2nd advanced course on radar polarimetry 2013 01/24/2013 · 2020. 12. 18. · vhf 300 khz - 300 mhz...

28
2nd Advanced Course on Radar Polarimetry 2013 01/24/2013 1 Surface Parameter Estimation: Basics and Advanced Concepts 2nd Advanced Course on Radar Polarimetry – 24.Jan 2013 – [email protected] Irena Hajnsek Chair of Earth Observation and Remote Sensing Institute of Environmental Engineering, ETH Zürich Microwaves and Radar Institute, DLR Oberpfaffenhofen Slide 2 Part I: Theory and basics Introduction into SAR polarimetric observables Decomposition techniques Introduction into material properties of soil Model description and inversion strategy Part II: Exercises with L-band airborne data Read the data Speckle filtering Oh, Dubois and X-Bragg inversion Overview HH HV VH VV Slide 2 Slide 3 Motivation of Radar Remote Sensing Independent from Weather Data acquisition during cloud cover, rain, ... Radar is complementarily to optics Slide 3 Ethna DEM (TanDEM-X) Forest height Map Optical image DLR Location: Oberpfaffenhofen B:Surface R:Dihedral G:Volume SAR-Bild Drygalski glacier velocity measurement at the Antarctic Peninsula (TerraSAR-X) TanDEM-X dual polarisations acquisition of a Saudi Arabien desert, montage with a Google-Earth image. 1994: Shuttle Radar Lab SIR-C/X-SAR (Brazilian Rainforest) Slide 4 What does the Radar measure ? Radar reflectivity (backscattered signal) of the target as a function of position. radar transmits a pulse (travelling velocity is equal to velocity of light) some of the energy in the radar pulse is reflected back towards the radar. This is what the radar measures. It is known as radar backscatter o (sigma nought or sigma zero). Slide 4

Upload: others

Post on 03-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    1

    Surface Parameter Estimation:Basics and Advanced Concepts

    2nd Advanced Course on Radar Polarimetry – 24.Jan 2013 – [email protected]

    Irena HajnsekChair of Earth Observation and Remote SensingInstitute of Environmental Engineering, ETH ZürichMicrowaves and Radar Institute, DLR Oberpfaffenhofen

    Slide 2

    Part I: Theory and basicsIntroduction into SAR polarimetric observablesDecomposition techniques Introduction into material properties of soilModel description and inversion strategy

    Part II: Exercises with L-band airborne dataRead the dataSpeckle filteringOh, Dubois and X-Bragg inversion

    OverviewHH HV

    VH VV

    Slide 2

    Slide 3

    Motivation of Radar Remote Sensing

    Independent from WeatherData acquisition during cloud cover, rain, ...

    Radar is complementarily to opticsSensitive to dielectrical and geometrical properties of scatterers,...

    Penetrates through or in volumesOverlay of scattering processes,…

    Is an active systemData acquisition independent of daylight, ...

    Delivers highly accurate physical productsDigital Elevation Models, Forest heights, Soil moisture maps ...

    Slide 3Ethna DEM (TanDEM-X) Forest height Map

    L (23cm)C (5cm)X (3cm)

    35,3 km

    21,3

    km

    Optical image

    DLR Location: Oberpfaffenhofen

    B:SurfaceR:Dihedral G:VolumeSAR-Bild

    Drygalski glacier velocity measurement at the Antarctic Peninsula

    (TerraSAR-X)

    TanDEM-X dual polarisations acquisition of a Saudi

    Arabien desert, montage with a Google-Earth image.

    1994: Shuttle Radar Lab SIR-C/X-SAR (Brazilian Rainforest)

    Slide 4

    What does the Radar measure ?

    Radar reflectivity (backscattered signal) of the target as a function of position.

    radar transmits a pulse (travelling velocity is equal to velocity of light)

    some of the energy in the radar pulse is reflected back towards the radar.

    This is what the radar measures.It is known as radar backscatter o(sigma nought or sigma zero).

    Slide 4

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    2

    Slide 5Slide 5

    Normalized radar cross-section (backscattering coefficient) is given by:

    o (dB) = 10. Log10 (energy ratio)

    whereby received energy by the sensor

    “energy reflected in an isotropic way”energy ratio =

    i.e.

    The backscattered coefficient can be a positive number if there is a focusing of backscattered energy towards the radar

    or

    The backscattered coefficient can be a negative number if there is a focusing of backscattered energy way from the radar (e.g. smooth surface)

    What does the Radar measure ?

    Slide 6Slide 6

    Backscattering Coefficient o

    Levels of Radar backscatter Typical scenario

    Very high backscatter (above -5 dB) man-made objects (urban)terrain slopes towards radarvery rough surfaceradar looking very steep

    High backscatter (-10 dB to 0 dB) rough surfacedense vegetation (forest)

    Moderate backscatter (-20 to -10 dB) medium level of vegetation agricultural crops moderately rough surfaces

    Low backscatter (below -20 dB) smooth surface calm waterroad very dry terrain (sand)

    Slide 7Slide 7

    Commonly Used Frequency Bands

    Frequency band Frequency range Application examples

    VHF 300 KHz - 300 MHz foliage/ground penetration, biomass

    P-Band 300 MHz - 1 GHz soil moisture, biomass, penetration

    L-Band 1 GHz - 2 GHz agriculture, forestry, soil moisture

    C-Band 4 GHz - 8 GHz ocean, agriculture

    X-Band 8 GHz - 12 GHz agriculture, ocean, high resolution radar

    Ku-Band 14 GHz - 18 GHz glaciology (snow cover mapping)

    Ka-Band 27 GHz - 47 GHz high resolution radar

    Slide 8

    Environmental Sensing from Air and Space

    Airborne measurementsHighly flexible operationCoverage of dedicated areasExperimental configurationSensor specific data formatsShort re-visit times

    Slide 8

    Spaceborne measurementsHighly regular observationWide area coverageHighly operational & reliableStandard product deliveryLong term observations

    DLR‘s E-SAR DLR‘s TanDEM-X Mission

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    3

    Slide 9Slide 9

    HHX-band

    PI-SAR / Test Site: Gifu-Japan

    Distributed Scatterers:•Norm. Backscattering Cross Section σ0 ;•Texture (σ0 statistics).Deterministic Scatterers:•Radar Cross Section (RCS) ;•Phase of the SAR signal. O

    bser

    vatio

    n Sp

    ace

    Appl

    icat

    ions

    Single Pol (Channel) SAR

    Classification/Segmentation (Texture);Change detection (Multi temp. analysis);Glacier velocities (Feature tracking); Mapping (Feature extraction/Bordering );Ocean wave/Wind mapping;Coherent scatterers (CSs).

    Slide 10

    Polarimetric SAR

    Slide 10

    VVVH

    HVHH

    SSSS]S[

    HH

    VV

    HV

    VHFirst Order Parameters:

    Norm. Backscattering Cross Section σ0 ;Intensity (Cross Section σ0) ratios;Polarimetric phase differences.

    Second Order Parameters:Polarimetric (inter channel) coherences.O

    bser

    vatio

    n Sp

    ace

    Slide 11Slide 11

    X-band

    PI-SAR / Test Site: Gifu-Japan

    R:HH-VV G:HV+VH B:HH+VV

    First Order Parameters:Norm. Backscattering Cross Section σ0 ;Intensity (Cross Section σ0) ratios;Polarimetric phase differences.

    Second Order Parameters:Polarimetric (inter channel) coherences.O

    bser

    vatio

    n Sp

    ace

    Appl

    icat

    ions

    Soil moisture/roughness estimation;Wettland/Veg. characterisation/mapping; Snow & Ice mapping (type classification);Ship & Oil spill detection; Classification/Segmentation (Pol based).

    VVVH

    HVHH

    SSSS]S[

    Polarimetric SAR

    Slide 12Slide 12

    )r(E)r(E

    )r(S)r(S)r(S)r(S

    r)riexp(

    )r(E)r(E

    iv

    ih

    VVVH

    HVHHsv

    sh

    )r(E)r(E

    )r(E sv

    shs

    hv

    Scattered Field

    In the far zone region

    ( )

    2x2 Complex Scattering Matrix

    |'r||r| |r|

    Incident (Plane) Wave

    (Jones Vector Representation)

    )r(E)r(E

    )r(E iv

    ihi

    hv

    (Jones Vector Representation)

    Mapping of the 2-dim incident vector into the 2-dim scattered vector)(rEihv )(rEshv

    Scatterer

    Transforms the incident

    into the scattered wave

    The Polarimetric Scattering Problem

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    4

    Slide 13Slide 13

    )r(E)r(E

    )r(S)r(S)r(S)r(S

    r)riexp(

    )r(E)r(E

    iv

    ih

    VVVH

    HVHHsv

    sh

    )r(E)r(E

    )r(E sv

    shs

    hv

    Scattered Field

    In the far zone region

    ( )

    2x2 Complex Scattering Matrix

    |'r||r| |r|

    Incident (Plane) Wave

    (Jones Vector Representation)

    )r(E)r(E

    )r(E iv

    ihi

    hv

    (Jones Vector Representation)

    Mapping of the 2-dim incident vector into the 2-dim scattered vector)(rEihv )(rEshv

    1: Changes the polarisation state of the incident wave

    2: Changes the degree of polarisation of the incident wave

    Scatterer

    Transforms the Incident

    into the scattered wave

    The Polarimetric Scattering Problem

    Slide 14

    Coherent Scattering Matrix

    Slide 14

    iv

    ih

    VVVH

    HVHHsv

    sh

    EE

    SSSS

    rri

    EE )exp(

    )exp(||)exp(||)exp(||)exp(||)exp(][

    VVVVVHVH

    HVHVHHHH

    iSiSiSiS

    rriS

    [S] is independent on the polarisation of the incident wave !!!

    … also known as the Jones Matrix in the bistatic and Sinclair Matrix in the monostatic case

    IJS

    Complex Scattering Amplitudes:

    =f(Frequency,Scattering Geometry)

    and depends only on the physical and geometrical properties of the scatterer

    ||)(exp||)(exp||)(exp||)exp()exp(][

    VVVVVHVH

    VVHVHVVVHHHHVV

    SiSiSiS

    ririS

    Seven Parameters: 4 Amplitudes & 3 PhasesAbsolute PhaseFactor

    Total Scattered Power: 2VV2

    VH2

    HV2

    HH SSSSSSTraceSSpanTP ||||||||)]][([])([

    Slide 15

    Bi- & Mono-Static Measurement of the Scattering Matrix

    Slide 15

    T = 1/PRF

    VVVH

    HVHH

    SSSS

    V

    H

    V

    H

    V

    H

    V

    H

    H V VH Tx

    RxT

    H

    V

    H

    V

    R

    R T

    H

    V

    HH

    HV

    VH

    VV

    Slide 16Slide 16

    VH VV

    HH HV

    Azi

    mut

    h

    E-SAR / Test Site: Oberpfafenhoffen

    Scattering Amplitude Images

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    5

    Slide 17

    Backscattering (FSA & BSA)

    Slide 17

    ||)(exp||)(exp||)(exp||)exp()exp(][

    VVVVXXXX

    VVXXXXVVHHHHVV

    SiSiSiS

    ririS

    Five Parameters: 3 Amplitudes & 2 PhasesAbsolute PhaseFactor

    In the case of monostatic backscattering from reciprocal scatterers:

    BSAXX

    BSAVH

    BSAHV SSS )( FSAXX

    FSAVH

    FSAHV SSS Reciprocity Theorem

    VVXX

    XXHH

    SSSS

    S][

    VV

    XX

    XX

    HH

    L4

    SSSS

    k

    0S2

    SSSS

    21k

    XX

    VVHH

    VVHH

    P4

    VV

    XX

    HH

    L3

    SS2

    Sk

    XX

    VVHH

    VVHH

    P3

    S2SSSS

    21k

    3-dim Lexicographic (L) and Pauli (P) Scattering Vectors:

    Note: The factor is required to keep the vector norm of invariant L3k

    2

    The scattering problem can be addressed in the 3-dim complex space:

    Slide 18

    Partial Scatterers

    Slide 18

    Deterministic Scatterers Partial Scatterers

    Completely described by [S] Cannot be described by a single [S]

    • Change the polarisation state of the wave • Change the polarisation state of the wave

    • Do not change the degree of polarisation and also change the degree of polarisation

    Scatterers with Space or Time VariabilityPoint Scatterers

    MonochromaticIncident Wave

    MonochromaticScattered Wave

    Depolarisationdescribed by second order statistics

    Slide 19Slide 19

    2

    2

    2

    3

    ||4)(2)(2)(2|)(|))(()(2))((|)(|

    :][

    HVVVHHHVVVHHHV

    HVVVHHVVHHVVHHVVHH

    HVVVHHVVHHVVHHVVHH

    SSSSSSSSSSSSSSSSSSSSSSSSS

    T

    Covariance & Coherency Matrices in Backscattering

    Covariance Matrix [C]:

    LL kkC 333 :][

    2

    2

    2

    3

    ||22||22

    2||:][

    VVHVVVHHVV

    VVHVHVHHHV

    VVHHHVHHHH

    SSSSSSSSSS

    SSSSSC

    Coherency Matrix [T]:

    PP kkT 333 :][

    Pauli Scattering Vector:

    TXXVVHHVVHHP SSSSSk 221

    3

    Lexicographic Scattering Vector:

    TVVXXHHL SSSk ]2[4

    and are by definition 3x3 hermitian positive semi-definite matrices &contain in general 9 independent parameters

    ][][ 33 TC

    Slide 20Slide 20

    Scattering Polarimetry

    INTERPRETATION OF SCATTERING MECHANISMS

    • Directly from the Scattering Matrix

    • Model based

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    6

    Slide 21

    Interpretation of Scattering Mechanisms

    Slide 21

    VVHV

    HVHH

    SSSS

    S][ T

    xxVVHHVVHHP S2SSSS21k

    PP

    kk1e

    XX

    VVHH

    VVHH

    P3

    2

    1

    PP S2

    SSSS

    k21

    ii

    ik

    k1e

    expsinsinexpcossin

    expcos

    Scattering Matrix: Scattering Vector:

    Unitary Representation:

    Parameterisation of in terms of five angles:e 321 ,,,,

    Slide 22Slide 22

    001

    10000

    00

    001

    i000i000i

    e

    3

    2

    1

    cossinsincos

    cossinsincos

    expexp

    exp

    Interpretation of Scattering Mechanisms

    e00

    001e

    cossinsincos' e

    10000

    e

    cossinsincos

    '

    Point Reduction Theorem:

    Change of Scattering Mechanism:

    characteristicorientationphase

    Slide 23Slide 23

    Interpretation of Scattering Mechanisms

    010

    001

    100001010

    100010001

    e'

    02121

    001

    1000212102121

    100010001

    e'

    001

    10000

    00

    001e

    cossin

    sincos

    cossinsincos'

    H-DipolScatterer

    Dihedral Scatterer

    =90º and β=0º

    =45º and β=0º

    HV

    VVHH

    VVHH

    P S2SSSS

    k21

    001

    e

    02121

    001

    1000212102121

    100010001

    e'V-Dipol

    Scatterer

    =45º and β=180º

    where

    Slide 24Slide 24

    Scattering Processes: Fresnel Scattering

    2

    2

    sincossincos

    HR

    2

    2

    sincossincos

    VR

    V

    H

    RR

    S0

    0][

    Fresnel Reflection Coefficients:

    Scattering Matrix:

    … where e is the dielectric constant of the surface

    and

    HH

    VV

    = 20.

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    7

    Slide 25Slide 25

    Scattering Processes: Bragg Scattering

    2

    22

    sincos)]sin1()[sin1(

    VR

    Bragg Scattering Coefficients:

    Scattering Matrix:

    … where is the dielectric constant of the surface

    V

    H

    RR

    S0

    0][

    2

    2

    sincossincos

    HR and

    VV

    HH

    = 20.

    Slide 26Slide 26

    Scattering Processes: Dihedral Scattering

    0 001 0 1 0[ ]

    0 000 1 0HS HS HTHT

    iiVS VS VTVT

    R R RRS

    R R R eRe

    2

    2

    cos sin

    cos sinS

    HS

    S

    R

    2

    2

    cos sin

    cos sinS S

    VS

    S S

    R

    2

    2

    cos(90 ) sin (90 )

    cos(90 ) sin (90 )T

    HT

    T

    R

    2

    2

    cos(90 ) sin (90 )

    cos(90 ) sin (90 )S S

    VT

    S S

    R

    Fresnel Coefficients:

    Scattering Matrix:

    and

    and

    HH

    VV

    = 20.

    Soil (S)

    Trunk (T)

    Slide 27Slide 27

    Dihedral vs Volume Scattering (L- /P-Band E-SAR – Kryklan/Sweden)

    08biosar0201x1_t11 L-band, hh,hv,vv 08biosar0302x1_t12 P-band, hh,hv,vv

    tree trunkpower line

    tree crown

    range direction

    Slide 28Slide 28

    dbba

    S][

    c2baba

    21k

    10000

    R3

    cossinsincos

    :)(

    kRRRk 333

    )]([)]([)]([),,(

    cossin

    sincos:)(

    001

    0R3

    10000

    R3

    cossinsincos

    :)(

    Scattering Processes: Volume Scattering

    20

    0

    20

    Rotation about x-axisRotation about y-axisRotation about z-axis

    ),,(),,(][ kkT

    Coherency Matrix:

    Random Volume

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    8

    Slide 29Slide 29

    Scattering Processes: Volume Scattering

    z

    y

    x

    000000

    ][ 11L4

    Vri

    i ))/((

    0

    23z

    23y

    23x

    zyxi ds2ls2ls2ls2

    8lllL /// )/()/()/(

    /)(

    zyxzyx l

    1l1

    l1LLL ::::

    1m

    2m11L11LA

    r

    r

    ry

    rxP

    )()(: l

    lLLm

    x

    y

    y

    x :

    1LLL zyx

    2l

    2l

    2l

    43V zyxwhere is the particle volume and

    with

    Principal Polarisability Matrix:

    Particle Anisotropy: Particle Shape Ratio:

    m0

    1m

    1m oblate spheroids

    prolate spheroids

    Slide 30Slide 30

    Scattering Processes: Volume Scattering

    T3

    T3

    T3333 RRRPRRRP )]([)]([)]([][)]([)]([)]([),,]([

    dddpppPT )()()(),,]([][

    b000b0001

    aT][)(

    )(2PP

    2P

    A7A6221Ab

    50b0 .

    Special Case:Random Volume

    p( )

    -

    p( )

    -

    p( )

    - / 2 / 2

    where

    Coherency Matrix:

    where )(),(),( ppp are the pdf’s for the corresponding angle distributions

    Slide 31Slide 31

    Scattering Processes: Volume Scattering

    A=0.01

    A=0.20

    A=0.40

    A=0.60

    A=0.80

    A=1.00

    H/a Loci for varying particle

    shape and width of distribution

    Prolate Particles

    oriented volume random volume

    dipole

    sphere

    -dipole

    randomness

    Slide 32

    [ S ]

    COHERENTDECOMPOSITION

    E. KROGAGER(1990)

    W.L. CAMERON(1990)

    [ K ]

    [ T ] [ C ]

    TARGETDICHOTOMY

    EIGENVECTORS BASEDDECOMPOSITION

    EIGENVECTORS / EIGENVALUES ANALYSIS&

    MODEL BASED DECOMPOSITION

    EIGENVECTORS / EIGENVALUES ANALYSISENTROPY / ANISOTROPY

    S.R. CLOUDE - E. POTTIER(1996-1997)

    A.J. FREEMAN(1992)

    W.A. HOLM(1988)

    S.R. CLOUDE(1985)

    J.J. VAN ZYL(1992)

    AZIMUTHAL SYMMETRY

    J.R. HUYNEN(1970)

    R.M. BARNES(1988)

    Decomposition Theorems

    MODEL BASEDDECOMPOSITION

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    9

    Slide 33Slide 33

    Decomposition Theorems

    • Pauli Matrix Decomp.

    • Model Based Decomp.

    • Eigenvector Decomp.

    Slide 34

    Pauli Matrices Decomposition

    Slide 34

    00

    0110

    1001

    1001

    ][i

    idcba

    baidcidcba

    SSSS

    SVVVH

    HVHH

    1001

    aSa][

    1001

    bSb][

    0110

    cSc ][

    0ii0

    dSd ][

    Single Scattering:

    Dihedral Scattering ( … rotated by /2 about the LOS )

    Dihedral Scattering:

    Transforms all polarisation states into their orthogonal states (disappears in backscattering)

    VVHH SS

    VVHH SS

    Slide 35Slide 35

    Azi

    mut

    h

    Scattering Amplitude Images

    HH

    C-band 5 cm

    SIR-C / Test Site: Kudara,Russia

    VV HVSlide 36Slide 36

    Scattering Amplitude Images

    HH

    L-band

    23 cm

    SIR-C / Test Site: Kudara,Russia

    VV HV

    Azi

    mut

    h

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    10

    Slide 37Slide 37

    Pauli Images

    C-band L-band

    SIR-C / Test Site: Kudara,Russia

    HH+VV

    HH-VV

    2HV

    RGB-Coding:

    Slide 38Slide 38

    Decomposition Theorems

    • Pauli Matrice Decomp.

    • Eigenvector Decomp.

    • Model Based Decomp.

    Slide 39

    Eigenvector Decomposition

    Slide 39

    Coherence Matrix: P3P33 kkT

    :][

    Diagonalisation: 1333 UUT ]][][[][

    333231

    232221

    131211

    3][eeeeeeeee

    U

    3

    2

    1

    000000

    ][

    332313

    322212

    312111

    31

    3 ][][eeeeeeeee

    UU

    ][][][)()()()(][ 332

    31

    3333222111

    3

    1iiii3 TTTeeeeeeeeT

    0321

    33

    23

    13

    3

    32

    22

    12

    2

    31

    21

    11

    1

    eee

    eeee

    eeee

    e

    where:

    3 real positive eigenvalues 3 orthonormal eigenvectors

    ][][][ 321 SSS

    Slide 40

    Scattering Entropy / Anisotropy

    Slide 40

    Coherency Matrix Diagonalisation:

    ][][][)()()()(][ 332

    31

    3333222111

    3

    1iiii3 TTTeeeeeeeeT

    32

    32

    32

    32

    PPPPA

    :

    321

    iiP

    :i3

    3

    1ii PPH log:

    with:Scattering Entropy:

    Scattering Anisotropy:

    Totally Polarised Scatterer

    Totally Unpolarised Scatterer

    0H

    1H1H0 where:

    0A

    1A1A0

    2 Equal Secondary Scattering Processes

    Only 1 Secondary Scattering Processwhere:

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    11

    Slide 41Slide 41

    Scattering Entropy Images

    C-band L-band

    H=0

    H=1

    SIR-C / Test Site: Kudara,Russia

    Slide 42Slide 42

    Scattering Anisotropy Images SIR-C / Test Site: Kudara,Russia

    C-band L-band

    A=0

    A=1

    Slide 43

    Mean Scattering Parameters: Eigenvector

    Slide 43

    Coherency Matrix Diagonalisation:

    321

    iiP

    :

    Mean α-Angle:

    Mean β-Angle:

    Mean γ-Angle:

    Mean δ-Angle:

    332211 PPP

    332211 PPP

    332211 PPP

    332211 PPP

    )()()(][ 3332221113 eeeeeeT

    )exp()sin()sin()exp()cos()sin(

    )exp()cos(

    ii

    ie

    )exp()sin()sin()exp()cos()sin(

    )exp()cos(

    iii

    iii

    ii

    i

    ii

    ie

    Eigenvectors: Appearance Probabilities:

    Mean Scattering Mechanism

    Mean ε-Angle: 332211 PPP

    Slide 44Slide 44

    -Angle Images

    C-band L-band

    a=0°

    a=90°

    a=45°

    SIR-C / Test Site: Kudara,Russia

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    12

    Slide 45

    H- Angle Plane

    0 0.2 0.4 0.6 0.8 10

    10

    20

    30

    40

    50

    60

    70

    80

    90

    Low Entropy Multiple Scattering

    Medium Entropy Multiple

    Scattering

    Low Entropy Surface Scattering

    Medium Entropy Dominant Surface Scattering

    Medium Entropy DipolScattering

    Low Entropy Dipol Scattering

    0 0.2 0.4 0.6 0.8 10

    10

    20

    30

    40

    50

    60

    70

    80

    90

    High Entropy MultipleScattering

    Entropy (H)Al

    pha

    ( )

    Slide 46Slide 46

    Decomposition Theorems

    • Pauli Matrice Decomp.

    • Eigenvector Decomp.

    • Model Based Decomp.

    Slide 47

    Freeman 3 Component Decomposition

    Slide 47

    ][][][][ VDS TTTT

    000010

    fT

    2

    SS

    ][

    000010

    fT

    2

    DD

    ][

    100010002

    fT VV ][

    Vegetation Scattering : Bragg-Scattering + Dihedral Scattering + Random Volume of Dipols

    V

    VDSDS

    DSVDS

    fffffßf

    fßfffßfT

    00002

    ][

    22

    4 Equations for

    5 Unknowns

    where and

    Re(HHVV)-fv/3 > 0 Single bounce is dominant alpha =1

    Re(HHVV)-fv/3 < 0 Double bounce is dominant beta =1

    Slide 48

    3 Component Freeman Decomposition (San Francisco)

    Slide 48

    Pauli |HH-VV|, |HV|, |HH+VV| Freeman/Durden, PD, PV, PS AirSAR JPL

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    13

    Slide 49

    ][][][ / VDS TTT

    Slide 49

    Volume shape parameter of

    a randomly oriented volumedipole sphere

    =1/3 =1

    )3()||1( 2 VVGG fPfPScattering Power Components:

    Distinction between dihedral and

    surface of the ground component:

    1 dihedral

    ≥1 surface

    100010001

    000010||

    0000 2

    33

    22

    1211

    12 VGff

    TTTTT

    Freeman 2 Component Decomposition

    Slide 50

    Summary: Polarimetric Parameters / Scattering Matrix

    Slide 50

    • Scattring Amplitudes

    • Total Power

    • Amplitude Ratios

    • Pol Phase Differences

    • Helicity

    | | exp ( ) | | exp ( )exp( )exp( )[ ]| | exp ( ) | |

    HH HH VV XX XX VVVV

    XX XX VV VV

    S i S ii r iSS i Sr

    Five Parameters: 3 Amplitudes & 2 PhasesAbsolute PhaseFactor

    [ ] HH XXXX VV

    S SS

    S S

    0 * 0 * 0 *: | | : | | : | |HH HH HH N XX XX XX N VV VV VV NS S S S S S

    0 0 0 0 0 0 0/ / / ( )HH VV XX VV XX HH VV

    :HHVV HH VV

    : | | | |LL RRHel S S

    2 2 2: | | 4 | | | |VV XX VVTP S S S

    Slide 51

    Summary: Second Order Polarimetric Parameters

    Slide 51

    • Correlation Coefficients

    • Scattering Entropy

    • Scattering Anisotropy

    • Polarimetric Alpha Angle

    • Polarimetric Beta Angle

    3

    Ak B

    C

    3 3 3[ ] :

    AA AB AC

    X k k BA BB BC

    CA CB CC

    Nine Parameters: 3 Real & 3 Complex Elements

    *

    * *

    | |:| | | |

    HH VVHHVV

    HH HH VV VV

    S SS S S S

    *

    * *

    | |:| | | |

    LL RRLLRR

    LL LL RR RR

    S SS S S S

    2 3 2 3

    2 3 2 3

    : P PAP P

    1 2 3

    : iiP

    3

    31

    : logi ii

    H P P

    1 1 2 2 3 3: P P P

    1 1 2 2 3 3: P P P

    1: ( )21: ( )2

    : 2

    HH VV

    HH VV

    XX

    A S S

    B S S

    C S

    :

    : 2

    :

    HH

    XX

    VV

    A S

    B S

    C S

    Pauli Scat. Vector Lexico. Scat. Vector

    Slide 52Slide 52

    ·Agriculture/Land-UseCrop Classification/Moisture Content EstimationUrban Area mappingUrban Topography for Mobile comms

    ·ForestryBiomass Estimation: (Saturates For High Biomass)

    C-band saturation at 50 tons/hectareL-band saturation at 100 tons/hectareP band saturation at 200 tons/hectare

    DeforestationForest Canopy Height EstimationTree Species DiscriminationForest Re-growth Monitoring

    ·GeologyPlayas :Smooth Natural Surfaces(rms = 1cm)Alluvial fans, Sand Dunes, MorainesSedimentary Rock formationsLava Flows (extreme in surface roughness)Weathering Erosion StudiesSurface Roughness Estimates

    ·HydrologyFlood mapping/Forest InundationSnow HydrologySoil Moisture

    ·Sea Ice/OceanographyIce Roughness/Thickness StudiesPolar Ice Cap StudiesExtra-Terrestrial Ice/Water Studies

    ·MeteorologyRain rate estimationWater/Ice particle studies

    Severe Storm/Flood warning

    ·Topography/CartographyDirect Surface Slope EstimationAccurate DEM GenerationDifference of DEMS for Vegetation mapping

    ·Humanitarian DeminingSurface Penetrating Radar (SPR)SAR for Mine Field Detection

    Applications of Radar Polarimetry

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    14

    Slide 53Slide 53

    Soil Moisture Estimation

    • Surface characterisation

    • mv estimation over bare surface

    • mv estimation under the vegetation

    Slide 54

    Scattering @ Natural (Bare) Rough Surfaces

    Slide 54

    SURFACE ROUGHNESS

    rms - height σ [cm]

    autocorrelation length l [cm]

    VOLUMETRIC MOISTURE CONTENT

    mv [vol. %]The Backscattered signal depends on themoisture, and roughness of the surface.

    Single channel SAR cannot resolveunambiguously the bare surface scatteringproblem.

    Surface Characterisation

    Slide 56Slide 56

    Models for the Estimation of Bare Surface

    Modeling and Inversion

    EMPIRICALEXTENSIONS

    THEORETICALMODELS

    Geometrical-Optic 1963

    Physical-Optic 1963

    Oh Model 1992

    Dubois Model 1995Integral Equation 1992

    Shi Model 1997

    X-Bragg 1999

    MODEL BASEDEXTENSIONSSmall Perturbation 1988

    Time

    • very complex• inversion is

    restrictedpossible

    • inversion with dual pol observables

    • based on regressionscoefficients of a specific test site

    • simple modelextension

    • based on SPM (1st order) with an roughness extension

    Slide 57Slide 57

    Models for the Estimation of Vegetated Surface

    Modeling and Inversion

    THEORETICALMODELS

    Vegetation Models(Stiles 2000) SEMI-MODEL BASED

    EXTENSIONS

    SCATTERING DECOMPOSITION

    APPROACHES

    Eigen-DecompositionModel based-Decomposition

    Hajnsek 2009Jagdhuber 2012

    Time

    • very complexscat. models

    • inversion is not possible

    Optimisation (physical and numerical)

    Ari 2010Neumann 2010

    • simple canonical scat. models

    • inversion possible

    • extended scat. models• inversion with higher

    computation time

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    15

    Slide 58

    Small Perturbation Model

    Slide 58

    Roughness:Depolarises the incident wave introducing(depolarised) HV and decreasing polarimetriccoherence.Ambiguity: Terrain Slopes introduce also a HVcomponent but this is co-related to HH and VV.

    Moisture content:Effects the scattering amplitude of allpolarisations. For “smooth” (with respect towavelength) surfaces the co-polarimetric ratio(HH/VV) becomes independent of roughness

    Polarimetry provides an observation space that allows to separate

    roughness from moisture effects.

    ε,θR00ε,θR

    Z)θcos(k2jSSSS

    SrP

    rS

    VVVH

    HVHH

    22rr

    2r

    2r

    P)θsinεθcosε(

    ))θsin1(εθ)(sin1ε(R

    θsinεθcosθsinεθcos

    R2

    r

    2r

    S

    Exact solution of Maxwell Equation for s 0

    Z = F.T.(E(x, y))

    θ = Incidence angle and k = 2π/λ

    p

    s

    VV

    HH

    RR

    SS

    is independent of roughness

    Slide 59Slide 59

    Small Perturbation Model (Bragg-Model)

    Measured versus estimated volumetric moisture content mv [vol. %] using SPM

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0m v [vol %]

    ks

    elbe0-4elbe4-8weih0-4weih4-8

    Validity range of the SPM for the ground measurements - surface roughness against

    volumetric soil moisture

    SPM

    0

    10

    20

    30

    40

    0 10 20 30 40measured m v [vol. %]

    estim

    ated

    mv

    [vol

    . %]

    Weiherbach 0-4 cmWeiherbach 4-8 cmElbe 0-4 cmElbe 4-8 cm

    Slide 60Slide 60

    Semi-Empirical Models

    Oh-Model Dubois-Model

    Y. Oh, K. Sarabandi and F.T. Ulaby, "An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surfaces", IEEE

    Transactions on Geoscience and Remote Sensing, vol. 30, no. 2, pp. 370-381, 1992.

    2

    31

    0

    00201

    ks

    vv

    hh ep

    ksvv

    hv eq 123.0 000

    s0xx : backscattering coefficient for different polarisationsq : incidence angle in radians

    er : real part of the dielectric constants : RMS height

    k : wavenumber (2p/l)G 0 : Fresnel reflectivity of the surface at nadir

    P. C. Dubois, J. J. van Zyl and J. Engman, "Measuring Soil Moisture with Imaging Radar", IEEE Transactions on Geoscience and Remote Sensing,

    vol. 33, no. 4, pp. 915-926, 1995.

    7.04.1tan028.055.1

    75.20 sin10sin

    cos10 kshh

    7.01.1tan046.033

    35.20 sin10sincos10

    ksvv

    q : incidence angle in radianser : real part of the dielectric constant

    s: RMS heightk : wave number (2p/l)

    l : wavelength [cm]

    Cross-Pol Amplitude Relation Co-Pol Amplitude Relation

    Slide 61Slide 61

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 5 10 15 20 25 30 35 40

    measured mv [vol %]

    estim

    ated

    mv

    [vol

    %]

    0-4 elbe4-8 elbe0-4 weiherbach4-8 weiherbach

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 5 10 15 20 25 30 35 40measured mv [vol %]

    estim

    ated

    mv

    [vol

    %]

    0-4 elbe4-8 elbe0-4 weiherbach4-8 weiherbach

    Dubois Oh

    Quantitative Estimation of Volumetric Moisture mv [vol %]

    0-4 cm 4-8 cm corr.

    Elbe RMSerror 14 10 -/-

    Weih RMSerror 11 17 0.2/0.4

    0-4 cm 4-8 cm corr.

    Elbe RMSerror 7 12 -/-

    Weih RMSerror 18 25 0.5/0.6

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    16

    Slide 62Slide 62

    Dubois Oh

    Quantitative Estimation of Surface Roughness ks

    ks corr.

    Elbe RMSerror 0.21 0.6

    Weih RMSerror 0.19 -0.6

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.0 0.2 0.4 0.6 0.8 1.0measured ks

    estim

    ated

    ks

    e lbeweiherbach

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.0 0.2 0.4 0.6 0.8 1.0

    measured ks

    estim

    ated

    ks

    e lbeweiherbach

    ks corr.

    Elbe RMSerror 0.24 -

    Weih RMSerror 0.19 -0.7

    Slide 63

    Surface Parameter @ X-Bragg

    Slide 63

    Surface scattering model for the estimation ofsoil moisture content & surface roughness Back Scattering

    I. Hajnsek, E. Pottier, S. Cloude, Surface Parameter Estimation using Polarimetric SAR, IEEE TGARS, 2003, vol. 41, no. 4, pp. 727-745

    ))4(sinc1(00

    0))4(sinc1( )2(sinc*0)2(sinc

    13

    1312

    121

    CCC

    CCT

    23 2

    1=C PS RR **2 PSPS RRRRC 21 PS RRC

    0000

    02*

    *2

    PSPSPS

    PSpSPS

    RRRRRR

    RRRRRR

    T

    22

    22

    )sincos())sin1()(sin1(

    rr

    rrPR

    2

    2

    sincos

    sincos

    r

    rSR

    surface

    sensor

    Bragg Surface X-Bragg Surfaceextension

    Advantage:Simple model with direct relation to soil moisture content

    Disadvantage:not realistic enough for natural surfaces

    20 1

    Advantage:Integration of a roughness & decorrelation term provides natural surface statistics

    Disadvantage:very sensitive to vegetation cover

    Slide 64Slide 64

    Prediction of the X-Bragg Model I

    (HH+VV)(HH-VV) coherence versus b1 for different local incidence angles

    Cross polarised power versus b1 for different local incidence angles

    Slide 65Slide 65

    Variation of Anisotropy with Roughness (Model Parameter ß1 )

    Variation of Entropy/Alpha values with Dielectric Constant (45 degrees AOI)

    Prediction of the X-Bragg Model II

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    17

    Slide 66Slide 66

    Frequency:1.5to18.5 GHz10°20°

    30°

    40°

    50°

    Anisotropy versus frequency plot forthe EMSL data

    Entropy/alpha angle plot for the EMSL data

    Experimental Data from Anechoic Chamber (JRC - Ispra)Collected in European Mircowave Signature Laboratory (EMSL)

    quad-pol scattering matrix(HH,VV,HV,VH); s = 0.4 cm; surface correlation lenght l = 6; dielectric constant ‘ = 8; frequency range = 1.5-18.5

    Slide 67

    Inversion Results @ X-Bragg – Early Example on ELBE 2000

    Slide 67

    Volumetric Moisture

    N

    0 500 m

    Field 10

    Field 13

    Field 14

    Field 16

    0

    10

    20

    30

    40

    0 10 20 30 40measured m v [vol %]

    estim

    ated

    mv [v

    ol. %

    ]

    Elbe 0-4 cmElbe 4-8 cmWeiherbach 0-4 cmWeiherbach 4-8 cm

    Volumetric Moisture mv [%]

    0

    30

    Vol. [%]

    Slide 68

    Bare Surfaces: Soil Moisture Estimation @ AQUIFEREX 05

    Slide 68

    E-SAR / Test Site: Aquiferex, Tunisia

    L-band / Pauli RGB Vol. Soil MoistureDielectric ConstantSlide 69Slide 69

    Soil Moisture Estimation

    • Surface Characterisation

    • mv estimation over bare surface

    • mv estimation under the vegetation

    • 3 component model decomp.

    • improvement of the 3 component model decomp.

    • multi-angle approach combined with 3 comp. model decomp.

    • hybrid decomposition

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    18

    Slide 70

    3 Component Freeman Decomposition

    Slide 70

    Surface Dihedral Volume

    33

    22

    1211V

    2

    D2

    S

    T000TT0TT

    100010002

    4f

    00001α0α|α|

    f0000|β|β0β1

    f12

    Bragg Fresnel Random Volumeof Dipoles

    0000|β|β0β1

    fT 2*

    SBraggVH

    VH

    RRRRβ

    22rr

    2r

    2r

    V)θsinεθcosε(

    ))θsin1(εθ)(sin1ε(R

    θsinεθcosθsinεθcos

    R2

    r

    2r

    H

    Slide 71

    3 Component Freeman Decomposition

    Slide 71

    33

    22

    1211V

    2

    D2

    S

    T000TT0TT

    100010002

    4f

    00001α0α|α|

    f0000|β|β0β1

    f12

    Bragg Fresnel Random Volumeof Dipoles

    iPTPS

    STSS

    PT

    ST

    PS

    SS

    eRR00RR

    R00R

    R00R

    1001

    ]S[

    θsinεθcosθsinεθcos

    R2

    T/S

    2T/S

    )T/S(S

    θsinεθcosεθsinεθcosε

    R2

    T/ST/S

    2T/ST/S

    )T/S(P

    Surface Dihedral Volume

    Slide 72

    AGRISAR Campaign in Northern Germany 2006

    Slide 72

    1. Agricultural data base over a whole vegetation growth period - April - August 2006

    2. 16 data acquistions (DLR’s E-SAR) & ground measurements

    3. Support by ESA for the space segment - Sentinel Program

    Soil Moisture Station

    Bowen-Ratio Station

    Laser-Profiler

    ASD

    Thermal Infrared

    LAS

    DEMMIN

    Slide 73Slide 73

    dihedralvolumesurface

    03/5/2006 14/6/2006 02/8/2006 03/5/2006 14/6/2006 02/8/2006

    Freeman-Durden 3-Component Decomposition (AGRISAR 2006)

    C-band L-band

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    19

    Slide 74

    3 Component Decomposition and Modifications

    Slide 74

    Total backscatter = + +

    Surface Dihedral Volume

    000010

    LfT

    2

    2SDmoD

    ||

    Dihedral modification (modified Fresnel coefficients) (εs, εt, θ, φ, LS):

    Incorporation of a surface scattering loss LS

    1L0 S

    A1ks ))cos()(exp( 22S ks2L

    [Lee et al., 2005]

    ))4(sin1(||2100

    0))4(sin1(||21)2(sin

    0)2(sin1

    2

    2

    c

    cc

    c

    fT SXB

    Surface modification (X-Bragg) (εs, θ, ):

    [Hajnsek et al., 2001]

    sensor

    Incorporation of a roughness and HV-decorrelation term (δ)

    100010002

    4000010||

    0000||01

    0000 2

    2

    33

    2212

    1211V

    DSfff

    TTTTT

    000010||

    0000||01

    00000 2

    2'22

    '12

    '12

    '11

    DS ffTTTT

    Decision rule = or0

    0SS VVHH

    *Re

    0

    0SS VVHH

    *Re

    [Freeman & Durden, 1998, Yamaguchi et al., 2006]Slide 75Slide 75

    dihedralvolumesurface

    X-Bragg Volume 1 Volume 2

    Modified Decompositions @ L-band for 03/5/2006

    Volume 3Modified Dihedral

    Slide 76Slide 76

    Time Series of Decompositions on Field Basis @ L-band

    Wheat (No. 250) – far range

    Wheat (No. 230) – near range

    Slide 77Slide 77

    Time Series of Decompositions on Field Basis @ L-bandRape (No. 140) – near range

    Rape (No. 101) – far range

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    20

    Slide 78Slide 78

    03/5/2006 14/6/2006 02/8/2006

    Inverted Soil Moisture @ L-band Volume 2 (surface) and modified Dihedral (dihedral)

    Land use

    0

    10

    20

    30

    40

    50vol. %

    Slide 79Slide 79

    Time Series of Inverted Soil Moisture @ L-band

    Wheat field (No. 250) Wheat field (No. 230)

    + Bragg X-Bragg Volume 1 Volume 2 Volume 3*Surface Dihedral ±30% Intervall

    Slide 80Slide 80

    Time Series of Inverted Soil Moisture @ L-band

    Rape field (No. 140) Rape field (No. 101)

    + Bragg X-Bragg Volume 1 Volume 2 Volume 3*Surface Dihedral ±30% Intervall

    Slide 81Slide 81

    Soil Moisture Estimation

    • Surface Characterisation

    • mv estimation over bare surface

    • mv estimation under the vegetation

    • 3 component model decomp.

    • improvement of the 3 component model decomp.

    • multi-angle approach combined with 3 comp. model decomp.

    • hybrid decomposition

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    21

    Slide 82

    Polarimetric Decomposition Techniques & Inversion Scheme

    Slide 82

    No

    Vegetated soil

    Volume power

    extraction

    Model-based decomposition

    H/criterion

    Volume power

    correction

    Scatteringdominance

    Eigenvaluedecomposition

    Calculation of entropy and alpha

    Soil moisture inversion from surface and dihedral components

    Calculation ofground

    components

    Soil moistureinversion fromX-Bragg model

    YesBare soil

    Volume orientation

    Total soil moisture

    0 10 20 30 40 50vol.-%

    Soil Moisture MapWeisseritz Region

    Slide 82Slide 83

    Modeling of Volume Orientation

    2

    2

    log10HH

    VV

    rS

    SP

    )sin(21 pdf )cos(2

    1 pdf

    Slide 83

    Volume modelling of a cloud of uniformly

    shaped (ρ) particles with an orientation (τ)

    in azimuthal direction

    Selection of volume orientation by polarisation power ratio Pr:

    General Case Vertical dipoles[Pr < -2dB]

    Random dipoles[-2dB < Pr < 2dB]

    Horizontal dipoles[Pr > 2dB]

    21

    pdf

    8000750515

    30V

    VfT

    100010002

    4V

    VfT

    8000750515

    30V

    VfT

    [Yamaguchi et al., 2005]

    0 20 2/2/

    300024041

    CCCCC

    fT VV

    Slide 85

    Vegetation GroundSAR data

    - = +

    Negative Powers =

    Too Strong Volume Subtraction!

    Eigenanalysis of GroundComponents

    Set Eigenvalues to zero (lower calculus limit) Solutions for fv :

    Slide 85

    Correction of Volume Intensity fv with Eigen-based analysis

    [van Zyl et al., 2008]

    1 334vf T

    2,3 11 22

    2 * 211 12 12 11 22 22

    2

    8 4 4

    vf T T

    T T T T T T

    Solution

    Find Minimum Decomposiition with

    Corrected Volume Intensity

    fvcorr

    11 12 1 4*

    12 22 4 2

    33 3

    0 00 0

    0 0 0 0v

    T T C CT T f C C

    T C

    Surface DihedralT T

    Slide 86

    3 Component Decomposition and Modifications

    Slide 86

    ))(sin(||

    ))(sin(||)(sin

    )(sin

    4c12100

    04c1212c

    02c1

    fT

    2

    2SXB

    Surface model (X-Bragg) (εs, θ, ):

    Incorporation of a roughness and HV-decorrelation term

    [Hajnsek et al., 2001]

    sensor

    Total backscatter = + +

    Surface Dihedral Volume

    300024041

    000010||

    ))4(sin1(||5.0000))4(sin1(||5.0)2(sin0)2(sin1

    0000

    ,

    2

    2

    2

    33

    2212

    1211

    CCCCC

    fLfc

    ccc

    fT

    TTTT

    corrvvDS

    000010||

    ))4(sin1(||5.0000))4(sin1(||5.0)2(sin0)2(sin1

    0000 2

    2

    2

    '33

    '22

    '12

    '12

    '11

    vDS Lfc

    ccc

    fT

    TTTT

    Scattering dominance = or0

    0SS VVHH

    *Re

    0

    0SS VVHH

    *Re

    [Freeman & Durden, 1998, Yamaguchi et al., 2006]

    000010

    LfT

    2

    VDmoD ||

    Dihedral model (Fresnel with vegetation attenuation) (εs, εt, θ, φ, LV):

    Incorporation of a vegetation attenuation LV

    V

    2

    V

    1

    P

    P

    min

    max

    ))/(exp( minmax 1LV

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    22

    Slide 87Slide 87

    1. Soil moisture estimation under different land cover with measurement approaches at different scales

    2. Goal: Support flood forecasting by identification of critical catchment states

    2 Radar data acquisition flights (single pol X-, dual-pol C- and quad-pol L- and P-band)Ground measurements (soil moisture,soil roughness, biomass,…)

    OPAQUE – Campaign May 2007

    TDR and GPR

    t

    NCorner–reflectorWeißeritzFlight stripTest site

    Winter triticaleWinter wheatSummer barleyWinter barley

    Grass landWinter rapeSummer cornBare soil

    Slide 88

    Volume Orientation and Scattering Dominance @ L-band

    Slide 88

    2% 11%

    12%

    31%18%

    5%

    21% surface dominant

    vertical

    horizontal

    random

    volume orientation

    verticalhorizontalrandom

    volume orientation

    X-Bragg only

    dihedral dominant

    rang

    e

    azimuth

    Slide 89

    Slide 89

    L-Band Local incidence

    Model-based Decomposition @ L-band

    Land use

    18°

    36°

    54°

    72°

    90°degrees

    Grass landWinter rapeSummer cornBare soil

    Winter triticaleWinter wheatSummer barleyWinter barley

    range

    azim

    uth

    Slide 90

    Inverted Soil Moisture @ L-band

    Slide 90

    + =+

    Dihedral TotalSurfaceX-Bragg

    0 10 20 30 40 50vol.-%

    range

    azim

    uth

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    23

    Slide 91Slide 91

    Validation with TDR Measurements on Winter Wheat

    Vegetationheight:

    55cm

    Row distance:

    10cm

    Wet biomass:

    2,85kg/m²

    Slide 92Slide 92

    Validation with TDR Measurements on Summer Barley

    Vegetationheight:

    45cm

    Row distance:

    23cm

    Wet biomass:

    0,93kg/m²

    Slide 93Slide 93

    Validation with TDR Measurements on Winter Triticale

    Vegetationheight:

    85cm

    Row distance:

    10cm

    Wet biomass:

    3,34kg/m²

    Slide 94Slide 94

    Validation with TDR Measurements on Winter Barley

    Vegetationheight:

    70cm

    Row distance:

    10cm

    Wet biomass:

    3,31kg/m²

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    24

    Slide 95Slide 95

    Soil Moisture Estimation

    • Surface Characterisation

    • mv estimation over bare surface

    • mv estimation under the vegetation

    • 3 component model decomp.

    • improvement of the 3 component model decomp.

    • multi-angle approach combined with 3 comp. model decomp.

    • hybrid decomposition

    Slide 96

    Slide 96

    Multi-Angle Approach for Soil Moisture Inversion Rate Increase

    vol.%0

    1020

    3040

    50

    Single angular1 acquisition

    master

    Bi-angular2 acquisitions

    master -perpendicular

    Tri-angular3 acquisitions

    master -opposite -

    perpendicular

    Flight Lines Master Opposite Perpendicular

    18°

    36°

    54°

    72°

    90°

    Testsite: Weisseritz Watershed; E-SAR L-band

    Slide 97Slide 97

    Inversion Rate of Soil Moisture Estimation @ different AOI

    One acquisition

    Single angular

    master opposite perpendicular

    40.32% 29.87% 48.53%

    Two acquisitions

    Bi-angular

    master-opposite

    master-perpendicular

    opposite-perpendicular

    55.87% 63.39% 60.71%

    Three acquisitions

    Tri-angular

    master-opposite-perpendicular

    70.89%

    Slide 98Slide 98

    Field meanvalues

    Validation of Soil Moistures @ different Incidence Angles

    Sampling box: 13x13 pixelsBox coverage: 70%

    Single angularinversion (p)

    Bi-angularinversion (o-p)

    Tri-angularinversion (m-o-p)

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    25

    Slide 99Slide 99

    Single angular

    RMSE [vol.%] between Estimated and Measured Soil Moistures for Different Incidence Angle Constellations

    Bi-angular Tri-angular- = out of scene < = too less values for a valid analysis

    Fields m o p m-o m-p o-p m-o-p

    Winter Triticale 6.34 6.34 10.33 5.42 6.27 9.46 5.72

    Winter Barley < < 9.75 7.76 6.85 8.78 6.94

    Winter Rye 5.25 6.11 5.86 5.81 4.89 6.42 5.27

    Winter Wheat 4.52 < 9.79 4.41 5.04 9.54 4.98

    Summer Oat 8.55 6.43 - 6.35 8.55 6.43 6.35

    Mean 6.17 6.29 8.93 5.95 6.32 8.13 5.85

    Slide 100Slide 100

    Slide 100

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    master opposite perpendicular m-o m-p o-p m-o-p

    vol.%

    RMSE @ Different Incidence Angle Constellations

    Summer oatWinter triticaleWinter barleyWinter ryeWinter wheatNot enough valid pixelsOut of scene

    RM

    SE

    [

    ]

    RMSE=root mean squareerrorm=mastero=opposite p=perpendicular

    Single angular Bi-angular Tri-angular

    Slide 101Slide 101

    Soil Moisture Estimation

    • Surface Characterisation

    • mv estimation over bare surface

    • mv estimation under the vegetation

    • 3 component model decomp.

    • improvement of the 3 component model decomp.

    • multi-angle approach combined with 3 comp. model decomp.

    • hybrid decomposition

    Slide 102

    Removal of Vegetation Component

    Basic Principle of Hybrid Polarimetric Decomposition

    102

    Not physically constraint volume intensity!

    Volume intensity ( fv)2

    33 sin/2 vv tf

    0000sincossincos0sincossincos

    sin000sin000cos2

    200

    00

    22,,

    ,,22

    2

    2

    2

    33

    22*12

    1211

    ssddsdsdsd

    sdsdsdddss

    v

    v

    vv ffff

    fffff

    ttttt

    signature groundSurface Dihedral VolumePolarimetric Signature

    = + +

    vegetation groundsignature

    - fv = +

    Model-based decomposition for vegetation volume removal

    Eigen-based Decompositionof ground for soil moisure

    vegetation

    +Hybrid Polarimetric Decomposition

    Physically constraint volume intensity ( fvc) with surface scattering (αb)

    2 * * 2 2vc 11 22 12 12 12 124 csc(2 ) ( ( )cos(2 )) sin(2 ) /1 3cos(2 )b b b vf t t t t t t

    Graphics from www.vectorarts.net

    Slide 102

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    26

    Slide 103

    Retrieval of the Ground Scattering Components

    103

    Scattering mechanisms of ground (d, s)Physically Meaningful Separation of Scattering Mechanisms (d,s)

    Orthogonality conditiond + s= /2

    [0, /4] Surface scattering

    [/4, /2] Dihedral scattering

    s

    d

    Intensity of ground (fd, fs)

    From eigenvalues:

    From eigenvectors:

    groundvegetation

    - fvc = +

    0000sincossincos0sincossincos

    22,,

    ,,22

    ssddsdsdsd

    sdsdsdddss

    ffffffff

    Model-based decomposition for vegetation volume removal

    Eigen-based decompositionof ground for soil moisure Hybrid Polarimetric Decomposition

    103

    Eigen-based Decomposition of Ground Components

    Graphics from www.vectorarts.net

    Slide 103Slide 104

    Soil Moisture Inversion from Surface Scattering Component

    mins

    m

    Minimization

    s

    Pedo-Transfer Function of

    Topp et al. (S40)

    Soil moisture [vol.%]

    Surface scattering componentfrom hybrid polarimetric

    decomposition

    Polarimetric SAR data

    Bragg scatter modeling with locand a variety of soil dielectric constants S

    Surface scattering model

    tan( )s HH

    HH

    RR

    VVm

    VV

    RR

    RHH , RVV = f(S ,loc)

    Slide 104

    Slide 105

    Soil Moisture Inversion along Vegetation Growth Cycle range

    azim

    uth

    Land use April, 19thεs-level=20

    25cm

    5cm

    Soil moistureMax. vegetation height

    Soil moisture station

    Height:18cmWet biomass:1.88kg/m²

    5

    12

    19

    26

    33

    40

    [vol.%]

    June, 7th

    Height:167cmWet biomass:9.60kg/m²

    5

    9

    13

    17

    21

    25

    [vol.%]

    εs-level=10

    0

    4

    8

    12

    16

    20

    [vol.%]

    July, 5th

    Height:172cmWet biomass:6.26kg/m²

    εs-level=8

    Winter rape

    AgriSAR 2006L-band

    Quad-pol

    Slide 106Slide 106

    APRIL JUNE

    JULY

    RMSE=6.75 RMSE=6.98

    RMSE=4.43 validation box: 13x13 pixels

    Validation of Moisture Inversion with Field Measurements (TDR)

    RMSE [vol.%] APRIL JUNE JULYsugar beet 7.55 11.90 4.68

    winter wheat 8.06 6.15 3.40winter rape 5.70 2.62 2.06

    summer corn 5.34 3.20 5.25

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    27

    Slide 107

    Soil moisture inversion is still object of scientific research:

    Main research focuses on the estimation of mv under the vegetationOne attempt is to use SAR polarimetryfor scattering mechanism decomposition in order to characterise and subtract volume from a ground component (surface/dihedral)PolSARPro provides the possibility to invert soil moisture over bare fields and allows a decomposition of scattering mechanisms

    Outlook: Inversion procedures for vegetated areas are still missing

    Slide 107

    Summary Soil Moisture Estimation

    Slide 108

    Basic Text Books for SAR-Polarimetry and Pol-InSAR:Cloude, S., Polarisation: application in remote sensing, Oxford University Press, p. 352, 2009.Boerner, W. M. et al., ‘Polarimetry in Radar Remote Sensing: Basic and Applied Concepts’, Chapter 5 in F. M. Henderson, and A.J. Lewis, (ed.), “Principles and Applications of Imaging Radar”, vol. 2 of Manual of Remote Sensing, (ed. R. A. Reyerson), Third Edition, John Willey & Sons, New York, 1998. Elachi, C. & Van Zyl, J. J., ‘Introduction to the physics and techniques of Remote Sensing’, John Wiley and Sons, p. 552, 2006.Lee, J.S. & Pottier, E. ‘Polarimetric Radar Imaging: From Basics to Aapplications’, CRC Press, 2009.Woodhouse, I., ’Introduction to Microwaves Remote Sensing’, CRC Taylor & Francis, p. 370, 2005.

    Slide 108

    References (Part I)

    Slide 109

    Surface Parameter Inversion:Hajnsek, I., Pottier, E. & Cloude, S.R., ‘Inversion of Surface Parameters from Polarimetric SAR’, IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 4, pp. 727-745, 2003.Lee, J.-S., Boerner, W.-M., Ainsworth, T. L., Hajnsek, I., Papathanassiou, K.P., Lüneburg, E., ‘A Review of Polarimetric SAR Algorithms and their applications’, Journal of Photogrammetry and Remote Sensing, vol. 9, No. 3, pp. 31-80, 2004.Hajnsek, I. & Cloude, S., ‘The Potential of InSAR for Quantitative Surface Parameter Estimation’ Can. J. Remote Sensing, vol. 31, no.1, pp. 85-102, 2005Hajnsek, Irena; Jagdhuber, Thomas; Schön, Helmut; Papathanassiou, Kostas (2009): Potential of Estimating Soil Moisture under Vegetation Cover by means of PolSAR. IEEE [Hrsg.]: IEEE Transactions on Geoscience and Remote Sensing, IEEE, vol 47, no 2, pp. 442 – 454.M. Arii, J.J. van Zyl and Y. Kim: A general characterization for polarimetric scattering from vegetation canopies, IEEE Transactions on Geoscience and Remote Sensing, vol. 48, pp. 3349-3357, 2010. M. Neumann and L. Ferro-Famil: Extraction of particle and orientation distribution characteristics from polarimetric SAR data, in Proc. of 8th European Conference on Synthetic Aperture Radar, June 7-10, 2010, Aachen, Germany, VDE, pp. 422-425.Jagdhuber, T., I. Hajnsek, A. Bronstert & K.P. Papathanassiou, ‘Soil Moisture Estimation under Low Vegetation Cover Using a Multi-Angular Polarimetric Decomposition‘, IEEE Transactions on Geoscience and Remote Sensing,10.1108/TGRS.2012.2209433, p. 1-15, 2012.Jagdhuber, T. , I. Hajnsek, K.P. Papathanassiou, & A. Bronstert, ‘Soil Moisture Retrieval Under Agricultural Vegetation Using Fully Polarimetric SAR‘, Proc. of IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, July 22-27, pp. 1481-1484 , 2012.Jagdhuber, T., ‘Soil Parameter Retrieval under Vegetation Cover Using SAR Polarimetry, PhD Thesis, University Potsdam, Potsdam, supervised by Prof. Hajnsek and Prof. Bronstert, Date of Defense: 05.07.2012, http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60519, 2012.Bronstert, A., C. Creutzfeldt, T. Gräff, I. Hajnsek, M. Heistermann, S. Itzerott, T. Jagdhuber, D. Kneis, E. Lück & D. Reusser, ‘Potentials and constraints of different type of soil moisture observations for flood simulations in headwater catchments‘, Natural Hazards, Vol. 60, pp.879–914 , 2012.

    Slide 109

    References (Part II)

    Slide 110Slide 110

    Acknowledgement to the AgriSAR Team

    06/06/06

    INTA

  • 2nd Advanced Course on Radar Polarimetry 2013 01/24/2013

    28

    Slide 111

    Acknowledgement to the OPAQUE Team

    Slide 111

    30/05/2007

    Slide 112

    Part II: Exercises with L-band Airborne Data

    Read the airborne SAR dataSpeckle Filtering (refined Lee)Oh, Dubois and X-Bragg Inversion

    Slide 112

    HH HV

    VH VV

    Slide 113Slide 113

    Test Date Used for the Exercise

    Testsite: DemminLocation: Northern GermanyAcquisition Date: May 2012Frequency: L-bandData size: az: 2.75km rg: 2.2 kmPolarisation: 4 SLCResolution: az: 60cm x rg: 3.8mRows and colums: 7981 x 1837

    dihedralvolumesurface

    Pauli RGB

    Slide 114Slide 114

    First Steps in PolSARPro

    Please open PolSARProDefine your environmentOpen the DLR‘s acquired test Radar data