3d stochastic reconfiguration of modular robots paul j white viktor zykov josh bongard hod lipson...

28
3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University http:// ccsl.mae.cornell.edu

Upload: augusta-barker

Post on 11-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

3D Stochastic Reconfiguration of Modular Robots

Paul J WhiteViktor ZykovJosh BongardHod Lipson

Cornell Universityhttp://ccsl.mae.cornell.edu

Page 2: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Motivation: Adaptive Morphology Robotic adaptation in nature involves

changing/learning morphology, not just control Over robot lifetime (behavior) Over evolutionary time (design)

Page 3: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Evolution of morphology & control

Page 4: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Evolution of morphology & control

Page 5: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Transfer to reality

Page 6: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Some of our printed electromechanical / biological components: (a) elastic joint (b) zinc-air battery (c) metal-alloy wires, (d) IPMC actuator, (e) polymer field-effect transistor, (f) thermoplastic and elastomer parts, (g) cartilage cell-seeded implant in shape of sheep meniscus from CT scan.

Printed Active Materials

With Evan Malone

Page 7: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Motivation: Adaptive MorphologyModular robotics Robotic adaptation in nature involves

changing/learning morphology Over robot lifetime and evolutionary time

Scaling number of units (1000’s) Greater morphological flexibility (space) Better economical advantage

Micro-scale No moving parts, no onboard energy Scalable fabrication, scalable physics

Page 8: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Murata et al: Fracta, 1994

Murata et al, 2000

Jørgensen et al: ATRON, 2004

Støy et al: CONRO, 1999

A Dichotomy

Fukuda et al: CEBOT, 1988

Yim et al: PolyBot, 2000

Chiang and Chirikjian, 1993

Rus et al, 1998, 2001

Modular Robotics: high complexity, do not scale in size

Stochastic Systems: scale in size, limited complexity

Whitesides et al, 1998

Winfree et al, 1998

Page 9: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Simulation

Page 10: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Proposed Stochastic System

No independent means of power or locomotion

The units are passive, only draw power when attached to ‘growing’ structure

Modules are driven by (artificial and natural) Brownian motion

Structure reconfigures by manipulating local attraction/repulsion field near bonding sites

Passive motion is natural for small scale implementations

Page 11: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Stochastic Self Reconfigurable Systems

White et al, 2004

Two Solid-state, 3D implementations

Page 12: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Implementation 1

(b)

Spring loaded contacts for distributing power & communication

Embossed patterns on all faces ensure proper alignment

Power storage 0.28 F capacitor for switchable bonding

Basic Stamp II controller

Permanent magnets embedded inside of the cube walls

Electromagnet

Page 13: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Experiment Environment Oil medium agitated by

Fluid flow by external pump Mechanical disruption of fluid

Substrate with attracting bonding site

Page 14: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Implementation 1: Magnetic Bonding

Page 15: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Implementation 1: Magnetic Bonding

Page 16: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Beneficial System Properties Reconfigurable Programmable Homogeneous/simple units 3D modules: 6 d.o.f.

Permanent magnets create undesired bonds Electromagnets require local power storage Viscous medium requires high actuation power Electromagnetic bonding and actuation does not scale

System Disadvantages

Page 17: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Proposed Scalable Solution

`

`

`

``

`

Fluid FlowΔP

F = A ΔP

To external pump

Valves: allow for selectable bonding

Substrate

Page 18: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Construction Sequence

Page 19: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Construction Sequence

Page 20: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Construction Sequence

Page 21: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Construction Sequence

Page 22: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Construction Sequence

Page 23: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Construction Sequence

Page 24: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

3D Structures

Page 25: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

3D Structures

Page 26: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Implementation 2Inside of the cube: Servo- actuated

valves Basic Stamp II

controller Central fluid

manifold Communication,

power transmission lines

Embossed fluid manifold

Hermaphroditic interface

Orifices for fluid flow

Page 27: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Implementation 2: Fluidic Bonding

Movie accelerated x16

Page 28: 3D Stochastic Reconfiguration of Modular Robots Paul J White Viktor Zykov Josh Bongard Hod Lipson Cornell University

Computational Synthesis Labhttp://ccsl.mae.cornell.edu

Conclusion 3D stochastic modular robotic system

In two implementations More scalable to microscale

A substrate with interesting algorithmic challenges: the factors that govern the rate of assembly and reconfiguration the effects of larger quantities of modules on the system