20140519 arnaud dufays inference 3

45
Structural breaks for models with path dependence Chapter 3

Upload: stefania-herea

Post on 25-Jan-2016

9 views

Category:

Documents


0 download

DESCRIPTION

aaaa

TRANSCRIPT

Page 1: 20140519 Arnaud Dufays Inference 3

Structural breaks for models with path dependence

Chapter 3

Page 2: 20140519 Arnaud Dufays Inference 3

2

Chapter 3● Path dependence (p. 3)● Change-point models (p. 16)● Markov-switching and Change-point

models (p. 26)– PMCMC algorithm– IHMM-GARCH

● References (p. 43)

Page 3: 20140519 Arnaud Dufays Inference 3

3

Path dependence

Page 4: 20140519 Arnaud Dufays Inference 3

4

Chib's specification

● Multiple breaks● Recurrent or no recurrent states (Change-point/Markov-

switching)● MCMC with good mixing properties● Allow to select an optimal number of regimes● Forecast of structural breaks

AdvantagesAdvantages

DrawbacksDrawbacksState of the art !State of the art !

● Geometric distribution for the regime duration● Many computation for selecting the number of regimes● Not applicable to models with path dependenceNot applicable to models with path dependence

Page 5: 20140519 Arnaud Dufays Inference 3

5

Chib's specification

● Simplification in the Forward-backward algorithm : Why not applicable ?Why not applicable ?

● If assumption does not hold :

Chib's algorithm not available forChib's algorithm not available for

Example : ARMA, GARCHExample : ARMA, GARCH

State-space model with structural breaks in parametersState-space model with structural breaks in parameters

Page 6: 20140519 Arnaud Dufays Inference 3

6

Path dependent modelsCP- and MS-ARMA modelsCP- and MS-ARMA models

CP- and MS-GARCH modelsCP- and MS-GARCH models

Change-pointChange-point Markov-switchingMarkov-switching

Page 7: 20140519 Arnaud Dufays Inference 3

7

Path dependence problem

T = 2 T = 4 T = 6

ARMAARMAGARCHGARCH

Likelihood at time t depends on the whole path Likelihood at time t depends on the whole path that has been followed so farthat has been followed so far

Func

tion

of

Page 8: 20140519 Arnaud Dufays Inference 3

8

Path dependence problemSolutions ? Solutions ?

1) Use of approximate models without path dependence● Gray (1996), Dueker (1997), Klaassen (2002)● Haas, Mittnik, Poella (2004)

Page 9: 20140519 Arnaud Dufays Inference 3

9

Path dependence problemSolutions ? Solutions ?

2) Stephens (1994) : Inference on multiple breaks

DrawbacksDrawbacks● Time-consuming if T large● Many MCMC iterations are required 

May not converge in a finite amount of time !May not converge in a finite amount of time !

3) Bauwens, Preminger, Rombouts (2011) : ● Single-move MCMC

Page 10: 20140519 Arnaud Dufays Inference 3

10

Single-move MCMCCP- and MS-GARCH modelsCP- and MS-GARCH models

Change-pointChange-point Markov-switchingMarkov-switching

Page 11: 20140519 Arnaud Dufays Inference 3

11

Single-move MCMCMetropolis-Hastings sampler :Metropolis-Hastings sampler :

One state updated at a time !

LikelihoodLikelihood Transition matrixTransition matrix

Page 12: 20140519 Arnaud Dufays Inference 3

12

Example

Simulated series : Simulated series : Initial state :Initial state :

Convergence after 100.000 MCMC iterations !Convergence after 100.000 MCMC iterations !

Page 13: 20140519 Arnaud Dufays Inference 3

13

Single-move

● Generic method :● Works for many CP and MS models

AdvantagesAdvantages

DrawbacksDrawbacks

● No criterion for selecting the number of regimes● Very Time-consuming if T large (especially for MS)● Many MCMC iterations are required :

Very difficult to assess convergenceVery difficult to assess convergence

May not converge in a finite amount of time !May not converge in a finite amount of time !

Page 14: 20140519 Arnaud Dufays Inference 3

14

Questions ?

Page 15: 20140519 Arnaud Dufays Inference 3

15

Change-point models

Page 16: 20140519 Arnaud Dufays Inference 3

16

D-DREAM algorithmCP-GARCH models :CP-GARCH models :

Come back to the Stephens' specification !Come back to the Stephens' specification !

Page 17: 20140519 Arnaud Dufays Inference 3

17

D-DREAM algorithmProblem with Stephens' inference :

● Break dates sample one at a time (single-move) MCMC mixing issue

● Very demanding if T is large

Discrete-DREAM MCMC : Discrete-DREAM MCMC :

● Metropolis algorithm● Jointly sample the break dates● Very fast (faster than Forward-Backward)

Page 18: 20140519 Arnaud Dufays Inference 3

18

D-DREAM algorithm● Two sets of parameters to be estimated :

ContinuousContinuous Discrete Discrete

● MCMC scheme :

IterationsIterations

Not a standard dist.Not a standard dist. Not a standard dist.Not a standard dist.

MetropolisMetropolis

Proposal : DREAM Proposal : DREAM

MetropolisMetropolis

Proposal : D-DREAM Proposal : D-DREAM

Page 19: 20140519 Arnaud Dufays Inference 3

19

D-DREAM algorithmDDiffeRRential AAdaptative EEvolution MMetropolis

(Vrugt et al. 2009)

● DREAM automatically determines the sizesize of the jump.● DREAM automatically determines the directiondirection of the jump● DREAM is well suited for multi-modalmulti-modal post. dist. ● DREAM is well suited for high dimensionalhigh dimensional sampling● DREAM is symmetricsymmetric : only a Metropolis ratio

Nevertheless only applicable to continuous parameters Nevertheless only applicable to continuous parameters

Extension for discrete parameter : Discrete-DREAM Extension for discrete parameter : Discrete-DREAM

Page 20: 20140519 Arnaud Dufays Inference 3

20

DREAM : Example

Adaptive RWAdaptive RW DREAMDREAM

Page 21: 20140519 Arnaud Dufays Inference 3

21

DREAM algorithmM parallel MCMC chains :

...

Proposal distribution :Proposal distribution :

Symmetric proposal dist :Symmetric proposal dist :● Accept/reject the draw according to the probabilityAccept/reject the draw according to the probability

Page 22: 20140519 Arnaud Dufays Inference 3

22

D-DREAM algorithmM parallel MCMC chains :

ContinuousContinuous Discrete Discrete

Proposal distribution :Proposal distribution :

Proposal distribution :Proposal distribution :

Accept with probabilityAccept with probability

Accept with probabilityAccept with probability

Page 23: 20140519 Arnaud Dufays Inference 3

23

Example

Initial state :Initial state :

Convergence after 100.000 Convergence after 100.000 MCMC iterations !MCMC iterations !

Initial states  aroundInitial states  around

Convergence after 3.000 Convergence after 3.000 MCMC iterations !MCMC iterations !

D-DREAMD-DREAM Single-moveSingle-move

Page 24: 20140519 Arnaud Dufays Inference 3

24

D-DREAM (2014)

● Generic method for CP models● Inference on multiple breaks by marginal likelihood● Very fast compared to existing algorithms

● Model selection based on many estimations● Only applicable to CP models and specific class of recurrent

states

AdvantagesAdvantages

DrawbacksDrawbacks

Page 25: 20140519 Arnaud Dufays Inference 3

25

CP and MS models

Page 26: 20140519 Arnaud Dufays Inference 3

26

Particle MCMCCP- and MS-GARCH modelsCP- and MS-GARCH models

Change-pointChange-point Markov-switchingMarkov-switching

Page 27: 20140519 Arnaud Dufays Inference 3

27

Particle MCMCSets of parameters :

ContinuousContinuous State var. State var.

MCMC scheme : 1)1)

2)2)

3)3)

Sampling a full state vector is unfeasible Sampling a full state vector is unfeasible due to the path dependence issuedue to the path dependence issue

Page 28: 20140519 Arnaud Dufays Inference 3

28

Particle MCMC3)3)

Idea :Idea : Approximate the distribution with a SMC algorithm Approximate the distribution with a SMC algorithm

Does not keep invariant the posterior distributionDoes not keep invariant the posterior distribution

Andrieu, Doucet and Holenstein (2010)

● Show how to incorporate the SMC into an MCMC● Allow for Metropolis and Gibbs algorithms● Introduce the concept of conditional SMC

Does not keep invariant the posterior distributionDoes not keep invariant the posterior distribution

With a conditional SMC, the MCMC exhibits the With a conditional SMC, the MCMC exhibits the posterior distribution as invariant one.posterior distribution as invariant one.

Page 29: 20140519 Arnaud Dufays Inference 3

29

Particle MCMC3)3)

Previous valuePrevious value

SMC :

1) Initialisation of the particles and weights:1) Initialisation of the particles and weights:

IterationsIterations ● Re-sample the particles

● Generate new states

● Compute new weightsand

Page 30: 20140519 Arnaud Dufays Inference 3

30

SMCInit. Re sampling New states Weights

... until T

Page 31: 20140519 Arnaud Dufays Inference 3

31

Particle Gibbs● Conditional SMC :Conditional SMC : SMC where the previous MCMC state vector

is ensured to survive during the entire SMC sequence.

3)3)● Launch a conditional SMC● Sample a state vector as follows :

1)1)

2)2)● Improvements :

1) Incorporation of the APF in the conditional SMC2) Backward sampling as Godsill, Doucet and West (2004)

Page 32: 20140519 Arnaud Dufays Inference 3

32

Example

Initial state :Initial state :Initial states  aroundInitial states  around

D-DREAMD-DREAM PMCMCPMCMC

Page 33: 20140519 Arnaud Dufays Inference 3

33

PMCMCS&P 500 daily percentage returns S&P 500 daily percentage returns

from May 20,1999 to April 25, 2011from May 20,1999 to April 25, 2011

Page 34: 20140519 Arnaud Dufays Inference 3

34

PMCMCVarious financial time seriesVarious financial time series

Page 35: 20140519 Arnaud Dufays Inference 3

35

PMCMC (2013)

● Generic method for CP and MS models● Inference on multiple breaks by marginal likelihood● Very good mixing properties

● Model selection based on many estimations● Very computationally demanding● Difficult to calibrate the number of particles● Difficult to implement

AdvantagesAdvantages

DrawbacksDrawbacks

Page 36: 20140519 Arnaud Dufays Inference 3

36

IHMM-GARCHCP- and MS-GARCH modelsCP- and MS-GARCH models

Change-pointChange-point Markov-switchingMarkov-switching

Page 37: 20140519 Arnaud Dufays Inference 3

37

IHMM-GARCHSets of parameters :

ContinuousContinuous State var. State var.

MCMC scheme : 1)1)

2)2)

3)3)

Page 38: 20140519 Arnaud Dufays Inference 3

38

IHMM-GARCH3)3)

Sampling a full state vector is infeasible Sampling a full state vector is infeasible due to the path dependence issuedue to the path dependence issue

Sampling a full state vector from an approximate modelSampling a full state vector from an approximate model

Accept/reject according to the Metropolis-hastings ratioAccept/reject according to the Metropolis-hastings ratio

Klaassen or Haas, Mittnik and PaolelaKlaassen or Haas, Mittnik and Paolela

Page 39: 20140519 Arnaud Dufays Inference 3

39

IHMM-GARCH

Moreover, Hierarchical dirichlet processesHierarchical dirichlet processes are used

● To infer the number of regime in one estimation● To include both CP and MS specification in one model

Page 40: 20140519 Arnaud Dufays Inference 3

40

IHMM-GARCHS&P 500 daily percentage returns S&P 500 daily percentage returns

from May 20,1999 to April 25, 2011from May 20,1999 to April 25, 2011

PMCMCPMCMC IHMM-GARCHIHMM-GARCH

Page 41: 20140519 Arnaud Dufays Inference 3

41

IHMM-GARCH (2014)

● Generic method for CP and MS models● Self-determination of the number of breaks● Self-determination of the specification (CP and/or MS)● Predictions of breaks● Very good mixing properties● Fast MCMC estimation

● Difficult to implement

AdvantagesAdvantages

DrawbacksDrawbacks

Page 42: 20140519 Arnaud Dufays Inference 3

42

References

Page 43: 20140519 Arnaud Dufays Inference 3

43

References

Bauwens, L.; Preminger, A. & Rombouts, J. 'Theory and Inference for a Markov-switching GARCH Model', Econometrics Journal, 2010, 13, 218-244

● Bauwens, Preminger, Rombouts (2010)

Bauwens, L.; Dufays, A. & De Backer, B. 'Estimating and forecasting structural breaks in financial time series', CORE discussion paper, 2011/55, 2011

● Bauwens, Dufays, De Backer (2011)

Bauwens, L.; Dufays, A. & Rombouts, J. 'Marginal Likelihood for Markov Switching and Change-point GARCH Models', Journal of Econometrics, 2013, 178 (3), 508-522

● Bauwens, Dufays, Rombouts (2013)

Page 44: 20140519 Arnaud Dufays Inference 3

44

References

● Dufays, A. 'Infinite-State Markov-switching for Dynamic Volatility and Correlation Models', CORE discussion paper, 2012/43, 2012

● Dufays (2012)

He, Z. & Maheu, J. M. 'Real time detection of structural breaks in GARCH models', Computational Statistics & Data Analysis, 2010, 54, 2628-2640

● He, Maheu (2010)

SMC algorithm :SMC algorithm :

Page 45: 20140519 Arnaud Dufays Inference 3

45

Without path dependence

Gray, S. 'Modeling the Conditional Distribution of Interest Rates as a Regime-Switching Process', Journal of Financial Economics, 1996, 42, 27-62

● Gray (1996)

Dueker, M. 'Markov Switching in GARCH Processes in Mean Reverting Stock Market Volatility', Journal of Business and Economics Statistics, 1997, 15, 26-34

● Dueker (1997)

Klaassen, F. 'Improving GARCH volatility forecasts with regime-switching GARCH', Empirical Economics, 2002, 27, 363-394

● Klaassen (2002)

Haas, M.; Mittnik, S. & Paolella, M. 'A New Approach to Markov-Switching GARCH Models', Journal of Financial Econometrics, 2004, 2, 493-530

● Haas, Mittnik and Paolella (2004)