4. introduction to local estimation - sample(ecology)feb 04, 2016  · 4.1 comparison. traditional...

61
4. Introduction to Local Estimation

Upload: others

Post on 07-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4. Introduction to Local Estimation

Page 2: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance
Page 3: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

Overview

1. Traditional vs. piecewise SEM

2. Tests of directed separation

3. Introduction to piecewiseSEM

Page 4: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.1 Traditional vs. Piecewise SEM

Page 5: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.1 Comparison. Traditional vs. piecewise SEM

Variance-covariance Piecewise

Single (global) variance-covariance matrix estimated

Multiple (local) variance-covariance matrices estimated (one for each endogenous variable)

Simultaneous solution (computationally intensive)

Multiple solutions (modularized)

Fit to normal distribution Incorporates various distributions (Poisson, Gamma, etc.)

Assumes independence Can model non-independence (blocked, temporal, spatial, etc.)

Latent & composite variables No latent or composite variables (yet*)

True correlated errors Partial correlations (so far*)

Non-recursive (feedbacks) Only for recursive

Multi-group models Can estimate random components, but no formal χ2 test

Page 6: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.1 Comparison. Traditional vs. piecewise SEM

Traditional SEM Piecewise SEM

Page 7: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.1 Comparison. Graphs to equations

y1 = γ11x1 + ζ1

y2 = γ12x1 + b12y1 + ζ2

x1 y2

2

12

y1

11 b12

1

Page 8: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.1 Comparison. Break this model up

y2

y3

3

12 y4

11

b13

2

y1

x1

1

b23

b24

b43

4

Page 9: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.1 Comparison. Break this model up

y2

y3

3

12 y4

11

b13

2

y1

x1

1

b23

b24

b43

4

11y1x1

1 12

y2x1

2

2 Simple Linear Regressions

Page 10: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.1 Comparison. Break this model up

y2

y3

3

12 y4

11

b13

2

y1

x1

1

b23

b24

b43

4

y2

y3

3

12 y4

11

b13

2

y1

x1

1

b23

b24

b43

4

y4

4b24

y2 y2 y3

3

y4

b13y1

b23

b43

1 Simple, 1 Multiple Regression

Page 11: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

ACTIVITY

• Take your SEM from Lesson 3

• Break it up into the component models

Page 12: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Tests of Direction Separation

Page 13: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. Model fit

Does the model fit the data?

=

Does the model represent the data well??

=

Are we missing important information???

Page 14: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. Model fit

x y3

y2

y1

Did we get the topology right or are there unrecognized significant relationships?

Page 15: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. D-sep

x y3

y2

y1

• Concept from Graph Theory

• Two nodes are d-separated if they are conditionally independent e.g., the effect of x on y3 is zero given the influences of y1

and y2

Page 16: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. D-sep

x y3

y2

y1

Test of direction separation:

1. Identify all independence claims

2. Evaluate each independence claim

3. Summarize information across all claims

Page 17: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. Independence claims

x y3

y2

y1

1. Identify all independence claims

Basis set = the smallest possible set of independence claims from a graph

1. x ⏊ y3 | (y1, y2)

2. y1 ⏊ y2 | (x)

Page 18: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. Independence claims

The d-separation criterion for any pair of variables involves:

1. Controlling for common ancestors that could generate correlations between the pair

2. Controlling for causal connections through multi-link directed pathways via parents

3. Not controlling for common descendent variables.

Page 19: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. Deriving the basis set

What is the basis set?

1. mass ⏊ dia | (canopy)

2. mass ⏊ # | (canopy)

3. mass ⏊ %| (canopy)

4. dia ⏊ # | (canopy)

5. dia ⏊ % | (canopy)

6. % ⏊ # | (canopy)

Dia ~ mass + canopy

Page 20: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. Deriving the basis set

What is the basis set?

1. canopy ⏊ % | (#)

2. canopy⏊ mass | (dia)

3. dia ⏊ # | (canopy)

4. dia ⏊ % | (canopy, #)

5. mass ⏊ #| (dia, canopy)

6. mass ⏊ % | (dia, #)

Page 21: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. A note

• Basis set generally excludes relationships among exogenous variables

x1

x2

y1 y2

1. x1 ⏊ y2 | (y1)2. x2 ⏊ y2 | (y1)3. x1 ⏊ x2

Page 22: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. A note

• Unclear as to the direction of the relationship

• Unclear whether variables could even be causally linked• E.g., Ocean basin and Latitude

• Distributional assumptions, etc. not defined

x1

x2

y1 y2

1. x1 ⏊ y2 | (y1)2. x2 ⏊ y2 | (y1)3. x1 ⏊ x2

Page 23: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. A note

• Basis set generally excludes non-linear components (polynomials)

x

x2

y1 y2

1. x ⏊ y2 | (y1)2. x2 ⏊ y2 | (y1)

Page 24: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. A note

• Basis set generally excludes non-linear components (interactions)

x1

x2

y1 y2

1. x1 ⏊ y2 | (y1)2. x2 ⏊ y2 | (y1)3. x1 * x2 ⏊ y2 | (y1)

Page 25: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. Fisher’s C

• Summarize independence claims across basis set:

C = -2*∑ln(pi)

pi = the p-values of all tests of conditional independence

• p can come from many statistics

• C has a c2-square distribution with 2k degrees of freedom

• k = # of elements of the basis set.

Page 26: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. Fisher’s C

What is p < 0.05?

• You are likely missing some associations

• You reject this model

• The way forward: adding links or different model structure? (look at d-sep tests)

• To re-iterate, p ≥ 0.05 is GOOD

Page 27: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. Model selection

• Fisher’s C can be used to construct model AIC:

AIC = C + 2K

• K = # of likelihood parameters estimated (not to be confused with k)

• Can be extended to small sample size:

AICc = C + 2K(n / (n – K – 1))

Page 28: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.2 Directed Separation. Sample size

• Since there is no global vcov matrix, the t-rule does not apply

• Shipley suggests need only enough d.f. to fit each component model

• Or, d-rule (Grace et al 2015):• d = # of samples / # of pathways• d ≥ 5

• More is always better!

Page 29: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

ACTIVITY

• Take your SEM from Lesson 3

• Derive the basis set

Page 30: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 Introduction to piecewiseSEM

4_Local_Estimation.R

Page 31: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM.

piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics

install.packages(“devtools”)

library(devtools)

install_github(“jslefche/[email protected]”)

library(piecewiseSEM)

Page 32: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

32

Mediation in Analysis of Post-Fire Recovery of Plant Communities in California Shrublands

Five year study of wildfires in Southern California in 1993. 90 plots (20 x 50m)

Page 33: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Keeley example

Distance Richness

Hetero

Abiotic1. Create list of

structured equations

2. Conduct d-septests (evaluate fit)

3. Extract coefficients

Page 34: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Store list of equations

keeley <- read.csv(“keeley.csv”)

keeley.sem <- psem(

lm(abiotic ~ distance, data = keeley),

lm(hetero ~ distance, data = keeley),

lm(rich ~ abiotic + hetero, data = keeley),

data = keeley)

distance rich

hetero

abiotic

Page 35: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. D-sep tests

# Get the basis set

basisSet(keeley.sem)

# Conduct d-sep tests

dTable <- dSep(keeley.sem)

Independ.Claim Estimate Std.Error DF Crit.Value P.Value

1 rich ~ distance + ... 0.640431807 0.156457462 NA 4.093329 9.564005e-05 ***

2 hetero ~ abiotic + ... 0.002229248 0.001676649 NA 1.329585 1.871306e-01

distance rich

hetero

abiotic

Page 36: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Fisher’s C

# Get Fisher’s C

fisherC(dTable)

Fisher.C df P.Value

1 21.862 4 0

distance rich

hetero

abiotic

Page 37: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Re-assess fit

distance rich

hetero

abiotic

# Add significant path

keeley.sem2 <-

update(keeley.sem, rich ~ abiotic + hetero + distance)

dSep(keeley.sem2)

Independ.Claim Estimate Std.Error DF Crit.Value P.Value

1 hetero ~ abiotic + ... 0.002229248 0.001676649 NA 1.329585 0.1871306

fisherC(keeley.sem2)

Fisher.C df P.Value

1 3.352 2 0.187

Page 38: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Get coefficients

distance rich

hetero

abiotic

# Get coefficients

coefs(keeley.sem2)

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate

1 abiotic distance 0.3998 0.0823 NA 4.8562 0.0000 0.4597 ***

2 hetero distance 0.0045 0.0013 NA 3.4593 0.0008 0.3460 ***

3 rich abiotic 0.5233 0.1756 NA 2.9793 0.0038 0.2660 **

4 rich hetero 33.4010 11.1187 NA 3.0040 0.0035 0.2539 **

5 rich distance 0.6404 0.1565 NA 4.0933 0.0001 0.3743 ***

Page 39: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Get R2

distance rich

hetero

abiotic

# Get R-squared

rsquared(keeley.sem2)

Response family link R.squared

1 abiotic gaussian identity 0.2113455

2 hetero gaussian identity 0.1197074

3 rich gaussian identity 0.4700472

Page 40: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Summary

summary(keeley.sem2)

Structural Equation Model of keeley.sem2

Call:

abiotic ~ distance

hetero ~ distance

rich ~ abiotic + hetero + distance

AIC BIC

25.352 52.85

Tests of directed separation:

Independ.Claim Estimate Std.Error DF Crit.Value P.Value

hetero ~ abiotic + ... 0.0022 0.0017 87 1.3296 0.1871

Coefficients:

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate

abiotic distance 0.3998 0.0823 NA 4.8562 0.0000 0.4597 ***

hetero distance 0.0045 0.0013 NA 3.4593 0.0008 0.3460 ***

rich abiotic 0.5233 0.1756 NA 2.9793 0.0038 0.2660 **

rich hetero 33.4010 11.1187 NA 3.0040 0.0035 0.2539 **

rich distance 0.6404 0.1565 NA 4.0933 0.0001 0.3743 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘’ 1

Page 41: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Summary

Goodness-of-fit:

Global model: Fisher's C = 3.352 with P-value = 0.187 and on 2 degrees of freedom

Individual R-squared:

Response Rsquared

abiotic 0.21

hetero 0.12

rich 0.47

Page 42: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Summary

distance rich

hetero

abiotic

R2 = 0.21

R2 = 0.12

R2 = 0.47

0.46

0.35 0.26

0.27

0.37

Page 43: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Correlated errors

distance rich

hetero

abiotic

keeley.sem3 = psem(

lm(abiotic ~ distance, data = keeley),

lm(hetero ~ distance, data = keeley),

lm(rich ~ distance + hetero, data = keeley),

rich %~~% abiotic

)

Page 44: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Correlated errors

distance rich

hetero

abiotic

R2 = 0.21

R2 = 0.12

R2 = 0.42

0.46

0.35 0.29

0.31

0.48

Page 45: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. AIC comparisons

distance rich

hetero

abiotic

distance rich

hetero

abiotic

Page 46: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. AIC comparisons

distance rich

hetero

abiotic

distance rich

hetero

abiotic0 0

abiotic ~ 1

Page 47: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Fit new model

keeley.sem4 <- psem(

lm(hetero ~ distance, data = keeley),

lm(rich ~ distance + hetero, data = keeley),

abiotic ~ 1

)

distance rich

hetero

abiotic

Page 48: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. AIC comparisons

distance rich

hetero

abiotic

distance rich

hetero

abiotic

AIC = 25.3

AIC = 28.5

Page 49: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Partial regression coefficient

Isolate the independent effect of distance on richness:

1. Regress abiotic and hetero against richness (removing distance)

2. Regress distance against abiotic and hetero (remove rich)

3. Regression residuals of 1 against 2 (having removed effects of abiotic and hetero from both)

Page 50: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Partial regressions

# Get partial residuals

partialResid(rich ~ distance, modelList2)

Page 51: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.3 piecewiseSEM. Partial regressions

• Useful for displaying trends, particularly with complex models where bivariate correlations are messy

• Can be used for any multiple regression (single model or list)

• Not applicable to simple regression (Y ~ X)

Page 52: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.4 A Warning

Page 53: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.4 Directed Separation. A warning

• Intermediate non-normal endogenous variables pose a challenge

x y3

y2

y1

Page 54: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.4 Directed Separation. A warning

• If normal, significance values are reciprocal

y2

y1

y2

y1

𝑃2,1 == 𝑃1,2

Page 55: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

𝑃2,1 ≠ 𝑃1,2

4.4 Directed Separation. A warning

• If non-normal, significance values are not reciprocal because of transformation via link function

y2

log(y1)

log(y2)

y1

Page 56: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.4 Directed Separation. A warning

# Create fake data

set.seed(1)

data <- data.frame(

x = runif(100),

y1 = runif(100),

y2 = rpois(100, 1),

y3 = runif(100)

)

# Store in SEM list

modelList <- psem(

lm(y1 ~ x, data),

glm(y2 ~ x, "poisson", data),

lm(y3 ~ y1 + y2, data),

data )

Page 57: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.4 Directed Separation. A warning

summary(modelList)

Error:

Non-linearities detected in the basis set where P-values are not

symmetrical.

This can bias the outcome of the tests of directed separation.

Offending independence claims:

y2 <- y1 *OR* y2 -> y1

Option 1: Specify directionality using argument 'direction = c()'.

Option 2: Remove path from the basis set by specifying as a correlated

error using '%~~%'.

Option 3: Use argument 'conserve = TRUE' to compute both tests, and

return the most conservative P-value.

Page 58: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.4 Directed Separation. A warning

dSep(modelList, conserve = T)

Independ.Claim Estimate Std.Error DF Crit.Value P.Value

1 y3 ~ x + ... -0.2006020 0.1088444 NA -1.8430170 0.06841223

2 y2 ~ y1 + ... -0.2826168 0.3994236 NA -0.7075617 0.47921747

summary(mody1.y2)$coefficients[2, 4]

0.5152512

summary(mody2.y1)$coefficients[2, 4]

0.4792175

Page 59: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.4 Directed Separation. A warning

dSep(modelList, direction = c("y2 <- y1"))

Independ.Claim Estimate Std.Error DF Crit.Value P.Value

1 y3 ~ x + ... -0.20060205 0.10884438 NA -1.8430170 0.06841223

2 y1 ~ y2 + ... -0.01818537 0.02784565 NA -0.6530776 0.51525122

summary(mody1.y2)$coefficients[2, 4]

0.5152512

summary(mody2.y1)$coefficients[2, 4]

0.4792175

Page 60: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance

4.4 Directed Separation. A warning

modelList2 <- update(modelList, y2 %~~% y1)

summary(modelList2)

Tests of directed separation:

Independ.Claim Estimate Std.Error DF Crit.Value P.Value

y3 ~ x + ... -0.2006 0.1088 NA -1.843 0.0684

Coefficients:

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate

y1 x 0.0173 0.1026 NA 0.1686 0.8664 0.0170

y2 x 0.5232 0.4170 NA 1.2547 0.2096 0.7548

y3 y1 0.0042 0.1079 NA 0.0388 0.9691 0.0039

y3 y2 0.0297 0.0295 NA 1.0079 0.3160 0.1020

~~y2 ~~y1 -0.0768 NA 97 -0.7589 0.7751 -0.0768

Page 61: 4. Introduction to Local Estimation - sample(ECOLOGY)Feb 04, 2016  · 4.1 Comparison. Traditional vs. piecewise SEM Variance-covariance Piecewise Single (global) variance-covariance