2013 the application of living systems theory to mars missions

Upload: gary-v-stephenson

Post on 28-Oct-2015

29 views

Category:

Documents


1 download

DESCRIPTION

Presentation slides describing Living Systems Theory categories and how to use them for the UML / SysML modeling of life support functions

TRANSCRIPT

Presentation Title

The Application of Living Systems Theory to Mars Missionsfor presentation to The Mars Society August 2013 Gary V StephensonLinQuest [email protected] 20130OutlineIntroduction to Millers Living Systems Theory CategoriesAn alternate way to decompose system requirements based on living systems functionsA way to use UML based functional decomposition to model biological functionsApplications of Living System Theory (LST) to Space ECLSSLST on ISS, LST in Transhabs and Surfacehabs, and LST in EMU & SMU SpacesuitsThe Application of Hatley-Pirbhai (HP) Diagrams to LST CategoriesA way to sort LST categories as input, processing, and output activitiesMass-Energy (ME) and Information Processing (IP) HP Templates are recommendedMission Directed Personnel, Information, and Mass-Energy FlowsPersonnel & Info flows in mission contextMass-Energy flows in local context ,for Transhab and for Surfacehab Conclusions and Next Steps

Prediction: LST modeling will become more meaningful as aerospace and biotech systems begin to merge1IconTrigraphCategory NameIconTrigraphCategory NameMATTER-ENERGY LST CATEGORIESINGIngestorSTRME StorageDSTDistributorEXTExtruderCNVConvertorMOTMotorPRDProducerSUPSupporterINFO-PROCESSING LST CATEGORIESINTInput TransducerMEMMemoryITLInternal TransducerASCAssociatorDCDDecoderDECDeciderTIMTimerECDEncoderNETNetworkOUTOutput TransducerBOTH M-E AND INFO LST CATEGORIESBNDBoundaryREPReproducer

Living System Theory (LST) Functional Categories2

The Application of LST to the ISS (Miller, 1987) 3Sunlit SpaceCrew Transhab Shaded SpaceSolarEnergyInfo:Com,Nav,Time,SensorsInfo:Com,Nav,StatusO2H2OFoodCO2H2O vaporwasteInfo:C3IRadiativeCoolingVentedwasteSolidwasteInfo:C3I,CSSC3I = Commed Cmd, Control, and IntelCSS = Commed Sensors & StatusTranshab LST Context Diagram4Martian AtmosphereMartian RegolithSurfacehabCrew SolarEnergyInfo:Com, Nav,Time, SensorsInfo:Com,Nav,StatusO2H2OFoodCO2H2O vaporwasteInfo:C3IConvectiveCoolingVentedwasteSolidwasteInfo:C3I,CSSC3I = Commed Cmd, Control, and IntelCSS = Commed Sensors & StatusAtmosphereGreenhouseFoodRegolithDerived H2OConductiveCoolingSurfacehab LST Context Diagram5Sunlit SpaceShaded SpaceAstronaut ExtravehicularMobilityUnitInfo:Com, Nav,Time, SensorsAccessVisualSitAwarenessA/VsO2, H2OSupport,PressureVoiceTouch cmdw/ feedbackWasteStorageInfo:C3IMechanical ManipulationThrust VectoringEMU LST Context Diagram6Martian AtmosphereMartian RegolithSurfaceMobilityUnitSurf Inhabitant Info:Com, Nav,Time, SensorsAccessVisualInputA/VsO2, H2OSupport,PressureVoiceTouch cmdWasteStorageInfo:C3IMechanical ManipulationContactThrust Net ThrustForce C2OSMU LST Context Diagram7

The General Form of the Hatley-Pirbhai (HP) Diagram8

outputuser I/FoverheadinputprocessingMass-Energy (ME) HP Template9

ME HP Example for Transhab ECLSS10

user I/FoverheadinputoutputprocessingInfo Processing (IP) HP Template11networkNETOUTECDCrew(DEC)Nav Solution(ASC)ECLSSMonitoring(ITL)DCDTIMoutputuser I/Foverheadinputprocessing

MEMDCDINT...INTRcv Com AntNav SensorsXmit Com AntIP HP Example for Transhab Network12distance from EarthtimeOutboundTransit SegmentSurface VisitSegmentReturnTransitSegmentlaunchTMI burnMars landingMars ascentEarth reentryEMMission Directed Personnel Flow, Time and Distance13distance from EarthtimeOutboundTransit SegmentSurface VisitSegmentReturnTransitSegmentC3I, PNT =>