311 ch11

51
III.) Stress Considerations A.) Poisson’s Effect - Uniaxial Load Poisson's’ Ratio () is a known material constant that tells you how much strain occurs in a direction perpendicular to an applied load. = - y x

Upload: gaconnhome1987

Post on 22-Jan-2015

468 views

Category:

Health & Medicine


6 download

DESCRIPTION

 

TRANSCRIPT

  • 1.
    • III .)Stress Considerations
  • A.)Poissons Effect - Uniaxial Load
  • Poisson's Ratio( ) is a known
  • material constant that tells you howmuchstrainoccurs in a direction
  • perpendicularto an applied load.
  • =- y
  • x

2. x Original Shape Shape After Loading L y,O y P x P x L x,O L x,F L y,F 3.

  • We already know how to find strains and deformations in the directionparallelto the load axis.
  • x = x where x =P x/ A x
  • E
  • x = x L x.O

4.

  • To find the strains and deformations in a directionperpendicularto the loading.
  • = - y / x .25 (for steel)
  • .33 (for aluminum)
  • y= - x
  • y= - xbecause x= x
  • E E
  • y= y L yO

5.

  • Example:Find the deformation in the x & y-directions of the steel bar showndue to the 20 kip Uniaxial load.

1 2.5 12 20 k 20 k y z x 6.

  • x =P x/ A x=20 k____=8.0 ksi(< pl)
  • ( 2.5)(1.0)
  • x= x=(8.0 ksi)__=2.67x10 -4in/in
  • E 30,000 ksi
  • x = x L x.O = (2.67x10 -4in/in)(12.0)
  • x= 3.20x10 -3in.(longer)

7.

  • y= - x= - (0.25)(8.0 ksi)
  • E 30,000 ksi
  • y = - 6.67x10 -5in/in
  • y= y L y.O = (- 6.67x10 -5in/in)(2.5)
  • y= -1.67x10 -4in.(shorter)

8.

  • B.)Poissons Effect - Biaxial Loads

P x P x P x P x UNIAXIAL BIAXIAL P y P y 9.

  • The strain in the y-direction now has two parts:
  • y1= - x is caused by P x
  • E
  • y2= y is caused by P y
  • E
  • y= y- x is the total strain inEE the y-direction dueto biaxial loading

10.

  • Similarly, The strain in thex-directionis found to be.
  • x= x- y the total strain in the
  • EEx-direction due to
  • biaxial loading

11.

  • Example:Find the deformation in the x & y-directions of the of the same steel bar if a load in the y-direction is added.

1 2.5 12 20 k 20 k y z x 60 k 60 k 12.

  • Note: pl= 34 ksi
  • x =P x/ A x=20 k=8.0 ksi(< pl)
  • ( 2.5)(1.0)
  • y =P y/ A y=60 k=5.0 ksi(< pl)
  • ( 1.0)(12.0)

13.

  • x= x - y=(8.0 ksi)-(0.25)(5.0 ksi)
  • EE 30,000 ksi30,000 ksi
  • x=2.25x10 -4in/in
  • x = x L x.O = (2.25x10 -4in/in)(12.0)
  • x= 2.70x10 -3in.(longer)
  • ( x was 3.20x10 -3in. without y-dir. load)

14.

  • y= y- x= 5.0 ksi-(0.25)(8.0 ksi)
  • E E 30,000 ksi30,000 ksi
  • y = 1.00x10 -4in/in
  • y= y L y.O = ( 1.00x10 -4in/in)(2.5)
  • y= 2.50x10 -4in.(longer)
  • ( y was-1.67x10 -4in. before adding the y-load)

15.

  • The bar got longer and wider
  • (and thinner)

P x P y P x P y 16.

  • z= - y- x=- (0.25)(5.0 ksi)-(0.25)(8.0 ksi)
  • E E 30,000 ksi30,000 ksi
  • z =- 1.08x10 -4in/in
  • z= z L z.O = ( -1.08x10 -4in/in)(1.0)
  • z= -1.08x10 -4in.(thinner)

17.

  • B.) Thermal Effects
  • 1.) Thermal Expansion
  • -most materials expand when heated
  • -the amount ofdeformationcaused
  • by a temperature change is
  • proportionalto the change in
  • temperature.

18.

  • That is, if raising the temperature 10 o F
  • lengthens a part by 0.10,
  • then raising the temperature 20o F will
  • lengthen the same part by 0.20.

L 100 o F 110 o F 120 o F 0.10 0.10 19.

  • T =L ( T)
  • T= Change in length caused by a temp change (in)
  • coefficient of thermalexpansion,in/in
  • o F
  • L= Original length of member (in)
  • T= Change in temperature ( o F)

20.

  • Example:
  • Mackinac Bridge is 5 miles long ( + ).
  • What is the change in length from 3 p.m. when the temp.= 80 o F to midnight when temp.= 50 o F. (A36 Steel)

21.

  • T = L ( T)
  • steel 6.5 X 10 -6 in/in(App G)
  • o F
  • L= (5mi)(5280 ft/mi)(12in/ft)
  • =316,800in
  • T= 50 o F - 80 o F= -30 o F
  • T =(6.5x10-6in/in/ o F)(316,800in)(-30 o F)
  • = -61.8 in= -5.15 ft .

22.

  • 2.)Thermal Stress
  • If you restrain a member when you change its temperature, internal stresses will be produced which are called thermal stresses.
  • Thermal stress is determined by picturing a member that is expanded when heated and determining the force (P) which would be required to bring in back to its original length.

23. L T = L( T) P P PL AE L 60 o F 100 o F 100 o F 24.

  • PL= L( T)
  • AE
  • P = T)E
  • A
  • T= - T)E
  • =Thermal stress in a restrainedmember due to a change intemperature (psi). ( for T PL )
  • E= Modulus of Elasticity (psi)

25.

  • C.) Composite Members(SKIP)
  • Examples:
  • Concrete slab reinforced with steel
  • Carbon fiber and plastic snow skis
  • Kevlar and fiberglass boats
  • Concrete slab on a metal deck
  • .

concrete corrugated metal deck 26.

  • 1.) Relationship Between Load and Stress
  • We know:
  • a.) E A= E B because two different
  • materials.
  • Example:E A= 30,000 ksi (steel)
  • E B=3,000 ksi(conc)

27.

  • b.) A = B- because the two materials
  • move (deform)together
  • c.) A= B
  • A = B - because=
  • E A E B E
  • A =E A B = n B, where n = E A
  • E B E B

28.

  • We also know:
  • d.)P = P A+ P Bbecause each material
  • carries a part of the load
  • P = A A A+ B A BbecauseP = A
  • P = (n B )A A+ B A Bbecause A= n B
  • P = B (nA A+ A B )
  • (or)
  • P = A (A A+ A B /n)because B= A /n

29.

  • 2.)To find thestressesdue to a known
  • axial load (P) in a member (A) made of two known materials (E A , E B ).
  • a.) first find Bfrom:
  • P = B (nA A+ A B )
  • b.) then find Afrom:
  • A =n B

30.

  • 3.)To find theallowable axial load(P) on a member (A A, A B ) made of two known
  • materials (E A , E B , A,all, B,all ).
  • a.) find Afrom:
  • A =n B,all
  • b.) if A< A,all, then find P all from:
  • P all= B,all (nA A+ A B )
  • c.) if A> A,all, then find P all from:
  • P all= A,all (A A+ A B /n)

31.

  • D.) Stress Concentration:
  • 1.)At a section with a hole in wepreviouslyassumed the stress isuniformlydistributed across the net section.
  • P
  • A net
  • A net = A - A hole

avg 32.

  • 2). The actual distribution is notuniform, but is much higher than avg near the hole and less than avgaway from the hole.
  • t,max= stress next to the hole
  • t,max=k(P )
  • A net
  • k = stress concentration factor

t,max avg 33.

  • 3.)Stress Concentration Factor (k)
  • k is determined from empirical curves.
  • (see Fig.11-12, p.285)
  • k is based on the ratio r/d:
  • r= the radius of the hole
  • d = the net width of the member

34.

  • 3.)Stress Concentration Factor (k)

35.

  • 4.) When to consider stress concentration in design.
  • a.)If a member isductile andsubjected to fairlystatic loads , it is assumed plastic deformation will provide a uniform stress distribution,use avgin design.
  • b.) If the member is made of abrittle
  • material or is subjected torepetitive loads , you must consider the higher stress( t,max ) which occurs near the hole.

36.

  • 4.) When to consider stress concentration in design.
  • Repetitive (cyclical) stress Examples:
  • - rotational machinery:
  • - axles, gears, sprockets, drive shafts
  • - others
  • - number of cycles:

37.

  • III.) Stress Considerations (Review)
  • A.) Poissons Ratio
  • trans/ long y/ x
  • 1.)Uniaxial Loads
  • y x x
  • E
  • 2.)Biaxial Loads
  • x x- y
  • E E

38.

  • B.) Thermal Effects
  • 1.) Thermal Expansion
  • t= L( T)
  • 2.) Thermal Stresses
  • t= E( T)

39.

  • C.) Composite Members -SKIPPED
  • n = E A/ E B= Modular Ratio
  • A = n B
  • P = B(nA A+ A B)
  • D.) Stress Concentration
  • t,max = k avg = k(P/A net )

40.

  • E.) Stresses on Inclined Planes
  • 1.) We are interested in finding the
  • stresses on planes other than the plane which is normal to the axial load because failure does not always occur on the normal plane.
  • a.) An axially loadedductilematerialwill usually fail along a plane which isat a 45 degree angle to the load.
  • b.) An axially loadedbrittlematerialwill usually fail along a plane which isnormal to the load.

41.

  • If A is the area of plane DB,
  • and the thickness is constant,
  • Thenthe area of plane DC is:
  • A/ cos

D B C P P Area = A Area = A_ cos 42.

  • The load perpendicular (normal)
  • to plane DC is:
  • P n= Pcos
  • The load parallel (shear)
  • to plane DC is:
  • P v= Psin

P P n v P v P n C B D 43.

  • The stress perpendicular (normal)
  • to plane DC is:
  • n=P n__
  • A/cos
  • n = Pcos
  • A/cos
  • n= P(cos
  • A

P n n C B 44.

  • The stress parallel (shear)
  • to plane DC is:
  • v=P v__
  • A/cos
  • v = Psin
  • A/cos
  • v= Psin cos
  • A
  • v= (P/2A)sin2

P n v C B D 45.

  • The maximum normal stress is when the plane is inclined at 0 degrees:
  • n= P(cos P
  • A A
  • The minimum normal stress is when the plane is inclined at 90 degrees:
  • n= P(cos90 0
  • A

46.

  • The maximum shear stress is when the plane is inclined at 45 degrees:
  • v=P(sin(2x45)) = P
  • 2A 2A
  • The minimum shear stress is when the plane is inclined at 0 or 90 degrees:
  • v= P(sin(2x90) = P(sin(2x0) = 0
  • A A

47. 48.

  • III.) Stress Considerations (Ch. 11Review)
  • A.) Poissons Ratio
  • trans/ long y/ x
  • 1.)Uniaxial Loads
  • y x x
  • E
  • 2.)Biaxial Loads
  • x x- y
  • E E

49.

  • B.) Thermal Effects
  • 1.) Thermal Expansion whenmember is freeto move
  • t= L( T)
  • 2.) Thermal Stresses when memberis restrained
  • t= E( T)

50.

  • C.) Stress Concentrations t,max= k avg = kP A

51.

  • D.) Stresses on Inclined Planes
  • n= P(cos
  • A
  • n,max=P, when = 0
  • A
  • v= Psin cos
  • A
  • v,max= P/2A , when = 45

P n v A