4 bar hacksaw synopsis

6
Synopsis Four bar hacksaw A hacksaw is a fine-toothed saw, originally and principally for cutting metal. They can also cut various other materials, such as plastic and wood; for example, plumbers and electricians often cut plastic pipe and plastic conduit with them. There are hand saw versions and powered versions (power hacksaws). Most hacksaws are hand saws with a C-shaped frame that holds a blade under tension. Such hacksaws have a handle, usually a pistol grip, with pins for attaching a narrow disposable blade. The frames may also be adjustable to accommodate blades of different sizes. A screw or other mechanism is used to put the thin blade under tension. Panel hacksaws forgo the frame and instead have a sheet metal body; they can cut into a sheet metal panel further than a frame would allow. These saws are no longer commonly available, but hacksaw blade holders enable standard hacksaw blades to be used similarly to a keyhole saw or pad saw. Power tools including nibblers, jigsaws, and angle grinders fitted with metal-cutting blades and discs are now used for longer cuts in sheet metals. On hacksaws, as with most frame saws, the blade can be mounted with the teeth facing toward or away from the handle, resulting in cutting action on either the push or pull stroke. In normal use, cutting vertically downwards with work held in a bench vice, hacksaw blades should be set to be facing forwards. Some frame saws, including Fret Saws and Piercing Saws, have their blades set to be facing the handle because they are used to cut by being pulled down against a horizontal surface. A panel hacksaw has a frame made of a deep, thin sheet aligned behind the blade's kerf, so that the saw could cut into panels of sheet metal without the length of cut being restricted by the frame. The frame follows the blade down the kerf into the panel. Junior hacksaws are a small version with a half-size blade. Like coping saws, the blade has pins that are held by notches in the frame. Although potentially a useful tool for a toolbox or in confined spaces, the quality of blades in the Junior size is

Upload: royalaryans

Post on 30-Sep-2015

11 views

Category:

Documents


1 download

DESCRIPTION

project synopsis

TRANSCRIPT

SynopsisFour bar hacksawA hacksaw is a fine-toothed saw, originally and principally for cutting metal. They can also cut various other materials, such as plastic and wood; for example, plumbers and electricians often cut plastic pipe and plastic conduit with them. There are hand saw versions and powered versions (power hacksaws). Most hacksaws are hand saws with a C-shaped frame that holds a blade under tension. Such hacksaws have a handle, usually a pistol grip, with pins for attaching a narrow disposable blade. The frames may also be adjustable to accommodate blades of different sizes. A screw or other mechanism is used to put the thin blade under tension. Panel hacksaws forgo the frame and instead have a sheet metal body; they can cut into a sheet metal panel further than a frame would allow. These saws are no longer commonly available, but hacksaw blade holders enable standard hacksaw blades to be used similarly to a keyhole saw or pad saw. Power tools including nibblers, jigsaws, and angle grinders fitted with metal-cutting blades and discs are now used for longer cuts in sheet metals.On hacksaws, as with most frame saws, the blade can be mounted with the teeth facing toward or away from the handle, resulting in cutting action on either the push or pull stroke. In normal use, cutting vertically downwards with work held in a bench vice, hacksaw blades should be set to be facing forwards. Some frame saws, including Fret Saws and Piercing Saws, have their blades set to be facing the handle because they are used to cut by being pulled down against a horizontal surface.A panel hacksaw has a frame made of a deep, thin sheet aligned behind the blade's kerf, so that the saw could cut into panels of sheet metal without the length of cut being restricted by the frame. The frame follows the blade down the kerf into the panel.Junior hacksaws are a small version with a half-size blade. Like coping saws, the blade has pins that are held by notches in the frame. Although potentially a useful tool for a toolbox or in confined spaces, the quality of blades in the Junior size is restricted and they are only made in the simple low alloy steels, not HSS. This restricts their usefulness.

An electric hacksawA power hacksaw (or electric hacksaw) is a type of hacksaw that is powered either by its own electric motor or connected to a stationary engine. Most power hacksaws are stationary machines but some portable models do exist; the latter (with frames) have been displaced to some extent by reciprocating saws such as the Sawzall, which accept blades with hacksaw teeth. Stationary models usually have a mechanism to lift up the saw blade on the return stroke and some have a coolant pump to prevent the saw blade from overheating.[4]Power hacksaws are not as commonly used in the metalworking industries as they once were. Bandsaws and cold saws have mostly displaced them. While stationary electric hacksaws are not very common, they are still produced. Power hacksaws of the type powered by stationary engines and line shafts, like other line-shaft-powered machines, are now rare; museums and antique-tool hobbyists still preserve a few of them.A four-bar linkage, also called a four-bar, is the simplest movable closed chain linkage. It consists of four bodies, called bars or links, connected in a loop by four joints. Generally, the joints are configured so the links move in parallel planes, and the assembly is called a planar four-bar linkage.[1]If the linkage has four hinged joints with axes angled to intersect in a single point, then the links move on concentric spheres and the assembly is called a spherical four-bar linkage. Bennett's linkage is a spatial four-bar linkage with hinged joints that have their axes angled in a particular way that makes the system movable.

Planar four-bar linkages are constructed from four links connected in a loop by four one degree of freedom joints. A joint may be either a revolute, that is a hinged joint, denoted by R, or a prismatic, as sliding joint, denoted by P.A link connected to ground by a hinged joint is usually called a crank. A link connected to ground by a prismatic joint is called a slider. Sliders are sometimes considered to be cranks that have a hinged pivot at an extremely long distance away perpendicular to the travel of the slider.The link that connects two cranks is called a floating link or coupler. A coupler that connects a crank and a slider, it is often called a connecting rod.There are three basic types of planar four-bar linkage depending on the use of revolute or prismatic joints:1. Four revolute joints: The planar quadrilateral linkage is formed by four links and four revolute joints, denoted RRRR. It consists of two cranks connected by a coupler.2. Three revolute joints and a prismatic joint: The slider-crank linkage is constructed from four links connected by three revolute and one prismatic joint, or RRRP. It can be constructed with crank and a slider connected by the connecting rod. Or it can be constructed as a two cranks with the slider acting as the coupler, known as an inverted slider-crank.3. Two revolute joints and two prismatic joints: The double slider is a PRRP linkage.[3] This linkage is constructed by connecting two sliders with a coupler link. If the directions of movement of the two sliders are perpendicular then the trajectories of the points in the coupler are ellipses and the linkage is known as an elliptical trammel, or the Trammel of Archimedes.Planar four-bar linkages are important mechanisms found in machines. The kinematics and dynamics of planar four-bar linkages are important topics in mechanical engineering.Planar four-bar linkages can be designed to guide a wide variety of movements.Planar quadrilateral linkagePlanar quadrilateral linkage, RRRR or 4R linkages have four rotating joints. One link of the chain is usually fixed, and is called the ground link, fixed link, or the frame. The two links connected to the frame are called the grounded links and are generally the input and output links of the system, sometimes called the input link and output link. The last link is the floating link, which is also called a coupler or connecting rod because it connects an input to the output.Assuming the frame is horizontal there are four possibilities for the input and output links:[3] A crank: can rotate a full 360 degrees A rocker: can rotate through a limited range of angles which does not include 0 or 180 A 0-rocker: can rotate through a limited range of angles which includes 0 but not 180 A -rocker: can rotate through a limited range of angles which includes 180 but not 0Some authors do not distinguish between the types of rocker.Grashof conditionThe Grashof condition for a four-bar linkage states: If the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link. In other words, the condition is satisfied if S+L P+Q where S is the shortest link, L is the longest, and P and Q are the other links.The figure shows examples of the various cases for a planar quadrilateral linkage.

Types of four-bar linkages, s = shortest link, l = longest linkThe configuration of a quadrilateral linkage may be classified into three types: convex, concave, and crossing. In the convex and concave cases no two links cross over each other. In the crossing linkage two links cross over each other. In the convex case all four internal angles are less than 180 degrees, and in the concave configuration one internal angle is greater than 180 degrees. There exists a simple geometrical relationship between the lengths of the two diagonals of the quadrilateral. For convex and crossing linkages, the length of one diagonal increases if and only if the other decreases. On the other hand, for nonconvex non-crossing linkages, the opposite is the case; one diagonal increases if and only if the other also increases.Design of four bar mechanismsThe synthesis, or design, of four bar mechanisms is important when aiming to produce a desired output motion for a specific input motion. In order to minimize cost and maximize efficiency, a designer will choose the simplest mechanism possible to accomplish the desired motion. When selecting a mechanism type to be designed, link lengths must be determined by a process called dimensional synthesis. Dimensional synthesis involves an iterate-and-analyze methodology which in certain circumstances can be an inefficient process; however, in unique scenarios, exact and detailed procedures to design an accurate mechanism may not exist.