3-d integrated circuit fabrication technology for high density electronics

45
MIT Lincoln Laboratory LECC-Vertex-2006-1 VS 9/25/06 3-D Integrated Circuit Fabrication Technology for High Density Electronics Vyshnavi Suntharalingam Brian Aull, Robert Berger, Jim Burns, Chenson Chen, Jeff Knecht, Chuck Stevenson, Brian Tyrrell, Keith Warner, Bruce Wheeler, Donna Yost, Craig Keast 12th Workshop on Electronics for LHC and Future Experiments 15th International Workshop on Vertex Detectors 25-29 September 2006 *This work was sponsored by the Defense Advanced Research Projects Agency under Air Force contract #FA8721-05-C0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government .

Upload: vilina

Post on 22-Jan-2016

44 views

Category:

Documents


0 download

DESCRIPTION

3-D Integrated Circuit Fabrication Technology for High Density Electronics. Vyshnavi Suntharalingam Brian Aull, Robert Berger, Jim Burns, Chenson Chen, Jeff Knecht, Chuck Stevenson, Brian Tyrrell, Keith Warner, Bruce Wheeler, Donna Yost, Craig Keast. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln Laboratory

LECC-Vertex-2006-1VS 9/25/06

3-D Integrated Circuit Fabrication Technology

for High Density Electronics

Vyshnavi Suntharalingam

Brian Aull, Robert Berger, Jim Burns, Chenson Chen,Jeff Knecht, Chuck Stevenson, Brian Tyrrell,

Keith Warner, Bruce Wheeler, Donna Yost, Craig Keast

12th Workshop on Electronics for LHC and Future Experiments 15th International Workshop on Vertex Detectors

25-29 September 2006

*This work was sponsored by the Defense Advanced Research Projects Agency under Air Force contract #FA8721-05-C0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government .

Page 2: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-2

VS 9/25/06

• 3-D Circuit = Multi-layer (multi-tier) stacked circuit

• Advantages– Reduced interconnect length– Reduced chip size– Reduced parasitics– Reduced power– Fabrication process optimized by tier

function

• Applications– High bandwidth microprocessors– Mixed material system integration– Advanced focal planes

Local computation and/or memory 100% fill-factor diodes

Bump/Optical Connection Sites

Process Technology Optimized by Tier

Motivation for 3-D Circuit Technology

Mixed MaterialSystem Integration

High Density Vertical Interconnections

Page 3: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-3

VS 9/25/06

Pad-Level “3D Integration”Die Stacking

ChipPAC, Inc. Tessera, Inc.

Stacked Chip-Scale PackagesStacked-Die Wire Bonding

1 mm

In Production!

Page 4: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-4

VS 9/25/06

Pixel-Level 3-D IntegrationCross Sections Through Two-Tier Imager

5 m

SOI-CMOS (Tier 2)

Photodiode(Tier 1)

8 m Pixel

3D-ViaCMOS Vias

Transistor

BondInterface

Diode

SEM cross section

8 m decorated

Page 5: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-5

VS 9/25/06

Outline

• Advantages of Vertical Integration for Focal Planes– MIT-LL Demonstration of Three-tier ring oscillators

• Fabrication Sequence

• MIT Lincoln Laboratory Demonstrations– Two-tier backside-illuminated visible imager– Three-tier laser radar focal plane– Three-tier 3-D IC Multiproject Run– Two-tier bonding and interconnection to InP detector material

• Summary

Page 6: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-6

VS 9/25/06

Limitations – Standard Bulk CMOS APSMonolithic APS – MAPS

RST

ROW

OUT

VDD

photodiode

p-epi

n-Wellp-well

Field Oxide

VDD

p+

ROW

OUT

n+

p+ Substrate

Pixel Layout

RST

• Fill factor compromised– Photodetector and pixel

transistors share same area

• Low photoresponsivity– Shallow junctions– High doping– Limited depletion depth

• High leakage– LOCOS/STI, salicide– Transistor short channel effects

• Substrate bounce and transient coupling effects

Page 7: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-7

VS 9/25/06

Advantages of Vertical Integration

• Pixel electronics and detectors share area

• Fill factor loss

• Co-optimized fabrication

• Control and support electronics placed outside of imaging area

Conventional Monolithic APS 3-D Pixel

pixel

AddressingA/D, CDS, …

Add

ress

ing

• 100% fill factor detector

• Fabrication optimized by layer function

• Local image processing– Power and noise management

• Scalable to large-area focal planes

LightPD

3Tpixel

PD

ROIC

Processor

Page 8: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-8

VS 9/25/06

Approaches to 3D Integration(Photos Shown to Scale)

10 m

Bump Bond used to flip-chip interconnect

two circuit layers

Three-layer circuit using Lincoln’s SOI-based vias

Two-layer stack with insulated vias through

thinned bulk Si

10 mPhoto Courtesy of RTI

3D-Vias

Tier-1

Tier-2

Tier-1

Tier-3

Tier-23D-Vias

10 m

Page 9: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-9

VS 9/25/06

3-Tier, 3D-Integrated Ring Oscillator (DARPA 3DL1 Multiproject Run)

• Functional 3-tier, 3D-integrated ring oscillator – Uses all three active transistor

layers, 10 levels of metal and experimental stacked 3D-vias

– Demonstrates viability of 3D integration process

Tier-1: FDSOI CMOS Layer

Tier-2: FDSOI CMOS Layer

Tier-3: FDSOI CMOS Layer

3D Ring Oscillator Cross-Sectional SEM

5 m

Transistors

3DVia

3DVia

Stacked3D Via

0

100

200

300

400

500

600

700

0.5 0.75 1 1.25 1.5 1.75

Stage Delay (ps)

Power Supply (V)

99-Stage Ring Oscillator @1.5V

Page 10: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-10

VS 9/25/06

Outline

• Advantages of Vertical Integration for Focal Planes

• Fabrication Sequence and Five Key Elements– Low dark current photodiodes– Silicon on Insulator (SOI) circuits– Low-temperature, wafer-scale oxide-to-oxide bond– Precision overlay– High-density vertical interconnection

• MIT Lincoln Laboratory Demonstrations– Three-tier ring oscillators– Two-tier backside-illuminated visible imager– Three-tier laser radar focal plane– Three-tier 3-D IC Multiproject Run– Two-tier bonding and interconnection to InP detector material

• Summary

Page 11: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-11

VS 9/25/06

3-D Circuit Integration Flow-1

• Fabricate circuits on SOI wafers– SOI wafers greatly simplify 3D integration

• 3-D circuits of two or more active silicon layers can be assembled

Handle Silicon

Buried Oxide

Wafer-1

Handle Silicon

Buried Oxide

Wafer-2

Handle Silicon

Buried Oxide

Wafer-3

Wafer-1 can be either Bulk, SOI,

or Compound Semiconductor

Page 12: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-12

VS 9/25/06

90,000 parallel diodes

10,000 diodes(same area)

1. Low Dark Current Photodiodes

Single tier test structure w/guard ringFull thickness wafer

• Photodiode independent of CMOS

• High-resistivity substrates

• Back-illumination process

• Photodiode leakage <0.2nA/cm2 @ 25ºC

• Similar results after 3D-stacking

Page 13: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-13

VS 9/25/06

2. Silicon-On-Insulator Circuits

50 nm Si

Buried Oxide

Silicon Handle Wafer

• 3.3-V, 350-nm gate length, fully depleted SOI CMOS

• Buried oxide

– Dielectric isolation

– Reduced parasitic capacitances

– Enhanced radiation performance

– Essential wafer-thinning etch stop

silicided poly gate

contact

silicon channel

Handle Wafer

Buried Oxide

Page 14: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-14

VS 9/25/06

• Invert, align, and bond Tier 2 to Tier 1

3-D Circuit Stacking

Oxide-Oxide Wafer Bond

High-Resistivity Bulk Wafer

SOI Handle Wafer

CMOS

PD

Page 15: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-15

VS 9/25/06

• Remove handle silicon from Tier-2

3-D Circuit Stacking

High-Resistivity Bulk Wafer

CMOS

PD

Page 16: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-16

VS 9/25/06

3. Low Temperature Oxide Layer-to-Layer Bonding

• Deeply scaled 3-D interconnect technology requires robust wafer-to-wafer bonding technology

• MIT-LL low temperature oxide bonding process provides

– Thin and controllable bondline

– Enables use of standard IC high aspect ratio contact etch and plug fill technologies

~475oC process

– Allows for 3-D interconnect to be sintered

– Standard, high reliability semiconductor material

IR Image(low-temperature oxide-bonded wafer pair)

150 mm

5 m

Bonded Wafer-Pair Cross Section

oxide bond interface

Tier-1 metal

Tier-2 metal

Page 17: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-17

VS 9/25/06

4. Precision wafer-to-wafer overlay

Control computer

Mapping video

Low mag. video

6-axis PZT stage

Laser interferometer controlled XY stage

Bottom wafer chuck

Top wafer chuck

NIR microscopes

Mapping microscope

Pre-align plate

Low mag. microscope

150-mm dia. wafer

• Provide a wafer-to-wafer alignment accuracy compatible with a submicron 3D Via

• Tool based on modern IC wafer stepper technology

• 0.5 m 3-sigma overlay demonstrated

Control Interface

Page 18: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-18

VS 9/25/06

Repeatability DataMIT-LL Precision Aligner

•Data from five repeated alignments of same wafer pair•Nine die measured per alignment

-1.0 -0.5 0.0 0.5 1.00

10

20

30

40

X Offset Data

Y Offset Data

Deviation (m)

To

tal P

erce

nt

of

Die

Mea

sure

d (

%)

xxx

xx

x xxx

150-mm wafer-pair(measurement locations)

+/- 0.25m

Page 19: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-19

VS 9/25/06

3D Via Layout Comparison(Based on MIT-LL 180nm FDSOI CMOS rules)

Previous capability With recently developed precision alignment system and via technology

3D via 2.0 m

3D via ~1.0 m3D via landing pad 5.5 m

3D via landing pad 2.0 m

Inter-metalvia 0.4 m

CMOSInverter

Page 20: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-20

VS 9/25/06

Bonded Two Wafer Imager Stack

150-mm Diameter Wafer Pair

Page 21: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-21

VS 9/25/06

Inter-Tier Via Connections

• Pattern, etch, and fill 3-D vias

• (Additional circuit tiers could be added)

Concentric3-D Via

High-Resistivity Bulk Wafer

CMOS

PD

Page 22: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-22

VS 9/25/06

5. High Density, High Yield, Compact 3D-Via

3D Via Cross-sections

Bond Interface

Tier-1 Metal

Tier-2 Metal

CVD-W Plug

Decorated Bond Interface

• Leverages standard high-yield IC process technology for 3D interconnection– High density plasma oxide etch of

via hole– Chemical vapor deposition of

tungsten plug– Chemical mechanical planarization

(CMP) to form damascene plug

Silicon

M1

Tier-1 Landing Pad

M2

M3

Oxide Bond

Circuit Tier-2

Circuit Tier-1

“Donut” Metal

W 3D-Via

Page 23: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-23

VS 9/25/06

Thermal Cycle Effects on 3D-Via ChainsThermal Cycle: 300 K/ 77 K/ 300 K

3D-Via Chain Resistance vs # of 3D Vias and Thermal Cycles

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

# of 3D Vias in Series

To

tal R

esis

tan

ce (

Ω)

1 Cycle

2 Cycles

3 Cycles

4 Cycles

5 Cycles

6 Cycles

7 Cycles

8 Cycles

9 Cycles

10 Cycles

# of cycles

Page 24: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-24

VS 9/25/06

Back Metal-1 and Back Metal-2

• Deposit and pattern Back Metal-1

• Deposit and CMP ILD

• Deposit and pattern Back Metal-2

• Sinter

High-Resistivity Bulk Wafer

CMOS

PD

Page 25: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-25

VS 9/25/06

Transparent Substrate

Completed Back-Illuminated CMOS Imager

• Thin photodiode substrate to 50m

• Epoxy bond to quartz

CMOS

PD

Light

Page 26: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-26

VS 9/25/06

Outline

• Advantages of Vertical Integration for Focal Planes

• Fabrication Sequence

• MIT Lincoln Laboratory Demonstrations– Three-tier ring oscillators– Two-tier backside-illuminated visible imager– Three-tier laser radar focal plane– Three-tier 3-D IC Multiproject Run– Two-tier bonding and interconnection to InP detector material

• Summary

Page 27: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-27

VS 9/25/06

Four-Side Abuttable Goal

• 3-D CMOS imagers tiled for large-area focal planes

• Foundry fabricated daughter chip bump bonded to non-imaging side

Tiled Arraymechanical mockup

Tile withDaughter Chip

8 mm

FoundryChip

pixel

Page 28: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-28

VS 9/25/06

Four-Side AbuttableVertically Integrated Imager

• Silicon photodetector layer (Tier-1)– Four-side abuttable 1024 x 1024 array

of 8m x 8m pixels

• Address and readout layer (Tier-2)– 3.3 volt FDSOI CMOS layer

• Timing, control, and analog-to-digital electronics (Tier-3)

– MOSIS fabricated chip bump bonded to detector array

• Active-pixel architecture for radiation tolerance

Light

3D-Integrated Tier-1/Tier-2 wafer pair

150 mm

> 1 million 3D interconnects per imager

4 x 4 Tiled Array(mock-up)

Page 29: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-29

VS 9/25/06

Design Goals

• Four-side abuttable Active Pixel Sensor

• 1024 x 1024 array of 8m x 8m pixels

• 3-D interconnections per pixel

• 3.3-V operating voltage

• Full digital control and readout at 10 fps

Page 30: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-30

VS 9/25/06

Completed 3D-Stacked ImagerWafer and Die Layout

22 mm

1024 x 1024p-reset + cap

1024 x 1024n-reset

p-reset

n-reset

p-reset + cap

p-reset, cap, SOI diode

Process Monitoring Devices and Circuits

150-mm wafer

8m

Page 31: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-31

VS 9/25/06

3T Pixel Schematic and Layout

ROWRSTLVL

VDDA

RST

VSS

+PDBIAS

3-D Via

VPIX

15fF

3D-Via

8m

• Design Variations– pFET Reset with 15fF capacitor– nFET Reset with no capacitor

Page 32: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-32

VS 9/25/06

1024 x 1024 Imager Array Architecture

Column Select

Row Select Shift

Register

Integration Shift

Register 11

11

Four Outputs From 256

Page 33: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-33

VS 9/25/06

Preliminary Tier-1-2 3D Imager Test Results

• Electrical probe station preliminary imager test result using frontside illumination– Final processing steps will result in unobstructed backside illuminated device

High-resistivity bulk siliconHigh-resistivity bulk siliconHigh-resistivity bulk silicon

1024 x 1024 Image from FIRST 3D-Integrated Wafer Pair*

Image acquired at 10 frames/sec(Background Subtracted, Pixel Yield > 99.9%, 3.8M transistors)

*35-mm slide image projected through CMOS-circuit-side of 3D-integrated imager on chip test station

Photodetector tier(Tier 1)

SOI-CMOS circuit tier(Tier 2)

Presented at 2005 ISSCC

Page 34: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-34

VS 9/25/06

Sample Dark Background

• Raw image without fixed pattern noise suppression

• Dominant yield detractor is row/column drop-outs

Panel 1 Panel 2 Panel 3 Panel 4

Four Analog Outputs

Open3D-Vias

Page 35: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-35

VS 9/25/06 Presented at 2005 ISSCC

Front Illuminated Back Illuminated

Four-Side Abuttable Vertically Integrated Imaging Tile

• Wafer-Scale 3D circuit stacking technology– Silicon photodetector tier– SOI-CMOS address and readout tier

Per-pixel 3D interconnections

– 1024 x 1024 array of 8 m x 8 m pixels– 100% fill factor– >1 million vertical interconnections per imager

Page 36: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-36

VS 9/25/06

Outline

• Advantages of Vertical Integration for Focal Planes

• Fabrication Sequence

• MIT Lincoln Laboratory Demonstrations– Three-tier ring oscillators– Two-tier backside-illuminated visible imager– Three-tier laser radar focal plane– Three-tier 3-D IC Multiproject Run– Two-tier bonding and interconnection to InP detector material

• Summary

Page 37: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-37

VS 9/25/06

Three-Tier Laser Radar Focal Plane

• Based on single-photon-sensitive Geiger-mode avalanche photodiodes

– 64 x 64 demonstration circuit (scalable to large imager formats)

– Pixel size reduction from 100 m to 30 m– Timing resolution reduction from 1 ns to

0.1 ns– 100x reduction in voxel volume

APD APDTier-1: 30V Avalanche Photodiode

Tier-2: 3.5V FDSOI CMOS

Tier-3: 1.5V FDSOI CMOS

Pseudorandom counter circuit

Avalanche PD

APD drive/sense circuit

VISA APD Pixel Circuit (~250 transistors/pixel)

VISA 3D Stack Cross Section

Completed Backside-illuminated 3-tier, 3D Laser Radar wafer

150 mm

Page 38: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-38

VS 9/25/06

Functional 3D-Integrated, 3-Tier Avalanche Photodiode Focal Plane

• VISA laser radar focal plane based on single-photon-sensitive Geiger-mode avalanche photodiodes– 64 x 64 format – 50-m pixel size

To-Scale Pixel Layout of Completed 3-tier Laser Radar Focal Plane

Tier-1AvalanchePhotodiode

(APD)

Tier-2APD

Drive/SenseCircuitry

Presented at 2006 ISSCC

Tier-3High-Speed

Counter

~250 transistors/pixel(50 m x 50 m)

10 mTier-1: 30V Back Illuminated APD Layer

Tier-2: 3.5V SOI CMOS Layer

Tier-3: 1.5V SOI CMOS Layer

Completed Pixel Cross-Sectional SEM

10 m

Transistors

3DVia

3DVia

Page 39: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-39

VS 9/25/06

64x64 LADAR Focal PlaneFirst Demonstration of 3-Tier Focal Plane

Pixels

• Rudimentary ladar image of 28” long cone with 8-in timing resolution

– Timing circuit limited to only 9-bits of its full 12-bit range

Orientation of cone image on focal plane

Grayscale range image with superimposed contours

False color range image

Complete 3-tier, back-illuminated64 x 64 APD Laser Radar

1 mm

Page 40: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-40

VS 9/25/06

Outline

• Advantages of Vertical Integration for Focal Planes

• Fabrication Sequence

• MIT Lincoln Laboratory Demonstrations– Three-tier ring oscillators– Two-tier backside-illuminated visible imager– Three-tier laser radar focal plane– Three-tier 3-D IC Multiproject Run– Two-tier bonding and interconnection to InP detector material

• Summary

Page 41: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-41

VS 9/25/06

3-D IC Multiproject Run Completed (Three 180-nm, 1.5 volt FDSOI CMOS Tiers)

MIT

NRL

Cornell

Pennsylvania

Delaware

Purdue

Idaho

RPI

Johns Hopkins

StanfordTennessee

Lincoln Laboratory

UCLA

Maryland

WashingtonNorth Carolina State

Yale

HRL

BAE

LPS

Minnesota

MIT

NRL

Cornell

Pennsylvania

Delaware

Purdue

Idaho

RPI

Johns Hopkins

StanfordTennessee

Lincoln Laboratory

UCLA

Maryland

WashingtonNorth Carolina State

Yale

HRL

BAE

LPS

Minnesota

3DL1 Participants (Industry, Universities, Laboratories)

• MIT-LL 3D circuit integration technology

• Preliminary 3D design kits developed- Mentor Graphics – MIT-LL, Cadence – NCSU,

Thermal Models – CFRDC

• Design guide release 11/04, fab start 6/05, 3D-integration complete 3/06

Concepts being explored in run:

3D-integrated S-band digital beam former

3D FPGAs, digital, and digital/mixed-signal/RF

ASICs exploiting parallelism of 3D-interconnects

Low Power Multi-gigabit 3D data links

3D analog continuous-time processor

Thermal 3D test structures and circuitsNoise coupling/cross-talk test structures and circuits

Stacked memory (SRAM, Flash, and CAM)Self-powered CMOS logic (scavenging)Integrated 3D Nano-radio and RF tags

Intelligent 3D-interconnect evaluation circuitsDC and RF-coupled interconnect devices

3D-integrated S-band digital beam former

3D FPGAs, digital, and digital/mixed-signal/RF

ASICs exploiting parallelism of 3D-interconnects

Low Power Multi-gigabit 3D data links

3D analog continuous-time processor

Thermal 3D test structures and circuitsNoise coupling/cross-talk test structures and circuits

Stacked memory (SRAM, Flash, and CAM)Self-powered CMOS logic (scavenging)Integrated 3D Nano-radio and RF tags

Intelligent 3D-interconnect evaluation circuitsDC and RF-coupled interconnect devices

Wafer photo of completed tier-1

150-mm-diameter wafer

Page 42: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-42

VS 9/25/06

Cross-Section of 3-Tier 3D-integrated Circuit (DARPA 3DL1 Multiproject Run)

3 FDSOI CMOS Transistor Layers, 10-levels of Metal

Tier-1: 180-nm, 1.5V FDSOI CMOS

Tier-2: 180-nm1.5V FDSOI CMOS

Tier-3: 180-nm, 1.5V FDSOI CMOS

Tier-3: Transistor Layer

Tier-2: Transistor Layer

3D-Via

3-Level Metal

StackedVias

Oxide Bond Interface

Oxide Bond Interface

10 m

Tier-1: Transistor Layer

3D-Via 3D-Via

Back Metal

Metal Fill

Page 43: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-43

VS 9/25/06

3D Technology Improvements(DARPA 3DL1 Multiproject Run)

• 3D technology enhancements successfully demonstrated in 3DL1 Run – Stacked 3D-vias for electrical

and thermal interconnect– 2X reduction in 3D-via size– Improved tier-to-tier overlay

99-Stage Ring Oscillator @1.5V

5 m

Scaled Conventional5 m

5 m

Stack 3D-vias demonstrated

>95% yield on 4800 link chains

Stacked 3D-via resistance ~1

Can be used as thermal vias

Vector Scale

1 m

VectorScale

1m

VectorScale

1m

~0.5 m 3 Tier-to-Tier Registration

High-Yield on >5000-link Scaled 3D-via Chains

Page 44: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-44

VS 9/25/06

Silicon to InP Wafer Bonding

• Successful demonstration of 3D-bonding of SOI CMOS circuit layer to InP handle wafer

• Enables extension of 3D-integration technology to higher density, longer wavelength focal plane detectors

– Tight pixel-pitch IR focal planes and APD arrays

– InGaAsP (1.06-m), InGaAs (1.55-m)

Oxide-bonded circuit layer transferred from silicon wafer

150-mm-diameter InP Wafer

Page 45: 3-D Integrated Circuit Fabrication Technology  for High Density Electronics

MIT Lincoln LaboratoryLECC-Vertex-2006-45

VS 9/25/06

Summary

• MIT Lincoln Laboratory-developed 3D circuit integration technology has been applied to advanced focal planes and three-tier computational circuits

• Successful demonstrations:– Two-tier visible imager: 1024x1024 array of 8m x 8m pixels

integrated to 100% fill factor photodiodes, backside illuminated– Three-tier ring oscillators in 180-nm gate length technology– Three-tier laser radar focal plane: 64x64 array of Geiger-mode

avalanche photodiodes with per-pixel timing and bias circuitry– Three-tier 3-D IC Multiproject Run in 180-nm gate length

technology– Two-tier bonding and interconnection to SWIR-sensitive detector

materials (InP)