441 lecture 8

Upload: muhammad-yasar-javaid

Post on 07-Jul-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/19/2019 441 Lecture 8

    1/30

  • 8/19/2019 441 Lecture 8

    2/30

  • 8/19/2019 441 Lecture 8

    3/30

  • 8/19/2019 441 Lecture 8

    4/30

    Axial StabilityCoupling with sideslip

    To be useful, we bend our denition of static stability even further.

    Consider the rolling angle coupled withmotion in the y-direction. For a positiveφ, the Lift vector becomes

    F =0

    L sin φ− L cos φ

    ∼=0

    Lφ− L

    In a pseudo-static world, suppose thatV y is proportional to Lφ . Specically,

    let V y ∼= KφThis creates a proportional relationship between roll angle and sideslip, angle

    β ∼= V yV

    hence β ∼= K V

    φ

    M. Peet Lecture 8: 4 / 30

  • 8/19/2019 441 Lecture 8

    5/30

    Axial StabilityCoupling with sideslip

    The horizontal motion creates aerodynamic roll moments proportional to φ.

    C l = dC l

    dφ φ =

    dC ldβ

    dβ dφ

    φ = C lβK V

    φ

    We write the equations of motion for φ.

    I φ̈ = QScC l = QScK

    V C lβ φ

    Since Q, S , c, K and V are all positive:

    The aircraft is• Axial Stable if C lβ < 0• Axial Unstable is C lβ > 0

    M. Peet Lecture 8: 5 / 30

  • 8/19/2019 441 Lecture 8

    6/30

    Rolling MomentMoment Contributions

    A horizontal velocity, V y creates two primary sources of rolling moment:

    Figure: Wing Dihedral: Positive Roll, FrontView

    Figure: Fuselage Interaction: Positive Roll,Front View

    M. Peet Lecture 8: 6 / 30

  • 8/19/2019 441 Lecture 8

    7/30

    Rolling MomentFuselage interaction

    The wing acts as a lifting surface with Q = 12 ρV 2y and α = − φ. Consider

    top-mounted wings• A negative roll creates a positive V y• The fuselage blocks the free-stream V y ,

    reducing the velocity at the downstream

    wing.• This reduces the dynamic pressure on the

    bottom of the downstream wing, Qd ,reducing the lift as Ld = C Lα φQ d S .

    • A moment differential between the wings is

    createdC l = C Lα lac S (Q d − Q u )φ

    Figure: Fuselage Interaction:Negative Roll, Front View

    Mounting wings on the bottom will create the Opposite effect!

    M. Peet Lecture 8: 7 / 30

  • 8/19/2019 441 Lecture 8

    8/30

    Rolling MomentWing Dihedral

    • A negative roll creates a positive V y• With respect to V y , upstream wing has

    positive AOA, Γ; downstream wing hasnegative AOS, − Γ.

    This creates positive lift differential onupstream wing and negative liftdownstream.

    • A positive moment differential between thewings is created.

    Figure: Wing Dihedral: NegativeRoll, Front View

    C l 0 = 2 C Lα lac SQ Γ

    M. Peet Lecture 8: 8 / 30

  • 8/19/2019 441 Lecture 8

    9/30

    Other ContributionsWing Sweep

    Wing sweep creates roll stability

    • A positive roll creates a positive β .• A Positive β means a negative Yaw (ψ).• A negative ψ creates a larger V ⊥ on the

    right wing.• A larger V ⊥ means more lift.• The right wing rotates up, reducing φ

    A result of coupling between y, ψ, and φ

    M. Peet Lecture 8: 9 / 30

  • 8/19/2019 441 Lecture 8

    10/30

    Other ContributionsTail

    The same Force as for directional stability, different moment arm

    • A positive roll creates a positive β .• Sideslip creates pressure on tail

    surface.• Pressure on tail creates positive

    Rotation.

    Figure: Roll StabilityFigure: Directional Stability

    M. Peet Lecture 8: 10 / 30

  • 8/19/2019 441 Lecture 8

    11/30

    Roll ControlAilerons

    Ailerons are control surfaces attached tothe wings. They are similar to elevators,but move in opposite directions.

    A δ a is dened as• A downwards deection on the left.• An upwards deection on the right.

    M. Peet Lecture 8: 11 / 30

  • 8/19/2019 441 Lecture 8

    12/30

    Roll ControlAilerons

    The change in lift on the right wing is

    ∆ C Lα = − τ a C Lα δ a

    The change in lift on the left wing ispositive. The overall momentcontribution is described as

    C l = C lβ β + C lδ a δ a

    C lδ a = 2C Lα τ

    Sb y2

    y 1cydy ∼= 2C Lα τ

    ycb

    M. Peet Lecture 8: 12 / 30

  • 8/19/2019 441 Lecture 8

    13/30

    Directional StabilityExample: Cessna Skyhawk

    M. Peet Lecture 8: 13 / 30

  • 8/19/2019 441 Lecture 8

    14/30

    Roll StabilityExample: Dassault Rafale

    M. Peet Lecture 8: 14 / 30

  • 8/19/2019 441 Lecture 8

    15/30

    Directional StabilityExample: Tu-154

    M. Peet Lecture 8: 15 / 30

  • 8/19/2019 441 Lecture 8

    16/30

    Directional StabilityExample: Harrier

    M. Peet Lecture 8: 16 / 30

  • 8/19/2019 441 Lecture 8

    17/30

    Directional StabilityExample: Mig 29

    M. Peet Lecture 8: 17 / 30

  • 8/19/2019 441 Lecture 8

    18/30

    Directional StabilityExample: Frégate

    M. Peet Lecture 8: 18 / 30

    l b l

  • 8/19/2019 441 Lecture 8

    19/30

    Directional StabilityExample: Mirage

    M. Peet Lecture 8: 19 / 30

    Di i l S bili

  • 8/19/2019 441 Lecture 8

    20/30

    Directional StabilityExample: A10

    M. Peet Lecture 8: 20 / 30

    Di i l S bili

  • 8/19/2019 441 Lecture 8

    21/30

    Directional StabilityExample: P.166

    M. Peet Lecture 8: 21 / 30

    R ll I t bilit ith I ti

  • 8/19/2019 441 Lecture 8

    22/30

    Roll Instability with InertiaFalling Leaf Mode

    If we truly couple the dynamics of horizontal motion with roll moment, we get

    φ̈ = K y

    φ

    When an eigenvalue of K has positive real part, we get motion akin to the“falling leaf” mode, which was unstable in the F/A-18.

    This mode will NOT be present in static stability dynamics

    M. Peet Lecture 8: 22 / 30

    F lli g L f M d

  • 8/19/2019 441 Lecture 8

    23/30

    Falling Leaf ModeExample: Elevator-Induced

    M. Peet Lecture 8: 23 / 30

    Falling Leaf Mode

  • 8/19/2019 441 Lecture 8

    24/30

    Falling Leaf ModeExample: F/A-18 Cockpit Camera

    M. Peet Lecture 8: 24 / 30

    Conclusion

  • 8/19/2019 441 Lecture 8

    25/30

    ConclusionWe need 6DOF

    The dynamics of aircraft are described by 6 degrees of freedom:Rotational Coordinates

    • Roll• Pitch•

    YawTranslational Coordinates

    • Nose• Right• Down

    Because body-xed coordinates are dened in terms of rotation angles,equations for rotational and translational motion cannot be decoupled foraircraft.

    M. Peet Lecture 8: 25 / 30

    Conclusion

  • 8/19/2019 441 Lecture 8

    26/30

    Conclusion

    In this Lecture, you learned:

    Roll Stability• Contributions to Roll Stability or instability.

    Roll Contributions result from coupling with ψ .Not really static Stability.• Control Surfaces.• A design example.• Motivation for 6DOF analysis.

    M. Peet Lecture 8: 26 / 30

  • 8/19/2019 441 Lecture 8

    27/30

    Review: Static Stability

  • 8/19/2019 441 Lecture 8

    28/30

    Review: Static StabilityLongitudinal Stability

    Moment Equation:C m = C m 0 + C mα α + C mδ e

    Expressions for C mα and C mδ

    C M 0 ,wf + ηV H C Lα,t (ε 0 + iwf − i t )

    C mα = C Lα,wf X CG

    c̄ −

    X AC,wf c̄

    − ηV H C Lα,t 1 −dεdα

    C mδ e = − ηV H C Lα,t τ

    • Stable if C mα < 0• α eq = − C m 0C mα• Neutral point when C mα = 0

    M. Peet Lecture 8: 28 / 30

    Review: Static Stability

  • 8/19/2019 441 Lecture 8

    29/30

    Review: Static StabilityDirectional Stability

    C n = C nβ β + C nδ r δ r

    whereC nδ r = − ηv V v C Lα,v τ,

    • Stable if C nβ > 0• Use plots/data to nd C nβ

    M. Peet Lecture 8: 29 / 30

    Review: Static Stability

  • 8/19/2019 441 Lecture 8

    30/30

    Review: Static StabilityRoll Stability

    C l = C lβ β + C lδ a δ a

    whereC lδ a

    ∼= 2C Lα τ ycb

    • Stable if C lβ < 0• Use plots/data to nd C lβ

    M. Peet Lecture 8: 30 / 30