

    16/22

    ~

    t o 5 and

    ,

    we come t o th e conclusion that the ac t iv e phases can include th e

    tlE

    tr aj ec to ri es : ( a ) of th e programmed

    t h ru s t

    a t -

    da

    o r

    (b) phases of mardmMl react ive accelera t ion G a t

    .

    (4.5

    Since H =

    C

    and H is a linear homogeneous function of B th e s ign of ineq ual i ty for t h e

    der iva t ive

    -% i s

    dropped and

    t h e

    inde te rmhate mul t ip l ie rs he re a re also de-

    %

    telmined

    from

    eqs.(4.9).

    1,

    Equations (4.8) and (4.9) show

    that

    the inc l ina t ion ang le f of th e th rus t

    ,

    remains

    consta nt f o r any powered sec tio n

    of

    t h e t r a j e c to ry .

    For

    each such

    - , ,

    phase

    or

    section, eqs.(4.l')

    and

    (4 .8) w i l l y i e l d

    (4.1

    - 1

    -.

    I t follows

    more

    p a r t i c d a r l y

    from e q s . ( i + . l O f t f i a t

    tim

    consumption--ofmass

    during

    t h e

    ac tiv e phase i s determined by t h e requi red increment of ve lo ci ty an

    7

    1

    -

    does riot depend on t h e p a r t i c u l a r law of burning.

    On th e passiv e phases, t h e controls over

    B

    and are shut

    down.

    These

    phases admit

    of the

    maximum

    principle.

    L e t us f ind an expression f o r th e inde

    terminate factors

    on

    the passive phases

    by

    t h e Hamilton-Jacobi method.

    The Hamilton-Jacobi equ ation i s of t h e form

    dW

    d t

    -

    4.u.

    The complete integral

    i s

    W=a,t+ccpp+@(v,, &H r . %

    where

    @

    i s

    a

    certain function of these arguments.

    On

    the bas is of eq. 3.4), t h i s yields

  • 8/12/2019 1_Application of the Methods of Analytical Dynamics to the Theory of Optimal Flights

    17/22

    'For his

    reason,

    ha =

    const f o r both passi ve and ac ti ve phases.

    v i r t u e

    of

    t h e Weierstrass-Erdmann con ditio ns,

    1

    is the same constant over the entire o p

    timal

    t ra jec to ry .

    -

    .

    For the passive phases, w e have

    /complete in te gr al

    i s

    writ ten

    i n

    t h e

    form

    of

    = 0, hence L

    =

    0, and by 9 . (3 . 6 ) t h e

    .

    I

    i o I

    2

    S t a r t i n g

    from

    eq.(3.4),

    w e

    obtain expressions

    for

    the indeterminate multi-

    ( p l i e r s :

    '

    .-

    - -

    ,')

    1 The contin ui ty of th e indeterminate mu lt ip l ier s , t h e i r exp l ic i t expres-

    ,

    The general representation

    [

    eq. (4.22)] ob ta in ed above

    i s

    p a r t i c u l a r l y

    convenient fo r consider ing quasic ircular t ra ns fer orb i ts .

    *.

    r 4

    isions given by

    eq~~(4.9)

    nd (4.22), the boundary conditions (L.4)

    -

    ( 4 . 5 ) ,

    I

    , t h e condi t ions (4 .10) fo r ve loc i ty

    jumps

    f o r each ac ti ve phase, and t he condi-

    t i o n s

    (4.6)

    of t ransversa l i ty , y i e ld

    a

    number of eq uations su ff ic ie nt fo r

    de-

    termining a l l unknown qu ant i t ie s f o r

    a

    pr es cr ib ed number of impulses.

    An in v e s tig a t io n

    of

    these equations would be a se pa rat e problem,

    beyond

    th e scope of t h i s paper .

    2

  • 8/12/2019 1_Application of the Methods of Analytical Dynamics to the Theory of Optimal Flights

    22/22

    NASA 'M' F-9294

    I

    i

    BIBLIOGRAPHY

    ,

    1. Ykiele, A.:

    General Variational Theory

    of

    the F l igh t

    Pa ths of

    Rocket-

    I

    Powered Aircra ft . Missi les and S a t e l l i t e Carriers. Astronautica acta,

    -

    I

    \ *

    VoLIV, No.4, 1958.

    $

    i

    1 2 1 malfnykh trayektoriyakh raket ). Priklad. Matem. Mekhan.,

    Vol.XXV,

    j

    2. Leytman, G. [George Leitmann]:

    On Optimal- Rocket T ra je ct or ie s (Ob op ti-

    1 :

    ' .

    No.6, 1961.

    3. Ui tt ek er , Ye.T. [E.T.Whittakerl: Ana ly ti ca l Dynamics (Anal itiche ska ya

    I *

    dinamika).

    O N T I ,

    Moscow

    -

    Leningrad,

    1937.

    I

    4.

    B l i s s ,

    G.A.:

    Lectures on th e Calculus

    of

    Varia t ions (Lekts i i PO var ia t s -

    ionnomu ischisleniyu).

    International Publishing House

    ( I L ) ,

    Noscow, 19504

    ~

    8.

    ,

    Ye.F.: Mathematical Theory

    of

    0pti.ma.l Processes (matemakicheskaya t e w ,

    ptimalfnykh pr ot se ss ov ). Fizmatgiz, Moscow,

    1961.

    Pon tryagin, L.S., Boltyansk iy,

    V.G.,

    Gamkrelidze, R.V.,

    and

    Mishchenko,

    i

    I

    Brekvell [J .V .Breakwell] : Optimization of Trajectories (Optimizatsiya

    i

    I

    tray ekto riy ). Vopr. raket. t e k h . , No.1, 1961. [North American Aviation, '

    Inc. , Report NO.AL-2706, August,

    19571

    .

    I

    Gyunter, N.M.: In tegra t ion of First-Order Pa r t i a l Dif fere nt ia l Equations 1

    I

    integrirovaniye uravneniy pervogo poryadka v chastnykh proizvodnykh)

    ONTI, Gostekhizdat, Moscow, 1934. I

    I

    I

    Subbotin , M.F.: Course i n Cele st ia l Mechanics (Kurs nebesnoy mekhaniki). 1

    I

    Vol.1,

    OGTZ,

    Gostekhizdat, Leningrad

    -

    Moscow,

    1941.

    - 1

    9. Lawden, D.F.: In te rp lan eta ry Rocket Tr aj ec to rie s. Advances i n Space I

    I

    Science,

    Vol.1, 1959.

    I

    ,

    Received

    10

    May

    1963.