471070 1 en bookfrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use...

23
Springer Hydrogeology Series Editor Juan Carlos Santamarta Cerezal, San Cristóbal de la Laguna, Sta. Cruz Tenerife, Spain

Upload: others

Post on 12-Aug-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

Springer Hydrogeology

Series Editor

Juan Carlos Santamarta Cerezal, San Cristóbal de la Laguna,Sta. Cruz Tenerife, Spain

Page 2: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

The Springer Hydrogeology series seeks to publish a broad portfolio of scientificbooks, aiming at researchers, students, and everyone interested in hydrogeology.The series includes peer-reviewed monographs, edited volumes, textbooks, andconference proceedings. It covers the entire area of hydrogeology including, but notlimited to, isotope hydrology, groundwater models, water resources and systems,and related subjects.

More information about this series at http://www.springer.com/series/10174

Page 3: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

Robert G. Maliva

Anthropogenic AquiferRechargeWSP Methods in Water Resources EvaluationSeries No. 5

123

Page 4: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

Robert G. MalivaWSPFlorida Gulf Coast UniversityFort Myers, FL, USA

ISSN 2364-6454 ISSN 2364-6462 (electronic)Springer HydrogeologyISBN 978-3-030-11083-3 ISBN 978-3-030-11084-0 (eBook)https://doi.org/10.1007/978-3-030-11084-0

Library of Congress Control Number: 2019935494

© Springer Nature Switzerland AG 2020This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or partof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionor information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exempt fromthe relevant protective laws and regulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the advice and information in thisbook are believed to be true and accurate at the date of publication. Neither the publisher nor theauthors or the editors give a warranty, expressed or implied, with respect to the material containedherein or for any errors or omissions that may have been made. The publisher remains neutral with regardto jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AGThe registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Page 5: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

Preface

Many areas of the world now face water shortages of varying severity, and waterscarcity is being exacerbated by a combination of population growth and economicdevelopment. Fresh groundwater resources are under particular stress becauseof their often high quality, lesser vulnerability to disruptions in supply fromshort-term climatic variations, and their wide geographic extent that allows fordecentralized use. Climate change is expected to impact global precipitation pat-terns and recharge rates, although there is still considerable uncertainty as to localdirections and magnitudes of change. The solution to water scarcity will necessarilyinvolve both demand- and supply-side solutions. It will be increasingly important tofind means to optimize the use of all available water resources.

Anthropogenic aquifer recharge (AAR) is broadly defined as human processesthat increase the flux of water from the land or surface water bodies into underlyingaquifers. AAR has varying degrees of planning and intent. Managed aquiferrecharge (MAR), a major subset of AAR and main focus of this book, is charac-terized by the intentional use of aquifers to store and treat waters. AAR can be asecondary result of intentional activities, such as the use of infiltration basins forstormwater management and septic systems for wastewater disposal, and changes inland use and land cover. AAR also includes recharge from unintended processes,such as leakage from water and sewage mains.

MAR includes a broad range of water storage and treatment techniques ofvarying scales. In developed countries, MAR is usually implemented based pri-marily on economic considerations. For example, storage of water underground inaquifers can be substantially less expensive than the construction of above-groundreservoirs and tank systems. Similarly, riverbank filtration systems can be lessexpensive to construct and operate than conventional intakes and engineered fil-tration systems. Small-scale decentralized MAR is part of low impact developmentand green infrastructure, which aim to infiltrate and recharge runoff from rainfallclose to its source. In developing countries and poor rural areas of newly indus-trialized countries, limited local technical and economic resources are importantconsiderations prompting the implementation of MAR. Indirectly extracting waterfrom a well located near a surface water body can be a simple, low-technology

v

Page 6: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

means to significantly reduce exposure to waterborne pathogens (with associatedhealth benefits) compared to direct consumption of surface waters. A commondenominator for MAR systems is that recharge rates (i.e., the amount of water thatactually reaches an aquifer) and water quality changes in recharged water are highlydependent on local hydrogeology and hydrogeochemistry.

The performance of MAR systems depends on site-specific hydrogeologicalconditions, which may not be locally favorable. Successful design and operation ofMAR systems thus requires consideration of the hydrogeological factors that impactthe flow of water into aquifers and its transport and mixing with native groundwaterafter recharge. The chemical quality of recharged water depends upon variousbiogeochemical processes that occur as water infiltrates into and percolates throughthe soil and flows through an aquifer. Recharged water is typically in chemicaldisequilibrium with aquifer minerals and native groundwater, and a variety of eitherbeneficial or detrimental fluid–rock interactions may occur. Adverse fluid–rockinteractions include the leaching of metalloids (e.g., arsenic) and metals into storedwaters. Beneficial processes include the filtration of suspended solids and completeor partial removal of pathogens and chemical contaminants. Where recharge isincidental or unplanned, there is an opportunity for greater water resource benefitsby incorporation of planning and considering and addressing system risks.

Most MAR technologies are mature in that they have long histories ofemployment and their basic design and operational concepts are understood.However, considerable room exists for improved implementation by learning fromhistorical experiences and innovation. A major deficiency in the technical literatureon MAR and unmanaged AAR is a paucity of practicably available, up-to-dateinformation on the historical performance of systems. Even less common are ret-rospective studies that examine the specific hydrogeological conditions responsiblefor either the good or poor performance of systems. There is often an under-standable unwillingness to draw attention to the fact that an MAR system that onedesigned is performing poorly (i.e., not meeting expectations). However, little hasbeen written on many systems that are performing quite well. Professional engi-neers and hydrogeologists involved in MAR projects often do not have the incli-nation, time, or incentive to write technical papers and give technical presentations.The performance of small-scale MAR systems, such as stormwater infiltrationbasins and permeable pavement systems, is seldom routinely evaluated after con-struction, unless there are obvious, serious performance issues. The under-reportingof MAR systems is hampering the successful implementation of the technologiesbecause valuable lessons from historical experiences are being lost. Success storiesincrease confidence in MAR technologies, which can spur further implementation.

This book is intended to provide an overview of AAR practices and design andoperational basics with a focus on hydrogeological and hydrogeochemical factors.It is based largely on a literature review of global practices and personal experi-ences. The book is not intended to be a “how to” manual but rather summarizestechnical issues important for successful implementation of MAR and AAR andpresents selected project experiences. Numerous references are provided to moredetailed papers and books on key topics, which can provide a solid foundation for

vi Preface

Page 7: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

implementation of MAR technologies. In the USA, there is a plethora of federal,state, and local guidelines and construction standard documents on MAR andunmanaged AAR systems used for stormwater management. Some design guide-lines and recommendations from these government sources are provided herein toillustrate normal design practices and considerations, but it is emphasized that therecommended values for specific design parameters vary between localities and thatprofessionals involved in projects should be intimately familiar with local practices,experiences, and regulatory requirements.

MAR will undoubtedly play an increasing role toward achieving safer and moresustainable water supplies. Achieving the potential benefits of MAR will requireknowledge of the various system types, their benefits and limitations, and thecontrols over system initial and long-term performance. Much can be learned fromhistorical experiences and considerable opportunities still exist for innovation forimproved implementation.

Fort Myers, USA Robert G. Maliva

Preface vii

Page 8: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

Contents

1 Introduction to Anthropogenic Aquifer Recharge . . . . . . . . . . . . . . 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 MAR Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Water Storage-Type MAR Techniques . . . . . . . . . . . 61.3.2 Water Treatment-Type MAR Techniques . . . . . . . . . 91.3.3 Salinity Barrier Systems . . . . . . . . . . . . . . . . . . . . . 11

1.4 MAR as an Adaptation to Water Scarcity and ClimateChange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 MAR Advantages and Disadvantages . . . . . . . . . . . . . . . . . . . 131.6 MAR System Performance and Impacts . . . . . . . . . . . . . . . . . 151.7 Basic Feasibility, Design, and Operational Issues . . . . . . . . . . 17References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Hydrogeology Basics—Aquifer Types and Hydraulics . . . . . . . . . . 212.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.2 Aquifer Types and Terminology . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Aquifers, Semiconfining and Confining Units . . . . . . 222.2.2 Unconfined, Semiconfined, and Confined

Aquifers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.2.3 Porosity-Type Aquifer Characterization . . . . . . . . . . 252.2.4 Lithologic Aquifer Types . . . . . . . . . . . . . . . . . . . . 26

2.3 Aquifer Hydraulic Properties . . . . . . . . . . . . . . . . . . . . . . . . . 272.3.1 Darcy’s Law and Hydraulic Conductivity . . . . . . . . . 272.3.2 Transmissivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292.3.3 Storativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.3.4 Hydraulic Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . 322.3.5 Porosity and Permeability . . . . . . . . . . . . . . . . . . . . 332.3.6 Dispersivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix

Page 9: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

2.4 Aquifer Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.4.1 Types and Scales of Aquifer Heterogeneity . . . . . . . 372.4.2 Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392.4.3 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Vadose Zone Hydrology Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.2 Capillary Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.3 Soil-Water and Matric Potential . . . . . . . . . . . . . . . . . . . . . . . 473.4 Unsaturated Hydraulic Conductivity . . . . . . . . . . . . . . . . . . . . 493.5 Darcy’s Equation for Unsaturated Sediments . . . . . . . . . . . . . 503.6 Infiltration Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.7 Infiltration Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.7.2 Matrix and Macropore Recharge . . . . . . . . . . . . . . . 553.7.3 Surface Clogging Layers . . . . . . . . . . . . . . . . . . . . . 563.7.4 Air Entrapment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573.7.5 Temperature Effects on Infiltration . . . . . . . . . . . . . . 57

3.8 Percolation and the Fate of Infiltrated Water . . . . . . . . . . . . . . 58References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Groundwater Recharge and Aquifer Water Budgets . . . . . . . . . . . 634.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634.2 Aquifer Water Budget Concepts . . . . . . . . . . . . . . . . . . . . . . . 654.3 Precipitation (Rainfall) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Rain Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.3.2 Remote Sensing Measurement of Rainfall

(Radar and Satellite) . . . . . . . . . . . . . . . . . . . . . . . . 694.4 Evapotranspiration and Lake Evaporation . . . . . . . . . . . . . . . . 70

4.4.1 Lysimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.4.2 Soil Moisture Depletion . . . . . . . . . . . . . . . . . . . . . 724.4.3 Sap Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.4.4 Pan Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.4.5 Micrometeorological Techniques—Eddy

Covariance Method . . . . . . . . . . . . . . . . . . . . . . . . . 754.4.6 Micrometeorological Techniques—Energy

Balance Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 754.4.7 Remote Sensing ET Measurements . . . . . . . . . . . . . 77

4.5 Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784.5.1 Discharge Basics . . . . . . . . . . . . . . . . . . . . . . . . . . 784.5.2 Stream and Lake Discharge . . . . . . . . . . . . . . . . . . . 804.5.3 Submarine Groundwater Discharge . . . . . . . . . . . . . 834.5.4 Wetland Discharge . . . . . . . . . . . . . . . . . . . . . . . . . 84

x Contents

Page 10: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

4.6 Storage Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854.6.1 Water-Level Based Methods . . . . . . . . . . . . . . . . . . 854.6.2 Relative Microgravity . . . . . . . . . . . . . . . . . . . . . . . 864.6.3 Grace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Groundwater Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.7.2 Aerial Photography and Satellite Remote Sensing . . . 89

4.8 Recharge Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924.8.1 Residual of Aquifer Water Budgets . . . . . . . . . . . . . 934.8.2 Water Budgets of Surface Water Bodies . . . . . . . . . 934.8.3 Water-Table Fluctuation Method . . . . . . . . . . . . . . . 944.8.4 Chloride Mass-Balance Method . . . . . . . . . . . . . . . . 95

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Geochemistry and Managed Aquifer Recharge Basics . . . . . . . . . . 1035.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035.2 Chemical Equilibrium Thermodynamics . . . . . . . . . . . . . . . . . 1045.3 Carbonate Mineral Reactions . . . . . . . . . . . . . . . . . . . . . . . . . 1075.4 Redox Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.1 Redox Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095.4.2 Oxidation-Reduction Potential . . . . . . . . . . . . . . . . . 1135.4.3 Redox State Measurement . . . . . . . . . . . . . . . . . . . . 1145.4.4 Eh-pH Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165.6 Clay Minerals, Cation Exchange and Adsorption . . . . . . . . . . 119

5.6.1 Clay Mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195.6.2 Adsorption and Ion Exchange . . . . . . . . . . . . . . . . . 1205.6.3 Sorption Isotherms . . . . . . . . . . . . . . . . . . . . . . . . . 1235.6.4 Clay Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Geochemical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Anthropogenic Aquifer Recharge and Water Quality . . . . . . . . . . . 1336.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1336.2 Mixing Equations and Curves . . . . . . . . . . . . . . . . . . . . . . . . 1346.3 Dissolution, Precipitation, and Replacement . . . . . . . . . . . . . . 1376.4 Redox Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4.1 Recharge of Oxic Water into Reduced (Anoxic)Aquifers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4.2 Recharge of Organic-Rich Water . . . . . . . . . . . . . . . 1446.5 Arsenic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.5.1 Sources of Arsenic in Groundwater . . . . . . . . . . . . . 1456.5.2 Arsenic in ASR Systems in Florida . . . . . . . . . . . . . 1476.5.3 Arsenic in the Bolivar, South Australia

Reclaimed Water ASR System . . . . . . . . . . . . . . . . 149

Contents xi

Page 11: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

6.5.4 Arsenic in Recharge Systems in the Netherlands . . . 1506.5.5 Management of Arsenic Leaching . . . . . . . . . . . . . . 150

6.6 Sorption and Cation Exchange . . . . . . . . . . . . . . . . . . . . . . . . 1556.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556.6.2 Ion Exchange and MAR Water Quality . . . . . . . . . . 1576.6.3 Sorption and MAR Water Quality . . . . . . . . . . . . . . 158

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Contaminant Attenuation and Natural Aquifer Treatment . . . . . . . 1657.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1657.2 Pathogen NAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2.1 Pathogen Retention and Inactivation . . . . . . . . . . . . 1697.2.2 Field Evaluations of Pathogen Attenuation During

Aquifer Recharge . . . . . . . . . . . . . . . . . . . . . . . . . . 1717.2.3 Laboratory “Bench Top” Batch and Column

Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1737.2.4 Diffusion Chamber Studies . . . . . . . . . . . . . . . . . . . 1767.2.5 Prediction of Pathogen Inactivation by MAR . . . . . . 179

7.3 Disinfection Byproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1827.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1827.3.2 Formation of THMs and HAAs in MAR

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1847.3.3 Attenuation of THMs and HAAs in MAR . . . . . . . . 1857.3.4 Field Studies of THM and HAAs in ASR

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1867.4 Trace Organic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1877.4.2 Laboratory Studies of TrOCs Removal During

MAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1897.4.3 TrOCs Removal During Riverbank Filtration . . . . . . 1927.4.4 TrOCs Removal During Soil-Aquifer Treatment . . . . 1947.4.5 TrOCs Removal During Surface Spreading . . . . . . . 1957.4.6 TrOCs Attenuation in Groundwater (Recharge

by Injection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1977.4.7 TrOCs Removal by NAT Summary . . . . . . . . . . . . . 198

7.5 Dissolved Organic Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . 1987.6 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8 MAR Project Implementation and Regulatory Issues . . . . . . . . . . . 2098.1 Project Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2098.2 Project Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2108.3 MAR Feasibility Assessment . . . . . . . . . . . . . . . . . . . . . . . . . 2118.4 MAR Feasibility Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

xii Contents

Page 12: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

8.4.1 Water Needs and Sources . . . . . . . . . . . . . . . . . . . . 2138.4.2 Hydrogeological Factors . . . . . . . . . . . . . . . . . . . . . 2148.4.3 Infrastructure and Logistical Issues . . . . . . . . . . . . . 2158.4.4 Regulatory and Political Issues . . . . . . . . . . . . . . . . 217

8.5 Economic Analysis and MAR Feasibility . . . . . . . . . . . . . . . . 2238.6 Project Implementation Strategies . . . . . . . . . . . . . . . . . . . . . . 2268.7 Desktop Feasibility Assessment . . . . . . . . . . . . . . . . . . . . . . . 2298.8 Site Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8.8.1 Multiple Criteria Decision Analysis . . . . . . . . . . . . . 2308.8.2 Geographic Information Systems . . . . . . . . . . . . . . . 2338.8.3 Decision Support Systems . . . . . . . . . . . . . . . . . . . . 235

8.9 Phase II: Field Investigations and Testing of PotentialSystem Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.10 Phase III: MAR System Design . . . . . . . . . . . . . . . . . . . . . . . 2378.11 Phase IV: Pilot System Construction . . . . . . . . . . . . . . . . . . . 2388.12 Phases V and VI: Project Review, Adaptive Management,

and System Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

9 MAR Hydrogeological and Hydrochemistry EvaluationTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2439.1 Information Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2439.2 Testing Methods Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 2449.3 Exploratory Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

9.3.1 Mud-Rotary Method . . . . . . . . . . . . . . . . . . . . . . . . 2469.3.2 Direct Air-Rotary Drilling . . . . . . . . . . . . . . . . . . . . 2509.3.3 Reverse-Air Rotary Method . . . . . . . . . . . . . . . . . . . 2509.3.4 Dual-Tube Methods . . . . . . . . . . . . . . . . . . . . . . . . 2519.3.5 Dual-Rotary Drilling . . . . . . . . . . . . . . . . . . . . . . . . 2529.3.6 Cable-Tool Drilling . . . . . . . . . . . . . . . . . . . . . . . . . 2539.3.7 Rotary-Sonic Drilling . . . . . . . . . . . . . . . . . . . . . . . 2549.3.8 Hollow-Stem Auger Method . . . . . . . . . . . . . . . . . . 2549.3.9 Wireline Coring . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

9.4 Aquifer Pumping Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2559.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2559.4.2 Pumping Test Data Analysis . . . . . . . . . . . . . . . . . . 2579.4.3 Water Quality Testing . . . . . . . . . . . . . . . . . . . . . . . 260

9.5 Slug Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2609.6 Packer Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2639.7 Testing and Sampling While Drilling . . . . . . . . . . . . . . . . . . . 2659.8 Direct-Push Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2669.9 Single-Well (Push-Pull) Tracer Tests . . . . . . . . . . . . . . . . . . . 2679.10 Borehole Geophysical Logging . . . . . . . . . . . . . . . . . . . . . . . 268

Contents xiii

Page 13: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

9.11 Surface and Airborne Geophysics . . . . . . . . . . . . . . . . . . . . . 2719.12 Core Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2759.13 Mineralogical Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2769.14 Geochemical Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . 2779.15 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

10 Vadose Zone Testing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 28710.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28710.2 Air Entrainment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28710.3 Soil Infiltration Rates and Hydraulic Conductivity

Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28910.4 Single- and Double-Ring Infiltrometers . . . . . . . . . . . . . . . . . . 290

10.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29010.4.2 Single-Ring Infiltration Screening . . . . . . . . . . . . . . 293

10.5 Pilot (Basin) Infiltration Tests . . . . . . . . . . . . . . . . . . . . . . . . 29510.6 Air-Entry Permeameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29610.7 Borehole Permeameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29810.8 Guelph Permeameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29910.9 Velocity Permeameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30110.10 Comparisons of Infiltrometer and Permeameter Systems . . . . . 302References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

11 Clogging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30711.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30711.2 Causes of Well Clogging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

11.2.1 Entrapment and Filtration of Suspended Solids . . . . . 30911.2.2 Mechanical Jamming . . . . . . . . . . . . . . . . . . . . . . . 31111.2.3 Gas Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31211.2.4 Chemical Clogging—Mineral Scaling . . . . . . . . . . . 31311.2.5 Chemical Clogging—Redox Reactions . . . . . . . . . . . 31411.2.6 Clay Swelling and Dispersion . . . . . . . . . . . . . . . . . 31411.2.7 Biological Clogging . . . . . . . . . . . . . . . . . . . . . . . . 31611.2.8 Biological Clogging—Iron Bacteria . . . . . . . . . . . . . 317

11.3 Clogging Prediction and Management . . . . . . . . . . . . . . . . . . 31911.3.1 Suspended Solids Criteria . . . . . . . . . . . . . . . . . . . . 31911.3.2 Organic Carbon Indices . . . . . . . . . . . . . . . . . . . . . . 32211.3.3 Laboratory Studies of Physical and Biological

Clogging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32311.3.4 Field Studies of Clogging . . . . . . . . . . . . . . . . . . . . 32511.3.5 Clay Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 32911.3.6 Prediction of Physical and Biological Clogging

from Source Water Quality . . . . . . . . . . . . . . . . . . . 33011.3.7 Evaluation of Chemical Clogging Potential . . . . . . . 331

xiv Contents

Page 14: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

11.4 Clogging of Surface-Spreading MAR Systems . . . . . . . . . . . . 33211.4.1 Causes of Clogging Overview . . . . . . . . . . . . . . . . . 33211.4.2 Laboratory Investigations of Clogging

of Surface-Spreading MAR Systems . . . . . . . . . . . . 33511.4.3 Field Investigations of Clogging

of Surface-Spreading MAR Systems . . . . . . . . . . . . 336References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

12 MAR Pretreatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34312.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34312.2 Roughing Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34412.3 Granular-Media Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

12.3.1 Rapid-Sand Filtration and Rapid-PressureFiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

12.3.2 Slow-Sand Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 34812.4 Screen Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35012.5 Membrane Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35212.6 MIEX Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35412.7 Constructed Wetlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35512.8 Disinfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

12.8.1 Chlorine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36212.8.2 Chloramines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36212.8.3 Ozone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36312.8.4 Ultraviolet Radiation . . . . . . . . . . . . . . . . . . . . . . . . 36312.8.5 Disinfection Strategies . . . . . . . . . . . . . . . . . . . . . . . 363

12.9 Chemical Pretreatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36412.9.1 pH Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . 36512.9.2 Dissolved Oxygen Removal . . . . . . . . . . . . . . . . . . 36612.9.3 Iron and Manganese Management . . . . . . . . . . . . . . 36712.9.4 Clay Dispersion Management . . . . . . . . . . . . . . . . . 369

12.10 Multiple-Element Pretreatment Systems . . . . . . . . . . . . . . . . . 37012.10.1 CERP Surface Water Treatment Systems . . . . . . . . . 37012.10.2 Wastewater Treatment Prior to Recharge . . . . . . . . . 37212.10.3 Stormwater and Surface Water Pretreatment . . . . . . . 37212.10.4 Full Advanced Treatment . . . . . . . . . . . . . . . . . . . . 374

12.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

13 ASR and Aquifer Recharge Using Wells . . . . . . . . . . . . . . . . . . . . . 38113.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38113.2 Definitions, System Types, and Useful Storage . . . . . . . . . . . . 38313.3 Recovery Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

13.3.1 RE of Chemically Bounded (Brackish or SalineAquifer) ASR Systems . . . . . . . . . . . . . . . . . . . . . . 387

Contents xv

Page 15: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

13.3.2 RE of Physical-Storage ASR Systems . . . . . . . . . . . 38813.3.3 RE of Regulatory Storage . . . . . . . . . . . . . . . . . . . . 389

13.4 Aquifer Conditioning and Target Storage Volume . . . . . . . . . . 39013.5 Controls on RE in Brackish or Saline Aquifer ASR

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39113.5.1 Louisiana State University Studies . . . . . . . . . . . . . . 39213.5.2 U.S. Geological Survey Miami-Dade ASR

Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39313.5.3 USGS Cape Coral, Florida, ASR Modeling . . . . . . . 39413.5.4 CDM Missimer SEAWAT Modeling of Effects

of Flow Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39413.5.5 Clare Valley (South Australia) Fractured-Rock

ASR Tracer Testing . . . . . . . . . . . . . . . . . . . . . . . . 39413.5.6 Maliva et al. (2005) Theoretical SEAWAT

Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39513.5.7 Brown Doctoral Dissertation (University

of Florida) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39613.5.8 Theoretical Modeling of ASR in Aquifer Types

of Wisconsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39713.5.9 USGS Review of ASR System Performance

in South Florida . . . . . . . . . . . . . . . . . . . . . . . . . . . 39813.5.10 Dual-Domain Simulations . . . . . . . . . . . . . . . . . . . . 39813.5.11 Aquifer Heterogeneity Simulations . . . . . . . . . . . . . . 40013.5.12 Short-Circuiting and ASR RE . . . . . . . . . . . . . . . . . 40113.5.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

13.6 ASR Screening Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40213.6.1 Weighted Scoring Systems . . . . . . . . . . . . . . . . . . . 40213.6.2 Lumped-Parameter Methods . . . . . . . . . . . . . . . . . . 406

13.7 Modeling of ASR Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 40913.7.1 Solute-Transport Modeling of ASR Systems . . . . . . . 41013.7.2 Reactive Solute-Transport Modeling . . . . . . . . . . . . 41113.7.3 Inverse Geochemical Modeling . . . . . . . . . . . . . . . . 413

13.8 Innovative ASR System Designs . . . . . . . . . . . . . . . . . . . . . . 41313.8.1 Multiple-Well Systems . . . . . . . . . . . . . . . . . . . . . . 41413.8.2 Dedicated Recovery Wells . . . . . . . . . . . . . . . . . . . 41413.8.3 Preferentially Recovery from the Top of ASR

Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41513.8.4 Multiple Partially Penetrating Wells . . . . . . . . . . . . . 41513.8.5 Scavenger Wells (Freshkeeper and Freshmaker) . . . . 41613.8.6 Direct Push Wells . . . . . . . . . . . . . . . . . . . . . . . . . . 41713.8.7 Horizontal Directionally Drilled Wells . . . . . . . . . . . 41813.8.8 Low-Cost, Small-Scale ASR Systems . . . . . . . . . . . 419

xvi Contents

Page 16: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

13.9 Gravity Drainage Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42213.9.1 Florida Gravity Drainage Wells . . . . . . . . . . . . . . . . 42213.9.2 Qatar Drainage Wells . . . . . . . . . . . . . . . . . . . . . . . 42413.9.3 Agricultural Drainage Wells . . . . . . . . . . . . . . . . . . 425

13.10 ASR and MAR Well Design Issues . . . . . . . . . . . . . . . . . . . . 427References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

14 Groundwater Banking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43714.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43714.2 Aquifer Water Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44014.3 Hydrological Impacts of Groundwater Banking Systems . . . . . 44114.4 Water Accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44314.5 Institutional and Management Issues . . . . . . . . . . . . . . . . . . . 44514.6 Groundwater Banking in the Western USA . . . . . . . . . . . . . . 448

14.6.1 Arizona Groundwater Banking . . . . . . . . . . . . . . . . 44814.6.2 Southern Nevada Groundwater Bank . . . . . . . . . . . . 45114.6.3 California Groundwater Banking—Introduction . . . . 45414.6.4 California—Kern County . . . . . . . . . . . . . . . . . . . . 45514.6.5 Las Posas Basin ASR Project . . . . . . . . . . . . . . . . . 45814.6.6 Pacific Northwest (U.S.A.) . . . . . . . . . . . . . . . . . . . 461

14.7 Technical Lessons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

15 Surface Spreading System—Infiltration Basins . . . . . . . . . . . . . . . . 46915.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46915.2 Infiltration Basins Introduction . . . . . . . . . . . . . . . . . . . . . . . . 47115.3 Infiltration Basin Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

15.3.1 Basin Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47215.3.2 Hydraulic Loading Rates and Basin Area . . . . . . . . . 47415.3.3 Water Depth and Infiltration Rates . . . . . . . . . . . . . . 47615.3.4 Mounding and Basin Configuration . . . . . . . . . . . . . 47915.3.5 Vadose Zone and Aquifer Heterogeneity . . . . . . . . . 48115.3.6 Design and Operational Recommendations . . . . . . . . 482

15.4 Stormwater Infiltration Basins . . . . . . . . . . . . . . . . . . . . . . . . 48315.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48315.4.2 Design Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48515.4.3 Stormwater Infiltration Basin Performance

and Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . 49015.5 Rapid Infiltration Basins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

15.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49115.5.2 RIB Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49315.5.3 Water Conserv II and Reedy Creek Improvement

District RIBs (Central Florida) . . . . . . . . . . . . . . . . . 49515.5.4 Cape Coral, Massachusetts . . . . . . . . . . . . . . . . . . . 499

Contents xvii

Page 17: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

15.6 Surface Water Recharge Infiltration Basin Systems . . . . . . . . . 50015.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50015.6.2 Arizona Infiltration Basin Systems . . . . . . . . . . . . . . 50115.6.3 Orange County Water District (California) . . . . . . . . 50415.6.4 Nassau County and Suffolk Counties, Long Island,

New York . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50815.7 Infiltration Basin Clogging Management . . . . . . . . . . . . . . . . . 510References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

16 Surface-Spreading AAR Systems (Non-basin) . . . . . . . . . . . . . . . . . 51716.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51716.2 Ephemeral Stream Recharge . . . . . . . . . . . . . . . . . . . . . . . . . 517

16.2.1 Ephemeral Stream Recharge Processes . . . . . . . . . . . 51716.2.2 Wadi Recharge of Floodwaters in the MENA

Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51916.2.3 Wastewater Recharge to Ephemeral Stream

Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52216.2.4 Imported Surface Water Discharged to Channels . . . 524

16.3 Modified Channel Recharge Methods . . . . . . . . . . . . . . . . . . . 52516.3.1 Temporary In-Channel Levees . . . . . . . . . . . . . . . . . 52616.3.2 Secondary Recharge Channels . . . . . . . . . . . . . . . . . 52616.3.3 Stream Bed Material Replacement . . . . . . . . . . . . . . 528

16.4 Check Dams and Weirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52916.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52916.4.2 Check Dams in South Asia . . . . . . . . . . . . . . . . . . . 53216.4.3 Check Dams in the MENA and Mediterranean

Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53316.4.4 Check Dams in the United States . . . . . . . . . . . . . . 53416.4.5 Inflatable Dams . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

16.5 Reservoir Recharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53716.5.1 Percolation Tanks (India) . . . . . . . . . . . . . . . . . . . . 53916.5.2 MENA Region Reservoir Recharge . . . . . . . . . . . . . 54216.5.3 United States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

16.6 Sand Dams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54616.7 Spate Irrigation (Floodwater Harvesting) . . . . . . . . . . . . . . . . . 550

16.7.1 Spate Irrigation Basics . . . . . . . . . . . . . . . . . . . . . . 55016.7.2 Hydrology and Sediment Transport . . . . . . . . . . . . . 55216.7.3 Spate-Irrigation System Design . . . . . . . . . . . . . . . . 55316.7.4 Modernization of Spate Irrigation . . . . . . . . . . . . . . 555

16.8 Off-Channel Canal and Surface-Spreading Recharge . . . . . . . . 55516.9 On-Farm Flood Capture and Recharge (California) . . . . . . . . . 55716.10 Overbank Floodplain Recharge . . . . . . . . . . . . . . . . . . . . . . . 558References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

xviii Contents

Page 18: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

17 Vadose Zone Infiltration Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 56717.1 System Types, Advantages, and Disadvantages . . . . . . . . . . . . 56717.2 Infiltration (Recharge) Trenches . . . . . . . . . . . . . . . . . . . . . . . 568

17.2.1 Infiltration Trench Basics . . . . . . . . . . . . . . . . . . . . 56817.2.2 Stormwater Infiltration Trench Design . . . . . . . . . . . 56917.2.3 Aquifer Recharge Trenches . . . . . . . . . . . . . . . . . . . 57417.2.4 Trench Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

17.3 Infiltration Galleries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57617.4 Infiltration (Recharge) Shafts and Pits . . . . . . . . . . . . . . . . . . 57917.5 Dug Well Recharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58017.6 Vadose (Dry) Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

17.6.1 City of Scottsdale (Arizona) Water Campus . . . . . . . 58217.6.2 Arizona Stormwater Vadose Wells . . . . . . . . . . . . . . 58417.6.3 Washington State Stormwater Vadose Wells . . . . . . 58817.6.4 Oregon Stormwater Vadose Wells . . . . . . . . . . . . . . 59117.6.5 New Jersey Dry Wells . . . . . . . . . . . . . . . . . . . . . . 59317.6.6 Modesto, California Dry Wells . . . . . . . . . . . . . . . . 59417.6.7 Hawaii Dry Wells . . . . . . . . . . . . . . . . . . . . . . . . . . 59517.6.8 Soakaways (United Kingdom) . . . . . . . . . . . . . . . . . 59517.6.9 Dry Well Contamination Issues . . . . . . . . . . . . . . . . 597

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

18 Recharge and Recovery Treatment Systems . . . . . . . . . . . . . . . . . . 60318.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60318.2 Aquifer Storage Transfer and Recovery . . . . . . . . . . . . . . . . . 604

18.2.1 Hueco Bolson Recharge Project . . . . . . . . . . . . . . . . 60518.2.2 Salisbury, South Australia Studies . . . . . . . . . . . . . . 60718.2.3 Proposed Santee Basin (California) ASTR

Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60918.2.4 ASTR System Design . . . . . . . . . . . . . . . . . . . . . . . 610

18.3 Dune MAR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61018.3.1 Dune ARR in The Netherlands . . . . . . . . . . . . . . . . 61118.3.2 Belgium Dune Aquifer Recharge and Recovery

(St-André System) . . . . . . . . . . . . . . . . . . . . . . . . . 61318.3.3 Proposed Dune ARR in Western Saudi Arabia . . . . . 61518.3.4 Dune Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

18.4 Aquifer Recharge and Recovery . . . . . . . . . . . . . . . . . . . . . . . 61618.4.1 ARR Systems in Finland . . . . . . . . . . . . . . . . . . . . . 61618.4.2 Prairie Waters Project (Aurora, Colorado) . . . . . . . . 61718.4.3 Japanese ARR System . . . . . . . . . . . . . . . . . . . . . . 61918.4.4 Proposed Reclaimed-Water Wadi ARR

in the Middle East . . . . . . . . . . . . . . . . . . . . . . . . . 619References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

Contents xix

Page 19: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

19 Soil-Aquifer Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62319.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62319.2 SAT Design Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62519.3 Water Quality Improvement Processes During SAT . . . . . . . . 628

19.3.1 Pathogen Removal . . . . . . . . . . . . . . . . . . . . . . . . . 62819.3.2 Nitrogen Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 62919.3.3 Phosphorous Removal . . . . . . . . . . . . . . . . . . . . . . . 63019.3.4 Organic Carbon Removal . . . . . . . . . . . . . . . . . . . . 63119.3.5 Trace Organic Compounds . . . . . . . . . . . . . . . . . . . 63219.3.6 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

19.4 Demonstration and Operational SAT Systems . . . . . . . . . . . . . 63319.4.1 Flushing Meadows Project . . . . . . . . . . . . . . . . . . . 63319.4.2 23rd Avenue Demonstration Project . . . . . . . . . . . . . 63619.4.3 Dan Region Water Reclamation Project

(Shafdan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63719.4.4 Northwest Water Reclamation Plant

(Mesa, Arizona) SAT System . . . . . . . . . . . . . . . . . 63919.4.5 Sweetwater Recharge Facilities SAT System

(Tucson, Arizona) . . . . . . . . . . . . . . . . . . . . . . . . . . 64019.4.6 Mandurah, Western Australia . . . . . . . . . . . . . . . . . 642

19.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

20 Riverbank Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64720.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64720.2 History of RBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64920.3 RBF Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65020.4 RBF System Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65220.5 RBF System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

20.5.1 Design Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65420.5.2 Modelling of RBF Systems . . . . . . . . . . . . . . . . . . . 65620.5.3 Geochemical (Redox) Processes . . . . . . . . . . . . . . . . 65820.5.4 Clogging (Colmation) Layer Development . . . . . . . . 661

20.6 Pathogen Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66320.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66320.6.2 Charles M. Bolton Groundwater System

(Greater Cincinnati Water Works) . . . . . . . . . . . . . . 66520.6.3 Louisville Water Company . . . . . . . . . . . . . . . . . . . 66720.6.4 Midwestern United States RBF Systems . . . . . . . . . . 66720.6.5 India RBF Systems . . . . . . . . . . . . . . . . . . . . . . . . . 669

20.7 Chemical Contaminant Removal . . . . . . . . . . . . . . . . . . . . . . 67020.8 Trace Organic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 67120.9 RBF and Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

xx Contents

Page 20: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

20.10 Limitations and Opportunities of RBF . . . . . . . . . . . . . . . . . . 676References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

21 Saline-Water Intrusion Management . . . . . . . . . . . . . . . . . . . . . . . 68321.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68321.2 Causes of Groundwater Salinity Increases . . . . . . . . . . . . . . . . 68521.3 Climate Change and Saline-Water Intrusion . . . . . . . . . . . . . . 68721.4 Location, Characterization and Monitoring

of Saline-Water Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68821.4.1 Monitoring Well Methods . . . . . . . . . . . . . . . . . . . . 68921.4.2 Borehole Geophysical Logging . . . . . . . . . . . . . . . . 69221.4.3 Surface and Airborne Geophysical Methods . . . . . . . 692

21.5 Simulation of Saline-Water Intrusion . . . . . . . . . . . . . . . . . . . 69321.6 Mitigation of Saline-Water Intrusion . . . . . . . . . . . . . . . . . . . 69421.7 Reduction and Relocation of Pumping . . . . . . . . . . . . . . . . . . 69521.8 Positive Hydraulic Salinity Barrier . . . . . . . . . . . . . . . . . . . . . 696

21.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69621.8.2 Regulatory Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 69921.8.3 Orange County Water District (California)

Talbert Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70021.8.4 Los Angeles County, California Salinity Barriers . . . 70321.8.5 Salalah, Oman Salinity Barrier . . . . . . . . . . . . . . . . . 70421.8.6 Llobregat Delta Aquifer Salinity Barrier . . . . . . . . . . 704

21.9 Extractive Salinity Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . 70421.10 Combined Positive Hydraulic Barrier and Extractive Barrier

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70621.11 Scavenger Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70621.12 Physical Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70821.13 Optimization of Saline-Water Intrusion Management . . . . . . . . 709References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

22 Wastewater MAR and Indirect Potable Reuse . . . . . . . . . . . . . . . . 71722.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71722.2 Wastewater Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71922.3 Wastewater Treatment Technologies . . . . . . . . . . . . . . . . . . . . 721

22.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72122.3.2 Preliminary, Primary, and Secondary Treatment . . . . 72222.3.3 Tertiary and Advanced Treatment . . . . . . . . . . . . . . 72322.3.4 Disinfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72522.3.5 Natural Wastewater Treatment Processes . . . . . . . . . 726

22.4 Wastewater Reuse Health Issues . . . . . . . . . . . . . . . . . . . . . . 72722.4.1 Pathogens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72822.4.2 Chemical Contaminants . . . . . . . . . . . . . . . . . . . . . . 734

Contents xxi

Page 21: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

22.5 Wastewater MAR Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73422.5.1 Pretreatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73522.5.2 Movement and Mixing of Recharged Treated

Wastewater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73722.5.3 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738

22.6 Potable Reuse Basics, Health Issues, and PublicPerceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74022.6.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74022.6.2 Potable Reuse Public Health Issues . . . . . . . . . . . . . 74122.6.3 Public Perception Issues . . . . . . . . . . . . . . . . . . . . . 745

22.7 Wastewater MAR and Potable Reuse Experiences . . . . . . . . . . 74722.7.1 Montebello Forebay Groundwater Recharge

Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74722.7.2 Town of Atlantis, South Africa . . . . . . . . . . . . . . . . 75022.7.3 Bolivar, South Australia . . . . . . . . . . . . . . . . . . . . . 75222.7.4 Reclaimed Water ASR in Florida (U.S.A.) . . . . . . . . 754

22.8 Direct Potable Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758

23 Low Impact Development and Rainwater Harvesting . . . . . . . . . . . 76523.1 Introduction and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 76523.2 LID Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76823.3 LID and Stormwater BMP Water Quality Improvements . . . . . 77023.4 Low Impact Development Techniques Outline . . . . . . . . . . . . 77323.5 Infiltration Areas/Basins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77423.6 Vegetated Swales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77423.7 Infiltration Trenches and Wells . . . . . . . . . . . . . . . . . . . . . . . 77923.8 Bioretention Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779

23.8.1 Bioretention Basics: Definition, Benefits,and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779

23.8.2 Bioretention System Design . . . . . . . . . . . . . . . . . . 78223.8.3 Bioretention System Design in Arid Climates . . . . . . 78623.8.4 System Construction . . . . . . . . . . . . . . . . . . . . . . . . 78723.8.5 Bioretention System Performance . . . . . . . . . . . . . . 788

23.9 Rain Gardens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78923.10 Level Spreader and Vegetated Filter Strips . . . . . . . . . . . . . . . 79023.11 Permeable Pavements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793

23.11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79323.11.2 Pervious (Porous) Asphalt . . . . . . . . . . . . . . . . . . . . 79523.11.3 Pervious Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . 79623.11.4 Permeable Interlocking Concrete Pavements

(PICP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79723.11.5 Plastic or Concrete Grid Systems . . . . . . . . . . . . . . . 800

xxii Contents

Page 22: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

23.11.6 Permeable Pavement Performance . . . . . . . . . . . . . . 80123.11.7 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805

23.12 Rainwater Harvesting and Water Harvesting . . . . . . . . . . . . . . 80523.12.1 Rainwater Harvesting System Types . . . . . . . . . . . . 80723.12.2 Land Surface Modification . . . . . . . . . . . . . . . . . . . 81023.12.3 Downgradient Impacts and Legal Issues . . . . . . . . . . 812

23.13 Soil Amendments for Improved Pollutant Removal . . . . . . . . . 81323.13.1 Organic Matter Amendments . . . . . . . . . . . . . . . . . . 81323.13.2 Sorptive Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81423.13.3 Biosorption Activated Media . . . . . . . . . . . . . . . . . . 817

23.14 Impediments to the Implementation of LID and GreenInfrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820

24 Unmanaged and Unintentional Recharge . . . . . . . . . . . . . . . . . . . . 82724.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82724.2 Urban Unmanaged Recharge . . . . . . . . . . . . . . . . . . . . . . . . . 828

24.2.1 Potable Water Mains Leakage . . . . . . . . . . . . . . . . . 83024.2.2 Sewer Leaks—Exfiltration . . . . . . . . . . . . . . . . . . . . 83124.2.3 On-Site Septic Wastewater Treatment Systems . . . . . 83324.2.4 Increased Urban Imperviousness and Recharge . . . . . 83324.2.5 Published Studies of Urban UMAR . . . . . . . . . . . . . 834

24.3 Canal Seepage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83524.4 Irrigation Return Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837

24.4.1 Irrigation Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 83724.4.2 Remote Sensing Estimation of Irrigated Area

and Water Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84124.4.3 Calculation of Return Flows . . . . . . . . . . . . . . . . . . 84324.4.4 Return Flows from Wastewater Irrigation—Tula

Valley, Mexico . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84524.5 Land Use/Land Cover Changes and Recharge . . . . . . . . . . . . . 846

24.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84624.5.2 Vegetation Type and Groundwater Recharge . . . . . . 84624.5.3 Phreatophyte Removal . . . . . . . . . . . . . . . . . . . . . . 850

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855

Contents xxiii

Page 23: 471070 1 En BookFrontmatter 1.978-3-030-11084... · 2019. 5. 7. · find means to optimize the use of all available water resources. Anthropogenic aquifer recharge (AAR) is broadly

About the Author

Dr. Robert G. Maliva has been a consulting hydrogeologist since 1992 and iscurrently a Principal Hydrogeologist and Technical Fellow with WSP USA Inc. anda Courtesy Faculty Member at the U.A. Whitaker College of Engineering, FloridaGulf Coast University. He is currently based in Fort Myers, Florida. He specializesin groundwater resources development including alternative water supply, managedaquifer recharge, and desalination projects.

He completed his Ph.D. in geology at Harvard University in 1988. He also has amaster’s degree from Indiana University, Bloomington, and a BA in geologicalsciences and biological sciences from the State University of New York atBinghamton. Upon completion of his doctorate degree, he has held researchpositions in the Department of Earth Sciences at the University of Cambridge,England, and the Rosenstiel School of Marine and Atmospheric Science of theUniversity of Miami, Florida. He grew up in New York City and attendedStuyvesant High School in Manhattan.

Dr. Maliva has also managed or performed numerous other types of waterresources and hydrological investigations including contamination assessments,environmental site assessments, water supply investigations, wellfield designs, andalternative water supply investigations. He has maintained his research interests andcompleted studies on such diverse topics as Precambrian silica diagenesis, aquiferheterogeneity, precipitates in landfill leachate systems, carbonate diagenesis, andvarious aspects of the geology of Florida. He gives frequent technical presentationsand has numerous peer-reviewed papers and conference proceedings publications onASR, injection well and water supply issues, hydrogeology, and carbonate geologyand diagenesis. He has authored or coauthored the books, Aquifer Storage andRecovery and Managed Aquifer Recharge Using Wells: Planning, Hydrogeology,Design, and Operation, Arid Lands Water Evaluation and Management, and AquiferCharacterization Techniques.

xxv