21 - defense technical information center · attn: mr. gordon i. lovitt iso. 02ckdusiriieration/...

69
7.7.1 ''21 IqA DII ~WUTONLNUMITM A JM L,4-~

Upload: vohanh

Post on 10-Jun-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

7.7.1

''21

IqA

DII ~WUTONLNUMITM

A JML,4-~

Page 2: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

COMMUNICATIONS LABORATORYDepmrtment of Information Engineering

University owvillinois at Chicago LGircle

Box 4348, hihcmgv 5!. 6eB]o. USA

BASIC CONCEPTS OF RADAR POLARIMETRYAND ITS APPLICATIUNS TO TARGET DISCRIMINATION,

CLASSIFICATION, IMAGING AND IDENTIFICATION

W-M. Boerner

COMMUN I CAT IONS LABORATORYELECTROMAGNETIC IMAGING DIVISION

Electrical Engineering and Computer ScienceUniversity of Illinois at Chicago851 S. Morgan St., P.O. Bo.x 434.8

Chicago, IL. 60680

Report No: EMID-CL-82.-05-18-02Contract No: NAV-AIR-NO0019-80-C-062O

1982 May 18

hI;

II 3ustic, Electromagnatics, optics - Circuits and NetworksCommunication Theory and Systems - EErtcctronic DevicesfillComunim~lo ThoryrandSymorA

Page 3: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

UNCLASSIFIEDI.ECUM'TY CLXSSIFICAT10ON OF THIS PAGE (When Date Entered)___________________

REPORT DOCUMENTATION PAGE BEFREA CNSTRLCTINFONS

1. FEPON4T NUMBER 2. CPOVT ACCESSION NO. 3. RZC1P!!NT'S CATALOG HUMMIER

4. TITLE (entd Subtitle) S YEO EOT PRO OKj

Basic Concepts of Radar Polarimsetry am'Applications to Target Discrimination, C____________sification, Imaging and Identificatiort. W tORMING ORG. REPORT NURSER91

7. AUTNO114o) -F2- uPn cLA-AT t-UMVRRa,~

Wol fgang-Mart in Boerner 019-80~-CO620

I. PCRFCAMiNG ORGANIZATION NAME AND ADORES& IiPROGRAM CLEMCNT. PROJECT, TASKAREA & WOR4K UNIT NUMUERS

Electromagnetic Imaging DivisionCommunmications Laboratory-, UlC

P..Box 4348, SEO-1141, Chicago, IL 60680J_____________1 1. CONT14OLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Air Systems Command May 18, 1982Headquarlters, AIR-3101B, Washington, DC 20361 13. NUMSEP OF PAGES

Attn: 9,r-.__James Willis 56 +IT. MO~lri!5IT-0 A IE?4CY NA#41 & AOORESS(it different treat Conitallinda Office) IS, SECURITY CLAS5S. (of this am9port)

Chicago Branch Off ice, Office of Naval Research536 S. Clark St., Chicago, IL. 60605Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING

III. DISTRIUUTION STATEMENT (of this flloerlf)

See list appended, otherwise:Distribution by permission of Naval AirSystems Commiand

17. DISTRIBUTION STATEMENT (9.1 the abstract ontored in Sh1eikt 20, It ifilmtevn fero Rope"f)

4I. SUPPL9M9NTARY NOT13

Tefindings of thib -eport are not to be construed as an official Departmientof the Navy 'position unless so designated by other authorized doctuments.'

lq. KEY WORDS (Continue on revvrre. side if necoosary and identfylpI byleek numabo)

Polarizai:ion, radar polarimetry, target discrimination, classification, imag-ing, optimal polarization nulls, polarization transformation matrix, Mu.eller

matrix, radar scattering ,%atrix, polarization fork.1;1-0. ASSTR ACT (Continue on rova. old. It A4 -at *orny and Odonaltli by block "Wob".1IInI meticulous detail, a su~cinct sunimary of basic electromagnetic wavepolarization descriptors, of' the various scatterer polarization transformationand of the scatterer descriptive operators is introduced. It is then shownhow 'the five (5) independeutt ma\vrix parameter for the relative phase mono-stati- scattering matrix de~scrib.'ng an isolated, yet regionally distributed,target in a reciprocal propagatiov medium can be recovered from (i) amplitude-.only, (ii) mixed amplitude plus pai'tial phase, (iii) complete two-step (Cont'd)

DD 1473 EDITION OF I NOV5 69S1 OaSOLETE NLSSFES 0102.LF.01d4&oI SUCU"ITY CLASAIFICATION OF THIS PAGE (We or euei

Page 4: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

UNCLASSIFIEDSECUR•TV CLASSIFICý'rW CF THIS PAGE (Whom Data .Ie-e,)

20. ABSTRACT

amplitude-phase measurements. Basic properties of the radar target scat-tering matrix for linear (H, V) and circular (R, L) polarization basisPre described in terms of geometrical target features as functions of thespecular point surface coordinate parameters, known as gaussian principal,main and related curvature functions. Based upon this succinct backgroundintroduction on radar polarimetry, the concepts are applied mainly for thecoherent case to various classes of increasing order of sophistication,as defined in detail in the INTRODUCTION, to the problem of radar targethandling for the noa-cooperative, limited-data case.

ff.j-: 0 1 V r i

SI-

UNCLASSIFIE.DSE[CURIqTY CL.AWI&ICATIO0N OFr THIS IMA61[(When Date X~n#Ofere

'• im i m ' m ' " ""..... ."-i .. ....*. -I -'• .. .12" 'o i' 7 •• ? l

Page 5: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

BA!IC CONCEPTS OF RADAR POLARIMETRY1AND ITS APPLICATIONS TO

TARGET DISCRIMINATION, CLASSIFICATION, IMAGING AND IDENTIFICATION

Wolfgang-Martin Boerrner* Electromagnetic Imaging Division, Communications Laboratory

College of Engineering, The University of illinois at ChicagoP.O. Box 43148, 851 S. Morgan St.,, 11417SEO, Chicagg, IL. 60680

ABSTMRCT

In meticulous detail, a succinct summary of b~asic electromagnetic wavepolarization deiscriptors, of the various scatterer polarization transformationmatrces, and its Invariants of the associated optimal matrix polarizatlkons,ane of' the scatterer descriptive operators In Introduced, It Is then show~nholmw thf. five (5) Ir-dependent matrix parametr~r for the relat~iv% phase mora-static~.iattcring matrix. cescrlbing an~ Isolated, ;et relilonally dls'ributud, t.argetIn a revciprocal prdIpagt,.tion medium can be/#rer~overed from (1) amplituda-only,01i) minxed ainpiltu(ce pium~ partial phase., (il1) c;omplete t-wc-ate,ý a3;Pplltude-Iphetse roIeasure~menti", Ba,,ic prope'rti-es of the radiar target catri:g matrix for~illnear' (H, V) and r'1rcular (R, L) polarrizva.tion basis are desccrbe~d in terms o"'.cttimetrical 1argetdie,-tures as functions of the specular polr-. 5.urface coordin~ateparameters, Vnown ill gausslao principal, main and related cuivature functlor),.Based upon this suci:inct background Introduction on radar polarimetry, theconcepts-are applie.d mainly fur thie zoherent case to variou~j classes of 7rncreas-Ing order of sophistication, as defined In detail In the 1147KODUCTIONi, 4o theproblem of radar target handling~ for the non-ccaperative, ilimited-dat'A case.l.

KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination. claissification,T~TaWng, optimal polarization nulls, polarization transformation matrix,Mueller matrix, ra~dar scattering matrix, polarization fork.

PREAMBLE: In the pursuit of this research on radar target rracognttionfhandling;OTM-hn. r-to-nm wavelength region we are dealing with wide interdisciplinaryresearch areas for which not all studies carrie~d out In thea past. are availableIn the open li.terature. In seeking for a unified approach of treating thiscomplex problem, It can happen that one may overlook some, important base studies;and, therefore, the paper presented here is i revised, highly' updated versionof earlier similar papers. Specifically, we owe our apologits to Dr. GlendonMcCormick, Mr. Archibald Hrnndry and Mr. t,averne E. Allen, Flectromagnetics Div-ision, NRC, Ottawa, Canada, for not hav~ng paid due attention to their outstandingcontributions to pollarimetric radar me*1.eorology. The maj1or relevant contributionejof their research are now lncluded ir this paper,

1. INTRODUCTION

The inte~raction of ele(trowdignetic. waves withtj ' geometrically bounded,mat~erial body may best be descr ibed as a

"Poaiain-e~l!v Scatterer Feature Spatial al,id TemporalResIonance Phenor~enori.",

This research was supr.arted tinder I4AV-AIR Systems Command ContractNo. :NOOO]9-80-.C-O620V,.

Page 6: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

particularly when the spatial and temporal periods become of the order of a targetcharacteristic features and motional dimensions. Specifically, for the limiteddata, non-cooperativ4% target case, there exists an hierarchy in complexity, amount,quality and accuracy of radar data requixed to obtain an "immediate (instantaneous)decision operator" in tactical (seeker) radar for the distinct radar problems of:

Target versus clutter discrimination: Various methodsmay be applicable, yet we found that in a hostile clutterand/or chaff environment such as (i) the marine boundarylayer, (ii) the atmospheric ground-based battle-field scene,or (iii) for low-flying tactical aircraft involved in supportof ground/s.ers-based battle actv ons, we must incorporatecomplete CW polarimetric targ.at/cl.utte" scattering matrix in-formation. Specifically, we reqire co utilize the dynamicpolarimotri,: fork properties. Whereas, for distributedcluttr.r/chaff, the vector .scatterirnZ centers are distributedmore, denselyf aind separated b'y a svall fraction of a wavelength,.esulting ii' a more sta'Jle ,aotior, of t',,e associated co-polarizationSiulls (pron.i of rolar'.zat.ion fork) on tio% Poincare sphere;those of isolace,ý'I% lger, more complex (man-.nade) objectsare s•eparated by distarc,4s beiing comparable to the wavelengthand larger, -resulting iut a rapid circular path loci motionon th' polarizarton spherr. Therefore, the highly variedbehavior of thi dynam'1c polarization fork motions of"target (rapJ.A) versui clutter/chaff (slow) on the polari-zation sphe',"e will provide an indispensible target versusclutter/cOaff discrimination operator as was demonstratedwithout further doubt. by Poelman (1977 to 1982). We noteij that w;e also will need to reassess the merit factor definitionsof optimal targf.t signal versus clutter-plus-noise separationwhich 3eed to 'oe based on Huynen's N-target theories(Htuynen, 197,Q) ar.d Poelman's (1981) maximumi entropy approachirr extractirg tne most useful stochastic: merit factorparametric diarrams based on Kennaugh's optimal targetpolarizati.on ',,ull theory.

Target -versvs-target i-nd clutter-versus-clutter classification:Because -- 67Th• act ';hat the i'dctor scattering centers of larger,more coorplex isolr.•t(d targe'c!, are separated by longer electriclenithf• resultirg -in a rapied circular path motion of the

pelariz0tion for'A, in gereral,, over the entire Poincare spherein ca'sr, of "lnr-symnetrizal'" reciprocal targets, we find that

S'a mon chromat' ^c CW, lim-Ited ý.spect, complete polarimetric approachfor the bakccatter (monustatic) radar case will not suffice;an6, in aý•i,:tion, we 7quvire polarimetric target downrange silhouette*rrsolutiort. Although the mean optimal polarization null locations,nd their spread car, Ue obtained for clutter and/or chaff ratheraccuratý/ly if the p,.,larimetric clutter matrix information is

. recovrwred within rime frames lying below the clutter vector

scattering center re!,huffLing time ; improved clutter classifi-

mLI

Page 7: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

Im

3

,cation (surface versus inhomogeneous volumetric underburden scattercan only result from broadband complete polarimetric clutterinformation (Fung and Eom, 1982; Morgan and Weisbrod, 1982;McCormick and Hendry, 1982; Boerner and Huynen, 1982).We re-emphasize that, given complete bToadband polarimetric

scatter matrix information, target classi'lication for thenon-cooperative target versus target, target versus clutter,and clutter versus clutter case is guaranteed (Root, 1980,' Banks, 1981).

Target imaging in inhomogeneaus media and/o!r clutter environments:In case the target does not possess rotational syrnetry but"is of general "not-symmetrical" reciprocal shape, in additionto complete polarimetric downrange linear chirp maps along the

A rotational axis of invariance, we will iequire such data over awide cone of the unit sphere of directions in dependence of

'! data completeness, quality, etc. or, additional "equivalent apriori" target shape information. In case the target is embeddedin weekly diffracting cluttor, the G.O. superlimited parallelbeammethods of projection tomography do not suffice; then we must,at least, incorporate back-propagation tomographic methods basedon the Born/Rytov approximation to apply, which representa dramatic improvement'dver Radon's single ray (straight orbent) projection reconstruction theory. Furthermore, as weare strictly dealing with an ele'ctromagnetic vector inverseproblem, the scalar back-propagation tomographic method mustbe extended to vector back-diffraction tomography for thegeneral case of a target embedded in the type of clutterdescribed above. For the application of general vector back-diffraction tomography to target imaging in dense depolarizingclutter, we also must develop direct scattering theories in-corpora~ting a polari-metric vector radiation transfer approachutilizing a Stokes' vector formulation which implicitly mustalso contain multi-scatter phase information.

Target identification: Complete single target identificationin shape and material decomposition will strictly requiresolutions to all of the above three (3) tasks, plus incorpor-ation of ccomplete doppler and scatterometric information within

the various windows of the m-to-sub-mm wavelength region.Therefore, we need to develop complete rolarimetric broadband

(discrete linear chirp) doppler radar systcms within thevarious windows of the 1-400 GHze.m. spectral region so thatoptimal target information can be extracted from electro-magnetic wave/target interaction which is a "polarization-sensitive target feature spatial and temporal resonancep-enomenon", i.e., amplitude, phase polarization, frequency,doppler inform, ation, all are equivalently and equally important

Page 8: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

0 -W0 _W

14

Criteria for the Assessment of Available Complete PolarimetricMeasurement Methods:

The main obstacle towards realizing incorpoiation of completepolarimetric radar target theory into target versus clutter"discrimination, target versus target classification, target inclutter imaging, single target identification unti. recentlywas the underdeveloped state of broadband pilAarimetric antennatheory and design. It was not possible to revover for thegeneral not-symmetrical reciprocal target case (which must bethe basic requirement here), i.e., both amplitude and relativepolarization phase of the scattering matrix elements at timeframes below the vector scattering center reshuffling time ofclutter/chaff. Until very recently, complete eliipsometricamplitude-only measurement principles had to be used whichrequire nine (9) rather time-consuming independent amplitude-only measurements for a selected set of linear, circular andelliptical base polarizations. For the complete symmetric(H, V, aligned) target case, Copeland (1960) and Huynen (1960)independently developed polarization rotation-sweep techniques,which were shown to be sufficient to recover the optimalpolarization nulls of aligned, symmetric targets only on the

,polarization sphere from co-polarized amplitude-only measure-ments. In a next step, a method of recovering the co/cross-polarization phase OAB or OBA for SAA/SAB or SBB/SBAmeasurements was developed using fast magnetic waveguideswitches and/or pin-diode switches, This method, when re-designedfor the circular left/right polarization base vector pair"does provide a two-step complete measurement approach, as e.g.,was developed by McCormick/Allan/Hendry (1977-1982) for polari-metric radar meteorology, for which target reciprucity mustapply as well as complete target symmetry with respect to thelinear H, V polarization basis which certainly is a ratherunrealistic assumption for the case of tactical target detectionin meteorological clutter. More recently with the advancedpin-diode switching technology, it is now possible to recovercomplete polarimetric scattering matrix information for thegeneral "not-symmetrical" reciprocal target case within thetime frames which lie below the reshuffling time of vectorclutter scattering centers, i.e., we are now witnessing therealistic phase of incorporating complete radar polarimetricconcepts into the general radar target description problem.

In the following sections, a survey of the important concepts of radar polari-metry is presented and relevant examples are provided.

I:

Page 9: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

51

2. POLARIZATION DESCRIPTORS

In tilis brief survey of optimal polarization descriptors, we willschematically introduce basic definitions (Table 1), describing the polar-ization ellipse in time and frequency domain (Fig. 1) and Its relationshipwith the Poincare sphere.

TABLE I: POLAR''ATION DESCRIPTORS

PARAMETER DEFIIIIT'ION

a. Radar Cross Section 2

i) no polarization corrections a Jim lIR l im 4ITR 1 )

ii) with polarization cor- a - Ura LI1R r (2)

rect ions r h2

b. The Polarization Vector "A (3)I) time domain h(t) - a H cos wt hH + a V cos (wt+6) hv

where 6 - 6V - 6 H

it) frequency domain h(tl - Re{h e J1t), where (4)

h aH eHhH + a1Ve Vhv

iII) geometric p ra- h - os sin4* cos Trs )eJ (3)'imeter ( n o A jsInc

iv) polarization a J6/ an a 6

ratio h 01 6 H(hH + phV), where p -- a--eJ6 (6)

1c. The Polarization Ellipse h 2

7_ _2 - oF - sin 6( )a ,(H.,, "" V ()H a n(7

Linear: 8 - 0, horizonta (a 0),vertical (aH -0), linear 450 (a V

i Left circular (LC): 6 - 90' , aH a1

,Right circular (RC): 6 - 900, aH -a

Left elliptic: sin6 > 0

Right elliptic: sin6 < 0

Fig. I

Page 10: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

6

Table I (Cont'd): Polarization Descriptors

d. The Stokes Vector

(90 /IhHI2 + IhVt?\ 8H + aV. /aI

91 Ih H 12 hVI2l a H2-a V 2a2 cos2rcos2O QI - - -(8)

92 2Re{h/Hhv 2aH a VCO56 a2 cos2Tsin2o U

\g 3 - 2 ,m(hHhv•"} / 2 aNaVsin/ a s n n2t V

whereg.2.. 2 + g22 + g32 1 12 - Q2 + U2 + V2

H: I V: r LC: g RC: 0)

Modified Stokes Vector qm - a(0 + Q), ½ (1- Q), U, V}

e. The Polarization Ratio

h Ha) eJ -tanye (9)

L1near: Im(p}- 0, H: p - 0, V: p -

Circular: Re{p} - 0, LC: p - J, RC: p - -J

Elliptic: Left elliptic: Im{p} >0, right elliptic: Imfp} <0

Page 11: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

TABLE I (Cont'd): Polarization Descriptors

f. The Poincare Sphere

0) Cartesian Coordinates - (gl' g2, g3)

ii) Spnerical - (go' If " , 2€)

iii) In terms of Polarization ratio

U -= e cGs -J , phase (u) (10)+ jp 1U12 +

Fig, 2. POINCARE SPHERE

.3. SCATTERING MATRICES:

[S], '[M], [P]

There exist three matrices of specific

value to The description of hydrometeor

ensembles In the coherent

and the Incoherent cases which are defined here and the

Interactions are derived

(Boerner, et al, 1981, Chan, 1981),

I ~~3.1 The Scattering

Matrix [•

The 2 x 2 complex spattering matrix [S] Is relating

the polarlzatlor, 1Yector

of the scattered field h to the corresponding

one of the incident field h through

• I "Different

representations for [5] with absolute

and relative phase in the bistatic

.a n d m o n o s t a tic c a s e s a r e s u m m a r i z e d a s f o l l o w s : i n t h e bist a tic c a s e , t hie s c a t -

tering matrix with absolute phase is defined by

" 9!

S. ... . ... ... .. - " . . .. - .. . ... ..... ..

.... .. • - ,,,•. .. .. . . 1 ...

3 P•

... :

Page 12: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

8

(S A SI AjýAA IABI' eJ'AB

[SMA S BB B IsIeJBA ISBBI eJ41B1

iSAAIe (OAA " AB) SABSI ej

SBA ejNBA - AB) ISBB1eJ(NBe - lAB) (12) !

a eJ Ao [ S 'sMR

where *AS is the absolute phase%, [S]S,4 is the target scattering matrix withrelative phase and it can be written 'i the bistatic case as

E-1 SMR ( ISM JAA Is~ 'GA '01 - ýAB)' (13)Ss SBAIeJ(OBA JAd 1SBBIeJBB -1'

Eqs. (12), (14) satisfy the reciprocity condition SAB'SBA(ISABI"ISBAI' OAB "-3A)in the monostatic case. In this paper, we e considering the monostaticcase only.3.2 The Mueller Matrices

The Mueller (Stokes reflectlor) matrix [M., the modified Mueller matrix [M _,and the symmetrized Mueller matrix [M.I aie presented In this section. The m

reconstruction of these matrices fromsthe scattering matrix elements Is given InTable 2. (Boerner et al, 1981, Jan & Sept.)

The 4 x 4 real M.eller matrix [M] relates the scattered Stokes vector 5. sto the corresponding Incident vector' 9 with the following relationship

g- [M] , (14)

where the Stokes vector is defined In rable 1. A similar relationship relatingthe modified scattered anid Incident Stokes vectors Is given by

4n -I [Mm] . (15)

The relationship between rM] and [M ] is given by (Boerner et al, 1981), also byGerrard & Burch et al, (1975. m

[Ml -[R] [M] [R -1 (16)nl,

and -[M -[R- I [Mm] [R] (17)

*We note that this speclfIL choice need not be the best one as e.g., in thecase of a circular polarization basis (also see Huynen, jq70).

Page 13: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

9

where the constant transformation matrix [R] becomes

[R] 0 0 (18)00 1 0

0 0 0(I

The Mueller matrices are 4 x 4 real and asymmetric. The symmetric Muellermatrix [M s] can be deduced as follows: the received power (Huynen,1970;Kennaugh, 1)49-54 #9) is

Pr"½[gos r+g s r~ s; [r r

g5 r gogr + g2 r _ g gs _ rQ] S(19)

s rwhere .a r are the sr'attered wave and receiving antenna Stokes vectorsrespectively and 'Q] ii a constant matrix and Is given by:

(1 0 00SIQ)

0 0 1 0

(0 0 0 -1)

substituting (16) Into (19), then

Fr [OI][M] 1j . [M5 j .9. r (20)

where [M = [(Q][M] Is a symmetric Mueller matrix.s

3.3 Graves Power Scattering Matrix [PJ and its Associated [PH] and [PV]

The total backscattered power from a target is viven by (Graves, 1956)s'r 121

Pb ths- h" - (hs*) h ,h,21)

where hs Is the backscatteru.d polarization 'ectur. S?,hstituting (il) into(1)

whreth (&)T* T* I I T* (2P b =(h-T IST] [S]-hl (hiT [Pit.!, (22)

where the matrix [P]is known as Graves Power scattering matrix and It isg ven by

[PI - T* S] (23)

"T ci

Page 14: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

10

where a, b are teal and c .; ccinpjex. The* re-construc-tiOn of the elemwnts of

[P] in terns of the el eients cf th-. 3cattorlno, matrix [S] Is given in

Table 2 (Chani, 1981)-

The matrix [p] canbe dvcomU'sed into twc% 11jeasurable matrices [PHI ,nd

[P.], where

[P] - [PHJ + [Pvl (24)

The elemets of' [P.] and [PV] In tervs of the eltnent$ of [S] are also shown

In Table 2 (Chan, 1981).

TABLE ?: RECONSTRUCTION OF [M], mi], [P], P] H,1 [Pvr

AND OPTIMAL POLARIZATf')N FROM [SI

MM] am]

m11 -W(SAAI 2+ 21SAIS Bs551 " IS1, 2

m12 W M2 1 - ½(sAA2 - BB12} H1 2 " SABI H2 1

m1 3 ' '3 1 RrrS'A/ " A• H1 3 , SAASAV - "31

M 1, OP -mnt lm(JSAAS + 'ABp• M 14 - Im (S AA5.4) 0 4 1l

722 - (SAAI 2ISAB2 + 1'S5 1 2K2 "SBeI-

m ef ; S S*1 pt Re(S S *1 me M23Re{S A6, SAB SA So23 " SBB 32

AS~ 6V 1"43

24 -m - I42maSAAA - SABSBV} H24 Im( B} -- •S

m33' Re{.SAA S. + 'S, pz! H3 3 = Re-sAal + I'AB

m 4 -43 - WS{AASSB *1 I 4-I( AA!' _M4m4 = m33 + m 22 "0 in H " 3 - 212

-........ • --.- o.---'--

Page 15: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

11

TABLE 2: (Cont'd)

[p] (PHI + [Pv] CO-POL & X-POL NULLS

~~~ (: S) NH~ ISHVI COLATITUDE: e-Cos' II Ic -+-

[jc) bna~ii~ -J1 +m.

IN,[e- , b - ISMV12 + ISvvl2C W S I mu

c.\aH - ISHM12 where: u ----.

P Ja C b, M Isvl -J2 • A"H J b~ IS~I2 and p" -

L bH CH SHSHv 2A

.IV . JISHV1 2 CO-P01 Nulls

S(aV cv. by V J Svv 2 A- ec bv " - '" 2S s\ bV) cV -SH*V SVB 2 AB, C A

X-POL Nulls

A S- S *•+ S•SAB -C,

B SAA12 - JSBB1l

4. THE CONCEPT OF THE OPTIMAL POLARIZATION PAIRS

It was first shown bs, Kennaugh (1952) that there exTst two pairs of"optimn, polarizations whlrkh can be useful in describing t.rget properties atone aspect and at o•ie frequency (Kennaugh, 1949-1952 #9). The concept is basedon Invarlance of polarization state transformation under consideration ofreciprocity as we will Introduce naxt.

4.1 P-arlazicn State Transformation

In the following w6 shall lintit ourselves exclusively to the monostaticcase - e1, *. - *t) and we may define the "normalized monostatic scat-tering Ltril 5 Mith Klatile phase" In terml of two arbitrary eillptically

J orthogoncl jolarFý,,ation base vectors hA and hB so that with h- hAhA + hBhB

(A S B 5AB *SBA,s]t ] (25)

BA RD •AB BA

•I L

Page 16: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

Thus, assuming reciprocity of the propagation path (SjB t SnA) and conser-

vation of energy, we require five real quantities to itemne IS] completely(Kennaugh, 1949-19c2 #],.#4). However, we note that In case S, 0 S., i.e.,ruclprocity of the propagation paths is violated, the definition of %(25)cannot, be used (Kanereykin et &1, 1966) as may be erncountered for a propa-gation path within a highly ionized cloud containing varlouý. dense liquidand sol id Ice states of hydrometeors (Jeske, 1976).

A•ssuming reciprocity holds, t.here exists an Infinite imber of generalpairs of or'thonormal elliptical polar,zation vectors hA, h and anInfinite number of possible invariant transformations (Kennatgh, 1949-1952#12). Numerically, the transformation properties of S(A,B) assuming nopolgrization losses from any one orthonormol polarizatlon pair h - h ýh +

h h to another orthonormal pair h - hA*' hAA + hq , can be expressed intirmi of the geometric parameters i and I, or polTarization ratio parmetersy and 6, mathematically expressed In matrix form

sos 4 -siný cosT js nE[T] - Sin# )O S i c22') (26)

wheich imralies rotation of coordinate axes and deformation of ellipticiiy otthe polarization elllp3e. [T] may also be defined according to Maffett (Crispin,and Siegel, 1968)

(ej*Ico,, .J. sin•-IT] - (27)

\.eJ 3 Siy eJ *cosy/

and In order for IT] to be unitary, the following cdndition on *Is has to beImposed *2- *1 *4- *3,where in our work, we chose *1 - *4 a 0. Thus, having*2 - -*3 " :i, the [Ti matrix reduces to

cosy -eJasIny[T] 0. si,, COSY/(28)

The two transformations [(26) and (28)] are equivalent, and can be representelon the Polncare sphere as shown in Fig. 3.

z

KYX z

Fig. 3DFSCHAMPSI SPHERE

Page 17: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

13

Equation (26) can also be expressed In terms of polarization ratio p - tanyejand after normalizing [T] it takes on the following form

IT -P[T - ,1ppj (29)

P

!TThe transformed elements of the scattering matrix (S'(A',B')] - [T]T [S(A,B)](T] are given for the general bistatic case by

S'AIAI - ('+pp*)'([sM+ 02SBB+p(SAB+SBA)]

, S' - (I+pp*)'[-P*S + SB + SAB - PP*SAAA 8 AB PSB Aj (30)

BOA' - (l+pp*) I(p*2 SAA + S8B -pP*(SAB + SBA)]

B'B' a (I+PP*)' 1 p*2 AA + ABB - P*(SAB + SBA)]

satisfying the transformation Invariants det({S'(A',B')]} a Invariant whendot {[T]} - ± 1, otherwise det ([S'(A',B')]} Is different by a factor ofexp(ZARG {det(T])) and

Span{[S(A,B)]} - IS l2 + ISAB12 + ISBA12 + ISBBI 2 p-' -pj( SIA , I~j SO 12 + ISO 12 + ISO 12 + ISO 1

i =SI~ {[ '(A ,B']]A'A' 'AID' DIAI + S BOBO

- invariant. (31)

We note that !f SA.RS'B, then SOAin, -S'1B for all p; i.e., if reciprocity issatisfied for any gne pair of orAh~gonal polarizations, it is satisfied for allsuch pairs. Furthermore, we must emphasize the Important property that forany one given aspect and for one frequency, the transformation is polarizationinvariant, i.e., the transformation occurs on one and the same polarizationsphere of rasdlus p - span ([S(A,B)] }. Thus, if [S(A,B)] is known andreciprocity as well as corservation of energy is satisfied, [S'(A',B')] forany other orthogonal pair h(A',B') can be obtained as Is known for examplefor the transformotion from linear to circular polarization base vectors inLong (1975). In case of polarization losses properties of the -. aherencymatrix need to be used (Kraus, 1966), and the transformation will not occuron the same polarization sphere (Deschamps, 1953; Deschamps and Mast,1973 ).

4.2 Transformation from Linear (HV) to Circular (ROL) Polarization Bases

Based on equation (28) we can construct a transformation from i linearto a circular polarization base; The parameters in equation (28) areset to the following values

y ]/4 and 6 - 3f/2*We note that Huynen (1970) chose target maximum power m to represent theradius.

Page 18: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

The resulting transformation matrix [T] Is 14.

[T] - V= T (32)

The relationship between t0e unit vei:tors (h, h•v) of the linear basis and(hR, hL) in the circular basis can naa be wri yten as:

R' Lhv

Equation (33) holds in the Incident system, its counterpart In the scatteredsystem !s

J [T]*

the two systems are illustrated In Fig. 4.

i .*•t t)lfl* I ¥•l

'"I.-.

FIGURE 4: INCIDENT AND SCATTERED FIELD COORDINATES

It can be shown that the scattering matrix in the circular basis [C(R,L)] is

[C(R,L)] - [T(RL, HV)] [S(HV)] [T(RL, HV)]T (34)

Substituting fequations (32) into equation (34) we obtain the scattering matrixin the circular polarization basis In terms of elements of its counterpart inthe linear basis.

Page 19: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

15S -S

2H 2 VV 4. J J S H + $VV

[C(RL)] *

1 5 HH ÷ VV S -_ SHH

4.3 Calculation of the Optimal Polarizations

It was shi,,n by Kennauqh (1949-1952) th ; there exist two pairs nfoptimal polarization,, the Co-Polarization Kull Pair for which S' ' rIndS' In (27) vanish and the Cross-Polarization Null Pair for whTch" S',

an ,'gutj vanish. In Table 2, the optimal polarization (CO-POL ari A'81

P- •"L) IuTls are given In terms of [S] elements and a,,-* represented 3n thePoincare sphere.

It should be noted that the CO-POL and X-POL iulls lie on one majorcircle on the Poincare polarization sphere and the.. their locations definethe polarization fork (Fig. 5). The X-POL nulls hrv anti-podal on thissphere and the line Joining them bisects the ang'b between the CO-POLnulls as shown In Fig. 5. We note here that this unique description of ascatterer under monostatic conditions given for one.frequency and aspect Isof paramount importance to target description at one aspect and one frequen-cy and Its propertles have been overlookeJ in practice (Kennaugh, 1949-1952;Kanareykin, et al, 1966).

0 ore. ML. /POELPAN 'SX .M..t ADJUSTABLE

POLARIZATIOONFORK

,, - . .' ..-.... ........

Fig. 5: The Polarlzcion Fork (Huynen 1970)

4.4 Reconstruction of rSISR

The reconstructior, of [S] iM from M]I, [M , [P],[P] and [PV] or optimalpolarizat ions Is shown In Tabl"3. This meansl Tables 3 gi completeinterrelationship between these scattering matrices as well as the optimalpolarizations. From a measurement point of view, this Is yery Importantbecause IV suffices to measure one of the matrices or the optimal polarizationto calcula~te the other matrices, The reconstruction of [S] from theoptimal polarizations Is of great importance to target polaflration synthesis.In these Tables, A and B are any twc uvrthogonal bases e,g, horizontal andvertical. We note here that in th;e incoherent or quasi-coherent case, cluster-ing properties of the CO-POL nulls need to be taken into consideration.

Page 20: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

16

TABLE 3: RECONSTRucVioII OF (S]SMR frcuin [M], (Mm], (PH], (PV and

OMTMAL POLARIZAT IONS

elements of from [M) frm[ from (P and [Pv](Me)M (A-Il, B-V)

AA__ _ +i 2 12 + in2 2) -Ml -/

AS 1 BAI I I "TI12 AA /B

Is BlBB7r vS~~11 2 22 r22B

#AA tan-Im1 4 + 2 tan- IM i/M1. tan- AAB m13 + m 2

66-*AS N -1 j m~1 i 42)ImCtan- ~ tan-I4' 32 M MRa-' e C8

- 3 - am3. 4 s. -2 Re

from optimal polarizations

[S(A,B3)] - K[~~

CO-POL Nulls are known:

K 4 I-{pC0 + pCO12 + 2IpCOpCO12+ 21~

I I ~ *E1 *E - 2~aep

y -- 2 exp J E

One CO-POL and one X-PI)L are known:

K - rPD 0 M 2 1 (pX)* (pCO)2 + p~X12 +IpCO12{lpCO - CO1 j)x)2.. 2pX1 2)ý

+ IapCO(px)* -I1XI2 + 112

X Pc,~CO0_ pCOj0 X1 2 -2pX]exp(-J* E), ýE phase (px) *(PCO) 2 + )

- (2 c0(pX)* - jpx1 2+ l]exp(-jýE

Z a ( )*(pCO)2 + X

Page 21: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

17

4.5 Optimal Polarizations f~or Different Isolated Simple Target Shapes

The CO-POL and X-POL nulls are calculated here for different targetshapes. Table 4 shows the calculated nulls for simple shapes, e.g. Ideallyconducting flat plate or sphere, metallic trough, right and left metallichel ices.

TABLE 4: CO-POL AND X-POL NULL FOR SIMPLE TARGET SHAPES

SCATTERING [S] AND CO-POL (C) AND X-POL (X)

TARGET MODIFIED MUELLER [M ] NULLS ON POINCAREMATRICES SPHERE

1 10IS] - (,,,.

S0 0oo 0

a. Ideally conducting flat Mm] 0 0 0plate or sphere (0 00 1)

/, t= -± .I mi.

(M10 00O00 1

m]" 0 - 0b. Metallic trough (0 0 "I

I 1 0 1/

[M I 1 0

[m]= 0 0 00

c. Metallic helix - - 0(right screw)

//•/ ,Ks] - U ,

:[Hm0 100 00

Metallic helix ( 2 0(left screw)

, I~~~--- .. . .. ..i .. . ... i. .I .I

Page 22: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

18

5. FREQUEACY-DEPENDENT RELAriONSHIP OF POLARIMETRIC SCATTERING MATRIXELEMENTS WITH SPECULAR POINT CURVATURE

The time-domain first order polarization-dependent correction to thephysical optics Impulse response has been given by Bennett et al (1973, 1977and 1981) as

4( Ku - KV A dAr r, t) (a Hui - av Hvi ]

A

where a , a are unit vectors along the directions of the principalcurvatu~es Xt the specular point; H ., H are the components of the inci-dent field In the directions of a a YvIespectively; K K are theprincipal curvatures at the specuYar paint; and A is theUsiltouette areaof the scatterer as delineated by the Incident impulsive plane wavefrontmoving at half the free space velocity.

An expression for the far scattered impulse response field was found

in [Bennett et al, (1973) and (1977)]

ri1 d2 A

roHs(pO) (r, t)- T7 d- alHl

which is the Kennaugh-Cosgriff formula, (Kennaugh & Cosgriff,.1958; Kennaugh& Moffatt, 1965). The corrected total field Is thus

r0Ho (r, t) - roHs(PO)(r, t) + rlIs(p0 t)

which is transformed to the frequency donoa!n, and is directly related tothe scattering matrix which exhibits total polarization/depolarizationeffects (Chaudhurl et al, 1982). Ignoring scale factors, the matrixelements are given by

I K- KS11 - (jk)2 AF(k) - (jk) AF(k) u cos 2

1 K - K$ y- (jk) 2 AF(k) + (jk) AF(k) u V22 T ~) 4 cos 2a(35)

K -KS12 " (Jk) AF(k) u vsIn 2a

where k Is the wave number, AF(k) is the Fourier transform of A(t), thepolarization angle a is defined In Figure 6 a.. The validity of (35) requireshigh frequency Interrogation with smooth, convex, conducting targets. (Fig. 6b)

cp1 - R - 22A-complex function (where R ) is defined, and curvature

I +R Iinformation can be extracted from it at high frequencles. A relationshipbetween the phase factors of the scattering matrix elements and the principalcurvatures is then established.(Chaudhuri et al, 1982)

SK- KU v = k t(2 co-- 2cs tan (36)

where ÷d ` 022 t11-

Page 23: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

19

0AorIInaes Sytf Inidn orEuaoraSpeula Point

IIN

Fi. a peuarPontFg.6bP pcuarPon

CoriaeSse nidnefrEutraSp9ecula.., rI- Po n

a)b) Complex Plot of D (e~xperimental-

CmlxPo ofD(theoretical) 2-I4 GHz, 9Q0 aspect)

c).0 Ampltud Plot of 01d) Amplitude P--tof D eprimetal

FIGURE 7: BEHAVIOR OF D AT HIGH FREQUENCIES (Foo, 1982)

ILi I__________________________________

Page 24: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

20

The cross-pal nulls are also found to be along the directions of principalcurvatures. These dircctions can be recovered from the scattering matrixelements (Chaudhurl et a1, 1982).

The curvature recovery model Is based on the first order correction tothe Physical Optics approximation. Higher order corrections are investigatedby directly extending the space-time integral equation approach of Bennett et al,(1977). The second order correction current is found to be very Insignificant

when compared to the first order one (Chaudhuri et al, 1982) and (Foo, 1982).

The phase-curvature relationship (36) Is tested by applying It totheoretical, as well as, experimental backscatterlng data obtained for a pro-late spheroidal scatterer, as shown in Figures 6 to 8. Both sets of datasupport the relationship well. Figure 8a is a direct verification Qf (36)with theoretical data; Figure 86 depicts that the quantity k Im j!, converges

to Ku Kv as kb IncreasIs; Figure Bc Is a plot of the Imaginary versus

the real part of kI [R, , and shows that, as predicted from theory, It

converges to (or hov4S Raround) a point on the imaginary axis as frequencyincreases. The distance of this point in the Imaginary axis from the origin1 equals the required value KU'Kv * 0.375 for the specular point of interest.

Figures 8a-8c refer to the b0oadside incidence to a 2:1 prolate spheroid inFigure 6b with * - 900. For useful presentation of results from experimentaldata, the complex plot, such as that in Figure 80, Is found to be mostinterpretative (Chaudhuri et al, 1982) and (Foe, 1982). Figures 8d-8f arethe experimental versions of Figures 8a, b and c. Deviations from thetheoretical predictions are mainly attributed to the k factor and the tangentfunction in (36), and the relative phase error between the TE and TM Incidences,all of which become more significant at higher frequencies (Chaudhuri et aI,1982) and (Foo, 1982).

'I While the phase difference of like-polarized Lerms, however small, containscurvature Information, the phase sum, regardless of the type of orthogonalpolarization bases, tends to a value which isi twice the argument of the Fouriertransform of the silhouette area of the target (Foo, 1982), I.e.,

011 + *22 + 2 Arg AF(k) (37)

The phase sum also tends to the argument of the scattering ratio defined asthe ratio of the determinant to the span of the scattering matrix

12

S 11S22 - 12(38)

Is1112 + IS22 12 + 21S 12 12

*11 + ý22 ) Arg D (39)

The magnitude of the scattering ratio, whose definition is Immaterialof whether linear, circuiar or general elliptic polarization is used, ap-proaches 0.5 rapidly :s frequency is Increased, i.e.

DID - 0.5 (40)

Page 25: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

21

A, 0Ln

NMI K

a) Direct Verification of Phase-Curvature 0

Relationship (theoretical)

10.0 0 '2 ,0 t'0 0 6. 0

d) Experimental verplon of (a)

3 3a • M a

I A

'0 -74 '09 11, •1 0O M •

b) Convergence of k me xe~mnalV~olno b

c) The Scattering ChartExperimental Version of (c)

FIGURE 8 Comparison of Phase-curvature Relationships for

cheoretical and experimental data (Foo, 1982)

Page 26: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

22

The magnitude of the ratio is Interpreted as the ratio of the maximumradar cross section to the trace of the power scattering matrix [P] at highfrequencies, I.e.,

'maxTr[P] ÷ 0.5 (41)

where 'max Is the optimum radar cross section defined In.Kennaugh (1949-1951t),

Sinclair (1948), as

a rt - I._r . [S] 2

In the above, It Is assumed that identical transmitting and receiving antennasare used; ht and hr are the antenna heights, and are normalized to unity;[P] Is the Graves Dower scattering matrix defined In Graves (1956), as

[P] - [S]* iS]

The complex plots of the scattering ratio provide a simple check onthe accuracy of high frequency polarimetric measurements (Foe, 1982). Thecomplex plot and the amplitude p'ot of the ratio are depicted In Figures 7aand 7c, respectively, for theoretical data. In Figures 7b and 7d, therespective plots for measurement data are provided which demonstrates theusefulness of Introducing Eq. (38)

Another curvature recovery equation has been derived (Foo, 1982) incircular polarization basis vector notation

(u ) .k2 RR CLL (42)

- CL "Z2

LR

where the C's denote the elements of the circular polarization scatteringmatrix. It is to be noted that the quantity ICRRIICLLI - ICR,.I 2 (Morganand Weisbrod 1932) can be Interpreted as,

(ICRRI ICLLI - ICRLI))) ](43)

which reveals area Information for a smoothconvex, conducting target athigh frequencies (Foo 1982).

The curvature recovery model Is proven to satisfy the image reconstructionIdentities of invariant transformation (Foc 1982). It is found that thedeterminant of the scattering matrix is strictly transformation-invariant If(Foo 1982)

Det [T] ±1

where [T] is the unitary transformation matrix, whereas, the invariance ofthe span of the scattering matrix necessitates no restriction (Foo 1982), i.-.,

Page 27: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

23

Det [C] e j2Arg(Det [T]) : Oet [S] (44)

and

Span [C] - Span [S] (45)

where [Cl -can be extended to the scattering matrix resulting from tranti-forming (S] to the general eiliptic polarization.

Finally, the values of kb (Chaudhuri et al, 1982) have buern fotind tobe most potentially suitable for curvature recovery of the 6" x 12" prolatespheroid (and probably targets of similar size and shape), prcvided thatpolarimetric measurements can be Improved to a better accuracy, Not onlyIs this range of kb valid for the first order correction to physical optics,but it is also a compromise range between the high frequency condition"required by the curv'ature recovery model and the drawback to lower frequenciesrequired to prevent crit;cal magnification of measurement error.s (Chaurihuriet al, 1982)

6. MEASUREMENTS OF [M], [P], and [S]

The measurements of the scattering matrices [S], [P], and [M] are intri-caLe, and various methods exist which have been summarized recently byChan, 1981. Of particular interest here is thel meas'irement of [S] and,specifically, the retrieval of both amplitude and phase of tll of the rele-IC (vant elements of [SI]Mi.e, ISAAISB: I S, "iSAI,•AA' on

assuming that -AB "BA )' Since this rief Tntroduc•,on .oes no allow,i..a complete treatment, we refer to the above report and ppliot o•ut only thatit is necess•ary to recover the relativ.- piasz between the two co-polarized,~omponents in addition tc the relative phase between the co-/cross-polarizedcomponents, as welt as the amplitudes of isA S which requires

pa, IS~~~AA!I 'EQBB I S~ h rqieIsolation of at least 25 to 30 dB between co- and cross-polarized channels.

6.1 pAm pitude-Only Measurements

When amplitude alone is measured, cross-section measurements do not ,

lead to a direct determination of the scattering matrix. But, rather, themeasured data provide the coefficients of equations fror which the magnitudesand elative phases of the matrix elements are deduced. Hence, only [SMRcf be deriv-.d frJnl the measurements.

a) heý,surement of [M ]: The Mueller mat-.ix [M] of a target at one'aspect abgle c2 n s f teariieobtained from its associated S R as shown

in Table 2. As for the measurement of the average Mueller matrix <[M]> ofa target, a set of nine (9) independent measurements of average power forvarious combir--ions of antenna polarizations are required to obtain <[M]>.All elements of the symmetric [MS], as defined in Eq. (20), can beobtained with the'4et of transmitting and receiving antenna combinations asshown in Table 5.

V~ ~I

Page 28: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

24

TABLE 5:" ANTENNA POLARIZATION FOR THE MEASUREMENT OF THE SYMMETRIC [MS(mi.)]

Transmission Reception Average recelved power€,m4 5 o t/ .. . ..

ý 0-45' •(fl I33 2m 13)

W,, 35' 0-1350 4(m! +÷;3 3 - 2m 13)

Horizontal Horizontal 4(m11 +m22 +2n + 2 )

Vertical Vertical 4(m 1 +m2'-2;m12 )

Left circ. Le=ft circ. +4 +2m111 244 14)

Right circ. Right circ. ;,(m 1 1÷m4l-2m 14)

*,,45 0 Horizontal 4( +mI +211 12 13 23

*-45* Left ci'c. (mI i1i 3+1

11 13141134)Horizontal Left ci.rc. r(mi1 +T U +-14÷m24)

Nc~e that t he expressions In the average received power column of Table 6.8have dlfferent siins frm those derived by Kennaugh [2: No. 7J. In Kennaugh'sreport, the ý'ýtokes v!!-cof for horizontal pularizatlon Is defined as T

I IV/2.. [1 - I 3 0] , whereas, here It Is defined as 1/2-2[- 1 0 00

b) Measurement of [SI_,n: The monostatic [SlCMR is specified by five (5)|r.depenrdT-Mr-pa , three (3) unsigned 5Mplitudes aWd two (2)relative phas.s. In order to determine these five (5) para11ete.3, five (5)Independent maqnitude-determining measurements have to be made. In general,therefore, seven (7) amplitude measurenents are needed to completely determinethe [SISMR.

Kennaugh (1949-195Z4) suggested measurements using the same transmittingand receiving antenna polarizations. Only one of these measurements need beother than linear polarization. The measured data are used to locate the CO-POLnulls of ihe [S] on the Poincare sphere. Once the CO-POL nulls have beendetermined, the goresponding 3 S can be completily specified.(Boerner et al,1981). The combinations of transm'rtinn and receiving antenna polarizationsare summarized in Table 6.

.1

Page 29: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

25

TABLE 6: TRANSMITTING AND RECEIVING ANTENNA POLARIZATIONSFOR AMPLITUDE-ONLY MEASUREMENT

Transmission Reception Measured Cal culatedParan•ters Parameters

(1) Vertical VertIcal Is

Vertical Horizontal ISHvI

if JSHv10O in (I), proceed with the following measurement

(2) Vertical t45' cosI($VV-:HV)Ve rt ical Ri g ht c ircul1a r -s In (¢VV- HV

Horizontal Horizontal JSHH1

Horizontal Right circular -sin(¢HH-OHV)

Hori zontal p-490. Cos(HH=HV)

If ISHVIfO, replace (2) by (3)

.2) Horizontal Horizontal Is

d)"45' ¢m5 0° cos (VV-¢HH)

0-45° Right circular sin(1v -HH)

ROSS AND FREENY (1964)

c) Measurement of [P]: The power scattering matrix [P] specifies thetotal power backscattered from the target for any transmitting antenna polar-ization, hence, it can be found by measuring only the total power in thebackscattered return, no phase measurement is necessary. The form of thepower scattering matrix Is PB(HV) is

. p ,'- • . • • ... . . . . . . . . . . . . . . . . . . .. . .. . . ... . . . . . . .. .

Page 30: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

26

T*[P(HV)] [S(HV)] [S (HV)]

IIs12 +I SHv 2S+ *S vI+H HH 4S v SHV

L(HH SHv SHV Svv) HIS v2+ 1 Svvl2

*I: (46)K k

where k and k are rfal, K is complex. [P] can be completely specified by

transmilting horizontal, vertical, * - 45* linear polarization and right-* handed circular polarization and measuring the total power backscattered,

no phase measurements are necessary (Graves, 1956).".1

For example, If horizontal polarization is transmitted, I.e.,

ht ] (47)

then, front P b (ht)T [P] ht, we have

k" K ISPbH [1 0] ki (4:8)

where the superscript Indicates the polarization of the transmitting antenna.The result Is summarized In Table 7. It should be noted that [P] cannot beobtained using linear polarizations only. Rather, linear, as well as, circularpolarizations are required.

TABLE 7: TRANSMITTING ANTENNA POLARIZATIONS FOR THE MEASUREMENT OF [P]

Transmitting Total backscat- MeasuredPolarization tered power Parameters

Horizontal Pb Hk

Vertical PbV k

0-45'o Pb 450 o (k1 +k2 )+Re{K}

Right Circ. P RC ½ (k +k2)+Im{K}_ _ _ _ _ b _ _ _ _2_

Page 31: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

27

d) Measuremert of [PH] and [P,]: The elements of [PHI and [P can be

determined by power measurements similar to those for obtaining [P]. Forthe determination of [P ], we transmit horizontal, vertical, * - 45' and rightcircular, and then receive with horizontal polarization only, i.e., the power

'backscattered In the horizontal channel. As for [P ], we receive withhorizontal polarization only, i.e., the power backsXattered in the verticalchannel. The results are tabulated In Table 8 and Table 9.

TABLE 8: TRANSMITTING ANTENNA POLARIZATIONS FOR THE MEASUREMENT OF [PHI

Transmitting Backscattered power Measured

polarization In horizontal channel parameters

Hcrizontal PbNH SHHI 2

rV

Vertical PbV vI 12

450 1V-45° PbH" 4(ISHHI 2+lSHvI 2 )÷ Re{SHHSHV)

Right clrc, P bHRC 40ISHHI 2+ISHVI')+ Im{SHH*SHV}

TABLE 9: TRANSMITTING ANTENNA POLARIZATIONS FOR THE MEASUREMENT OF [Pv

Transmitting Backscattered Dower Measured

polarizatIon in vertical channel parameters

Horizontal PbV i Hv J

V

Vertical P is

4,45' PbV ; ,(Is HVISVV12)+Re{SHv SVV}

S~~~~RC )+mSv

Right circ. PbV .(IsHvI•+lSvv Svv S

6.2 Amplitude and Relative Phase Measurement

The technique of measuring amplitude and relative phase has been usedto obtain scattering matrix data by Kennaugh (1949-1954), Ross and Freeny(1964), Crispin et al (1961), and Huynen (1965).

L _

Page 32: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

23

In the following, several more useful methods are summarized.

6.2A Linear Polarization Basis

The 10 cm CHILL Meteorological Radar is one such system tOat hAs thecapability of measuring both the amplitude and relative phase of the scat-tering matrix. The CHILL system Is a coherent radar which has the abilityto rapidly switch from vertical to horizontal polariza.tlon. The polari-zation switching Is accomplished by use of a switchable ferrite circulationwhich Is located behind the parabolic antenna(Mueller, 1981).

Measurement with the "fast switch" requires that the switch be transfer-red after each transmitter pulse. First, a horizontal polarization, andthen a vertical polarization measurement Is obtained. Two separate channelsare used to keep the horizontal and vertical measurements separate. Itshould be noted that the same logarithmic receiver, sample and hold, andA/D converter are used for both channels. Thus, any non-linearities ofthese analog circuits are reflected in both channels, and will tend tocancel. The signal processing Is achieved with an A/D converter and afloating point integration. The five (5) most significant. bits are separatedfrom the eight (8) bit digital word and used to represent t!v horizontalpower and then the vertical return power are Integrated separ3tely In thefloating point Integration.

With additional modification, the dual polarization antenna switchingcapability can be enhanced to 834 m sec which will complete recovery of thepolarization phase Information so that the relative phase scattering matrixIS]ciM• can be measured within less than 4 m sec time frames, which would bejusFi elow the projected decorrelation time for hydrometeor investigations.

Similar experiments have been carried out by Ross and Freeny (1964),and their results are summarized In Table 10.

TABLE 10: TRANSMITTING AND RECEIVING ANTENNA POLARIZATIONSFOR AMPLITUDE AND RELATIVE PHASE MEASUREMENT

Transmission Reception Measured Parameters

Vertical )slmul- Is vvI}(1) Vertical taneous OVV'¢HV

Horizontal recept- iSHVIion

If iSHvI 0 0, proceed with the following measurement

(2 Hrional . Horizontail simul- JsHH I(2) Horizontal taneous " HH- OHvVertical recept- IsHVI

ion_ _ on__ Continued

S. . . .... ...... ................ .... . ....... ... . 41 i I I I l

Page 33: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

fir

29

TABLE 10: (CONTINUED)

if Ifs H 1 0, replace (2) by (3)

I Horizontal simul- Is IIV2;(3) €=45* /taneous SHHr ýH-V

Vertical recept- Isvv I HH'VViionSV

6.2B Circular Polarization Basis

The infcrmation of the backscattered characteristics of a radar targetcan be greatly improved If successful suppression of clutter return can beachieved. Advances In the field of radar polarlmetry have clearly shown

* the usefulness of knowledge of the complete vector characteristics of thescattered fields which' led to the development of dual-channel polarizationdiversity radar. -Such a system Is capable of transmitting arbitrary polar-ization and receiving the backscattered wave In two channels, one of whichIs polarized parallel to the transmitting channel, while the other isorthogonal to it. The complete scattering matrix can be measured in anarbitrary polarization basis by alternately switching the transmitting andreceiving channels.

Successful use of this type of system has been documented by suchInvestigators as G.C. McCormick and A. Hendry, F.E. Nathanson and '%. Poelman.Their published works are referenced in the attached bibliography.

h brief description of the systems used by the above-mentioned investiga-tors Is given here:

Nathci!-son (1975): Has proposed a technique to discriminate effectivelyag--•nFt rain clutter which is implemented In a two (2) channel system withthe samýe and opposite sense of polarization (circular) to that of a trans-mitter available at the inputs. The schematic diagram is shown in Figure 15.

"tun• Circuitry for

I-. ~-i -- adaptive circularpolarization (HomodyneModulator same

SI circuitry a3 Homodyne. Detector).

FIGURE 15: Nathanson (1975)

-~ a A

Page 34: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

30

McCormick and Hendry (1975) Realized a sfstern determining certain parametersof rain clutter using "the ideal polarization diversity radar" (1975).See Figure 16.

T~iIIfN *UUNAMICOWAVI . . .. . .. .

atNC 1.0C. Mii

I 0uL .CMM,(L I

Block diagram of radar apparatus

FIGURE 16: McCormick and Hendry (1979)

Poelman 0981): Introduced another way of suppressing rain clutter Inan X-Band radar facility for polarization signature studies of targets andclutter. This system has a dual-polarized antenna which receives all back-scattered power of the target in the parallel and orthogonal polu'rizations

LA in separate channels.It can utilize both linear and circular polarization, the latter used

primarily for rain clutter suppression; whereas, the first for target Inclutter discrimination.

ELECTRONICSTEERING

DUAL- WAVE POLARIZER DRIVEN AMPLIFIERPOLARIZED ASSEMBLY B L BRANdMITTER COstlI

ANTENNA ;ASSEM TRANSMITTER (COH)

Block diagrain of existingCUAL-C ANNEfl1--jjj,1E PROGRAMMABLE experimental X-band radar

RECEIVER LkpiJ POLARIZATION DATA facility for polarizationASSENGLY Q ANALYZER stud ies.

FIGURE 17: Poelman (1981)

6.3 Amplitude and Absolute Phase Measurements

The method of measuring amplitude and absolute phase Information canbe used to determine the scattering matrix completely by transmitting onlytwo (2) linear polarizations and receiving three (3) linear polarizations,see Table 11.

I .

Page 35: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

31

TABLE Il: TRANSMITTING AND RECEIVING ANTENNA POLARIZATIONSFOR AMPLITUDE AND ABSOLUTE PHASE MEASUREMENT

TRANSMISSIONS RECEPTIONS MEASURED PARAMETERS

Vertical Vertical IsvvI ' OVV

Vertical Horizontal ISHVII *HV

Horizontal Horizontal IsHH'' *HH

FREENY (1965)

The amplitudes and phases of the elements of the scattering matrixwere measured at ElectroScience Laboratory of Ohio State University (ESL-OSU). The experiments were conducted (Walton 1982) on a frequency domainrange yielding the backscattered returns SVV and S (SHy and SVH beingzero In this case). HH

7. ASPECT-DEPENDENT PROPERTIES OF OPTIMAL POLARIZATION NULL LOCIMOTION ON THE POLARIZATION SPHERE

7.1 Vector Scattering Center Interaction

Of particular relevance to this electromagnetic target scatteringproblem Is the Interaction of polarization/depolarization sensitive scat-tering centers on a single closed target of irregular shape, which wasfirst attacked rigorously by Huynen (1960) In his dissertation. In thismasterpiece, he developed his little understood "N-target decompositiontheorem", utilizing canonical properties of the distributecL target's Stokesmatrix, which specifically applies to clutter analysis and multiple vectorscattering center Irteraction of single targets. This theory is of para-mount importance to further advancement In radar polar~metry. AlthouthIt still requires extensive extension, it clearly paves the single uniquemethod of complete polarimetric description of radar clutter and averageobject, an immensely complicated electromagnetic inverse problem. Weare fortunate to have the senior expert In the field, Dr. J. Richard Huynen(1982), join the efforts of this research task, and in a separate reportentitled, "A revisitation of the phenomenological approaches with app'li-cation to radar target decomposition", he has further developed on hisN-target decomposition theory.

Whereas, In collaboration with Morgan and Weisbrod (Teledyne Micro-netics) to po'larimetric CW radar target characteristics description, we arefollowing the direction of extracting a complete set of most simple canonicaltarget shapes (',ich as the sphere, the linear wire target, the n-bouncecorner reflector, the left/right winding helices, the cone-tip/ogival and/orspherical capped truncated cylinders with and without fins, bumps, protru-sions, etc. treated In Boerner et at, Jan 15/Sept, 1982), in consultationwith Bennett and Mieras (1982), Sperry Research Center, use of a CW vectordumbbell scattering center (matrix) interaction was chosen. Both methodshave proven to provide useful results and can be used for interpretationof the motion of the Huynen polarization fork as function of frequency,relative aspect angle (with respect to line joining the vector scatteringcenters) ind the electric separation of both.

Page 36: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

32

7.2 Dynamic Polarization Fork Motion

Specifically, we observe that for linear (H, V) polarization base

pair anchoring, the cross-polarization null move only whenever the principal

target symmetry axis is rotated about the line of sight orthogonal to (H, V);

and that the co-polarization null locations move on a quasi-circular spiral

non-closing paths as function of differential change In aspect angle where,

for small electric separation of vector scattering centers the circles remain

with Isolated patches, whereas, for large electric separation on large

circles encircling the total polarization sphere. Furtheremore, the specific

character of the vector scattering center (as e.g. smooth versus cone-tipped)

dictates the relative differential speed with which these loci are transversed

(slow versus rapid) as functions of differential aspect angle. We also note

that for a large ensembe of closely packed vector scattering centers, the

loci of the co-polarization nulls remain within rather small Isolated patches

on the polarization sphere which is indicative of clutter-type. Furtheremore,

the specific quasi-circular paths drawn are indicative of clutter motion.

We note that the analytical result was verified experimentally by Poelman

(1980-1982) as explained In Jetail in (Boerner, STýS 1914, Sept. 30, 1981),

and this specific phenomenon of the dynamic fork motion of time frames of

helcw the vector scattering center reshuffling time requires further extensive

analytical and experimental studies. In general, the cross-polarization

null location for linear symmetric targets is of slow precession type, and

the rapid quasi-circular path motion of the co-polarization null location Is

nutative gyroscopic in nature. We note that this specific dynamic polarization

fork behavior Is well described by Huynen's "single target" description

Into five target characteristic parameters (pro' Y, ', T m') as detailed

In (Huynen, 1982).

However, the electromagnetic inverse problem of decomposing a single

radar target into its characteristic polarimetric target vector scattering

centers is very complicated and still not resolved.

7.3 Optimal Polarization Null Characteristics of Buoy-Target Models

(ausing measurement data of TELEDYNE-MICRONETICS, L.A. Morgan and

S. Weisbrod)

In (Boerner et al, Sept., 1981) the optimal target polarization null

concept, introduced briefly In this paper, is applied to experimental

amplitude-plus-phase matrix data measured by Teledyne-Micronetics for two

specific classes of water submerged buoy targets (six types of dihedral cor-

ner reflectors and twelve types of cylindrical open-ended pipe sections with

specific termination). For the purpose of extracting useful target classifi-

cation algorithms and also In order to analyze the aspect-angle dependent

behavior, the three measured radar cross sections (%Ha aVVVH), the

span {IS]), the det {[S]j; Re {(CRRCLL)/(CRL)2}, {ICRRIICLLj - ICRLI 2 }, the

spherical angle spanned by two co-pol nulls, and the co/cross-polarization null

loci are plotted as functions of aspect angle. In Figures 18a and b, the

polarimetric target behavior for a horizontal, truncated open pipe-section

above a sea bed, and a vertical pipe section of the same dimensions in isolation,

Page 37: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

33

TarUet S31 ,vvDiameter 2.5" 1Length 3' h hWall Thickness 2./B"Height Ab~ove Water 2'

*Frequency 3.15 GHz I:lavh

Horizontal I ____ _....

SDet {[S]} i-

SRRIICLLI ICRL 2Span {Cs]} {R

X -P O L I X -P O L 2 R C R L .

0 ~~~X113 ,.: 2 u~ ,

...................

1,0,00 I0,0 0C.0,o0 0'I0.30 2b.

- .0

L I2l R Angle between COPOL C

•. /2and COPOL 2

Figure 18a Polarimetric Target Behavior(Horizontal, TruncatedOpen Pipe-section above Sea-Level)

!R.

Page 38: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

Target S3 ilvDiameter 2.5"Length 3'Wall Thickness 1 1/810

-. -7 .A

Frequency 3.15 GHz A ý hv

Vc-tical -

~ vvuI' Det aoQ le 1.0 22C 10.o 28 1 '~

31o ooo~ ~- {ICRR CL ICRLII)

span {[S11

117.

iXsPOL. 2 >0

*-O I 2~1

CRL

0POPO4L I.._. A

COPOL 2 -~n Angle between COPOL 1

1 14 2t and COPOL 2

COPOL1

Figure 18b Polarimetric Targe't Behavior(Vertical Truncated OpenP'ipe-Section in Isolation)

Page 39: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

- /

35

respectively, is presented, whereas in Figures 19a and b that for a four-corner dihedral reflector above a sea-bed and In isolation, respectively.Comparing the data obtained for targets above the sea-bed with bhose inIsolation, the expected Interference behavior for Figures 18a/19a versusFigures 18b/19b is apparent and will not be f,,rther analyzed In detail, andwe refer to the associated report by L.A. Morgan and S. Welsbrod(1982) forfurther relevant Interpretations (also see Figure 20).

By analyzing the various plots for the two principal target categoriesconsidered, we are able to verify the fundamental theorems which can bederived from Huynen's polarization fork concept (Huynen, 1960, 1970, 1978,1982); the target vector scattering interaction theory (Bennett and Mieras,1982); the relationship between relative scatterihg mqtrix co-polarizationphase and specular point curvature perturbations of Kennaugh's target silhouettearea function(Foo, 1982); and the dynamic behavior of the polarization forkmotlon(Poelman, 1980-1982). Although, we have considered here the monochromatic(CW) backscattering case for reciprocal symmetrical targets only, it is evidentthat very definite target polarization properties exist which may be utilized astarget characteristics classifiers and Identifiers. In the following, we will ifirst summarize our observations and then extract most important polarimetrlctarget classifiers.

Observations

(I) Polarization Fork Behavior: The X,,OL nulls are In all casesantipodal, and the line joining the X-POL nulls bisects the sphericalangle between the COPOL nulls on the polarization sphere. NOTE, thisspecific polarization fork behavior represents a very efflc-Tefnt methodof checking on the accuracy of monostatic scattering matrix data forthe reciprocal target case (i.e. an Isotropic target embedded in anisotropic propagation medium).(i1) Huynen's Target Characteristic Angle y: The spherical anglebetween the two COPOL :,ulls exhibits very distinct target characteristic;behavior In dependence of strength and separation of the target's mostdefinite vector scattering centers(We will have to await the detailedanalyses of Bennett and Mieras(1982) to obtain more comprehension ofthis aspect of the problem).

(IIi) Polarization Transformation Invariants: I: was clearly establishedthat the two target polarization transformation invariants, i.e. Det {[S]}and Span {[S]} do provide constants for whatever measurement nolarizationbasis Is being used. In addition, these Invarlants, which exhibit A

identical aspect dependence, but not frequency dependence(see Section 5;and in more detail(Foo, 1982)), are contributing parameters towardsestablishing useful target characteristic classification algorithms.

(iv) Relative Scattering Matrix Copolarization Phase (iHH " 4VV): Instrict compliance with the results presented in(Foo,1982), the relativescattering matrix copolarization phase (ý - V) certainly plays adominant role in classifying undulating smooth versus rugged edgedsurfaces. We note here that the circular polarization base identities,derived in Foo's thesis(Foo, 1982) and investigated, in parts, in theassociated report by Morgan and Weisbrod(1982), I.e.{lCRRIICLLI-ICRLI2}

I

Page 40: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

36

-n Target: 4C1 vT~Height above water 2'

-~ 0 156OCnical cutFrequency 3.15 GHZ

Det {[SII

'Ic

~IRLI 2

Span QSD w

00 hh 0vV

AISPE': T AF

X-POL 2

isI

C C

X-POL 1 RL

to 0 2100 22 18.00 M .0 10

XPOL I.i NPit. R

(0 P L "

23 2

dOO 1 1 Angiee between COPOL 1

Sand COPOL 2

COPOL ICOPIOL 2 CI2 Ot.

Figure 19a' Polarimetric Target Behavior(Four Corner DihedralReflector above Sea-Level)

Page 41: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

1'. 37vv

Target 4c1 IctFrequency 3.15 GHz a h

vh

-~~ ASPF.C

£ IlI v

IC 2

V Span {[S} 1CLLHCRL'0 RICO"f

[' RI9W0 T..- -

XPOLI X-POL 2 '~C

-Re RLIC2RL

*FO I 4O

V CPOL 2

COPOL l andis COPOL21an

COPOL 22

iAngjle between COP..L 1

COPOL a n dcl OC

Figure 19b Polarimetric Target BehaviorfFour-Corner DihedralReflector in Isolat~on)

Page 42: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

38

and {Re((C C )/\CRL)2 11, contain rather similar information to(4HH - 4Nom an examination of the relevant plots In FiguresLI 18a/b, I a/b, it Is evident that the theories on tArget curvatureat the specular point developed in (Foo, 1982) and summeriz'ed InSection 5 do present rather Important target characteristic classi-fication as w~ll as identification algorithms. For example, therelevant figures({01il - OVV}; Re{(CLLCRR)/(CRL )2}) In Figure 18b forthe vertical pipe section amplify tfie correctness of the formulas

K' resulting from the theories developed in (Chaudhuri et al, 1982;Foc, 1982). In (Morgan and Weisbrod, 1982), the relevance of thequantity {1( 1j CLL IC 121, closely related to Det{[C]}, Isemphasized. ispeculiar xpression is shown to be a maximum fordihedral, minimum for a plate or sphere, and tero for a linear orhelical target. Here we reproduce Figure 5 of (Morgan and Weisbrod,1932) in Figure 20, which is being explained and interpreted in

A) FREE SPACE DINIEURA1.1) NA TER RANGE YiIIEUfl*AC) AT- SEA DIHEDRAL

A D) SEA C'..TTERE~ ) FREE SPACE 3UOYS

2S0-290,- ,F) WATER RANGE BUOYS

245-2$S*G ) AT-SEA BUOYS.

'*1J

-J

0. 4.6 .5 1.0

PROBABILITY < ORDINATE

Figure 20 Probability Distribution for {ICRICI-IRL}according to Figure 5 in (IKorgan and Weisbrod, 1982).Reproduced with the permission. of the authors and theresponsible NAy-AIR Contract Ufficer(J.W. Willis).

detail in their report.

7.4 Racommendations on Ptirsuino Aspect-Plus -Freguency Dependent Dynamic_ýl -rization Fork Analyses in terms of Vector Scattering Center InteractionModels-and Huynen's 'A-target Decomposition Theory

.1 There exists one major problem in applying polarimetric techniqdes derivedfrom the optimal targct polarization tiieory to the polarimetric transient time-

Page 43: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

39

dependent problem of ramp response target cross-sectional area projectionshape reconstruction, because this optimal polarization target null theoryis derived In the frequency only as a mono-frequency theory. Both Kennaugh(1949-1981) and Huynen (1960, 1970, 1978, 1982) were aware of this complicationin their pioneering and continuing research efforts of advancing the state-of-the-art in radar target polarimetry. What we urgently need is a thne-dependent polarization-senitive target feature descriptive theory which isstill not completely available.

8. CONCLUSIONS

We have demonstrated in our analyses on radar target polarimetry thatbroadband radar polarimetry deserves the full attention of Naval ResearchCenters Involved in target/clutter handling in the boundary layer of anocean environment,

Spcc~fically, the propagation assessment of electromagnetic waves alongthe marine boundary layer in an ocean environment is of justifiable concernto the Navy and applies to improving techniques of surveillance, communications,navigation, electronic warfare, and optimum sensor design. Considerableefforts have been made, primarily at NOSC, NADC, NWC, and NRL, to characterizethe marine boundary layer using electromagnetic (EM: specifically microwavesznd millimeter waves) and electro-optical (EU: Infrared and visible) remoteprobing methods. Utilizing, in parts, the electromagnetic wave interrogationproperties at frequencies from 200 MHz to 100 THz led to the development ofsufh lower atmospheric assessment systems as IREPS (Integrated RefractiveEffects Prediction'System), PREOS (Prediction of Performance and Range forE0 System), and TESS (Tactical Environment Support Systems).

A thorough literature analysis on the available EM/EO systems shows,however, that hitherto, no, or extremely little, use of the broadbandpolarization vector properties of the electromagnetic wave have been made.This apparent shortcoming can result in considerable ambiguity of environ-mental assessment, particularly in the spectral band of 1 GHz to 400 GH.Therefore, the main objective of this research is to promote the efficientuse of novel polarimetric radar techniques, to Improve upon the assessmentperformance of existing m-to-mn-wave radar systems, andi to develop completepolarimetric chirp radar systems which allow sub-millisecond acquisition ofthe radar scattering matrix and real-time sea clutter and/or targetclassification and identification. We emphasize that electromagnetic vectorwave Interrogation with material bodies can best be identified as apolarization-sensitive target feature (spatial and temporal) spectralfrequency resonance phenomenon. Every effort needs to be made to Implementthese important polarimetric/scatterometric methods into existing and newly-to-be-developed vector wave scattering techniques for a more reliablepropagation assessment of electromagnetic waves along the marine boundary"layer in an ocean environment.

9. ACKNOWLEDGMENTS

First of all, I wish to acknowledge my graduate research assistants who,with their enthusiasm and diligence, contributed to the preparation of thisannual report: B.Y. Foo, C.Y. Chan, Sasan S. Saachi, Marat Davidovitz,Benjamin Beker, Mr. Jerry Nespcr', Mr. Anthony Manson and Chau-Wing Yang.

Page 44: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

40

In addition, I wish to thank Drs. Sujeet Chaudhuri and J. Richard Huynenfor their Input into our research efforts, to Dr. Jonathan D. Young andMr. William Leeper for supplying the transient measurement data and toMr. Lee A. Morgan and Dr. Steven Weisbrod for providing the aspect-dependentdata.

We wish to thank Mr. James W. Willis for his interest and conti-nual en-couragement in the pursuit of this polarimetric research effort, and Mr. JackDaley for his guidance and the provision of reports and data.

1,REFERENCES

L.E. Allan, G.C. McCormick, "Measurements of the Backscatter Matrix ofDielectric Spheroids", IEEE TRANS. Antennas and Prop., Vol. AP-26, #4,July 1978, pp. 579-587.

L.E. Allan, G.C. McCormick, "Measurements of the Backscatter Matrix ofDielectric Uodles", IEEE TRANS. Antennas and Prop. Vol. AP-28, March 1980,pp. 166-169.

Y.M.M. Antar, A. Hendry, I.J. Schlesak, R.L. Olsen, R.C. Be'Rube', "Ice-Crystal Depolarization Me,ýirements at 28.6 GHz with Simultaneous 16.5 GHz

* Polarization Diversity Racar Observations", Electronics Letters Vol.16(1980)#21, pp. 8 08 - 809.

D. Atlas, "Advances in Radar Meteorology" in Advances in Geophysics, New* York, London: Academic Press, 1964, pp. 317-478.

D.L. Banks, "Advanced Millimeter Wave Radar Sensor Development", NAEGON-82,(also see: Variable Polarization Radar for Non-imaging Target ID, non-cooperative Target Recognition Conference 1980).

B.L. Barge, R.G. Humphries, "Identification of Rain and Hail with Polarizationand Dual-Wavelength Radar", 19th Conference on Radar Meteor., Miami Fla.15-18, 1980.

L.J. Battan, J.B. Thelss, "Depolar'zation of Microwaves by Hydrometeors In aThunderstorm", J. ATMOS. SCI., 27, 974-977.

J.W. Battles, "95-GHz Radar Measurements", Naval Weapons Center China Lake,CA 93553, Nov. 1975.

M.E. Bechtel, R.A. Ross, "Interim Report on Polarization Discrimination",Cornell Aeronautical Lab. Inc., Ithaca, New York, Report UB-1376-S-105,Sept. 1962.

P. Beckmann, A. Spichizzino, "The Scattering of Electromagnetic Waves fromRough Surfaces", MacMillan, New York, 1963.

C.L. Bennett, "Time Domain Inverse Scattering", IEEE Trans. AP-29(2), pp.213-219, (Special Issue on "Inverse Methods in Electromagnetics"), March 1981.

C.L. Bennett, H. Mieras, "Dynamic Polarization Fork Properties of the VectorDumbell Model", private communication, Feb. 1982.

Page 45: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

41

C L. Bennett, J.D. Lorenzo, A.M. Audkenthaler, "Integral Equation Approach

to Wideband Inverse Scattering", Sperry Rand Res. Center, Sudbury, Mass.,

Final Rept., No. SCRCR-Cr-73-.1, 1973.

C.L. Bennett, R.M. Hieronymus, "A Time Domain Approach to the EM Inverse

Problems", Proc. URSi-Int. Symposium: Electromagnetic Wave Theory, June 20-24,

1977, pp.15 6 -158 , 1977 (see: Uslenghl, 1978, pp. 393-429).

C.L. Bennett, W.L. Weeks, "Transient Scattering from Conducting Cylinders,

IEEE Trans. AP-18(5), 1970, pp. 627-633 (see also: C.L. Bennett: A Technique

for Computing Approximate EM Impulse Response of Conducting Bodies, PhD. Thesis,

Purdue Univ. 1968).

R.S. Berkowitz, "Modern Radar Analysis Evaluation and System Design", John

Wiley & Sons, N.Y. 1965.

S.H. Bickel, "Polarization Extensions to the Monostatic-Bistatic Equivalence

Theorem", The MITRE Corp., Bedford, Mass.

S.H. Bickel, "Some Invariant Properties of the Polarization Scattering Matrix",

Proc. IEEE, Vol. 53, PP. 1070-1072, Aug. 1965.

A.J. Blanchard, "Error In the Determination of Subsbrface Backscattering Field

as Determined by Rouse", Tech. Memor. RSC-13 4 , Remote Sensing Center, Texas

A&M Univ., Colledge Station, Texas, June 1976.

A.J. Blanchard, J.W. Rouse, "Depolarizaticn of Electromagnetic Waves Scattered

from an Inhomogeneous Half Space Bounded by a Rough Surface", Radio Science,

Vol. 15, #4, pp. 776-779, July-Aug. 1980.

W-M. Boerner, M.B. EI-Arini, S. Saatchi, M. Davldovitz, J. Nespor, "Polarization

Utilization in Radar Target Reconstruction; Buoy Targets", Final Rept., UICC,

EL-EMIC, NANRAR, 81-03, (NAV-AIR Contract NOO019-80C-02 6 0, Sept. 15, 1981).

W-M. Boerner, "Polarization Utilization In Microwave Imaging, Radar Target

Mapping, and Electromagnetic Inverse Scattering", A State-Of-The-Art Reviaw,

Comm. Lab., Rept.#78 -3, Communications Lab., Inf. Eng. Dept., SEO-1104, UICC,

Chicago, Oct. 1978.

"W-M. Boerner, 'Polarization Utilization In Electromagnetic Inverse Scattering",

Ch. 7 In Inverse Scattering Problems in Optics, Vol. 2 (Ed. H.P. Baltes), Topics

In Current Physics, Vol. 20, Springer Verlag, July 1980, PP. 237-305.

W-M. Boerner, "Polarization Microwave Holography: An Extension of Scalar to

Vector Holography"(Invlted), 1980 Intern. Opt. Computing Conf., SPIEls Techn.

Symp. East, Washington D.C., April 9, 1980, Sess, 3B, paper# 231-23(01 pages)

1980, pp. 188-198.

* . W-M. Boerner, "Use of Polarization In Active and Passive Precipitation Radar

Measurements", Workshop in Precipitation Measurement from Space NASA. Goddard

Space Flight Center, Greenbelt. Md, April 28-May 1, 1981, PP. D-326 to D-340.

Page 46: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

42

W-M. Boerner, "Polarization Sen3itvity of Near-to-ground Clutter at mmand near-mm wavelengths", Battelle Deillvery No. STAS 1914, Contract.No.DAAG 29-76-D-0100, USA-MiCOM-DRS-!.-REL, Sept. 30, 1981.

W-M. Boerner, M.B. EI-Arini, C.Y. .:han, S. Saatchl, W.S. Ip, M.Mastoris,B.Y. Foo, "Polarization Utllizatlcý: ýn Radar Target Reconstructlon", Tech.(Interim) Report, UIC, CL-EMID-NANRi•-Sl-01, Communications Lab.,Information Eng. Dept., SEO-1104, CI-icago, Ill., Jan. 1981.

W-M. Boerner, A.B. El-Arini, "Utilizotion of Optimal Polarization (Conceptin Radar Meteorology", XXth Conf. on RadarMeteiroloky, Boston, Mass., Nov.30-Dec. 3, 1981, pp. 656-665.

W-M. Boerner, "Use of Polarization Irn electromagnetic Inverse scattering",Radio Science, Vol. 16, No. 6 (Speckh;i issue Including Papers: 1980Syposlum on electromagnetic waves) pp. 1337-1045. Nov/Dez 1981.

M. Born, E. Wolf, "Principles ,7f Optrcs, 3rd ed.11, Pergamo.n Press, LondonN.Y., 1965.

J.J. Bowman, T.B.A. Senior, P.L.E. Uslenghl,, "Electromagnetic and Acoustic

Scattering by Simple Shapes", North Hollind Pub]. Co., Amsterdam, Netherlands,1969.

V.N. Bringi, T.A. Seliga, "Scattering from AxIsymmetric Dielectrics or PerfectConductors Imbedded in an Axisymmetric Dielectric", IEEE Trans. AP-25,pp. 575-580, 1977.

V.N. Bringi, S.M. Chery, M.P.M. Hall, T. A, Sellga, "A new accuracy Indetermining rainfall rates and attenuation due to rain by means of dualpolarization radar measurements", IEEConf. Pub]. No. 169 on "Antennasand Propagation", London, Nov. 1978.

H. N. Chalt, "Arbitrary Polarized Antenna System", Patent No. 2, 619, 635,U.S. Pat. Off., Application June 19, 1950.

C. Y. Chan, "Studies on the Power Scattering Matrix of Radar Targets",M.Sc. Thesis, May 1981, InfE. Dept., UICC, Chicago, Illinois Dept. No.CI-EMID-81-O2--A Tutorial Exposition on the Power Scattering Matrix.

S. K. Chaudhurl, B.Y. Foo, W-M. Boerner, "High frequency inverse scatteringmodel to recover the specular point curvature from polarizatlon scatteringmatrix data," submitted to IEEE Trans. AP-30, April 1982.

S.K. Chaudhuri, W-M. Boerner, " A Monostatic Inverse Scattering Model Basedon Polarization Utillzation", Applied Phys., Vol. 11, No. 4, SpringerVerlag, pp. 337-350, 1976.

S.K. Chaudhuri, W-M. Boerner, "Polarization Utilization In Profile Inversionof a Perfectly Conducting Prolate Spheroid", IEEE Trans. AP-25, No. 4,pp. 505-511, July 1977.

Page 47: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

II43

P.K. Cheo, J.Renau, "Wavelength dependence of total and depolarized back-scattered laser light from rough metallic surfaces", J, Opt. Soc. Amer.

59(7), 1969, pp. 821-826.

V S. M. Cherry, J.W.F. Goddard, M.P••. Hall, "Examination of Rain Drop Sizesusing a Dual-Polarization Radar", Amer. Meteor. Soc., 19th Conf. RadarMeteor., Miami Fla., April 1980.

S.M. Cherry, J.W.F. Goddard, M.P.M. Hall, "Use of Dual Polarization RadarSto Assess Attenuation on an OTS Satellite-to-ground Path", URSI Symp. on

Effects of the lower atmosphere on radio prop. at freq. above 1 Ghz., Len-noxville, Canada, May 1980.

C.W. Chuang, D.L.Moffatt, "Complex natural resonances of radar targets viaProny's method, 1975 URSI Meeting, UIUC, June 3-5, 1975.

B. Chytil, "Polarization-Dependent Scattering Cross-sections", Prace UstavaRadiotech. Electroniky (Czech) 21, pp. 13-21, 1961.

L. Clyton, S. Hollis, "Antenna Polarization Analysis by Amplitude Measurementsof Multiple Components", Microwave J. 8(1), pp. 35-41, Jan. 1965.

J.R. Copeland, "Radar Target Classification by Pol1cization Properties",Proc. IRE. Vol. 48, pp. 1260-1296, July 1960.

J.W. Crispin, E.M. Siegel, "Methods of Radar Cross-Section Analysis",Academic Press, N.Y. , 1968.

J.C. Daley, "Sea Clutter Measurements on Four Frequencies", NRL Report6806, Nov. 1968.

J. C, Daley, "Radar Sea Return In High Sea States", NRL Report 7142, Sept. 1970.

J.C. Daley, "Radar Target Discrimination Based on Polarimetric Effects",NRL Rept., Washington D.C., March 1978.

G. A. Deschamps, "Geometric Viewpoints in the Repi-esentation of waveguidejunctions", Proc. Symposium on Modern Network Synthesis, Poly. Inst. ofBrooklyn, New York, N.Y., April 16-18, 1962, pp. 277-295.

G. A. Deschamps, P.E. Mast, "Quadratic antenna systems and noise excited antennas",IEEE Trans. AP-21(4), 1973, pp. 479-483.

G. A. Deschamps, "Part II-Geometric Representation of Polarization of a Plane

Electromagnetic Wave", Proc. IRE, Vol. 39. pp. 540-544, May 1951.G.A. Deschamps, "A Hyperbolic Protractor for Microwave Impedance Measurementsand other Purposes", Federal Teleconm. Lab, N.J., 1953.

G.A. Deschamps, P.E. Mast, "Poincare Sphere Representation of PartiallyPolarized Fields", IEEE Trans. AP-21 (4), pp. 474-478, 1973.

A.J. Devaney, "Inverse-scattering theory within the Rytov approximation",Opt. Letters 6(8), pp. 373-376. August 1981.

Page 48: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

44

A.J. Devaney, "A computer simulation study of diffraction tomography"IEEE Trans. Ultrasonic Imaging, submitted for publication March 16, 1982.

R.J. Doviak, D. Sirmans, "Doppler Radar with Polarization Diversity",Journal of Atmos. Sciences, 30, pp. 737-739, 1972.

S.O. Dunlap, "Investigation of Polarlmetric Processing via DigitalSimulation", Workshop on Polarimetric Tech., pp. 25-26, June 1980,

H.A. Ecker, J.L. Eaves, T.M. Miller, "Invesigation of PolarizationAgility as a Radar Parameter", 17th AnnualTrn-service Radar Symp.,, pp. 25-27,Kay 1971.

H.A. Ecker, J.L. Eaves, "Study of Polarimetric Techniques for TargetEnhancement", Tech, Rept. AFAL-TR-67-102, 1968.

G. Elachl, W.E. Brown, "Models of Radar Imaging of the Ocean Surface Waves",IEEE Trans. AP-25 (11), PP. 94-95, 1977.

B-Y. Foo, "A High Frequency inverse scattering model to recover the specularpoint curvature from poarimetrIc scattering data", M. Sc.Thesis, Collegeof Graduate Stuedles, UIC, Chicago, Ill., May 1982.

C.C. Freeny, "1 Experimental and Analytical investigations of TargetScattering Matrices", Tech. Rept. No. NADC-TR-65-298, Rome Air DevelopmentCenter, Research and Technology Division, Griffis Air Force Base, N.Y., Dec.1965.

, I A.K. Fung, "Scattering and depolarization of Electromagntic Waves from a

Rough Surface", Proc. IEEE (Letters), Vol. 54, pp. 395-398, March 1966.

A.K. Fung, H.J. Eom, "Multiple Scattering and Depolarizatlon by a Randomnly RoughKirchhoff Surface", IEEE Trans. AP-29, pp. 463-471, May 1981.

A. K. Fung, H.J. Earn "Effects ofa Rough Boundary Surface on Polarization of theScattered field from an Inhomogeneous Medium", Proc. IGARSS, Junel-4, 1982,Munich, FRG.

A.K. Fung, H.J. Eam, "A Theory of Wave Scattering from an Inhomogeneous layerwith an Irregular Interface", IEEE Trans., AP-29, pp. 899-910. November 1981.

H. Gent, "Elliptically Polarized Waves and their Reflection from radar Targets",Telecomm. Res. Est., TRE Memo. pp. 584, March 1954.

A. Gerard, J.M. Burch, "Introduction to Matrix In Optics", John WileysSons,Ltd., London, 1975.

D.T. Gjessing, "Remote Surveillance by Elctromagnetic Waves for Air-to-Water-Land", Ann Arbor Mi., Ann Arbor Pub., Inc., 1978.

D.T. Gjessing, "Adaptive Techniques for Radar detection and Identificationof Objects in an Ocean Environment", J. Ocean. Eng., OE-6 (1), 19 8 1,pp.5-17.

1A

Page 49: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

45.

D.T. Gjessing, "Adaptive Radar In Remote Sensing, Ann Arbor SciencePub)., Ann Arbor, MI, 1981.

D.T. ýGjessing, J. Hjelmstad, and T. Lund, "A Multifrequency AdaptiveRadar for Detection and identification of Objects: Results of pre-liminary experiments on aircraft against sea clutter, IEEE TRANS. Anten-nae and Prop. 30(3), pp. 351-365, May 1982.

W.B. Goggins, "Identification of Radar Targets by Pattern Recognition",Ph.D. Thesis UASF Inst'tute of Technology, Air University, Dayton, Oh,June 1973.

M.M. Gorshbv, "Ellipsometry", Sovetskoye Radio Press, (in Russia), 1974.11 P.T. Gough, W-M. Boerner, "Depolarization of Specular Scatter as an Aid tol Discriminating Between a Rough Dielectric Surface and an 'identical' rough

meta~llic surface." J. Opt. Soc. Am., 69(9), pp. '212-1217, Nov. 1979.

G. Graf, "A System for On-line Imaging of Scattering Centers on RotatingRadar Targets", IEEE Trans. AP-25(4), pp. 592-593, July 1977.

G. Graf, "On the Optimization of the Aspect Angle Windows for the DopplerAnalysis of Radar Returns of Rotating Targets", IEEE Trans, AP-24(3)p 1,976Ppp. 379-381.

.C. D. Graves, "Radar Polarization Power Scattering Matrl•'", Proc. IRE, Vol. 44,pp. 248-252, Feb. 1956.

M. P. N. Hall, S. M. Cherry, J. W. F. Goddard and ro. R. Kennedy, 'RaindropSize and Raindrop Rate Measured by Dual-Polarized Radar", Nature 285,pp.195-199, May22, 1980.

P. S. Hauge, "Mueller Matrix Eliipsometry with Imperfect Cormipensator-",J. Opt. Soc. Am. , Vol. 68, pp. 1519-1528, Nov. 1978.

E. Hecht and A. Zajac, "Optics", Addison-Wesley Publishing Co., MenloPark, Ca., 1976.

A. Hendry, G. C. McCormick, B. L. Barge, "The Degree of Common Orientationof Hydrometeors Observed by Polarization Diversity Radars", J, of Appl. Met.Vol. 15 (1976) No. 6, pp. 6 13- 6 40.

A. Hendry, G. C. McCormick, B. L. Barge, "K-Sand and S- Band Obsrrvations ofthe Differential Propagation Constant in Snow", IEEE Trans. or Ant. andProp. Vol. AP-14 (0976) NO. 4, pp.521-525.

A. Hendry a•nd G. C. McCormick, 1971: "Polarization Properties of Precip-Itation Scattering", Bull Radio Elect. Engr. Div., National Res. Council21, pp 9-20.

A. Hendry antd L. E. Allan, 1973:"Apparatus for the Real-Thnie Display ofCorrelation and Relative Phase Angle Data from the Alberta Hall StudiesRadar. Rept. ERB-875, Radio and Electrical Engineering Div. , NationalRes. Council of Canada, Ottawa.

Ai. S"-~

Page 50: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

46

A. Hendry and G. C. McCormick,"Polarization Properties of PrecipitationParticles Re.lated tb Storm Structure", J. De Rech. Atmos. (1974), pp.189-200.

A. Hendry and G. C. McCormick, "Deterioration fo Circular Polarization

Clutter Cancellation In Anisotroplc Precipitation Media", ElectronicsLetters, Vol. 10, pp. 165-166, May 1974.

W. A H!ltner, "Polarization Measuremants", Astron. Technique, ChicagoUniversity Press, 1962.

J. S. HuIlls, T. G. Hickman and T. J. Dyon, "Polarization Theory,"1 In8.icrowave Antenna Measurements, Ed., by J. S. Hollis, T, J. Lyon andL. Clayton, Scientific-Atlanta, Inc., Atlanta, Georgia, July 1970.

H. C. Van De Hulst, "Light Scattering By Small Particles", New York:John Wiley, 1957.

R. G. Humphr'les, 1974: Observations and Calculations of DepolarizationEffects at 3 Ghz Due to Precipitation 1, J. Rech Atmos, 8, pp. 165-161.

. .G. Humphries, "Observations and Calculations of Depolarization Effects at3 Ghz due to Precipitation", J. of Rech, Atmos,, 8, pp. 155-161,.

R.G. Humphries, P.L, Barge, "Polarization and dual Wavelength Radar Observationsof the BrToht Band", IEEE Trans, on Gesclence Electronics , Vol. GE-17, No. 4,pp. 190-195, Oct. 1279.

J. R. Huynen, "Measurement of the Terget Scattering Matrix", IEEE Proc. 53(8),pp. 936-946, 1965.

J. R. Huynen, "Dynamic Radar Cross-Section Measurements", IRE Intern. Intern.Conf. Rec., Pt. 5, Vol. 10, pp. 3-11, 1962.

J. R. Huynen, "Study on Ballistic-Missile Routing Based on Radar Cross-SectionData, Sc. Rept. No, 4 :Radar Target Sorting Based on Polarization SignatureAnalysis, Lockheed Aircraft Corp., Missiles and Space Division, Rept.LMSD-288216, May 1960, Contract AF19(604)5550).

J. R. Huyne.i, "Phenomenological Theery )f Radar Targets, Chapt.11 In"Electromagnetic Scattering" (P. L. E. (Jslenghl, ed), Acad. Press , NewYork, 1978.

J. R. Huynen, "Phtnomenological Theory of Radar Target", Ph. D. Dissertation,Drtikkerij Bronder-Offset, N. V. Rotterdam, 1970.

J. R. Huynen , "Radar Measurementi of Scattering Operators", Proc. 6th Symp.on Ballistic Missile and Aerospace Technology, Vol. I1, Academic Press,New York, 1961.

J. R. Huynen, F. McNolty, E. Hanson, "Component Distribution for FluctuatingRadar Targets", IEEE Trans. AES 11(6), pp.131 6 - 1332 , 1965.

Page 51: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

47

IEEE Special Issue on "Radar Reflectivity", IEEE Proc., Vol. 53(8), Aug, 1965.

IEEE Standard Number 149-1979, "Test Procedures for Antennas", published byThe Institute of Electrical and Electronics Engineers, Inc., New York 1979.

J. R. Huynen, A Revisitatlon of the Phenomenological Approach WithApplication to Radar Target Decomposition, EMID-CL-UIL Dept. 82-04, May 1982.

IEEE, Transactions of the Antennas and Propagation Society (Editor: Prof.Raj Mittra), SPECIAL ISSUE ON INVERSE METHODS IN ELECTROMAGNETICS, (invitedguest editor: Prof. Wolfgang-M. Boerner), IEEE Trans. AP-29 pp. 185-41.8,Vol. 2,March 1981,.

G. A. loannidis, D. E. Hammers, "Optimum Antenna Polarization for TargetDiscrimination In Clutter", IEEE Trans. Antenna Prop., AP-27, pp.357-3 6 3,May 1979.

H. E. Jeske, (Ed. ) "Atmospheric Effects on Radar Target Identification andImaging", Proc. NATO ASI, Goslar, 1975, (D. Reldel Pubi. Co., Dodrecht,Holland, 1976.

0. S. Jones, "The Theory of Electromagnetism", McMlllian, N. Y., 1964.

R. C. Jones, "New Calculus for the Treatment of Optical Systems, V. A. More,General Formulation and Description of Another Calculus", J. Opt. Soc Amer, 37,p. 107, 1947.

R. C. Jones, "New Calculus For the Treatment of Optical Systems I. Descriptionand Discussion of the Calculus", J. Opt. Soc. Amer. 31, p. 488, 1941.

D. B. Kanarcykin, N. F. Pavlov, and U. A. Potekhlin, "The Polarization of Radar"Signals", Sovyetskaye Radio, Moscow 1966 (in Russian): (English Trans.ofChapts. 10-12: Radar Polarization Effects, CCM Inf. Corp, G. Collier andMcMillian, 900 Third Ave., New York, N.Y. 10023).

D. B. Kanareykln, V. A. Potekhin and M. F. Shisikin, "Maritime Polarimetry",Sudostroyenie, Leningrad, 1968.

D. B. Kanareykin, N. F. Pavlov and V. A. PoetkhIn, 1966: "Polarization ofRadar Signals", Sovetskoye Radio, Moscow, Chaps. 1-10.

I. Katz, "Introductory Remarks to Backsc;tter Measurements Session", Proc.Workshop on Radar Backscatter From Terrain", pp. 33, U.S. Army Eng. Top.Lab., Ft. Belvoir, V. A., Jan. 9-11, 1979. (University of Kansas : RSLTR374-2).

R. E. Kell , "On the Derivation of Bistatic RCS from Monostatic Measurements",Proc. IEEE 53, pp. 983-988, 1965.

E. M. Kennaugh, "The K-Pulse concept", IEEE Trans. AP-29(2),pp.327-331.March 1981, (Special Issue on Inverse Methods In Electromagnetics).

Page 52: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

48

E. M. Kennaugh, "Polar/zatlon dependence of RCS - a geometrical Interpretation",rIEEE Trans. AP-29(2), PP. 412-413, March 1981, (Special Issue on "Inverse

N Methods In Electromagnetics").

E, M. Kennaugh,"Interpretation of the Physical Optics Approximations Inthe time Domain", Proc. GISAT II Symp., Vol.11, Part 1, Oct. 2-4, 1967,Mitre Corp., Bedford Mass., AD 839700.

E. M. Kennaugh, R. L. Cosgriff, "The use of Impulse Response in Electro-magnetic Scattering Problems", IRE Nat. Convention Record, Part I, pp.72-77,1958.

E. M. Kennaugh, D. L. Moffat, "Transient and Impulse Response in approx-imations", IEEE Proc. 53 (8), pp. 893-901, 1965.

E. M. Kennaugh, "Effects of Typeof Polarization on Echo Characteristics: MonostaticCase", Repts 389-1 (Sept. 16, 1949) and 389-4 (June 16,1950), The Ohio ZLateUniversity, Antenna Laboratory, Colombus, Ohio. 43 212.

E. M. Kennaugh, "Polarization Properties of Radar Reflections", M, Sc. Thesis,Dept of Elect. Eng., The Ohio State UnIv., Columbus, Ohio, 43212, 1952.

G. H. Knittel, "The Polarization Sphere as a Graphical Aid in Determining thePolarization of an Antenna by Amplitude Measurements Only", IEEE Trans.Antennas and Propag., AP-15, pp. 2 1 7- 2 2 1 , March 1967,

Y. B. Kcbzarev, (Ed.), Modern Radar, (Sovetskoye Radio Press, 1969; In Russian).

K. Y. Kondratyev, "Radiative Heat Exchange In the Atmosphere", Pergamon Press,New York, 1965.

A. I. Kozlov, "Radar Contrast of Two Objects", Izvesta VUZ, Radioelektronika,Vol.22, No. 7, pp. 63-67, July 1979.

J. D. Kraus, Guest Editor, IEEE Trans. AP-12(7), Dec. 1964, "Special Issue onRADAR ASTRONOMY".

J. D. Kraus, "Antennas", McGraw-HIll Book Co., New York, 1950.

J. D. Kraus, "Radio Astronomy", McGraw-Hill Bouk Co., New York, 1966.

J. D. Kraus,1966:Radloastronomle, McGraw-Hill.Ksiensk{, A.A. and Lin, H., "'Optimumn Frequencies for Aircraft Classification",

IEEE T aoson Aerospace & Electronic Systems, Vol AES-17, No. 5, Sept. 1981,p p . 6 5 6 -665 .'

F. Kuhl and R. Covelli, "Object Indentification by Multiple Observations of theScattering Matrix", Proc. IEEE 53, pp. 1110-1115, August 1965.

N. R. Landry, "Measuring the Phase and the Amplitude of Backscattered Radar Energyon'a Static Rangie", Radar Reflectivity Measurements Symp., Vol. I.pp,14 6 ,Report RADC-TDR-65-24, 1964.

I~i ml-- r M

Page 53: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

49

R. W. Larson, P. L. Jackson, R. J. Dallaine, R. Schuman, R. Rawson, "Inter-

pretation of Multichannel Microwave SAR Imagery", Symp. on Remote Sensing of

the Environment ERIM, Univ. of Michigan, Proc, Vol. 11, pp. 53-64, 1977.

J. C. Leader, "Biderectional Scattering of Electromagnetic Waves from RoughL Surfaces", J. Appl. Phys., 42(12)., pp. 4808-4816, 1971.

B. L. Lewis and I. D. Olin, "Experimental Study and Theoretical Model of

High Resolution Radar Backscatter From the Sea", Radio Science, Vol. 15, No. 4,

pp. 815-828, July-August 1980.

B. L Lewis and I D. Olin (1977), "Some Recent Observations of Sea Spikes",

Radar 77 Conf. Publ, 155, PP. 115-119, Int. of Elect. Eng. , London.

R. Lehrmitte and P. R. Krehblel, "Doppler Radar and Radio Observations of

"Thunderstorms", IEEE Trans. Geosclence Elec., Vol. GE-17, NO. 4, Oct. 1979.

Y. T. Lin and A. A. Kslenski, "'Identification fo Complex Geometrical Shapes

by Means of Low Frequency Radar Returns", Radio and Electronics Eng. 46(10),pp. 472-480, 1976.

M. W. Long, 1975, Radar Reflectivity of Land and Sea", Chapt. 5, D. C.

Heath, Lexington, Mass.

0. Lowenschuss, "Scattering Matrix Application", Proc. IEEE, 53(8), pp.988-992, August 1965.

A.L. Maffett, "Scattering Matrices", In Methods of Radar Cross-Section Analysis,Ed. by J. W. Crispin, K. M. Siegel, Academic Press, N. Y. , 1968,

J. E. Manz, "A Radar Cloud Target Polarization Discrimination Technique",AFWL, Kintland AFB, Tech. Rept. AFWL-TR-70-76, Oct. 1970.

S. Marder, "Synthetic Aperature Radar", in E. J. Jeske, Ed., AtmosphericEffects on Radar Target Indentification and Imaging, Froc. NATO-ASI, Gosiar,1975.

E. E. Martin, "Dual Polarized Radar Cross-Section Measuremants of Vehicles andRoadway Obstacles at 16 GHz and 69 GHz", Final Tech Rept., IndustrialAgreement, Nov. 1973.

J. S. Marshall, W. Hitschfeld, "Interpretation of the Fluctuating Echofrom Randomly Distributed Scatterers- Part 1, Can. J. Phys., Vol. 31, pp. 962-964, 1953.

B. H. McCormick, "Invariants and Representations of Mueller's OpticalI.' Algebra", B. Sc. Theses, MIT Phys. Dept., Cambridge, Mass., 1950, (Under

supervision of Prof. Hans Mueller).

G. C. McCormick, A. Hendry, "Principles for the Radar Determination of thePolarization Properties of Precipitialon", Radio Sci. , Vol. 10. No. 4,pp. 421-434, 1975.

-•-.--r-.-- ________________________

Page 54: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

50

G. C. McCormick, "Relationship of Differential Refractivity to Correlation in

Dual-Polarization Ridar", Electronic Letters, Vol. 15, No. 10, pp. 265-166, 1979.

G. C. McCormick, "Radar Measurement of Precipitation-Rflated Depolarization InThunderstorms", IEEE Tranis. Geoscience Electl, Vol G11-17, NO.4, Oct. 1979.

G. C. McCormick, A. Hendry, "Techniques for the Determiflation of the PolarizationProperties of Precipitation", Radio Science, Vol. 14, NO.6, pp. 1027-1040,Nov.-Dec. 1979,

G. C. Mc Cormick, A Hendry, "Principles for Radar Determination of thePolarization Properties of Precipitation ", Radio-Science. Vol.10, NO. 4,pp. 421-434, April 1975.

G. C. McCormick, A. Hendry, "Method for' Measuring the Ansitropy of Precip-Itation Media", Electronics Letters, Vo. 9, May 17, 1973.

P. Meischner, A. Schrott, "Einsatz von Dua1-Polarizations-Radarsystemen Inder Wolkenphyslk und Ausbreltungsforschung bel Mikrowellen", DFVLR, IB553-82/1, 1981.

J. I. Metcalf,"Propagation Effects on a Coherent Polarlzatlon-Diverslty Radar",Radio Science, Vol.16,1981.

J. I. Metcalf, "Design Study for a Coherent Poiarizatlon-Diversity Radar",Georgia Inst. Tech., Eng. Experiment Station, Atlanta, Georgia 30332, FinalRept. AFGL-TR-80-0262, 1980.

. J. I. Metcalf, "Polarization- Diversity Radar and Lidar Technology inMeterological Research: A Review of Theory and Measurements", Eng. Exper.

* Georgia Inst. of Tech., Atlanta, Georgia, 30332, July 31, 1977.

J. I. Metcalf, J. D. *Echard, "'Coherent Polarlzation-Diverslty, RadarTechniques in Meterology", J. Atmos. Sci. , 35, NO. 10, Oct. 1978.

G. Mie, "Beitra'ge zur Optik trUber Medien,SpeziL-ll kolioidalerMetall6sungen", ANN. Phy3., 25, p.377, 1908.

R. Mittra, ed., "Computer Techniques for E'iectromagnetics", Pergamon Press,N. Y. , 1973.

R. Mittra , ed., "Numerical and Asymptotic Techniques in Electromagnetics",Topics in Applies Physics, Vol. 3, Springer, New York, 1975.

D. L. Moffatt, J. D. Young, A.A. Ksienski, H. C. Lin, C. M. Rhoads,"Transient response characteristics in indentification and imagIng(invlted)

IEEE Trans. AP-29(2), pp.192-205. Special issue On Inverse Methods inElectromagnetics ), March 1981.

D. L. Moffatt (coordinator/editor), Radar Target Indentification, ClassNotes of Workshop, Vol. I and Vol. II, Electro-Science Lab., Ohio StateUniv., Columbus, Ohio, Sept. 1976.

Page 55: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

* 51

D. L. Moffatt, E. M. Kennaugh, "The axial Echo Area of A Perfectly-Conducting

Prolate Spheroid", IEEE Trans. AP-13 , pp. 40O1-409, 1965. (see also: IEEE

Proc. 52(10), pp. 1252-1253, 1964).

0. L. Moffatt R. K.Mains, "Detection and Discrimination of Radar Targets",

IEEE Trans, AP.-23(3), Pp. 358-367. 1975.

L. A. Mu'r,!&n, S. Weisbroa, "A Feasibility Study of RCS Matrix Signatures for

Targe. Clissification", ,RADC Rept. RADC-TR8050, (Contract No. F30602-79-CO007),

March i980.L. A. Morgan, S. Weisbrod, "Investigation on the use of Polarization

Discrimination Techniques for Radar Detection of Sea Targets".Naval Air

Systems Command, Contract No. NO0019-76-CO6 1 2. 1976.

L. A. Morgan, S. Welsbrod, "Research on Radar Detection of Small Sea Targets",

Naval Air Systems Command Contract No. NOO019-76-C-O17 6 ,i 1976.

L. A. Morgan, S. Weisbrod, "RCS Matrix Analysis of Sea Clutter and Targets",

Teledyne Micronetics, San Diego, Final Rept., Naval Air Syrtems Command

Contradt No. N00019-C-80-0595, Dec. 1981.

S. P. Morgunov, A. B. Shupyatskiy, "Evaluation of Artificial Modification

Efficiency from the Polarization Characteristics of the Echo Signal",

TR. TSENT, AEROL. OBSERV., No. 57, p.p. 49-54, 1964.

E. A. Mueller, "Implementation of Differential Reflectivity on the CHILL

Radar, Proc. 20th Radar Meteorology Conf., 1-4 Dec, 1981, Boston MA, pp.

666-667.

H. Mueller, "Foundations of Optics", J. OPT. SOC. AMER. 38, 1949.

F. E. Nathanson, "Adaptive Circular Polarization", IEEE Intern, Radar Conf.

IEEE Pubi, 75 CHO 938-1 AES,pp. 221-225. 1975.

F. E. Nathanson , "Radar Design Principles, Signal Processing and the Environ-

ment", McGraw-Hill, N.Y., 1969.

Nexrad Joint Systems Program Office, "Nex,: Generation Weather Radar Research

and Development Plan", Dec. 1981.

W. L. Nowland, R.D..Oilsen, I. P. Shkarrofsky, "Theorptical Relationship

Between Rain Depolarization and Attenuation', Electron, Letters 13, pp.676-678, 1977.

T. Oquc-i, "Attenu3tion and Phase Rotation of Radio Waves Due to Rain:Calculations at 19.3and 38.8 GHz.", Radio Sci., Vol. 8, pp. 31-38, 1973.

T.Oguchi , Y. Hosoya, "Scattering Properties of 3blate Raindrops and

Cross-Polarization of Radio Waves due to the Rain (Part I) : Calculations

at Microwave and Millimeter Wave Regions", J. Radio Res. Labs. (Japan),

21, pp. 191-259,1974.

""L, .

.. ..

.

Page 56: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

52

I. D. Olin, F. D. Queen, "Dynamic Measurement of Radar Cross Section", Proc.IEEE, Vol. 53, NO. 8, pp. 954-961, Aug. 1965.

IR. L. Olsen, D. V. Rogers, D. B. Hodge, 'The aRb Relation In theCalculation of Rain Attenuation", IEEE Trans. on Ant and Prop., Vol. AP-26p•)31 8 -32o, 1978.

S. Okamura, K. Funkawa, H. Uda, J. Kato, T. Oguchl, "Effect of Polarizationand the Attenuation by Rain at MIllimeter-Wave Length", J. Radio Res. Labs.,"pp. 73-80, Vol.8, 1961.

0. M. Phillips, "The Dynamics of the Upper Ocean a, Cambridge, England,University Press, pp. 131-135,1966.

W. J. Plant, "Studies of Backscattered Sea Return w'th a CW Dual-FrequencyX-Band Radur", IEEE Trans. ant. and Prop., AP.25(1) ,1977.

A. J. Poelman, "The Applicability of Controlable Antenna Polarization toRadar Systems", Tijdschrlft van het Netherlands Electronica en Radiogenootschap44(2), pp. 93-106, 1979.

A. J. Poelman, "Features of Multipurpose Experimental X-Band Radar Facility",Infomationen anasslich eines Besuches am SHAPE Technical Centre, Den HaagHollanid, 1981.

A. J. Poelman, F. L. Timmens, "Detection Performance of an Incoherent Radarwith two Orthogonally Polarized Receiving Channels", SHAPE Tech. Center, Th-435,June 1974.

* G. C. Pomraning, "Radiation Dynamics", Pergamon Press Ltd., Headington Hill Hall,Oxford, 1973.

* IH. Poincare, "Theorie Mathematique de la Lumiere", 11-12. pp. 282-285, GeorgeCarre, Paris, 1882.

V. A. Potekin, A. N. Glukhov, A. P. Rodimov,"The Choice of Radar SignalPolarizatior.", Radio Eng and Electr. Phys. 14(3).

Lord Rayleigh, "On the Incidence of Aerial and Electrical Waves Upon SmallObstacles", Phil. Mag. , 44, p. 28, 1897.

A. G. RepJar, A. A. Kslenski and L. J. White, "Object Identification frownMulti-frequency radar returns". The Radio and Electronic Engineer, 45,pp. 161-167, April 1975.

J. H. Richter, H. G. Hughes, "Electrooptical Atmospheric Transmission Effort inthe Marien Environment", IHOSC TR 6 96 ,12,May 1981.

G. C. Rider, "A Polarization Approach to the Clutter Problem", IEEE RadarConf. Publ. No155, pp.130-134,1977.

Page 57: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

53

L. W. Root, Chairman, Workshop on: "Polarimetric Radar Technology", 25-26,June 1980, USA-MICOM-DRSMI-REG, Redstone Arsenal, Proceedings, Vol.1,published by GACIAC, 11TRI, 10 W. 35 th St., Chicago, 11., 60610.(GACIAC,PR-81-02, Feb. 1981.

R. Roslan, 0. Hamzuers, G*Ionnldis, J, Bell, J, Nemit, "Implementation

Techniques for Polarization Control In ECCM", RADC-TR-79-4, Griffis AFB, Rome,H New York 13441, Feb. 1979.R. A. Ross, C. C. Freeny, "An Analysis of the Scattering Matrix MeasurementCapabilities of a Ground Plane Radar Cross Section Range", Tech Rept. No RADC-TDR-64-317, Rome Air Development Center, Research and Technology Division, GriffisAir Force Base, New~ York , June 1964.

G. T. Ruck, D. E. Burrick. W. V. Stuart, C. K. Kirchbaum, "Radar Cross-Section Handbook, Vols. I'and 11, Plenum Press, New York, 1970.

V. H-. Rumsey, "P3rt I-Transmission Between Elliptically Polarized Antennas"Proc. IRE, Vol. 39, pp. 535-540, May 1951.

K. Sassen "Laser Depolarization "Bright Band" From Melting Snowflakes",Nature, 225,pp. 316-318. 1975.

K. Sassen, "Depolarization of Laser light Backslcattered by Artificial Clouds",J. Applied Meteor., 13, 923-933.

J. K. Von Schlachta,"A Contribution of Radar Target Classification",Radar 1977, IEEE Conf. Publ. 155, 1977, pp. 135-139. (See Also: Uberemse Klassifizierungsmb'glichkeit loon Radar-Zielen mittels koha'rentgemesser Echosignale, Dr. Ing, Diss., D-83, Tech Univ, Berlin, 1977).

A. B. Schneider and P. D. L. Williams, "Circular Polarization In Radars",The Radio and Electronic Eng., Vol. 47, pp. 11-29, Jan/Feb. 1976.

A. Schrott, "Rahmenbetrachtungen and Experimentvorschl'age zum geplanten20/30-GHz- Satelitenexperiment", DFVLR, Institut f~ir Hochfrequenztechnik,.IB 551-80/14 (1980).

H. Schuster, "Systeinstudie Wolkenradar:Planung eines C-Band Puls-Doppler-Radars mit Polarisationseinrichtung fUr die Atmosphirenforschung Im mesoskaligenBereich", DFVLR, Institut f'Ur Physik der Atinosphare, 1980.

T. A. Seliga, N.M. Bringi, Ii.H. Al-khatib, "Differential Reflectivity,

jMeasurements of Rainfall Ratec", Rainguage Comparisons 19th Conference on

Radar Meteorology, Miami Beach, Fl., Am. Met. Soc. Proc., 1980.

R. G. Semonin, E.A. Mueller, "Nexrad Pre-design Studies, Final Report7 ' to the National Oceanic and Atmospheric Administration", No. NA800AA-O-00059, Champaign., Illinois, Nov. 1981.

A.G. Shupyatskii, S.P. Morganov, "The Application of Polarization Me'thods toRadar Studies of Clouds and Precipitation", AFCRL, L.G. Hanncom FieldMass. Techn. Rept. AFCRL-68-oA83, Sept. 1968,. (Translation from Russian).

Page 58: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

54

W.A. Shurcliff, "Polarized Light", Harvard Universtly Press, Cambridge,Mass., 1,962.

G. Silverman, "Chaff dispersion and polarization", J. of Elect. Defense,pp. 39-52, Nov,/Dec. 1978.

G. Sinclair, "Modification of the Radar Equation for Arbitrary Targets andArbitrary Polarization"' Rept. No. 302-19, Antenna Laboratory, OSU, Columbus,Ohio, 1945.

G. Sinclair, "The Transmission and Reception of Elliptically Polarized Waves",Proc. IRE, Vol. 39, pp. 148-151, Feb. 1950.

M. E. Skolnik, "Radar Handbook", New York: McGraw-Hill, 1972.

K.H. Steinbach, "Nonconventional Aspects nf Radar Target Classification byPolarized Properties", USAMERDC, Fort Belvoir. Vol. 22060, Rept. 2065, June1973(AD763155). (See Also: On the Polarization Transform Power of Radar Targetin E. Jeske, Ed., Atmospheric Effects on Radar Target Identification andImaging, D. Reidel Co., Dordrecht, Holland, pp. 65-82, 1976.

J. A. Stiles, J.C. Holtzman, Proc. Workshop on "Radar Backscatter fromTerrain", U.S. Army Engineering Topographic Labs, Fort Belvoir, Va., RSL-TRpp. 374-382, 9-11 J;an. 1979.

- G.G. Stokes, "Stokek-' Mathematical and Physical Papers", Univ. Press,Cambridge, 1901.

E. Stratman, D. Atlas, J.H. Ric'ter , D.R. Jensen, "Sensltivty Calibrationof a Dual-Beam Vertically Point FM-CW Radar", J. Applied Met., Vol. 10,No. 6, Dec. 1971.

J. H. Straus, "Polarization as a Anticlutter Technique", Naval Air Dev. Center,Johnsville, Pa., AEEL-Rept. No. NADL-EL-6415, March 1964.

M. A.F. Thiel, "Darstellung and Transformnations-Theorie quasi-monochromatischerStrahlungsfelder", Zussanm.ienfassender Bericht, Beltra'ge zur Radloastronomie,Bind I, Heft5, Max-Plank-listitut fu'r Radioastromie, Bonn, FRG, Ferd. D'imler's

Verlag, Bonn, March 1970.

H. S. Tan, A. K. Fung and H. Eom, "A Second-Order Renormalization Theory forCross-polarized Backscatter from a Half Space Random Medium", Radio Science,Vol. 15, NO. 6, pp. 1059-1065, November-December 1980.

G. Tricoles and E. L. Rope, "Polarization Independent Radomes", GACIACPR-81-02, pp.1 2 1 .

C. H. Tsao, R. Mittra, "A Spectral-Interactive approach for analyzingscattering from frequency selective surfaces", IEEE Trans. AP-30(2),pp.303-308 , March 1982.

R. Tsu, '"The theory and application of the Scattering Matrix for ElectromagneticWaves", PhD. Dissertation, Dept. of Elect. Engr., Ohio State University,Columbus, OH. 1960.

Page 59: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

55

P. L. E. Uslenghi (Ed), "Electromagnetic Scattering ", (Selected papersof a National Conference on Electromagnetic Scattering, UICC, Chicago,IL.,June 15-18, 1976). Acad. Press, N. Y. ,1978.

F. T. Ulaby and R. K. Moore, "Radar Spectral Measurements of Vegetation",Proc. 11973 ASP/ASCM Fall Cond.m October 2-5. 1973, Orlando, Florida.

G. M. Vachuela and R. M. Barnes, "Sperry Research Center PolarizationSignal Processing", Sperry Research Center, Sudbury , MA. TIM-371-17,Feb. 1981.

G. R. Valenzuela, "Scattering of Electromagnetic Waves from a TiltedSlightly Rough Surface", Radio Science, Vol.3, No. 11, pp.1057-1066, Nov. 1968.

G. R. Valenzuela, "Theories for the Interaction fo Electromagnetic Waves"and Ocean Waves", A Review, Boundary-Layer Meteriology 13, pp. 61-85, 1978.

G. R. Valenzuela, "Scattering of Electromagnetic Waves From the Ocean",

in T. Lund (Ed.)Surveilllance of Environmental Pollution and Resourcesby Electromagnetic Waves, pp. 199-226, 1978.

V. C. Vannicola, "On the Theory Radar Polarization Processing for ClutterSuppression", GACIAC PR-81-02, pp. 259-279.

M. L. Varshanchuk and V. 0. Kobak, "Cross-correlation of OrthogonallyPolarized Components of the Electromagnetic Field Scattered by an ExtendedObject", Radio Eng. Electr. Phys. 16, pp. 201-205, 1971.

M. Vogel, "Image and Sensor Data Processing for Target Asquisitlon andRecognition", Agard Conference ProceedingsNo. 290, November 1980.

M. Vogel "Uber die Streuelgenschaften von Flugzeugen bei Mikrowellen",DFVLR, Rept. No. 106, February 1960.

M. J. Walker, "Matrix Calculus and the Stokes Perameters of PolarizedRadiation", Am. J. Phys. 22, pp. 170-174, 1954.

C. Warner and R. R. Rogers , "Polarization-Diversi;ty Radar: TwoTheoretical Studies, Scl. Rept. MV-90, Stormy Weather Group, McGillUniversity., Montreal, Que. 1977.

P. A, Watson, N. J. McEwan, A. W. D!ssanayake aod D. P. Haworth, "Attenuationand Cross-Polarization Measurements at 20 GHz Using the ATS-6 Satellitewith Simultaneous Radar Observations", IEEE Trans. on Ant. and Prop.,Vol. AP-27 (1979) NO. 1, pp. 11-17.

J. A. Webb and W. P. Allen, "Precision Measurements of the Radar Scattering

Matrix", Reflectivity Measuremen-s Symp., Vol. 1, pp. 223. (See also:Lockheed Space and Missiles Company. Report RADCTDR-64-25, Vol. 1, April 1964.)

V. . .."1

Page 60: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

56

A. Welsbrod and L. A. Morgan, "RCS Matrix Studies of the Sea Clutter", NavairReview, Jan. 1979.

L. J. White and A. A. Kslenskl, "Aircraft Indentification Using a BiliAearSurface Representation of Radar Data", Pattern Recognltion, 6, pp. 35-45,1974.

W. D..White, "Circular Radar", Electronics, pp. 158-160, March 1958.

J. W. Wright, "Backscatter from Capillary Waves with Application to SeaClutter", IEEE Trans. Ant and Prop. Vol. AP-14, pp. 749-754, Nov. 1966.

J. D. Young, "Target Imaging from Multiple Frequency Radar Returns",ESL-OSU, Columbus, Ohio, Tech. Rept. 2768-6, June 1971 (AD 728235) (seealso: Radar Imaging from Ramp Response Signatures, IEEE Trans. Ant. andPropagation AP-24, pp. 276-282, 1976).

L. A. Zhivotovskly, "Calculation fo the Depolarization Properties of RadarTartgets", Radio Eng. 31 (pt.2) pp. 46 -48,1976.

L. A. Zhivotovskly, " Dependence of the Power Flux Density of Echo Signalson Radar Signal Polarization", Radio Eng. 31(pt. 2), pp. 49-53, 1976.

L. A. Zhivotovskly, "Optimum Polarization of Radar Signals", Radio Eng. and

Electronic Phys. 18( 4 ),pp. 630-632, 1973.

Page 61: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

DISTRIBUTION LIST (A)-l

CommanderNaval Air Systems CommandATTN: AIR-310B (2 'cys quarterly, 5 cys final)

AIR-00D46 (14 cys final only)AIR-370D/Mr. E. T. Hooper

Washington DC 20361

CommanderNaval Surface Weapon CenterATTN: Dr. B. Hollmann (Code F12)

Mr. John Teti (Code DF34)Dahlgren VA 22448

CommanderNaval Weapons CenterElectronic Warfare DepartmentMicrowave Development DivisionATTN: Mr. F. F. St. George (Code 354)China Lake CA 93555

Office of Naval ResearchCode 427800 North Quincy StreetArlington VA 22217

The Ohio State UniversityElectroScience LaboratoryATTN: Dr. Jonathan Young1320 Kinnear RoadColumbus OH 43212

Commanding OfficerRome Air Development CenterATTN: Mr. Durwood Creed/OSDRGriffis Air Force Base NY 13440

Technology Service CorporationATTN: Dr. Fred Nathanson8555 16th Street, Suite 300Silver Spring MD 20910

Teledyne MicroneticsATTN: Dr. Steven Weisbrod7155 Mission Gorce RoadSan Diego CA 92120

Page 62: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

DISTRIBUTION LIST (A)-I

CommanderUS Army Electronics CommandCS and TA LaboratoryATTN: Mr. Boaz Gelerneter (DRSEL-CT-R)Mr. Willy JohnsonFt. Monmouth NJ 07703

Commander.US Army Missile CommandATTN: Mr. Lloyd Root (DRSMI-REG)Redstone Arsenal AL 35809

Defense Documentation CenterCameron StationAlexandria VA 22314

DirectorNaval Research Laboratory4555 Overlook Avenue, SWATTN: Library, Code 2620Washington DC 20375

Office of Naval ResearchMathematics Program, Code 432Arlington VA 22217

Office of Naval ResearchNew York Area Office715 Broadway-Stb FloorNew York NY 10003

Command OfficerOffice of Naval Research/Branch Office536 South Clark StreetChicago IL 60605

Command OfficerOffice of Naval Research Eastern/

Central Regional OfficeBldg 114, Section D666 Summer StreetBoston MA 02210

Page 63: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

DISTRIBUTION LIST (A)-l

CommanderAir Force Avionics LaboratoryATTN: Mr. Allen Blume (AFWAL/AADM)

Mr. Robert L. Davis (AFAL/WRP)Mr. Harold Weber (AFWAL/AADM)

Wright-Patterson Air Force Base OH 45433

ETEATTN: Dr. A. Schell (RADC/BTE)Hanscome Air Force Base MA 01731

General Electric/RSDATTN: Mr. A. B. Grafinger/Room 6258H3198 Chestnut StreetPhiladelphia PA 19101

R. C. Hansen, Inc.Box 215Tarzana CA 91356

ITT GilfillanATTN: Dr. David E. Hammeri7821 Orion AvenueP. 0. Box 7713Van Nuys CA 91409

CommanderNaval Avionics CenterATTN: Mr. Paul Brink21st 4 Arlington AvenueIndianapolis IN 46218

SuperintendentNaval Postgraduate SchoolATTN: Dr. Lonnie Wilson (Code 62W1)Monterey CA 93940

Commanding OfficerNaval Research LaboratoryATTN: Mr. John Daley (Codo 7946)

Mr. Fred Staudaher (Code S368)Mr, Denzil Stilwell (Code 7910)

Washington 9C 20375

CommanderNaval Sea Systems CommandATTN: Mr. C. Jedrey (SEA-62R13)Washington DC 20362

Page 64: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

DISTRIBUTION LIST (A)-l

Command OfficerOffice of Naval Research Western

Regional Office1030 East Green StreetPasadena CA 91106

ConuanderNaval Air Development CenterRadar DivisionATTN: Dr. John Smith (Code 3022)Warminster PA 18974

Office of Naval ResearchATTN: Code 414800 North Quincy StreetArlington VA 22217

Naval Ocean Systems CenterE14 Propagation DivisionAn'N: Dr. Juergen H. Richter271 Catalina Blvd.Svn Diego, CA. 92152

Atmospheric Physics AranchNRLATTN: Dr. Lothar Ruhnke (Code 8320)Washington, D.C, 20357

Naval WORpons CenterA*TN: Dr. Ing-Guenther Winkler (Code 381)

Dr. Robert DingerChina Lake, CA. 93555

Naval Air Development CenterATTN: Mr. Otto Kessler (Code 3022)WarminstOer, PA, 18974

_ _ _

Page 65: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

DISTRIBUTION LIST (DOMESTIC)

Dr. David Atlas (Code 910)Laboratory for Atmospheric SciencesNASA, Goddard Space Flight CenterGreenbelt, Marylad 20771

Dr. Adrian K. Fung".Department o Electrical Engineering,) University of Kansas

' ~Lawrence KS 6604.5

I Dr. Marlin Gillette

Mailstop B-56m

Bell Aerospace Textron* P.O. Box 1

Buffalo NY 14240

Dr. J. W. GoodmanDepartment of Electrical EngineeringStanford UniveTsityStanford Ck 94305

_ Dr. Doran Hess, Chief PhysicistScientific Atlanta3845 Pdeasantdale RoadAtlanta GA 30340

Dr. Akira IshimaruDept. of Electrical Engineering, FT-10University of WashingtonSeattle WA 98195

Dr. Edward KennaughElectroScience LaboratoryDepartment of Electrical EngineoringOhiu State University1320 Kinnear RoadColumbus OH 43212

Dr. Louis N. Medgyesi-M,.tschangSenior ScientistMcDonnel Douglas Research Laboratury

Box 516St. Louis MO 62166

Dr. ,James MetcalfRadar Applications GroupGeorgia Institute of TechnologyElectrical Engineering DepartmentAtlanta GA 30332

Page 66: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

DISTRIBUTION LIST (DOMESTIC)

Dr. C. Leonard BennettManager, Systems ApplicationsSperry Research Center100 North RoadSudbury MA 01776

Dr. Lawrence WellerMail Stop K7S-50Boeing Military Airplane Co.3801 S. OliverWichita KS 76210

Mr. David L. Banks, ManagerMr. Thomas C. BradleyRF Sensors Lab, Engineering TechnologyBoeing Aerospace Co.P.O. Box 3999Seattle, Washington 98124

Dr. Archibald HendryElectromagnetic Engineering SectionDivision of Electrical EngineeringNational Research Council of CanadaOttawa, Canada KIA OR8

Dr. Edwin R. HillerMissile Systems DivisionRaytheon CompanyHartweil Road, Systems BuildingBedford, Mass. 01730

Dr. Bernard LewisRadar DivisionNaval Research LaboratoryWashington, D.C. 20375

Mr. Lee A. MorganSenior Member Technical StaffTeledyne Micronetics7155 Mission George RoadSan Diego, CA. 92120

Page 67: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

DISTRIBUTION LIST (DOMESTIC)

4

Dr; H. MullaneyDefense Systems, Inc.6804 Poplar PlaceMcLean VA 22102

Mr. J. WillisNaval Air Systems Command HeadquartersJefferson Plaza #11411 Jefferson David HighwayArlington VA 22516

Dr. Walter K. Kahn, ProfessorElectrical Engineering and Computer ScienceSchool of Engineering and Applied Science"The George Washington UniversityWashington DC 20052

Dr. Andrew J. BlanchardAssociate Research EngineerTexas AMM UniversityRemote Sensing CenterCollege Station, Texas 77843

Mr. David DeedsRadar DivisionAdvanced Sensor DivisionMartin Marietta Aerospace Corp."Orlando DivisionP. O Box 5837Orlando FL 32855

Dr. Eckehard 0. RauschRadar Application GroupGeorgia Institute of TechnologyElectrical Engineering DepartmentAtlanta GA 30332

Mr. Lloyd Root DRSMI-REGMillimeter Guidance TechnologyAdvanced Sensory DirectorateU.S. Army Missile LaboratoryU. S. Army Missile CommandRedstone Arsenal AL 35898

' Numm"W

Page 68: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

p..

DISTRIBUTION LIST (DOMESTIC)

N Dr. E. K. MillerElectronics Engineering DepartmentUniversity of CaliforniaLawrence Livermore LabovatoryP. 0. Box 808Livermore CA 94550

Dr. Charles Miller, DirectorElectromagnetics DivisionNational Bureau of StandardsBoulder CO 80303

Dr. Allen TafloveResearch EngineerEM Interaction with Complex SystemsIIT Research Institute10 West 35th St.Chicago IL 60616

Dr. Charles WarnerDepartment of Environmental SciencesClark HallUniversity of VirginiaCharlottesville VA 22903

Dr. J. DeSantoElectro Magnetic Applications, Inc.1978 S. Garrison StreetDenver CO 80227

Dr. J. HeacockOffice of Naval ResearchCode 463Arlington VA 22217

Dr. G. HeicbeNaval Air Systems Command HeadquartersJefferson Plaza #11411 Jefferson Davis HighwayArlington VA 22516

Mr. Jack DaleyNaval Research LaboratoryCode 7946Washington DC 20375

Dr. M. McKisicOffice of Naval ResearchCode 486Arlington VA 22217

* "I•L

Page 69: 21 - Defense Technical Information Center · Attn: Mr. Gordon I. Lovitt ISO. 02CkDUSIRIiErATION/ ACIWGRAOING III ... KE.YWORDS: Pola,,ization, radar polarimetry,-target. discrimination

DISTRIBUTION LIST (DOMESTIC)

Dr. Eugene A. MuellerMeteorology SectionIllinois State Water Survey605 East SpringfieldP.O. Box 5050, Station AChampaign, IL. 61820

Dr. Jim WrightMail Point 200

' Radar DivisionMartin-MariettaP.O. Box 5837Orlando, FL. 32855

Mr,, William D. FortnerGeneral Dynamics7464 Moadel CourtSan Diego, CA. 92119

Dr. Constantine P. TricolesGeneral DynamicsElectronics DivisionP.O. Box 81127g'."-i Diego, CA. 9-138

Jr. D.E. HammeusITT Gilfillan"7821 Orion AvenueVan Nuys, CA. 91409

Dr. Samuel M. ShermanRadar Systems DivisionRCA Building, 108-210Moorestown, N.J. 08057

jr. f