3d tomographic inversion of tem sounding...

11
Russian Geology and Geophysics © 2019, V.S. Sobolev IGM, Siberian Branch of the RAS Vol. 60, No. 1, pp. 97–107, 2019 DOI:10.15372/RGG2019007 3D Tomographic Inversion of TEM Sounding Data V.S. Mogilatov a,b, , E.Yu. Antonov a , A.N. Shein a a b Received 15 June 2017; accepted 18 December 2017 Abstract—One of the main objectives of geoelectric prospecting is mapping of the consolidated low-conductivity basement geometry. To resolve the issue, it will be equally important to delineate local structures at the bottom of the sedimentary complex and to estimate relevant objective of EM sounding is to resolve the problem of delineation of anticlinal oil and gas traps. The horizontally layered model of nonstationary EM sounding. When applied for the solution of structural problems, this technique considers the uniform distribution of apparatus for 3D inversion based on Born linearization of the forward problem has proved to be quite applicable. transient electromagnetic (TEM) sounding, Born approximation, linearized inversion INTRODUCTION Mapping of the consolidated low-conductivity basement geometry is considered to be one of the main geoelectric survey objectives. In this instance, the objective of local structures delineation at the bottom of the sedimentary com- both advantageous due to the presence of areas with nonuni- horizontally layered model with local inclusion of three-di- - sounding will be the solution of the problem connected with delineation of anticlinal oil and gas traps. This problem also suggests the setting in the form of the combined one-dimen- sional model of a host medium and spatial inclusion with one. with a composite geological structure appears to be a re- - mated mathematical modeling plays an important role under such conditions. In most cases, physically adequate substitu- tion of one model for another will considerably simplify [email protected] (V.S. Mogilatov) - tion provision is still recognized to be the most-searched, because forward problems solution has proved to be a basis of the inverse geoelectrical problem-solving technique so far. Once based on the procedure of 3D forward problem - ized three-dimensional heterogeneity, a common approach can hardly meet electrical surveyors’ requirements because of the process slowness. The technique of nonstationary EM sounding is discussed in this paper. This technique considers uniform distribution explored. For this reason, the use of the perturbation tech- nique and the Born approximation, in particular (Born, electrodynamics problem. Perturbation techniques have found a use for computa- - proximation is widely applied for experimental data inter- pretation, that provides a linearization approach to the solu- tion of inverse problems (Bleistein and Gray, 1985; Habashy linearization approach to the solution of the 3D inverse problem could be implemented as part of a tomographic

Upload: others

Post on 03-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3D Tomographic Inversion of TEM Sounding Datageoelectriclab.com/storage/app/media/Mogilatov...apparatus for 3D inversion based on Born linearization of the forward problem has proved

Russian Geology and Geophysics © 2019, V.S. Sobolev IGM, Siberian Branch of the RAS Vol. 60, No. 1, pp. 97–107, 2019 DOI:10.15372/RGG2019007

���������������

3D Tomographic Inversion of TEM Sounding Data

V.S. Mogilatova,b, �, E.Yu. Antonova, A.N. Sheina

a���������� ������������������������������������������!����"���������#���������������������� ���� ���� $������%�&�'���!��� �(%))*)�#����

b&�'���!��� ����+��'����������������'-�&�'���!��� �(%))*)�#����

Received 15 June 2017; accepted 18 December 2017

Abstract—One of the main objectives of geoelectric prospecting is mapping of the consolidated low-conductivity basement geometry.

To resolve the issue, it will be equally important to delineate local structures at the bottom of the sedimentary complex and to estimate

���������������� � �������������� ������������ ������������ ��� ��� ��������������������������� � ����� �������� ��� ����

relevant objective of EM sounding is to resolve the problem of delineation of anticlinal oil and gas traps. The horizontally layered model

�������� ���������� � ������� ������������������� ����� ������� ������� ��� ������������������������� �������������������!���

of nonstationary EM sounding. When applied for the solution of structural problems, this technique considers the uniform distribution of

���������������������������� ���������� �������������"�� ����# ��!�����$������������������ ���%�������������� � �������������� �

�����!���&' ���� "����� (�� ������ ���� � ������� ��������� ��������� ��������������������������������� ������ � �������

����� �������������� ������������������������ ����������������������������� ������ ���) ����������������� � �����������������

apparatus for 3D inversion based on Born linearization of the forward problem has proved to be quite applicable.

$��4����8 transient electromagnetic (TEM) sounding, Born approximation, linearized inversion

INTRODUCTION

Mapping of the consolidated low-conductivity basement

geometry is considered to be one of the main geoelectric

survey objectives. In this instance, the objective of local

structures delineation at the bottom of the sedimentary com-

���"�����������)�� ���������������������� ����������������

both advantageous due to the presence of areas with nonuni-

� �� � ���������� �� ���� ������� �� � ������ � ����� ����

horizontally layered model with local inclusion of three-di-

���� ��� �� ���� ����� ����� � � ��� � � ���� �� �����-

�� ��� ����������� � ���� ��� ���� ��������� ���� ��� /4�

sounding will be the solution of the problem connected with

delineation of anticlinal oil and gas traps. This problem also

suggests the setting in the form of the combined one-dimen-

sional model of a host medium and spatial inclusion with

� ���������� ��������� � ������ ��6��� � �� ���� �������

one.

4������������� ������ �� ����� �����������������

with a composite geological structure appears to be a re-

� ����� ������ ���)� ���� ���� �%����� ����� ��6�����

��� ������������������������������������������� "�-

mated mathematical modeling plays an important role under

such conditions. In most cases, physically adequate substitu-

tion of one model for another will considerably simplify

� # ��� �������� �

;<��������8 [email protected] (V.S. Mogilatov)

� ��������� �������9��������$��������)� �������� �����-

tion provision is still recognized to be the most-searched,

because forward problems solution has proved to be a basis

of the inverse geoelectrical problem-solving technique so

far. Once based on the procedure of 3D forward problem

� ���� � � � ��� �������� ������ ������ �� ���� �������-

ized three-dimensional heterogeneity, a common approach

can hardly meet electrical surveyors’ requirements because

of the process slowness.

The technique of nonstationary EM sounding is discussed

in this paper. This technique considers uniform distribution

������������������������������ ������������� ������������

explored. For this reason, the use of the perturbation tech-

nique and the Born approximation, in particular (Born,

:<��(���������� ���%������ ������ ���� � ������� ����

electrodynamics problem.

Perturbation techniques have found a use for computa-

�� ���� ������ ������� ������������������ ����������

������ ���������&=��)� �$�:<>?A������ �$�:<>CA�G����

���������� ��)�$�:<?HK$�A�=��)� �����'��) ��)���$�

:<?LA�'��������)�����N��� �$�:<CLA����� ��)��������$�

:<CCA� /� �� ��� �� �$� :<<<(�� 4 � ��$� ���� ' � ��-

proximation is widely applied for experimental data inter-

pretation, that provides a linearization approach to the solu-

tion of inverse problems (Bleistein and Gray, 1985; Habashy

������$�:<C>A�=������� $�:<C<A�N��� �$�YHH?(��Z����$�����

linearization approach to the solution of the 3D inverse

problem could be implemented as part of a tomographic

���� � �������������)���� �� ������� ����������������

Page 2: 3D Tomographic Inversion of TEM Sounding Datageoelectriclab.com/storage/app/media/Mogilatov...apparatus for 3D inversion based on Born linearization of the forward problem has proved

98 V.S. Mogilatov et al. / Russian Geology and Geophysics 60 (2019) 97–107

authors have proposed the approach of transient electromag-

netic (TEM) sounding long ago (Mogilatov, 1999; Mogila-

tov et al., 1999; Mogilatov and Epov, 2000), but currently,

we are able to demonstrate concrete research results.

BORN APPROXIMATION

One of the most functional approaches to computational

� ������ ������� ����������������������� ������[��� �

of integral equations, which appear to be a formal record of

the exact solution. Forward problem linearization is accom-

plished by means of the perturbation theory apparatus. In this

����$���������� �������� � ������������������� �� ���� �

�� ������ Z��� ��� ������� �!���� � �� ���� ��� �� )���

into Neumann series in the solution neighborhood for the

one-dimensional reference medium. This approach is usually

) �� ��� ���� ' � ��� "����� �� 9�������$� ���� ' � ��-

proximation was developed to describe mechanical photon

dissipation (Born, 1933). Since that time, the concept of the

technique has found a use for the development of approxi-

������ � ���� �� �� ��6���������� �� �������� 9� ��������$�

this technique is also applied to solve the problems of induc-

tion and electric logging, and TEM sounding, and others.

Let’s consider in brief this procedure.

Suppose that there exists a perturbation factor in relation

to the base (reference) model in a certain medium volume V . We also admit that this perturbation factor depends

������� �����������������$�����$��������� � �����������

�� � ����������� ���� � ���� ������ ���� ���� 6$� 4�"�����

�����!���� ������������� �� ����������� ���^

. (1)

On the condition that we represent the electromagnetic

����� �� ����� �� ����� ���� � �� ���� &E0 and H0) and

abnormal (e and h(������$� ������ ������� ����� ������_

e is smaller in comparison with other summands of the

��������� ������ �� ���� ���� �!���� � &:($� ��� ����� ���� ����

�!���� �������$���������������!���� ���^

, (2)

i.e., a one-dimensional problem with distributed extrinsic

current is being considered. The solution of this problem is

) �������������[���������������������������� �

`��k�� ����� �� ����� �� ��� ����� � � �������� �/4�

� ����������$������ ��������������� �����������_I, ��� �����_a, �������� �� ������ � ��_ .

9������������$�������������������������� ���� �� ��_E{

�� ���� �������� ��� ��������� ������$� � � ���� � ���� �

&����� ����������!������ ���(������������� �� ��^

(3)

���������������$������������)��������� �� ��������-

lelepiped, could be represented by the sum total of electric

��� ���� ����� ���� � ����^�0

, where

E�0

� ��� ���� ����& ����������(�����$������� �������������

����������� � � ����� ������������� 9� �����������$����� ����

also use the condition that the problem is symmetric in rela-

tion to current loop sources and a receiver. If we consider

that perturbation �| in the domain V � ��������������6���� �

the TEM process, we’ll obtain the solution of the one-di-

mensional problem (2) and, consequently, we will get 3D

full-waveform data on the receiving loop with a central

� ��_ , , , ��������������������������� �� ��^�

. (4)

����$��!���� ��&�(�~�&L(�����������������!������ ���-

���� ��9�����) �������&� ��"������&4 ����� �$�YH:L((^

, (5)

where J1 denotes the Bessel function,

a, the supply loop radius; X, the solution of one-dimension-

al problem in the spatial harmonics domain; i 1 , the

�������������� �������� ��������$�������� ��&L($������

���������������� �� ��^

�E(R, S, �(

2

0 0

( ) ( , ) ( , , ) ,i Iab T Z d d� �

� � � � � � �� � � �

&>(

×

where b is the receiving loop radius;

is the domain boundaries of the abnormal body (parallelepi-

ped); �$������� ���������� ���)����� ���� ����������� -

sition of the source, the receiver and the body (angular coef-

�����(��9����������$�������������� ������� ������� �X as the solution of the boundary value problem (Mogilatov,

2014). Z��� ���������� �� ������������������

The solution is viable in the time domain, in case IFT is

�������������!���� ��&L(�&>(�

Page 3: 3D Tomographic Inversion of TEM Sounding Datageoelectriclab.com/storage/app/media/Mogilatov...apparatus for 3D inversion based on Born linearization of the forward problem has proved

V.S. Mogilatov et al. / Russian Geology and Geophysics 60 (2019) 97–107 99

(7)

������$��������������!����A�t, the time.

It should be noted that perturbation �� of the equations

&L(� �&>(�� ��������������������!������ ���� ���� ����

������������ �����9�������������$������������� �������� �����

��!�����������������������&�������# ���# ���� ��-

la), and therefore we will expand this solution on polarized

3D inclusion.

����4������ �����$���������� �������������� � ��

the above-described algorithm, was tested by comparison

����������"������������� �������� ����������������������-

ment vector method (FEVM) (Persova et al., 2010, 2011).

Figure 1 presents the drawing and the log with regard to one

of the applied models. The host medium is double-layered

(�1���:HH�=�� ��m, h1 ��:HHH��$��2���:HHH�=�� ��m). The

body along ?� �"��^� � �� �:HHH� � � :HHH� �$� �� �� Y� �"��^�

from –1000 to 500 m, along Z��"��^�� ���>HH�� ���HH�A�

� � 50 Ohm ��m (conducting). The loop has the radius of

�>L��$������������ ���&H$�:HHH��($��������� ��:���

Thus, we represent for comparison TEM curves (dB�/dt) at the point of (1000, –1000) (indicated with an arrow in

Z����:(����������������������������������Z/�4���������

the use of the Born approximation algorithm practically

coin cide with each other (Fig. 1). The result is obviously

convincing. However, the TEM curve for the host medium

(normal signal) is also shown in Fig. 1. It is seen that non-

��� ������������� ��6�����Z ��������� $�����' ���-

� "����� � � )�� !����� ������ # ����� � �� �� ����

������� ����� ����� �������������������� ����� ������-

��������Z����Y$������������������� ����� � ������������-

tory solution accuracy obtained by means of the Born ap-

proximation. With regard to the model given in Fig. 1,

calculations carried out for other measuring points and for a

��6���� � ���� � ���� � � ��� �� � �� ��� �� ���� ' � ��-

� "����� ��������������� ��� �����Z/�4�������$���k��

not a simple answer to the question of how to estimate test-

ing results of the program which uses intentionally approxi-

mated algorithm. We consider the obtained result to be

������� ��������� �� ��� ���� ����� �� � )� �"������� ��-

quired when dealing with synthetic and geoelectric survey

�������������� ���������������� �����������[���� ����

problem for the inverse problem solution will result in more

objective estimation.

TOMOGRAPHIC APPROACH TO TEM

The linear solution of the forward problem, which is of-

fered in the equation (4), immediately implies the inverse

problem solution with the use of linear inversion. Our ap-

proximation means the neglect of certain disturbances inter-

action between each other, but we are able to construct a

������������������� �����������������) ��������-

Fig. 1.����������� �������� ����� � ��Z/�4����4�������������� ���������� ��������������������.

Fig. 2.�# ����� � ��4��������Z/�4���������� ����������� -

��������.

Page 4: 3D Tomographic Inversion of TEM Sounding Datageoelectriclab.com/storage/app/media/Mogilatov...apparatus for 3D inversion based on Born linearization of the forward problem has proved

100 V.S. Mogilatov et al. / Russian Geology and Geophysics 60 (2019) 97–107

lar perturbation within the range of the spatial elements of

the explored medium domain. If we consider a distinctive

approach to the medium description and the ways of inver-

sion results representation, in principle, we will be able to

��)�� �� ������ � � ���� � � ������ ��� ���� ����� ���� � �

� ���� ���� ������ � ������ ���� ���� ���� � � ������� ��-

� ��������������������6����������������� �� �����/4�

�����!���$� ��������������������� ��[�������������� ��

stationary and quasi-stationary geoelectrical engineering,

where a physical basement is characterized by Laplace and

������������!���� ���#������$���������������� ������

fundamentals of classical X-ray tomography and even from

seismic tomography equipped with ray-tracing and geomet-

ric optics.

Tomographic inversion is understood to be one of the

ways of the inverse problem solution. There exists conven-

tional wisdom, according to which tomographic inversion

should provide fairly immediate results in the form of me-

dium images (3D or cross-sections). It is achieved by apply-

��� � �� � ������� �� � ����������� �� 9�� ��� � �� �

practice for tomographic inversion to apply approximated

and linearized solutions of the forward problem. This prob-

�������������������� ������������ �����%�����������-

���� � ���������� ��� "����� � &�����[��� (� � ���� ���

� �� ���� ��� ����������� � �� ���� ��������� � ����� � �����

Besides the forward problem quality, the following prob-

������������^�� ��������������[��� � ������������

structure as a set of standard internally uniform elements,

linear inversion technique, and the problem of representa-

�� � ��� ����� � ������� �������� �� ���� ������ � ������

could be reasonably resolved in the context of the tomo-

���������� ���$����������������������������������� -

������������ �� ��^

(1) the perturbation area is created by a number of primi-

tive elements;

(2) the linearized solution of a multidimensional direct

problem is constructed in the neighborhood of a simple

(one-dimensional or even nonuniform) reference model;

(3) inversion is based on reversal of the linear system,

which correlates experimental data and perturbed geophysi-

cal parameters with regard to the reference medium;

(4) the medium structure is restored by the obtained spa-

tial distribution of parameters (for example, electroconduc-

tivity).

���� � ���� &���� �� �!������ ��������� � � ���� �� ��� ��-

� ���(�� ��� ������� � ������������������� �������%-

cient solution of the forward problem via approximated

linea rized representation. The data set of experimental obser-

���� �� ������� ���� ��6���� � ���� �� &�������� �

time, position of sources and observation sites) must be cor-

related with corresponding approximated representations. In

the result, we obtain the system of linear equations to deter-

mine the sum total of piecewise constant conductivity distur-

�������9�������������� �� ��^

(8)

where E0, denotes a transient signal of the host one-dimen-

sional media; $, the number of standard solid elements (to-

mographic grid cells), into which the investigated medium

� �� ������������A��|j , conductivity disturbance in the jth

element relative to the host medium; Gj(ti), the linearized

��������� � � �%������ &������ �� ��(� �� ���� � ����

problem; N, the number of measurements.

������ ��)�� �� � � ������� � �"��������� ����� �-

rors, we should use a considerable body of evidence, but not

���� ������ ����� �� �) ���� 9�� ��� �������� ���� ����

Fig. 3.������ ������������ ����������� ����

Page 5: 3D Tomographic Inversion of TEM Sounding Datageoelectriclab.com/storage/app/media/Mogilatov...apparatus for 3D inversion based on Born linearization of the forward problem has proved

V.S. Mogilatov et al. / Russian Geology and Geophysics 60 (2019) 97–107 101

that data (measurements) should be independent. Note that

in case of transient signals use, each signal value deter-

mined at every time moment from each TEM curve will

introduce its own equation into the system (8). Neverthe-

less, adjacent measurements on the TEM curve can hardly

��6������� ���� ����������9��������$���k�������� � ��-

determine the system (8) formally, but in reality, on physi-

cal grounds, it could be underdetermined. We are quite cer-

���� ����� ���� ������� &C(� ����� � ������� �� ������� ��

the inverse problem solution. It’s highly unstable, ambigu-

ous, and needs additional regularization.

���� ������ ���� ���������� � � � )� � ������[���

� ���� �������������� ��������������� �������������-

���� $������� ����������� �� �� ���� �� ����� ����-

termined system of equations, and it is based on the least-

squares method and singular value decomposition

&���)�� ����������$�:<?:(��9����������$���������� ��

solutions is limited to the minimum norm that is in accor-

dance with the real distribution of conductivity disturbance,

���������� �� �������� ��������������� ������ ���� �

option depending on the number of used singular values.

NUMERIC EXPERIMENTS DESCRIPTION

Synthetic data. We used the available three-dimensional

calculations in accordance with the FE method carried out

by M.G. Persova. The medium model is shown in Fig. 3,

and the image is obtained with the use of GeoPrep software

elements of graphic interface (M.G. Persova, Yu.G. So-

� ������)(�

Nonhomogeneity with the dimensions of 2000 × 1500 ×

300 m and resistivity of 50 Ohm ��m was placed into the

double-layered geoelectric section. The top of nonhomoge-

neity is situated at a depth of 300 m. One can see that two

� ���� �� �� ����� � � ��� ��� ����_�:� ~� �Y� ����� ��

�>L���������&��� �����������������:HHH���:HHH����!����

outline), and (0, 0) and (0, 1000) coordinates. The transient

process is registered from each of them at 35 points. In the

result, we have the sum total of 70 TEM curves.

Figure 4 presents the example of TEM curves (normal

��� ������(� ��� ���� � ��� �� �� �� YHHH� �$� �� �� �:HHH� ���

���������������������������$������������ ���&:>>������

moments) with redundant inception and late stages, at which

���� ��� ����� �6���� ��� �������� ���� �"��������� ���-

����������)�� ��� �� ����� � ���� ����� �� ������ ��6�����

between the two source positions and the presence of large

�����&�L�)�($������ ������������������ ���������� ��

���������������)���������������������������������'����� �

correlation results for the host medium and integral curves,

��������� ������ ����� ����������� ��� ����6��������������

and tends to be localized in the time domain where the curves

alternate in signs, that is in the neighborhood of signal zero

�������� ����� ����� �������� ��%�������� �� � ���� ��� ��-

proaches application with the use of apparent values.

��������� �� The experiment yielded 70 TEM curves

from two generator loops. The nonhomogeneity position

&��������������(����� �������� �����) �������������

Fig. 4. The example of TEM curves.

Fig. 5. The coarse tomographic grid.

Page 6: 3D Tomographic Inversion of TEM Sounding Datageoelectriclab.com/storage/app/media/Mogilatov...apparatus for 3D inversion based on Born linearization of the forward problem has proved

102 V.S. Mogilatov et al. / Russian Geology and Geophysics 60 (2019) 97–107

Fig. 6. The inversion result on the coarse tomographic grid.

Fig. 7. The expanded tomographic grid.

Page 7: 3D Tomographic Inversion of TEM Sounding Datageoelectriclab.com/storage/app/media/Mogilatov...apparatus for 3D inversion based on Born linearization of the forward problem has proved

V.S. Mogilatov et al. / Russian Geology and Geophysics 60 (2019) 97–107 103

stage of the experiment. In this case, we suppose that the

���� �� � ����� ����� � � ��� � � ����_�HHH� �� �HHH� ���

Z�����$�����������)������ ���� )��������L���L���Y�)�����

tomographic grid, which is shown in Fig. 5. Two deep lay-

ers (–1000 < �����>HH�����>HH���� < –300 (measured in

meters)) are investigated. Then, we will determine conduc-

������������������� �����) ��� �������������Y������� ��

the tomographic grid.

��� ���� � � ������ ���������������� $� � � �������

����� ����������������������� �������������� ������$�

������������� ��&���������� (���������������������

� ������� ����� � � ������ ������$������ ����� �� �%-

cients calculations for each element, i.e., to construct a lin-

earized solution for the 3D forward problem. Further, the

parameters of the host cross-section ought to be determined

(e.g., through preliminary one-dimensional interpretation).

# �%��������������� ��&����� �����������!���� ��&L(�

(8)) turn out to be the most resource-intensive part of the

proposed mathematical apparatus. We have to compute and

�� �� ���� �������� ����� �_� �%������ �� ���� �� ���

�_�Nx × Ny × N�× Nt, where Nx, the number of the grid parti-

tions along ? axis; Ny, the number of the grid partitions along

Y axis; N�, the number of the grid partitions along Z axis; Nt,

��������� ���/4������� �� )���� ������ ��������� ��

and receivers being multiplied by the number of timing cy-

����� ����)���)���9����������$��������� �����L × 4 × 2 ��?H���

YYLH������ �_� �%�����$������ �������������������� �

:>>��������������

Fig. 8. � �����"������ ��� � ������������ ������� ���$����������������������

Page 8: 3D Tomographic Inversion of TEM Sounding Datageoelectriclab.com/storage/app/media/Mogilatov...apparatus for 3D inversion based on Born linearization of the forward problem has proved

104 V.S. Mogilatov et al. / Russian Geology and Geophysics 60 (2019) 97–107

����� �$������������������ ��?H���:>>�&�� ������(�

�!���� ���������� ���$����������������������������6�����

between pseudo-experimental and estimated data for the

������������������������ �%��������� ��������������

and saved; and Nx × Ny × N���) ���������� ����� ���-

������������������&�|(������������������������������ �

element.

Linear system solution is carried out by the least-squares

method and regularization (the least norm). This is a fast

� ������ &�������������������������� �%�����������-

lations) because it can be repeated through altering inver-

sion parameters (if it is necessary) and/or predetermining

������ �������� ��� ) �� ��������� &����$� ������ ����������

������������ ������� ���(�

Z����� >� ������� ������������� ������� �� � � �������

inversion. X and Y coordinates are placed in the cell centers

������� � ����������������������� ��Z����>�

����������� ��� ����� � ���������� &�����(� �� ���������

�����&�>HH���� < –300) are apparently distinguished by resis-

tivity, and in the table they are color-coded. Here the result is

presented in a 3D graphical format. It should be noted that

ways and means of visual representation of inversion results

prove to be the essential part of the tomographic approach.

The second stage, the expanded grid. �������� ���-

sion stage enabled us to carry out rough localization of the

abnormal body, that’s why at the second stage we can gen-

erate more expanded grid in the domain of smaller dimen-

sions (Fig. 7). One layer has been studied in vertical direc-

Fig. 9.������ ������������ ����������� ���.

Fig. 10. Multiple nonhomogeneity. The inversion of transient signals from the generator loop central position.

Page 9: 3D Tomographic Inversion of TEM Sounding Datageoelectriclab.com/storage/app/media/Mogilatov...apparatus for 3D inversion based on Born linearization of the forward problem has proved

V.S. Mogilatov et al. / Russian Geology and Geophysics 60 (2019) 97–107 105

tion; the result of tomographic inversion is represented in a

graphical format in Fig. 7.

��������� ����������� ����� ����� ���� $� ���� ������ �� ����

� � ���������� ���� �������������������������������

������������������������ ����� ���� ����� ���������-

���� �� �������� �������� ����$�������������������-

ed both to linear approximation accuracy and the accuracy

of a priori information about the host medium, and to the

!����������!������� ������������

More inversion examples. Let’s consider one more ex-

ample of tomographic inversion for the same model and the

������������������������������� ������"���������������-

tion of the target horizon in three layers (100, 100, and

100 m) (Fig. 8).

Up to now we have applied synthetic data supplied by

M.G. Persova. It was of great interest to deal with calcula-

tions of another 3D modulation program. We used Mo-

dem3D program (application designers M.I. Ivanov,

9����G����$���������G����� �($�����������������������

vec tor method (FEVM) was also implemented (Ivanov et

al., 2007, 2009; Shein et al., 2012; Shein, 2013; Shein et al.,

2014, 2015). To establish control, the same model and the

set of receivers were used, but the observation system was

��������������������� ����&Z����<(�

Complex arrangement/inclusion. � �����%������-

sult should be given consideration, when the loop with

complex nonuniformity (Fig. 10) is being recovered accord-

��� � � ���� �������� � �� �� ������� ������ � �� �"���

sources. The host medium is the same as in the previous

examples (1000 m layer, 100 Ohm ��m resistivity on the

basement with resistivity of 1000 Ohm ��m). Nonhomogene-

����� ����������������������� ���HH���� �>HH��$�����-

tivity amounts to 30 Ohm ��m. Five generator loops were

����A�������� �������������������>�� ���� ������������

grid with the interval of 400 m (Fig. 10).

Fig. 11. Physical modeling. The photo of the experimental set-up (on the left) and the observation system.

Fig. 12. 9���� ��������� ���6������������� ��������[��� �

Page 10: 3D Tomographic Inversion of TEM Sounding Datageoelectriclab.com/storage/app/media/Mogilatov...apparatus for 3D inversion based on Born linearization of the forward problem has proved

:H> V.S. Mogilatov et al. / Russian Geology and Geophysics 60 (2019) 97–107

Particular emphasis should be placed on the special fea-

ture of this numerical experiment. We managed to obtain

synthetic data by means of linearized representation of the

forward problem (the forward problem involves Born ap-

proximation). Thus, it could be only “internal” validation of

the inversion algorithm by status. However, we introduced

disturbances in the form of misalignment of the tomographic

grid (12 × 12) lines with the nonhomogeneity borders. In

such a way, quite a new result for methodological guidelines

������������� 9������� ��� ��� ����� ���� ����� ����������

generator loops (in this case, only 9 observation points were

exploited, so there were 45 curves in all) doesn’t improve

the inversion with the use of signals from one central source.

The fact is that the adverse impact will rise with the distance

increase, but data received in the vicinity of generator loops

����� ���������������� �����6����

Physical modeling. Finally, attention should be drawn to

the result, which is certain to be a step forward to tomo-

������� ����� � �� ���� ����� ������ ��G�� N�)��)�$� �� ��-

mous expert in physical modeling, has modeled TEM pro-

cesses on sheets of metal at our request. Then the data and

the model were recalculated with provision for electrody-

namic similarity on full scale. The model is shown in Fig. 11,

which also gives an overview of the observation system

which is made up of responses at 22 points from one of the

�� ������ �� ��^���������LL��/4���������������[�)��?�

standard equipment is used for registration. The section con-

sists of two conductive beds, and there is an insert (5.5 ×

���� )�(� �� � �� � ���������� �� ���� � �� �� ����� &������

drilled holes in the sheet of metal).

The results shown in Fig. 12 indicate the capability to

restore position, dimensions and even shape. It should be

recognized that modeling was not superior in quality. The

host medium was not consistent (owing to the bending of

�����������(��������������)��$������������ �����-

nitely simulated acquisition conditions.

CONCLUSIONS

The study of the 3D tomographic inversion procedure

with the use of physical and mathematical modeling data

allows us to conclude that the proposed mathematical appa-

ratus for 3D inversion based on the Born linearization of the

forward problem has proved to be quite applicable. It may

������������������������� ��������������"������$�����$������

data application. The tomographic approach should incorpo-

rate utility software for real-time visual interaction with da-

tabase and graphic tools for results representation. It is be-

yond argument that a correct solution procedure of 3D

forward problem will ensure fast tomographic inversion.

The study results were obtained with the involvement of ac-

curate 3D modeling, so we express particular gratitude to the

application designers M.G. Persova, M.I. Ivanov, and

9���� G������ ���� ����� �� ��������� � ������ ������� ���

��G��N��)��)������ ����������������������

REFERENCES

'��������)�$�4���$�N��� �$�4�¢�$�:<CL������������� �� �������

�� ��������¢ ������/�������¢������£�����# �$�9��

Bleistein, N., Gray, S.H., 1985. Extension of Born inversion method

� � ������������������ �������� ������� ������£ ������� &?($�

999–1022.

' $�4�$�:<����=���)��¢����$�'����

����� �$���4�$�:<>C����� ��� ��������� ��������������� �����-

������ ���������������� � ��������� �[�)�$�¤�>$�C��<:�

/� �$�4�9�$��� �$�/����$�:<<<��������� ������ ������� ��������

� ������������� ��� ���� ������������������������ ��Z�[�)��

N����$�� ����L$��LC�����

�������$���4�$�#���$���#�$�#� �$�/���$� :<C>��¢������� ��� �� -

������ � ������������������ ����������� ������������������� -

� ��� ������������� �¢����Y:�&L($�>���>L��

9�� �$� 4�9�$� G����� �$�����$� G���$� 9���$� ���$� 4���$� YHH?�� ¢ ��-

�� � ����� ����� ���� ������ ���������� �����������������-

tometriya 43 (2), 33.

9�� �$�4�9�$�G����� �$�����$�G���$�9���$�/� �$�4�9�$�YHH<��4 ����

3D software for nonstationary sounding data interpretation with ac-

� ��� ���6���������������� ���[��� ��N����)��� � �9��������

183, 242–245.

G�����$�����$����� ��)�$�`���$�:<?H���/���� ��������������� ���

�������� ���� ��������� &�� ������� ��� � ����($� �^� /���� -

magnetic Fields in Geophysical Prospecting Methods [in Russian].

� � �����)$�� ����L$��������:�

G�����$�����$� ���� ��)�$� `���$� :<?H��� ���� Z���������� �� 4��

¢ �����������` �������¢��������4�����§��������¨�����)�$�

� � �����)�

Mogilatov, V.S., 1999. Secondary sources and linearization in geoelec-

����� ��������� � ����� ���� �[�)�� &��������� � �������� -

physics) 40 (7), 1102–1108 (1087–1094).

Mogilatov, V.S., 2014. Pulse Geoelectrical Engineering [in Russian].

� � �����)��� �������$�� � �����)�

Mogilatov, V.S., Epov, M.I., 2000. Tomographic approach to interpreta-

�� � ���� �/4�� �����������Z�[�)��N����$�� ��:$�?C�C>�

Mogilatov, V.S., Epov, M.I., Isaev, I.O., 1999. Tomographic inversion

���/4� ������ �� � ����� �� �� �[�)�� &������� �� � ��� ��� �� -

�������(�LH�&L($�>�?�>LL�&>Y:�>YC(�

=��)� �$�����$�:<>?��� �[ ��������������� ���������� ��������� �-

����������� �� �� ��������� ��������� £�)������� �� �[�)�� �H$�

124–131.

=��)� �$� ����$� '��) ��)���$���9�$� :<?L����������� � �� �/4� ����-

�!�����������������[ ���������� �[ ������ � � ��� ���

��������£�)��������� �[�)��?�$�:�Y�:L��

=������� $�4�`�$�:<C<�������������������� �����������������������

������9�����£ ��������&>($�:H<?�::H��

£�� ��$�4���$�¢ � ������)$������$�� ��) �$�£���$�¢�� �$�/�9�$�YH:H��

The tomographic approach to interpretation of EM sounding data

������������� ��������$��^�£ ���:H���9���# ����4���9������

of Electronic Instrument Engineering”, FPEP–2010 [in Russian].

�¢��$�� � �����)$�� ���>$����:�H�:���

£�� ��$� 4���$� ¢ � ������)$� �����$� ����� ����$� ��4�$� YH::�� # �-

������ ������ ���� ����� ��������������������������� ���

����������������������������� ���9[�������$�£������� ������¢ ����

Earth 47 (2), 79–89.

¢���$�����$�YH:����������������������� ��4 �������� ������������

� �� ������� �� ������ �������� ������������������������$�

�^�£ ��������������¢����# ��$�� ���Y�§��������¨��G�������$�¢�����

=�) �$�����<<�:HL�

¢���$�����$��� �$�/����$�G���$� 9���$� 9�� �$�4�9�$�YH:Y���/4�

data Interpretation by the Modem 3D program for 3D modeling of

������������ ������������$��^�£ ���>���9���¢������/����#�-

��� �� ¢��������� # ��� &<�Y�� ©��� YH:Y$� � � �����)(� §�� ���-

���¨��� � �����)��� �������$�� � �����)$������H���HL�

Page 11: 3D Tomographic Inversion of TEM Sounding Datageoelectriclab.com/storage/app/media/Mogilatov...apparatus for 3D inversion based on Born linearization of the forward problem has proved

V.S. Mogilatov et al. / Russian Geology and Geophysics 60 (2019) 97–107 107

¢���$� ����$� 4 ����� �$� ��¢�$� �� �$� /����$� YH:L�� ������� �� ���

tomographic inversion of TEM sounding data with the use of lin-

��� &' (� ��� "����� $� �^� £ ��� :H��� 9��� ¢���� # ��� ��������

Resources Management. Mining. Trends and Techniques in Pros-

������$�¢����$����4����$�9������ ��/=�¢������&C�:C�����$�

YH:L$� � � �����)($� � ��� �� §�� ������¨�� ¢���$� � � �����)$�

����:�<�:>L�

¢���$�����$�4 ����� �$���¢�$��� �$�/����$�YH:�������������� ��� � -

graphic approach to 3D inversion of TEM sounding data with the

���� �������&' (���� "����� $��^�£ ���9���¢����# �����������

Resources Management. Mining. Trends and Techniques in Pros-

pecting, Survey, and Mining. Geo-Ecology”, Interecspo GEO-Sibe-

ria. Geoecologiya 2 (2), 294–298.

���� ��)�$�`���$�/� �$�4�9�$��� �$�/����$�:<CC��/4�Z�����������

4�������������)���� � �[ ����' �������§��������¨��9�ª�$�

� � �����)�&����������� ���9�9�9�HL�HC�CC$�� ��>Y�C�«CC(�

���)�� $�©���$�������$�#�$�:<?:������ )�� ���� ������# �����-

�� ��� ���Y^�`������������¢����������$�'����

N��� �$�4�#�$�YHH?��������� �� ��9�����£ ����������������[�-

tion in Geophysics [in Russian]. Nauchnyi Mir, Moscow.

Editorial responsibility: M.I. Epov