3 stresses

Upload: risdian-riez

Post on 02-Mar-2016

15 views

Category:

Documents


0 download

DESCRIPTION

hdlyduydydyi

TRANSCRIPT

  • Simple Stresses in Machine PartsSimpleStressesinMachineParts

    VedatTemizAssistant Professor ofMachine Design

  • Introduction Inengineeringpractice,themachinepartsaresubjectedto

    variousforceswhichmaybeduetoeitheroneormoreofthefollowing:1) Energy transmitted,2) Weight ofmachine,3) Frictional resistances,4) Inertiaofreciprocatingparts,5) Changeoftemperature,and6) Lackofbalanceofmovingparts.

  • Load

    It is defined as any external force acting upon a machine part Itisdefinedasanyexternalforceactinguponamachinepart.Thefollowingfourtypesoftheload areimportantfromthesubjectpointofview:j p

    1.Deadorsteadyload.Aloadissaidtobeadeadorsteadyload,whenitdoesnotchangeinmagnitude or direction.

    2.Liveorvariableload.Aloadissaidtobealiveorvariableload,whenitchangescontinually.

    3.Suddenlyappliedorshockloads.Aloadissaidtobeasuddenlyappliedorshockload,whenitissuddenlyappliedor

    dremoved. 4.Impactload.Aloadissaidtobeanimpactload,whenitis

    applied with some initial velocityappliedwithsomeinitialvelocity.

  • Stress Whensomeexternalsystemofforcesorloadsactonabody,

    the internal forces (equal and opposite) are set up at varioustheinternalforces(equalandopposite)aresetupatvarioussectionsofthebody,whichresisttheexternalforces.Thisinternalforceperunitareaatanysectionofthebodyisp y yknownasunitstressorsimplyastress.Itisdenoted byaGreeklettersigma().Mathematically,

    AF= Forceorloadactingonabody

    C ti l f th b dA CrosssectionalareaofthebodyInS.I.units,thestressisusuallyexpressedinPascal(Pa)suchthat1Pa=1N/m2

  • Strain

    When a system of forces or loads act on a body it undergoes Whenasystemofforcesorloadsactonabody,itundergoessomedeformation.Thisdeformationperunitlengthisknownasunitstrainorsimplyastrain.ItisdenotedbyaGreekletterp y yepsilon().Mathematically

    Ch i l th f th b d

    ll=

    Changeinlengthofthebody

    Originallengthofthebody

  • TensileStress and Strain

    When a body is subjected to two equal and opposite axial WhenabodyissubjectedtotwoequalandoppositeaxialpullsF(alsocalledtensileload)asshowninFig.(a),thenthestressinducedatanysectionofthebodyisknownastensiley f ystressasshowninFig.(b).

    A little consideration will show that due to theAlittleconsiderationwillshowthatduetothetensileload,therewillbeadecreaseincrosssectionalareaandanincreaseinlengthofthebody The ratio of the increase in length to thebody.Theratiooftheincreaseinlengthtotheoriginallengthisknownastensilestrain.

  • TensileStress and Strain

    Tensile stress Tensilestress

    F AxialtensileforceactingonthebodyAt

    =Crosssectionalareaofthebody

    Tensile strain

    lt

    = Increase inlengthlt

    Original length

  • Compressive Stress and Strainp

    When a body is subjected to two equal and opposite axial WhenabodyissubjectedtotwoequalandoppositeaxialpushesF(alsocalledcompressiveload)asshowninFig.(a),thenthestressinducedatanysectionofthebodyisknownasy ycompressivestressasshowninFig.(b).

    A little consideration will show that due to theAlittleconsiderationwillshowthatduetothecompressiveload,therewillbeanincreaseincrosssectionalareaandadecreaseinlengthofthebody.The ratio of the decrease in length to the originalTheratioofthedecreaseinlengthtotheoriginallengthisknownascompressivestrain.

  • Compressive Stress and Strainp

    Compressive stress Compressive stress

    F AxialcompressiveforceactingonthebodyAc

    =Crosssectionalareaofthebody

    Compressive strain

    lc

    = Decrease inlengthlc

    Original length

  • Young'sModulusorModulusofElasticity

    Hooke's law* states that when a material is loaded within Hooke slaw*statesthatwhenamaterialisloadedwithinelasticlimit,thestressisdirectlyproportional to strain

    whereEisaconstantofproportionalityknownasYoung'smodulusormodulusofelasticity.In S.I.units,itisusuallyexpressedinGPai.e.GN/m2 orkN/mm2.ItmaybenotedthatHooke'slawholdsgoodfor tension as well as compressionfortensionaswellascompression.

    lFE lAlFE ==

    *ItisnamedafterRobertHooke,whofirstestablisheditbyexperimentsin1678.

  • V l f E f th lValuesofE forthecommonlyusedengineeringmaterialsg g

  • Shear Stress and Strain

    When a body is subjected to two equal and opposite forces Whenabodyissubjectedtotwoequalandoppositeforcesactingtangentiallyacrosstheresistingsection,asaresultofwhichthebodytendstoshearoffthesection,thenthestressy ,inducediscalledshearstress.

  • Shear Stress and Strain

    Thecorrespondingstrainisknownasshearstrainanditisp gmeasuredbythe angulardeformationaccompanyingtheshearstress.Theshearstressandshearstrainaredenotedbythe

    k l ( ) d hi () i l h i llGreekletterstau()andphi()respectively.Mathematically,

    2

    4dFF

    AF === 22

    4ddA

  • ShearModulusorModulusofRi iditRigidity

    It has been found experimentally that within the elastic limit Ithasbeenfoundexperimentallythatwithintheelasticlimit,theshearstressisdirectlyproportionaltoshearstrain.Mathematicallyy

    G/orGor == Shear stress Constantof

    proportionality knownShear strain

    proportionality,knownasshearmodulusormodulusofrigidity

  • ValuesofG forthecommonlyused materialsusedmaterials

  • Bearing Stressg Alocalised compressivestressatthesurfaceofcontact

    betweentwomembersofamachinepart,thatarerelativelyatrestisknownasbearingstressorcrushingstress.Thebearing stress is taken into account in the design of rivetedbearingstressistakenintoaccountinthedesignofrivetedjoints,cotterjoints,knucklejoints,etc.

    ldF

    AFpb ==

    average bearingpressure

    Radialloadonthejournal

    Di f h j l

    Lengthofthejournalincontact

    Diameter ofthe journal

  • Stressstrain Diagramg

    In designing various parts of a Indesigningvariouspartsofamachine,itisnecessarytoknowhowthematerialwillfunctioninservice For this certainservice.Forthis,certaincharacteristicsorpropertiesofthematerialshouldbeknown.The

    h l l dmechanicalpropertiesmostlyusedinmechanicalengineeringpracticearecommonlydeterminedfromastandardtensiletest.Thistestconsistsofgraduallyloadingastandardspecimenofamaterialpandnotingthecorrespondingvaluesofloadandelongationuntilthe specimen fracturesthespecimenfractures.

  • Stressstrain Diagramg 1.Proportionallimit. Thediagram shows

    that from point O to A is a straight linethatfrompointOtoAisastraightline,whichrepresentsthatthestressisproportionaltostrain.Itisobvious,thatH k ' l h ld d t i t A dHooke'slawholdsgooduptopointAanditisknownasproportionallimit.

    2.Elasticlimit.ItmaybenotedthateveniftheloadisincreasedbeyondpointAuptothepointB,thematerialwillregainitsshapeandsizewhentheloadisremoved.s ape a d s e e t e oad s e o edThismeansthatthematerialhaselasticpropertiesuptothepointB.Thispointisknown as elastic limitknownaselasticlimit.

    Note: Sincetheabovetwolimitsareveryclosetoeachother,therefore,forallpracticalpurposesthesearetakentobeequal.

  • Stressstrain Diagramg 3.Yieldpoint.Ifthematerialisstressed

    beyond point B the plastic stage willbeyondpointB,theplasticstagewillreachi.e.ontheremovaloftheload,thematerialwillnotbeabletorecoveritsi i l i d h At thi i t thoriginal sizeand shape. Atthispoint,the

    materialyieldsbeforetheloadandthereisanappreciablestrainwithoutanyincreaseinstress The stress corresponding to yield pointstress.Thestresscorrespondingtoyieldpointisknownasyieldpointstress.

    4.Ultimatestress.AtD,thespecimenregainst th d hi h l f tsomestrengthandhighervaluesofstresses

    arerequiredforhigherstrains,thanthosebetweenAandD.Thestress(orload)goesonincreasing till the point E is reached At E theincreasingtillthepoint Eisreached. AtE,thestress,whichattainsitsmaximumvalueisknownasultimatestress.It isdefinedasthelargest stress obtained by dividing the largestlargeststressobtainedbydividingthelargestvalueoftheloadreachedinatesttotheoriginalcrosssectionalareaofthetestpiece.

  • Stressstrain Diagramg 5.Breakingstress.Afterthespecimenhas

    reached the ultimate stress a neck isreachedtheultimatestress,aneckisformed,whichdecreasesthecrosssectionalareaofthespecimen,asshowni Fi (b) A littl id ti ill hinFig.(b). Alittleconsiderationwillshowthatthestress(orload)necessarytobreakawaythespecimen,islessthanthemaximumstress.Thestressis,therefore,reduceduntilthespecimenbreaksawayatpointF.ThestresscorrespondingtopointFisknownasbreakingstress.

    6.Percentagereductioninarea.

    A = Original cross sectional area andA=Originalcrosssectionalarea,anda=Crosssectionalareaattheneck.

  • Stressstrain Diagramg

    7 P t l ti It i th 7.Percentage elongation. Itisthepercentageincreaseinthestandardgaugelength(i.e.originallength)obtainedbymeasuringthefracturedspecimenafterbringingthebrokenpartstogether.

    l=Gaugelengthororiginallength,andL=Lengthofspecimenafterfractureorfinallength.

    Note : The percentage elongation gives aNote :Thepercentageelongationgivesameasureofductilityofthemetalundertest.

  • Working Stressg

    Whendesigningmachineparts,itisdesirabletokeepthestresslowerthanthemaximumorultimatestressatwhichfailure of the material takes place This stress is known as thefailureofthematerialtakesplace.Thisstressisknownastheworkingstressordesignstress.Itisalsoknownas safeorallowablestress.

    Note: Byfailureitisnotmeantactualbreakingofthematerial.Somemachinepartsid t f il h th h l ti d f ti t i th d tharesaidtofailwhenthey haveplasticdeformationsetinthem,andtheynomore

    performtheirfunctionsatisfactory.

  • Factor ofSafetyy Itisdefined,ingeneral,asthe ratioofthemaximumstressto

    the working stress Mathematicallytheworkingstress.Mathematically,

    Incaseofductilematerialse.g.mildsteel,wheretheyieldpointisclearlydefined,thefactorofsafetyisbasedupontheyieldpointstress.Insuchcases,

    Incaseofbrittlematerialse.g.castiron,theyieldpointisnotwelldefinedasforductilematerials.Therefore,thefactorofsafetyforbrittlematerialsisbasedonultimatestress., y

  • SelectionofFactorofSafetyy Theselectionofaproperfactorofsafetytobeusedindesigninganymachine

    componentdependsuponanumberofconsiderations,suchasthematerial,modeofmanufacture,typeofstress,generalserviceconditionsandshapeoftheparts.Beforeselectingaproperfactorofsafety,adesignengineershouldconsiderthefollowingpoints:g p

    1) Thereliabilityofthepropertiesofthematerialandchangeofthesepropertiesduringservice;

    ) h li bili f l d f li i f h l2) Thereliabilityoftestresultsandaccuracyofapplicationoftheseresultstoactualmachineparts ;

    3) Thereliabilityofappliedload;) y pp ;4) Thecertaintyastoexactmodeoffailure;5) Theextentofsimplifyingassumptions;6) Theextentoflocalised stresses;7) Theextentofinitialstressessetupduringmanufacture;8) The extent of loss of life if failure occurs ; and8) Theextentoflossoflifeiffailureoccurs;and9) Theextentoflossofpropertyiffailureoccurs.

  • Valuesoffactorofsafety

  • StressesduetoChangeinT t Th l StTemperatureThermalStresses

    Wheneverthereissomeincreaseordecreaseinthetemperatureofabody,itcausesthebodytoexpandorcontract.Alittleconsiderationwillshowthatifthebodyisallowed to expand or contract freely with the rise or fall ofallowedtoexpandorcontractfreely,withtheriseorfallofthetemperature,nostressesareinducedinthebody.But,ifthedeformationofthebodyisprevented,somestressesarethe deformation of the body is prevented, some stresses areinducedinthebody.Suchstressesareknownasthermalstresses. Iftheendsofthebodyarefixedtorigid

    Increaseordecreaseinlengthy g

    supports,sothatitsexpansionisprevented,thencompressivestraininducedinthebody

    tll tll =

    l=Originallengthofthebody,

    tl

    tlll

    c ===

    t=Riseorfalloftemperature,and=Coefficientofthermalexpansion

    Thermal stress tEEcth ==

  • Linear and Lateral Strain

    Alittleconsiderationwillshowthatduetotensileforce,thelengthofthebarincreasesbyanamountlandthediameterdecreasesbyanamountd.Similarly,ifthebarissubjectedtoacompressiveforce,thelengthofbarwilly, f j p , gdecreasewhichwillbefollowedbyincreaseindiameter.

    It is thus obvious, that every direct stress is accompanied by a strain in its ownItisthusobvious,thateverydirectstressisaccompaniedbyastraininitsowndirectionwhichisknownaslinearstrainandanoppositekindofstrainineverydirection,atrightanglestoit,is known aslateral strain.

  • Poisson's Ratio

    Ithasbeenfoundexperimentallythatwhenabodyisstressedwithinelasticlimit,thelateralstrainbearsaconstantratiotothelinearstrain,Mathematically,

    ThisconstantisknownasPoisson'sratioandisdenotedby1/mor.

  • Values of Poissons ratio for commonlyValuesofPoisson sratioforcommonlyusedmaterials

  • Volumetric Strain

    When a body is subjected to a system of forces it undergoes Whenabodyissubjectedtoasystemofforces,itundergoessomechangesinitsdimensions.Inotherwords,thevolumeofthebodyischanged.Theratioofthechangeinvolumetothey g goriginalvolumeisknownasvolumetricstrain.Mathematically,volumetricstrain, V/V= V/Vv =

    V=Change involume,and V=Original volumeVolumetricstrainofarectangularbodysubjectedtoanaxialforceisgivenas

    == Vv 21 =Linear strain. mVvVolumetricstrainofarectangularbodysubjectedtothreemutuallyperpendicularforcesisgivenbyg y

    wherex,y andz arethestrainsinthedirectionsxaxis,yaxisandzaxisrespectively

  • Bulk Modulus

    When a body is subjected to three mutually perpendicular Whenabodyissubjectedtothreemutuallyperpendicularstresses,ofequalintensity,thentheratioofthedirectstresstothecorrespondingvolumetricstrainisknownasbulkp gmodulus.

    ItisusuallydenotedbyK.Mathematically,bulkmodulus,

  • Relation Between Bulk Modulus and Youngs ModulusRelationBetweenBulkModulusandYoung sModulus

    Thebulkmodulus(K)andYoung'smodulus(E)arerelatedbythefollowingl irelation,

    R l ti B t Y M d l d M d l f Ri iditRelationBetweenYoungsModulusandModulusofRigidityTheYoung'smodulus(E)andmodulusofrigidity(G)arerelatedbythefollowingrelationrelation

  • Impact StresspThestressproducedinthememberduetothefallingloadisknownasimpactstress.a g oad s o as pact st ess.ConsiderabarcarryingaloadWataheighthandfallingonthecollarprovidedatthelowerend as shown in Figend,asshowninFig.

    Weknowthatenergygainedbythesysteminthe form of strain energytheformofstrainenergy

    d t ti l l t b th i htandpotentialenergylostbytheweight

    Sincetheenergygainedbythesystemisequaltothepotentialenergylostbytheweight,therefore

  • Impact Stressp

    F thi d ti ti fi d th tFromthisquadraticequation,wefindthat

    Note :Whenh=0,theni =2W/A.Thismeansthatthestressinthebarwhentheloadinappliedsuddenlyisdouble ofthestressinducedduetograduallyappliedload.

  • Torsional Shear Stress Whenamachinememberissubjectedtotheactionoftwoequaland

    opposite couples acting in parallel planes (or torque or twisting moment)oppositecouplesactinginparallelplanes(ortorqueortwistingmoment),thenthemachinememberissaidtobesubjectedtotorsion.Thestresssetupbytorsionisknownastorsional shearstress.Itiszeroatthecentroidalaxisandmaximumattheoutersurface.

    = Torsional shearstressinducedattheoutersurfaceoftheshaftormaximumshear stress,r= Radiusoftheshaft,T= Torque or twisting moment,J=Secondmomentofareaofthesectionaboutitspolaraxisorpolarmomentofinertia,G= Modulusofrigidityfortheshaftmaterial,l= Lengthoftheshaft,and= Angleoftwistinradiansonalengthl.

  • Torsional Shear Stress

    Theequation(i)isknownastorsionequation.Itisbasedonthefollowingassumptions:1.Thematerialoftheshaftisuniformthroughout.2.Thetwistalongthelengthoftheshaftisuniform.3 The normal crosssections of the shaft which were plane and circular3.Thenormalcrosssectionsoftheshaft,whichwereplaneandcircularbeforetwist,remainplaneandcircularaftertwist.4.Alldiametersofthenormalcrosssectionwhichwerestraightbeforetwist,remainstraightwiththeirmagnitudeunchanged,aftertwist.5.Themaximumshearstressinducedintheshaftduetothetwistingmoment does not exceed its elastic limit valuemomentdoesnotexceedits elastic limitvalue.

  • Polarmomentofinertia

    For a solid shaft of diameter (d) the polar moment of inertia Forasolidshaftofdiameter(d),thepolarmomentofinertia,

    Incaseofahollowshaftwithexternaldiameter(do)andinternaldiameter(di),thepolarmomentofinertia,

    Note:Theexpression(G J)iscalledtorsional rigidityoftheshaft.

  • ShaftsinSeriesandParallel Whentwoshaftsofdifferent

    diametersareconnectedtogethertoformoneshaft,itisthenknownascompositeshaft.Ifthedrivingtorqueisappliedatoneendandq pptheresistingtorqueattheotherend,thentheshaftsaresaidtobeconnected in series as shown inconnectedinseriesasshowninFig.Insuchcases,eachshafttransmitsthesametorqueandthetotal angle of twist is equal to the

    Iftheshaftsaremadeofthesamematerial,thenG1 =G2 =G.totalangleoftwistisequaltothe

    sumoftheangleoftwistsofthetwoshafts.Mathematically,total

    l f i

    1 2

    angleoftwist,

  • ShaftsinSeriesandParallel

    Whenthedrivingtorque(T)isg q ( )appliedatthejunctionofthetwoshafts,andtheresistingtorquesT1and T2 at the other ends of theandT2 attheotherendsoftheshafts,thentheshaftsaresaidtobeconnectedinparallel,asshownin Fig In such cases the angle ofinFig.Insuchcases,theangleoftwistissameforboththeshafts,

    Iftheshaftsaremadeofthesamematerial,thenG1 =G2 =G.1 2

  • BendingStressinStraightBeamsg gConsiderastraightbeamsubjectedtoabendingmomentMasshowninFig.below.Thefollowing assumptions are usually made while deriving the bending formulafollowingassumptionsareusuallymadewhilederivingthebendingformula.1.Thematerialofthebeamisperfectlyhomogeneous(i.e.ofthesamematerialthroughout)andisotropic(i.e.ofequalelasticpropertiesinalldirections).2 The material of the beam obeys Hookes law2.ThematerialofthebeamobeysHooke slaw.3.Thetransversesections(i.e.BCorGH)whichwereplanebeforebending,remainplaneafter bending also.4. Each layer of the beam is free to expand or contract, independently, of the layer, above or4.Eachlayerofthebeamisfreetoexpandorcontract,independently,ofthelayer,aboveorbelow it.5.TheYoungsmodulus(E)isthesameintensionandcompression.6.Theloadsareappliedintheplaneofbending.pp p g

  • BendingStressinStraightBeamsg gAlittleconsiderationwillshowthatwhenabeamissubjectedtothebendingmoment,thefibres on the upper side of the beam will be shortened due to compression and those on thefibres ontheuppersideofthebeamwillbeshortenedduetocompressionandthoseonthelowersidewillbeelongatedduetotension.Itmaybeseenthatsomewherebetweenthetopandbottomfibres thereisasurfaceatwhichthefibres areneithershortenednorlengthened.Suchasurfaceiscalledneutralsurface.Theintersectionoftheneutralsurfacewithanynormalf ycrosssectionofthebeamisknownas neutralaxis.Thebendingequationisgivenby

    M=Bendingmomentactingatthegivensection, = Bending stress Bending stressI=Momentofinertiaofthecrosssectionabouttheneutralaxis,y=Distancefromtheneutralaxistotheextremefibre,E=Youngsmodulusofthematerialofthebeam,andg f f ,R=Radiusofcurvatureofthebeam.

  • Bending Stress in Straight BeamsBendingStressinStraightBeams

    Rearrangingaboveequationgives

    TheratioI/yisknownassectionmodulusandisdenotedbyZ.

    N tNotes:1. Theneutralaxis ofa sectionalwayspassesthroughitscentroid.2. Incaseof symmetricalsectionssuchascircular,squareorrectangular,the neutral axis passes through its geometrical centre3. Incaseof unsymmetrical sectionssuchasLsectionorTsection,theneutralaxisdoesnotpassthroughitsgeometricalcentre.Insuchcases,firstofallthecentroid ofthesectioniscalculatedandthenthedistanceoftheextremefibres forbothloweranduppersideofthesection isobtained.obtained.

  • Propertiesofcommonlyusedcrosssections

  • Propertiesofcommonlyusedcrosssections

  • Propertiesofcommonlyusedcrosssections

  • Shear Stresses inBeams Itisgenerallyassumedthatnoshearforceisactingonthesection.But,in

    actual practice when a beam is loaded the shear force at a section alwaysactualpractice,whenabeamisloaded,theshearforceatasectionalwayscomesintoplayalongwiththebendingmoment.Ithasbeenobservedthattheeffectoftheshearstress,ascomparedtothebendingstress,is

    it li ibl d i f t h i t B t ti th hquitenegligibleandisofnotmuchimportance.But,sometimes,theshearstressatasectionisofmuchimportanceinthedesign.Itmaybenotedthattheshearstressinabeamisnotuniformlydistributedoverthecrosssectionbutvariesfromzeroattheouterfibres toamaximumattheneutralsurfaceasshowninFigs.

  • Shear Stresses inBeams Theshearstressatanysectionactsinaplaneatrightangleto

    h l f h b di d i l i i btheplaneofthebendingstressanditsvalueisgivenby.

    F =Verticalshearforceactingonthesection,I=Momentofinertiaofthesectionabouttheneutralaxis,b =Widthofthesectionunderconsideration,f ,A =Areaofthebeamaboveneutralaxis,andy =DistancebetweentheC.G.oftheareaandtheneutral axisneutralaxis.

  • Shear Stresses inBeams Forabeamofrectangularsection,asshowninFig.,theshear

    di f l i i i bstressatadistanceyfromneutralaxisisgivenby

    Maximum shear stress(substituting y=h/2)(substitutingy h/2)

  • Shear Stresses inBeams ForabeamofcircularsectionasshowninFig.,theshear

    di f l i i i bstressatadistanceyfromneutralaxisisgivenby

    Maximum shear stress(Substituting y=d/2)

  • Shear Stresses inBeams ForabeamofIsectionasshowninFig.,themaximumshear

    h l i d i i bstressoccursattheneutralaxisandisgivenby

    Shearstressatthejointofthewebandtheflange

    Shearstressatthejunctionofthetopofthewebandbottomoftheflange

  • State ofstressatapointp

    Thestressesonthehiddenfaces becomeequalandoppositetothoseontheopposingvisiblefaces.Thus,ingeneral,a completestateofstressisdefinedbyninestresscomponents,xx ,,yy ,,zz,,xyxy ,, xzxz,,yxyx ,,yzyz,,zxzx ,,andand zyzy ..

  • Mohrs Circle for Plane Stress

    A very common state of stress occurs when the stresses on Averycommonstateofstressoccurswhenthestressesononesurfacearezero.

    When this occurs the state of stress is called plane stressWhenthisoccursthestateofstressiscalledplanestress. Supposethedx dy dz elementofFigure iscutbyanoblique

    planewithanormalnat anarbitraryanglep y g counterclockwisefromthexaxis.

  • Mohrs Circle for Plane Stress2

    By summing the forcescausedb ll hbyallthestresscomponentstozero,thestressesandare found to bearefoundtobe

    These equations are called theThese equations arecalledtheplanestresstransformationequations

  • Mohrs Circle for Plane Stress3DifferentiatingEq.onthe left withrespecttoandsettingtheresultequaltozero gives

    This equation definestwoparticularvaluesfortheangle2p,oneofwhichpdefines themaximumnormalstress1 andtheother,theminimumnormalstress2.Thesetwo stressesarecalledtheprincipalstressesprincipalstresses,andtheircorrespondingp pp p , p gdirections,theprincipalprincipal directionsdirections.

    substitute

    weseethat=0,meaningthatthesurfacescontaining principal, g f g p pstresseshavezeroshearstresses

  • Mohrs Circle for Plane Stress4DifferentiatingEq.onthe left withrespecttoandsettingtheresultequaltozero gives

    This Equationdefinesthetwovaluesof2s atwhichtheshearstress reachesan extremevalue.Theanglebetweenthesurfacescontainingthemaximumshearstresses is90.

    substitute

    This equation tellsusthatthetwosurfacescontainingthemaximumshearstressesalsocontainequalnormalstressesof(x +y)/2.

  • Mohrs Circle for Plane Stress5 Formulasforthetwoprincipalstressescanbeobtainedby

    substitutingthe angle2p fromEq.inEq.g g p f q q

    Principal stresses

    Inasimilarmannerthetwoextremevalueshearstresses

  • Mohrs Circle Shear Convention Thisconventionis

    followedindrawingMohrscircle:

    Shearstressestendingtorotatetheelementclockwise(cw)areplottedabovethe axisaxis.

    Shearstressestendingtorotatetheelement

    l kcounterclockwise(ccw)areplottedbelow the axis.

  • TheoriesofFailureUnderStaticLoad

    Sincethesepropertiesareusuallydeterminedfromsimpletensionori t t th f di ti f il i b bj t d t i i lcompressiontests,therefore,predictingfailureinmemberssubjectedtouniaxial

    stressisbothsimpleandstraightforward.Buttheproblemofpredictingthefailurestressesformemberssubjectedtobiaxialortriaxialstressesismuchmorecomplicated.Infact,theproblemissocomplicatedthatalargenumberofdifferenttheorieshavebeenformulated.Theprincipaltheoriesoffailureforamembersubjectedtobiaxialstressareasfollows:

    1.Maximumprincipal(ornormal)stresstheory(alsoknownasRankines theory). 2.Maximumshearstresstheory(alsoknownasGuestsorTrescas theory). 3.Maximumprincipal(ornormal)straintheory(alsoknownasSaintVenant

    theory). 4. Maximum strain energy theory (also known as Haighs theory).4.Maximumstrainenergytheory(alsoknownasHaigh s theory). 5.Maximumdistortionenergytheory(alsoknownasHencky andVonMises

    theory).

  • MaximumPrincipalorNormalSt Th (R ki Th )StressTheory(Rankines Theory)

    Accordingtothistheory,thefailureoryieldingoccursatapointinab h th i i i l l t i bi i l tmemberwhenthemaximumprincipalornormalstressinabiaxialstress

    systemreachesthelimitingstrengthofthematerialinasimple tensiontest. Sincethelimitingstrengthforductilematerialsisyieldpointstressandforbrittlematerials(whichdonothavewelldefinedyieldpoint)thelimitingstrengthisultimatestress,thereforeaccordingtotheabovetheory,takingfactorofsafety(F.S.)intoconsideration,themaximumprincipalornormalstress(t1)inabiaxialstresssystemisgivenby

    yt =Yieldpointstressintensionasdeterminedfromsimpletensiontest,andu =Ultimate stress.

    Sincethemaximumprincipalornormalstresstheoryisbasedonfailureintensionorcompressionandignoresthepossibilityoffailureduetoshearingstress,thereforeitisnot

    d f d til t i lusedforductilematerials.However,forbrittlematerialswhicharerelativelystronginshearbutweakintensionorcompression,thistheoryisgenerallyused.

  • MaximumShearStressTheory(G t T Th )(GuestsorTrescas Theory)

    According to this theory the failure or yielding occurs at a point in a Accordingtothistheory,thefailureoryieldingoccursatapointinamemberwhenthemaximumshearstressinabiaxialstresssystemreachesavalueequaltotheshearstressatyieldpointinasimple tensiontest Mathematicallytest.Mathematically,

    max =Maximumshearstressinabiaxialstresssystem,max y ,yt =Shearstressatyieldpointasdeterminedfromsimpletensiontest,andF.S.=Factor ofsafety.

    Sincetheshearstressatyieldpointinasimpletensiontestisequaltoonehalftheyieldstressin tension therefore the equationmay be written asintension,thereforetheequationmaybewrittenas

  • MaximumPrincipalStrainTh (S i t V t Th )Theory(SaintVenants Theory)

    According to this theory the failure or yielding occurs at a point in a Accordingtothistheory,thefailureoryieldingoccursatapointinamemberwhenthemaximumprincipal(ornormal)straininabiaxialstresssystemreachesthelimitingvalueofstrain(i.e.strainatyieldpoint)asdetermined from a simple tensile test The maximum principal (or normal)determinedfromasimpletensiletest.Themaximumprincipal(ornormal)straininabiaxialstresssystemisgivenby

    According to theAccordingtotheabovetheory

    t1 andt2 =MaximumandminimumprincipalFromequation,wemaywritethat

    t1 t2stressesinabiaxialstresssystem,=Strainatyieldpointasdeterminedfromsimpletensiontest,1/m=Poissons ratio,E=Youngs modulus,andF.S.=Factor ofsafety.

    Thistheoryisnotused,ingeneral,becauseitonlygivesreliableresultsinparticularcases.

  • MaximumStrainEnergyTheory(H i h Th )(Haighs Theory)

    Accordingtothistheory,thefailureoryieldingoccursatapointinamemberwhenthestrainenergyperunitvolumeinabiaxialstresssystemreachesthelimitingstrainenergy(i.e.strainenergyattheyieldpoint)perunitvolumeasdeterminedfromsimpletensiontest.p

    Weknowthatstrainenergyperunitvolumeinabiaxialstresssystem,

    Limitingstrainenergyperunitvolumeforyieldingasdeterminedfromsimpletensiontest,

    Accordingtotheabovetheory,U1 =U2.

    Thistheorymaybeusedforductilematerials.

  • MaximumDistortionEnergyTheory(H k d V Mi Th )(Hencky andVonMises Theory)

    According to this theory the failure or yielding occurs at a point in a Accordingtothistheory,thefailureoryieldingoccursatapointinamemberwhenthedistortionstrainenergy(alsocalledshearstrainenergy)perunitvolumeinabiaxialstresssystemreachesthelimitingdistortionenergy (i e distortion energy at yield point) per unit volume as determinedenergy(i.e.distortionenergyatyieldpoint)perunitvolumeasdeterminedfromasimpletensiontest.Mathematically,themaximumdistortionenergytheoryforyieldingisexpressedas

    Thistheoryismostlyusedforductilematerialsinplaceofmaximumstrainenergy theoryenergytheory.

    Note: Themaximumdistortionenergyisthedifferencebetweenthetotali d h i d ifstrainenergyandthestrainenergydueto uniform stress.

  • StressesinaThinCylindricalShelld t I t l PduetoanInternalPressure

    The analysis of stresses induced in a thin cylindrical shell are Theanalysisofstressesinducedinathincylindricalshellaremadeonthefollowingassumptions:

    1) Theeffectofcurvatureofthecylinderwallisneglected.2) The tensile stresses are uniformly distributed over the2) Thetensilestressesareuniformlydistributedoverthe

    sectionofthewalls.3) The effect of the restraining action of the heads at the end3) Theeffectoftherestrainingactionoftheheadsattheend

    ofthepressurevesselisneglected.

  • StressesinaThinCylindricalShelld t I t l PduetoanInternalPressure

    Whenathincylindricalshellissubjectedtoaninternalpressure,itislikelyto fail in the following two ways:tofailinthefollowingtwo ways:

    1.Itmayfailalongthelongitudinalsection(i.e.circumferentially)splittingthecylinderintotwotroughs,asshowninFig.(a).

    2. Itmayfailacrossthetransversesection(i.e.longitudinally)splittingthecylinderintotwocylindricalshells,asshowninFig.(b).

    Thus the wall of a cylindrical shell subjected to an internal pressure has toThusthewallofacylindricalshellsubjectedtoaninternalpressurehastowithstandtensilestressesofthefollowingtwotypes:(a)Circumferentialorhoopstress,and(b) Longitudinalstress.

  • Circumferential or Hoop Stressp

    Consider a thin cylindrical shell subjected to an internal pressure as shown ConsiderathincylindricalshellsubjectedtoaninternalpressureasshowninFig.(a)and(b).Atensilestressactinginadirectiontangentialtothecircumferenceiscalledcircumferentialorhoopstress.Inotherwords,itisa tensile stress on longitudinal section (or on the cylindrical walls)atensilestressonlongitudinalsection(oronthecylindricalwalls).

    p=Intensityofinternalpressure,d=Internaldiameterofthecylindricalshell,l=Lengthofthecylindricalshell,t=Thicknessofthecylindricalshell,andt1 =Circumferentialorhoopstressforthematerialofthecylindrical shell.

  • Circumferential or Hoop Stressp

    Weknowthatthetotalforceactingonalongitudinalsection(i.e.alongthediameterXX)oftheshell

    andthetotalresistingforceactingonthecylinderwalls

    ...(oftwo sections)

    Fromthesetwoequations,wehave

  • Longitudinal Stressg

    Consider a closed thin cylindrical shell subjected to an internal pressure as ConsideraclosedthincylindricalshellsubjectedtoaninternalpressureasshowninFig.(a)and(b).Atensilestressactinginthedirectionoftheaxisiscalledlongitudinalstress.Inotherwords,itisatensilestressactingonthetransverse or circumferential section Y Y (or on the ends of the vessel)transverseorcircumferentialsectionYY(orontheendsofthevessel).

  • Longitudinal Stressg

    Let t2 =Longitudinal stress.Inthiscase,thetotalforceactingonthetransversesection( l )(i.e.alongYY)

    and totalresisting force

    F th t tiFromthesetwoequations,wehave