-48v hot swap controller - microchip technology

64
2003 Microchip Technology Inc. DS20091B-page 1 M MCP18480 Features Allows safe board removal and insertion from a live backplane Accurate (<1.5%) internal voltage reference for fault detection and precision timing Programmable foldback current limiting Programmable circuit breaker current limiting Auto restart option for all faults Adjustable Undervoltage lockout thresholds Adjustable Overvoltage protection threshold Adjustable Power Good delay Configurable Power Good output polarity Low-side drive of an external N-channel FET CMOS Technology High-Voltage Operation Temperature range: Industrial (I): -40°C to +85°C Packaging 20-lead SSOP Package Type Description The MCP18480 is a Hot Swap controller that allows boards to be safely removed or inserted from an active backplane using -48V. When PCBs are inserted into a live backplane, high- peak or transient currents from the source are gener- ated due to the charging of the bypass capacitors on the supply. The high transient currents can destroy connectors and capacitors. The high inrush current can pull the input voltage BUS down and reset the system. The MCP18480 solves this problem by controlling the slew rate of the backplane voltage to the board so that these transients are eliminated. This allows boards to be removed and inserted without causing damage to connector pins and input bulk capacitors, in addition to preventing false resets to the other boards on the backplane. The MCP18480 can be used in applications in several areas including: Telecom Line Cards Network Switches Network Routers and Servers Base Station Line Cards • Power-Over-LAN • Power-Over-MDI IP Phone Switches/Routers Mid-Span, Power-Over-MDI Two forms of current limit are provided in the MCP18480. These are: • Foldback Circuit breaker The foldback current-limiting circuit uses an external sense resistor and a voltage that is proportional to the external MOSFET’s drain voltage. These are used to keep the MOSFET in its Safe Operating Area (SOA). If the device remains in current limit for a programmed time period, the external N-channel FET is turned off. The option exists to configure the device to automati- cally restart after a programmed time delay. A program- mable catastrophic current limit threshold shuts down the switch (circuit breaker) if excessive current is sensed due to a short-circuit condition. 2 3 4 5 6 7 8 9 10 1 19 18 16 15 14 13 12 11 17 20 ENABLE RESTART UV D V REFIN OVO V FB PWRGOOD DRAIN TH SENSE GATE CL I SET TIMER R DISCH V NEG OV TH UV TH UV HYS V REFOUT V POS MCP18480 SSOP -48V Hot Swap Controller

Upload: others

Post on 24-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: -48V Hot Swap Controller - Microchip Technology

M MCP18480-48V Hot Swap Controller

Features• Allows safe board removal and insertion from a

live backplane• Accurate (<1.5%) internal voltage reference for

fault detection and precision timing• Programmable foldback current limiting• Programmable circuit breaker current limiting• Auto restart option for all faults• Adjustable Undervoltage lockout thresholds• Adjustable Overvoltage protection threshold• Adjustable Power Good delay• Configurable Power Good output polarity• Low-side drive of an external N-channel FET

CMOS Technology• High-Voltage Operation • Temperature range: Industrial (I): -40°C to +85°C

Packaging• 20-lead SSOP

Package Type

DescriptionThe MCP18480 is a Hot Swap controller that allowsboards to be safely removed or inserted from an activebackplane using -48V.When PCBs are inserted into a live backplane, high-peak or transient currents from the source are gener-ated due to the charging of the bypass capacitors onthe supply. The high transient currents can destroyconnectors and capacitors. The high inrush current canpull the input voltage BUS down and reset the system.

The MCP18480 solves this problem by controlling theslew rate of the backplane voltage to the board so thatthese transients are eliminated. This allows boards tobe removed and inserted without causing damage toconnector pins and input bulk capacitors, in addition topreventing false resets to the other boards on thebackplane.The MCP18480 can be used in applications in severalareas including:

• Telecom Line Cards• Network Switches• Network Routers and Servers• Base Station Line Cards• Power-Over-LAN• Power-Over-MDI• IP Phone Switches/Routers• Mid-Span, Power-Over-MDI

Two forms of current limit are provided in theMCP18480. These are:

• Foldback• Circuit breaker

The foldback current-limiting circuit uses an externalsense resistor and a voltage that is proportional to theexternal MOSFET’s drain voltage. These are used tokeep the MOSFET in its Safe Operating Area (SOA).

If the device remains in current limit for a programmedtime period, the external N-channel FET is turned off.The option exists to configure the device to automati-cally restart after a programmed time delay. A program-mable catastrophic current limit threshold shuts downthe switch (circuit breaker) if excessive current issensed due to a short-circuit condition.

2345

6

78

9

10

1

1918

1615

1413

1211

17

20

ENABLE

RESTART

UVD

VREFIN

OVO

VFB

PWRGOOD

DRAINTH

SENSE

GATE

CLISET

TIMERRDISCH

VNEG

OVTHUVTH

UVHYS

VREFOUT

VPOS

MC

P18480

SSOP

2003 Microchip Technology Inc. DS20091B-page 1

Page 2: -48V Hot Swap Controller - Microchip Technology

MCP18480

Internal comparators are incorporated to add hystere-sis for adjusting the Undervoltage Lockout (UVLO)threshold. The external N-channel MOSFET is turnedon when the input is below the user-programmable,Overvoltage threshold and above the user-programmable, Undervoltage threshold.

The PWRGOOD pin indicates the status of theMCP18480 and is active when the device has com-pleted power-up and the system is not in an Undervolt-age, Overvoltage or current-limit condition.

PWRGOOD can be externally configured to eitheractive-high or active-low to accommodate external cir-cuitry (power supplies) that have either enabling logic.A block diagram of the MCP18480 is shown below.

MCP18480 Block DiagramVPOS

UVTH

UVD

OVTH

VNEG

GATE

VFB

MCP18480

UVHYS

VREFOUT

VREFIN

SENSE TIMER

RDISCH

LATC

HO

FF

ISET

PWRGOOD (1)

DRAINTH

12V Regulator

12VOUT

5V Reg.

5VOUT

5VOUT

Latch

Und

ervo

ltage

Act

ive

Ove

rvol

tage

Act

ive

Current Limit Timer

ENABLE

RESTART

CL

VPOS

OVO

PWRGOODOutput Block

VNEG

BIAS

Undervoltage

Overvoltage

Current Limit

GATEDrive

Timer

FET Good

Circuit Breaker

TIM

EOU

T

Cur

rent

Lim

it Fe

edba

ck

SENSEInternal

Bias Generation

Note 1: The PWRGOOD output pin can be either active-high or active-low. This polarity is determined by thevoltage (either the level on the VREFIN pin or level on the VNEG pin) on the ISET pin:

- Connecting the external RISET resistor to VREFIN configures the PWRGOOD pin as active-low- Connecting the external RISET resistor to VNEG configures the PWRGOOD pin as active-high

(Section 6.8.3)(Section 6.8.8)

(Section 6.8.2)

(Section 6.8.1)

(Section 6.8.4)

(Section 6.8.9)

(Section 6.8.5)

(Section6.8.6)

(Section 6.8.7)

DS20091B-page 2 2003 Microchip Technology Inc.

Page 3: -48V Hot Swap Controller - Microchip Technology

MCP18480

1.0 ELECTRICAL

CHARACTERISTICS

Absolute Maximum Ratings†Ambient Temperature under bias ........ –40°C to +85°C

Storage Temperature ........................ –65°C to +150°CVoltage on VPOS with respect to VNEG -0.3V to +15.0V

Voltage on DVTH, UVTH, VFB, OVO and UVHYS pinswith respect to VNEG .....VNEG – 0.3V to (VPOS + 0.3V)Voltage on VREFIN, CL, SENSE, DRAINTH, ENABLEand RESTART pins with respect to VNEG........................................................VNEG - 0.3V to 6V.Total Power Dissipation (Note 1) .................... 800 mW

Max. Current out of VNEG pin............................. 80 mAMax. Current into VPOS pin ................................ 50 mA

Max. Output Current sunk by Gate pin............... 80 mAMax. Output Current sunk by VREFOUT pin .......... 5 mA

Max. Output Current sunk by any otherOutput pin......................................................... 25 mA

Max. Output Current sourced by Gate pin ........200 µA

Max. Output Current sourced by VREFOUT pin .....5 mA

Max. Output Current sourced by any otherOutput pin...........................................................25 mAJunction to Ambient, ΘJA(20 pin SSOP Package) Derating ...............108.1°C/WJunction to Case, ΘJC(20 pin SSOP Package) Derating .................32.2°C/W

Lead Temperature, Soldering, 10 seconds ........ 300°C† Notice: Stresses above those listed under "MaximumRatings" may cause permanent damage to the device. This isa stress rating only and functional operation of the device atthose or any other conditions above those indicated in theoperation listings of this specification is not implied. Exposureto maximum rating conditions for extended periods may affectdevice reliability.

Note 1: Power Dissipation is calculated as follows:PDIS = VDD x IDD - Σ IOH + Σ(VDD-VOH) x IOH + Σ(VOL x IOL)

DC CHARACTERISTICSElectrical Specifications: Unless otherwise specified, operating temperature: –40°C ≤ TA ≤ +85°C (Industrial),Supply Current: 5 mA ≤ IPOS ≤ 25 mA, RISET = 125 kΩ, CBYP = 2 µF.

Param. No. Parameter Sym Min Typ (1) Max Units Conditions

MD001 Current into shunt regulator that produces VPOS output volt-age that meets MD001A speci-fication

IPOS1 5 — 25 mA ENABLE pin = 5V5 — 25 ENABLE pin = VNEG

MD001A Regulated Output Voltage Differential of VPOS to VNEG

VPOS 10.4 12.0 13.4 V See MD001

MD002 VREFOUT pin output voltage VREFOUT 2.463 2.5 2.538 V Load = 50 µAMD010 VGATE pin output voltage VGATE VPOS - 2 VPOS -1 VPOS VMD011 Voltage on ISET pin VISET (VREFIN/2) -

0.02 VREFIN/2 (VREFIN/2)

+0.02V

MD012A Voltage on SENSE pin to trigger current-limiting

VSENSE 40 50 60 mV VFB = VNEG

MD012B 25 31.0 40 mV VFB = VNEG + 0.25V MD012C 7 12 17 mV VFB = VNEG + 0.5VMD013 Undervoltage Threshold UVTH VREFIN

- 0.03 VREFIN VREFIN

+ 0.03V

MD014A Overvoltage Threshold

rising OVTH VREFIN - 0.05

VREFIN VREFIN + 0.05

V VREFIN = 2.5V

MD014B falling OVTH VREFIN - 0.035

VREFIN - 0.02

VREFIN - 0.005

V VREFIN = 2.5V

MD015 DRAIN Pin Input Threshold Voltage

VDTH 90 100 130 mV

Note 1: Data in the Typical (“Typ”) column is based on characterization results at +25°C. This data is for design guidance onlyand is not tested.

2: Negative current is defined as current sourced by the pin.3: All voltages are with respect to the VNEG pin voltage.

2003 Microchip Technology Inc. DS20091B-page 3

Page 4: -48V Hot Swap Controller - Microchip Technology

MCP18480

DC Characteristics (Continued)

Electrical Specification: Unless otherwise specified, operating temperature: –40°C ≤ TA ≤ +85°C (Industrial),Supply Current: 5 mA ≤ IPOS ≤ 25 mA, RISET = 125 kΩ, CBYP = 2 µF

Param. No. Parameter Sym Min Typ (1) Max Units Conditions

MD020 DRAIN pin current IDRAIN — — 0.1 µA DRAINTH pin = VNEG

MD021 SENSE pin current ISENSE — — 0.1 µAMD022 GATE pin current Pull-up IGATE SENSE pin = VNEG

GATE pin = VNEG +4VMD022A -30 -50 -75 µA VFB = VNEG

MD022B -9 -17 -33 µA VFB = VNEG + 500 mVMD022C Pull-down IGATE 31 49 72 mA Any fault conditionMD023 UVD pin current IUVD -7 -10 -15 µA UVTH < VREFIN

MD024A TIMER pin current Pull-up ITIMER -100 -160 -200 µA RISET = 125 kΩ, VREFIN = 2.5V

MD024B Pull-down 52 78 104 nA RISET = 125 kΩ, VREFIN = 2.5V RDISCH = 1.6 MΩ

MD025 ISET pin current IISET VISET(MIN) — VISET(MAX) A See MD011RISET(MAX) RISET(MIN)

Note 1: Data in the Typical (“Typ”) column is based on characterization results at +25°C. This data is for design guidance onlyand is not tested.

2: Negative current is defined as current sourced by the pin.3: All voltages are with respect to the VNEG pin voltage.

DS20091B-page 4 2003 Microchip Technology Inc.

Page 5: -48V Hot Swap Controller - Microchip Technology

MCP18480

DC Characteristics (Continued)

Electrical Specifications: Unless otherwise specified, operating temperature: –40°C ≤ TA ≤ +85°C (Industrial),Supply Current: 5 mA ≤ IPOS ≤ 25 mA, RISET = 125 kΩ, CBYP = 2 µF.

Param # Parameter Sym Min Typ Max Units Conditions

MD030 Input Low Voltage VIL

MD031 ENABLE pin VNEG — 0.8 VMD032 RESTART pin VNEG — 0.8MD040 Input High Voltage VIH

MD041 ENABLE pin 2.0 — 5.0 VMD042 RESTART pin 2.0 — 5.0 VMD050 Internal Resistance on UVHYS pin RUVHYS 500 1200 2100 Ω VUVTH < VREFIN,

IUVHYS = 30 µA 50 100 — MΩ VUVTH > VREFIN,

IUVHYS = 30 µA Input Leakage Current (Notes 2, 3)

MD060A OVTH, UVTH, VFB, OVO and UVHYS pins

IIL -1 — +1 µA VNEG ≤ VPIN ≤ 11V, Pin at high-impedance

MD060B VREFIN, CL, SENSE, DRAINTH, ENABLE and RESTART pins

— — ±1 µA VNEG ≤ VPIN ≤ 5V,Pin at hi-impedance

MD070 Minimum current into ENABLE pin to disable MCP18480

IEN — 10 30 µA IPOS = 5 mA,ENABLE = 0.8V

Output Low Voltage VOL

MD080 PWRGOOD pin 0 — 0.4 V IOL = 5 mA Output High Voltage VOH —

MD090 PWRGOOD pin 0.8 VPOS 0.96 VPOS VPOS V IOH = 2 mA, 7 mA ≤ IPOS ≤ 12 mA

MD100 Offset Voltage at the internal comparator input that is connected to the CL pin.

VCL -15 — +15 mV VFB = 0

Note 1: All voltages are with respect to the VNEG pin voltage.2: The leakage currents on the ENABLE and RESTART pins are strongly dependent on the applied voltage level. The spec-

ified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.3: Negative current is defined as coming out of the pin.

2003 Microchip Technology Inc. DS20091B-page 5

Page 6: -48V Hot Swap Controller - Microchip Technology

MCP18480

1.1 Timing Parameter Symbology and Load ConditionsThe timing parameter symbols have been created using one of the following formats:

1.1.1 TIMING CONDITIONS

The temperature and voltages specified in Table 1-2 apply to all timing specifications, unless otherwise noted.Figure 1-1 specifies the load conditions for the timing specifications.

TABLE 1-1: SYMBOLOGY

TABLE 1-2: AC TEMPERATURE AND VOLTAGE SPECIFICATIONS

1. TppS2ppS 2. TppST

F Frequency T TimeE Error

Lowercase letters (pp) indicate the device pin.Uppercase letters and their meanings:S

F Fall P PeriodFR Fast Ramp R RiseH High V ValidI Invalid (Hi-impedance) Z Hi-impedanceL Low

AC CHARACTERISTICSStandard Operating Conditions (unless otherwise stated)Operating temperature: –40°C ≤ TA ≤ +85°C (industrial)Operating voltage VDD range as described in DC spec Section 1.0.

DS20091B-page 6 2003 Microchip Technology Inc.

Page 7: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 1-1: Load Conditions for Device Timing Specifications.

+

RUV1

ROV2RUV2

CUVD

RISET

Ctimer

RDISCH

RUVHYS

RPOS

CBYP2

RSENSE

ROVO1ROVO2

RDRAIN1RDRAIN2

RFB1RFB2

CGD

RGD

RG1CG1

QPG2

QPG3

RPG2

RPG6

M1

CBYPLRBYPL

VNEG

RPG1 RPG5

4 kΩ

2 µF 10 nF

1.74 MΩ 453 kΩ

280 kΩ59 kΩ 30.9 kΩ

800 nF

124 kΩ

680 nF

1.6 MΩ

0.01Ω

7.5 kΩ

110 kΩ MPSA43

100 nF 10Ω 3.3 nF

18 kΩ

680Ω

36 kΩ

36 kΩ

1500Ω

100 µF51 kΩ

2N5400

NTE261

124 kΩ

115 kΩ

59 kΩ

1.74 MΩ

1.6 MΩ

1.74 MΩ

NTE2388

RZ

24.9 kΩ

5V RPG3

RPG4

QPG1

RESTARTENABLE

PWRGOOD

VPOSOVTHUVTHUVHYSUVD

VREFIN

VREFOUT

CLISETTIMER

OVODRAINTH

VFBGATE

SENSE

VNEG

RDISCH

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20

DC/DCConverter

Module

VIN+

VIN-

VOUT+

VOUT-

ON/OFF

100 V

78V

Fuse 10A

GND

Transorb

CBYP1

ROV1

GOODPWR

MCP18480

SRS

SEN

2003 Microchip Technology Inc. DS20091B-page 7

Page 8: -48V Hot Swap Controller - Microchip Technology

MCP18480

1.2 Timing Diagrams and Specifications

FIGURE 1-2: Startup Waveforms.

TABLE 1-3: STARTUP TIMING REQUIREMENTS Param.

No. Parameter Sym Min Typ Max Units Conditions

MA000 UVTH/OVTH High (VPOS applied) to DRAINTH falling

TUVOVH2DTHF — 20.2 — ms

MA001A DRAINTH falling to PWRGOOD High TDTHF2GATEPGH — 19.3 — msMA001B DRAINTH falling to GATE Fast Ramp TDTHF2GATEFR — 13.1 — msMA002 GATE Fast Ramp to external FET

fully enhancedTGATEFR2FETE — 16.1 — ms

Note: Minimum and maximum specifications will be provided in future revisions of this data sheet.

PWRGOOD

UVTH

OVTH

VREFOUT

< 2.5V

= 2.5V

> 2.5V

DRAINTH

MA000

MA001A

GATE= 5V (1)

= 12V

MA002

Note 1: This voltage is determined by the threshold voltage of the external FET.This voltage needs to ensure the external FET is fully enhanced.

MA001B

DS20091B-page 8 2003 Microchip Technology Inc.

Page 9: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 1-3: ENABLE-to-GATE Waveforms.

TABLE 1-4: ENABLE-TO-GATE TIMING REQUIREMENTS Param.

No. Parameter Sym Min Typ Max Units Conditions

MA010 ENABLE Low to GATE Low TENL2GATEL — 23.6 — µsMA011 ENABLE High to GATE Fast Ramp TENH2GATEFR — 41 — msMA012 GATE Fast Ramp to GATE High TGATEFR2GATEH — 17.8 — ms

Note: Minimum and maximum specifications will be provided in future revisions of this data sheet.

ENABLE

MA012GATE (1)

MA010

MA011

Note 1: This voltage is determined by the threshold voltage of the external FET.This voltage needs to ensure the external FET is fully enhanced.

2003 Microchip Technology Inc. DS20091B-page 9

Page 10: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 1-4: OVTH-to-gate Waveform.

TABLE 1-5: OVTH-TO-GATE TIMING REQUIREMENTS Param.

No. Parameter Sym Min Typ Max Units Conditions

MA020 OVTH High to GATE Low TOVH2GATEL — 58.4 — µsMA021 OVTH Low to GATE Fast Ramp TOVL2GATEFR — 40.8 — µsMA022 GATE Fast Ramp to GATE High TGATEFR2GATEH — 17.8 — ms

Note: Minimum and maximum specifications will be provided in future revisions of this data sheet.

OVTH

MA022GATE(1)

MA020MA021

VREFIN + VOVO - 20 mVVREFIN + VOVO

Note 1: This voltage is determined by the threshold voltage of the external FET.This voltage needs to ensure the external FET is fully enhanced.

DS20091B-page 10 2003 Microchip Technology Inc.

Page 11: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 1-5: UVTH-to-gate Waveform

TABLE 1-6: UVTH-TO-GATE TIMING REQUIREMENTS Param.

No. Parameter Sym Min Typ(1) Max Units Conditions

MA030 UVTH Low to GATE Falling Edge TUVL2GATEF — 108 — µs CUVD = 800 nFMA031 GATE High to GATE Low TGATEH2GATEL — 25.8 — µsMA032 ENABLE High to GATE Fast Ramp TUVH2GATEFR — 40.4 — msMA033 GATE Fast Ramp to GATE High TGATEFR2GATEH — 58.4 — msNote 1: Data in the Typical (“Typ”) column is at 5V, 25°C, unless otherwise stated.

2: Minimum and maximum specifications will be provided in future revisions of this data sheet.

UVTH

MA033GATE(1) MA030

MA032

VREFIN - 262 mV VREFIN

MA031

Note 1: This voltage is determined by the threshold voltage of the external FET.This voltage needs to ensure the external FET is fully enhanced.

2003 Microchip Technology Inc. DS20091B-page 11

Page 12: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 1-6: Sense-to-gate Waveform.

TABLE 1-7: SENSE-TO-GATE TIMING REQUIREMENTS Param.

No. Parameter Sym Min Typ Max Units Conditions

MA041 GATE Current Limit to GATE Off TGATECL2GATEO — 5.5 — ms CTIMER = 0.68 µFRISET = 124 kΩ

MA042 GATE Current Limit Recovery TGATECL — 10.2 — ms CTIMER = 0.68 µFRISET = 124 kΩ

MA043 SENSE High to GATE Off TSENSEH2GATEO — 3.6 — msNote: Minimum and maximum specifications will be provided in future revisions of this data sheet.

GATE

SENSE

MA041

Foldback Current-Limiting

Recovery from Foldback Current-Limiting

GATE

SENSE

MA042

Circuit Breaker Current-Limiting

GATE

SENSE

MA043

DS20091B-page 12 2003 Microchip Technology Inc.

Page 13: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 1-7: Current Limit Waveform.

TABLE 1-8: CURRENT LIMIT TIMING REQUIREMENTS Param.

No. Parameter Sym Min Typ Max Units Conditions

MA050 External Short to Timer period start TSHORT2TIMERS — 171 — mSMA051 Timer period TTIMERP — 5.8 — sec CTIMER = 0.68 µF

RDISCH = 1.6 MΩMA053 ENABLE High to Timer period start TENABLEH2TIMERS — 30.5 — mS CTIMER = 0.68 µF

RDISCH = 1.6 MΩMA054 RESTART Low to Timer period

startTRESTARTL2TIMERS — 30.9 — mS CTIMER = 0.68 µF

RDISCH = 11.6 MΩMA055 External Short removed to Timer off

Note 2TNOSHORT2TIMERO — 5.8 — sec CTIMER = 0.68 µF

RDISCH = 1.6 MΩNote 1: Minimum and maximum specifications will be provided in future revisions of this data sheet.

2: This is up to one additional timer period because the external short circuit is removed asynchronously to the timer. The timer must time out before normal operation returns.

Timer

GATE

SENSE

MA051

ENABLE

RESTART

MA053 MA055

External Short Condition On-Board

MA054

MA050

2003 Microchip Technology Inc. DS20091B-page 13

Page 14: -48V Hot Swap Controller - Microchip Technology

MCP18480

NOTES:

DS20091B-page 14 2003 Microchip Technology Inc.

Page 15: -48V Hot Swap Controller - Microchip Technology

MCP18480

2.0 DC CHARACTERISTIC CURVES

FIGURE 2-1: Supply Current (IPOS) vs. Supply Voltage (VPOS).

FIGURE 2-2: Minimum Supply Current vs. Temperature.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number ofsamples and are provided for informational purposes only. The performance characteristics listed hereinare not tested or guaranteed. In some graphs or tables, the data presented may be outside the specifiedoperating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Data taken with the minimum following conditions:

VREFIN = 2.5V, ISET = 10 µA

10.900

11.400

11.900

12.400

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Supply Current, IPOS (mA)

Supp

ly V

olta

ge, V

POS (V

)

TA = -40°C

TA = +25°C TA = +85°CTA = -5°C

TA = +70°C

Data taken with the minimum following conditions:Minimum Supply Current to bring VPOS intoregulation

VREFIN = 2.5V, ISET = 10 µA

11.65

11.70

11.75

11.80

11.85

11.90

-45

-35

-25

-15 -5 5 15 25 35 45 55 65 75 85 95 105

115

125

Temperature (°C)

Supp

ly V

olta

ge, V

POS (

V) IPOS = 5 mA

2003 Microchip Technology Inc. DS20091B-page 15

Page 16: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-3: GATE Output High-Voltage (VPOS- VGATE) vs. Supply Current (IPOS).

FIGURE 2-4: GATE Output Low-Voltage (VGATE - VNEG) vs. Supply Current (IPOS).

Data taken with the minimum following conditions:

3 mA ≤ IPOS ≤ 30 mA

VREFIN = 2.5V, ISET = 10 µA

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

0.15

0.20

0.25

0.30

0.35

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Supply Current (mA)

Gat

e Vo

ltage

(V)

TA = -40°C

TA = 0°C

TA = +85°C

TA = +70°C

TA = +25°C

Data taken with the minimum following conditions:3 mA ≤ IPOS ≤ 30 mA

VREFIN = 2.5V, ISET = 10 µA

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = VVNEG VRESTART = VVNEG (open)

2.03.04.05.06.07.08.09.0

10.011.012.0

3 5 7 9 11 13 15 17 19 21 23 25

Supply Current (mA)

Gat

e O

utpu

t Vol

(mV)

TA = -40°C

TA = 0°C

TA = +85°C

TA = +25°C

DS20091B-page 16 2003 Microchip Technology Inc.

Page 17: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-5: GATE Source (Pull-Up) Current vs. Temperature.

FIGURE 2-6: GATE Sink (Pull-Down) Current vs. Temperature.

Data taken with the minimum following conditions:

IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open)

35

40

45

50

55

-40 -20 0 20 40 60 80

Temperature (°C)

Gat

e Pu

ll-up

Cur

rent

(µA

)

Data taken with the minimum following conditions:IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA

Note 1:VGATE > 0.5VVUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = VVNEG VRESTART = VVNEG (open)

40

45

50

55

60

-40 -20 0 20 40 60 80

Temperature (°C)

Gat

e C

urre

nt (m

A)

2003 Microchip Technology Inc. DS20091B-page 17

Page 18: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-7: GATE Source Current vs. ISET Pin Current.

FIGURE 2-8: PWRGOOD Output Low Voltage (VOL) vs. Temperature.

Data taken with the minimum following conditions:-50 µA µA < IISET < 50 µA (IISET ≠ 0) IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V Note 1:VGATE > 0.5V VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

-105-95-85-75-65-55-45-35-25-15-5

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30ISET Current (uA)

Gat

e C

urre

nt (u

A)

TA = +25°C

TA = +85°C

TA = -40°C

Data taken with the minimum following conditions:ILOAD = 1 mA IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

0.170.180.190.200.210.220.230.240.250.26

-40 -20 0 20 40 60 80Temperature (°C)

PWR

GO

OD

, VO

L (V)

DS20091B-page 18 2003 Microchip Technology Inc.

Page 19: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-9: PWRGOOD Output High- Voltage (VOH) vs. Temperature.

FIGURE 2-10: PWRGOOD Output High-Impedance vs. Temperature.

Data taken with the minimum following conditions:ILOAD = -1 mA IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

95.595.896.096.396.596.897.097.397.5

-40 -20 0 20 40 60 80

Temperature (°C)

PWR

GO

OD

VO

H (%

V PO

S)

Data taken with the minimum following conditions:

IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

155

165

175

185

195

205

215

225

235

245

-40 -20 0 20 40 60 80Temperature (°C)

PWR

GO

OD

Out

put I

mpe

danc

e(O

hms)

2003 Microchip Technology Inc. DS20091B-page 19

Page 20: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-11: PWRGOOD Output Low-Impedance vs. Temperature.

Data taken with the minimum following conditions:

IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

180

190

200

210

220

230

240

250

-40 -20 0 20 40 60 80Temperature (°C)

PWR

GO

OD

Out

put I

mpe

danc

e (O

hms)

DS20091B-page 20 2003 Microchip Technology Inc.

Page 21: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-12: VREFOUT vs. Supply Current (IPOS).

FIGURE 2-13: VREFOUT vs. LOAD.

Data taken with the minimum following conditions: 3 mA ≤ IPOS ≤ 30 mA

VREFIN = 2.5V, ISET = 10 µA

2.4902.4912.4922.4932.4942.4952.4962.4972.498

3 4 5 6 7 8 9 10 11 12 13 14 15Supply Current, IPOS (mA)

V REF

OU

T (V

)

TA = -40°C

TA = 0°C

TA = +85°C

TA = +70°C

TA = +25°C

Data taken with the minimum following conditions:

IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, Iset = 10 µA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.25 0.5

0.75 1

1.25 1.5

1.75 2

2.25 2.5

2.75 3

3.25 3.5

3.75 4

4.25 4.5

4.75 5

LOAD Current (mA)

V REF

OU

T (V

)

TA = -40°C

TA = 0°C

TA = +85°C

TA = +70°C

TA = +25°C

2003 Microchip Technology Inc. DS20091B-page 21

Page 22: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-14: TIMER Pin Output Low Current vs. RDISCH Current. FIGURE 2-15: TIMER Pin Output High

Current vs. ISET Current.

Data taken with the minimum following conditions:

-50 µA < IISET < 50 µA (IISET ≠ 0) IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

1.0

1.2

1.4

1.6

1.8

2.0

2.20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RDISCH Current (uA)

Tim

er P

in C

urre

nt (u

A)

TA = -40°C

TA = +85°C

TA = +25°C

Data taken with the minimum following conditions:

-50 µA < IISET < 50 µA (IISET ≠ 0) IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE ≥ 100mV VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

-225-200-175-150-125-100

-75-50-25

0

-20

-18

-16

-14

-12

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

ISET Current (uA)

Tim

er P

in C

urre

nt (µ

A)

TA = -40°C

TA = +85°C

TA = +25°CTA = -40°C

TA = +85°C

TA = +25°C

DS20091B-page 22 2003 Microchip Technology Inc.

Page 23: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-16: UVD Pin Current vs. ISET Pin Current.

FIGURE 2-17: ISET Pin Voltage vs. VREFIN Pin Voltage.

FIGURE 2-18: DRAINTH Threshold Voltage vs. Supply current (IPOS).

Data taken with the minimum following conditions:

-50 µA < IISET < 50 µA (IISET ≠ 0) IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V

Note 1:VUVTH < VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

-60

-50

-40

-30

-20

-10

0

-50 -40 -30 -20 -10 0 10 20 30 40 50ISET Pin Current (µA)

UV D

Pin

Cur

rent

(µA

)

TA = -40°CTA = +70°C

TA = +25°C

TA = 0°C

TA = +85°C

Data taken with the minimum following conditions:IPOS = 5 mA (Enables VPOS at its self-regulating voltage) Iset = 10 µA

1.001.051.101.151.201.251.301.35

2.00 2.10 2.20 2.30 2.40 2.50 2.60

VREFIN Pin Voltage (V)

I SET P

in V

olta

ge (V

)

TA = -40°C

TA = +70°C

TA = +25°C

TA = +85°C

TA = 0°C

Data taken with the minimum following conditions:3 mA ≤ IPOS ≤ 30 mA VREFIN = 2.5V, ISET = 10 µADetermined by PWRGOOD signal

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

105

106

107

108

109

110

111

112

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Supply Current, IPOS (mA)

DRAI

NTH

Vol

tage

(mV)

TA = -40°C

TA = +70°C

TA = +25°C

TA = 0°C

TA = +85°C

2003 Microchip Technology Inc. DS20091B-page 23

Page 24: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-19: RDISCH Current vs. Supply Current (IPOS).

FIGURE 2-20: RDISCH Voltage vs. RDISCH Current.

Data taken with the minimum following conditions:IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA RDISCH = 16 MΩ

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

820

830

840

850

860

870

5 10 15 20 25Supply Current, IPOS (mA)

R DIS

CH C

urre

nt (n

A) TA = -40°C

TA = +25°C

TA = +85°C

Data taken with the minimum following conditions:IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µAIRDISCH from 100 nA to 10 µA (500 nA steps)

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

1.250

1.260

1.270

1.280

1.290

1.300

1.310

0 5 10 15 20 25 30 35 40 45 50RDISCH Current (uA)

RD

ISC

H V

olta

ge (V

)

TA = -40°C

TA = +25°C

TA = +85°C

DS20091B-page 24 2003 Microchip Technology Inc.

Page 25: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-21: ENABLE/RESTART Pin Trip Point Voltage vs. Temperature.

Data taken with the minimum following conditions:

IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µADetermined by GATE voltage

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VRESTART = VVNEG (open)

1.36

1.37

1.38

1.39

1.40

1.41

1.42

1.43

-40 -20 0 20 40 60 80Temperature (°C)

Enab

le/R

esta

rt, V

IL (V

)

2003 Microchip Technology Inc. DS20091B-page 25

Page 26: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-22: TIMER Output Sink Current vs. Temperature.

FIGURE 2-23: TIMER Output Source Current vs. Temperature.

Data taken with the minimum following conditions:

RDISCH = 16 MΩ IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA 0.1V ≤ VTIMER ≤ 1.25V

Note 1:

VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VNEG, I into device VNEG + 100mV, I out of device VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

82.082.583.083.584.084.585.085.586.086.587.0

-40 -20 0 20 40 60 80Temperature (°C)

Tim

er C

urre

nt (n

A)

Data taken with the minimum following conditions:RDISCH = 16 MΩ IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA 0.1V ≤ VTIMER ≤ 1.25V

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = VNEG, I into device VNEG + 100mV, I out of device VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

-154.0-153.8-153.5-153.3-153.0-152.8-152.5-152.3-152.0

-40 -20 0 20 40 60 80Temperature (°C)

Tim

er C

urre

nt (u

A)

DS20091B-page 26 2003 Microchip Technology Inc.

Page 27: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-24: CL pin Input Offset Voltage vs. Temperature. FIGURE 2-25: SENSE Pin Input Threshold

vs. Temperature.

Data taken with the minimum following conditions:IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VSENSE = 25mV VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

-40 -20 0 20 40 60 80Temperature (°C)

CL

Pin

Offs

et V

olta

ge, V

OS (

mV)

VSENSE = 20 mV

VSENSE = 30 mV

VSENSE = 40 mV

Data taken with the minimum following conditions:IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µAUse TIMER pin as indicator

Note 1:VUVTH > VVREFIN VOVTH < VVREFIN VVFB = VNEG, VNEG+ 250mV, VNEG+500mv, VNEG+1V VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

10152025303540455055

-40 -20 0 20 40 60 80Temperature (°C)

SEN

SE P

in V

olta

ge (m

V) Vfb = 0V

Vfb = 1VVfb = 0.5V

Vfb = 0.25V

2003 Microchip Technology Inc. DS20091B-page 27

Page 28: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-26: OVTH Input Rising Threshold vs. OVO Voltage.

FIGURE 2-27: OVTH Input Falling Threshold vs. OVO Voltage.

Data taken with the minimum following conditions:IPOS = 5 mA (Enables VPOS at its self-regulating voltage) OVO = VNEG to 8V VREFIN = 2.5V, ISET = 10 µAUse PWRGOOD pin as indicator

Note 1:VUVTH > VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

2.02.53.03.54.04.55.05.56.06.57.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0OVO Voltage (V)

OV T

H In

put H

igh

Volta

ge (V

)

TA = -40°CTA = +70°C

TA = +85°C

TA = +0°C

TA = +25°C

Data taken with the minimum following conditions:

IPOS = 5 mA (Enables VPOS at its self-regulating voltage) OVO = VNEG to 8V VREFIN = 2.5V, ISET= 10 µA Use PWRGOOD pin as indicator

Note 1:VUVTH > VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

2.474

2.475

2.476

2.477

2.478

2.479

2.480

0 1 2 3 4 5 6 7 8

OVO Voltage (V)

OV T

H In

put L

ow V

olta

ge, V

IL (V

)

TA = -40°C

TA = +70°C

TA = +25°C

TA = 0°C

TA = +85°C

DS20091B-page 28 2003 Microchip Technology Inc.

Page 29: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-28: UVD Current vs. Supply Current (IPOS).

FIGURE 2-29: UVHYS Pin Impedance vs. Temperature.

Data taken with the minimum following conditions:IPOS = 5 mA (Enables VPOS at its self regulating voltage) VREFIN = 2.5V, ISET = 10 µA

Note 1:VUVTH < VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

-10.15

-10.10

-10.05

-10.00

-9.95

-9.90

5 10 15 20 25 30Supply Current, IPOS (mA)

UV D

Cur

rent

(uA

)TA = -40°C

TA = +70°C

TA = +25°C

TA = 0°C

TA = +85°C

Data taken with the minimum following conditions:IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA

Note 1:VUVTH < VVREFIN VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

Data taken with the minimum following conditions:

IPOS = 5 mA (Enables VPOS at its self-regulating voltage) UVTH < VREFIN, UVTH > VREFIN VREFIN = 2.5V, ISET = 10 µA

Note 1:VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

05000

1000015000200002500030000350004000045000

-40 -20 0 20 40 60 80Temperature (°C)

UV H

YS P

in Im

peda

nce

(Ohm

s)

ON

OFF

2003 Microchip Technology Inc. DS20091B-page 29

Page 30: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-30: UVTH Input Rising Threshold vs. Temperature.

FIGURE 2-31: UVTH Input Falling Threshold vs. Temperature.

Data taken with the minimum following conditions:IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA Use PWRGOOD pin as indicator

Note 1:VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

2.50182.50202.50222.50242.50262.50282.50302.50322.5034

-40 -20 0 20 40 60 80

Temperature (°C)

UV T

H R

isin

g Th

resh

old

(V)

Data taken with the minimum following conditions:IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA Use PWRGOOD pin as indicator

Note 1:VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

2.5010

2.5015

2.5020

2.5025

2.5030

2.5035

-40 -20 0 20 40 60 80Temperature (°C)

UV T

H F

allin

g Th

resh

old

(V)

DS20091B-page 30 2003 Microchip Technology Inc.

Page 31: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 2-32: OVTH Input Rising Threshold vs. Temperature. FIGURE 2-33: OVTH Input Falling

Threshold vs. Temperature.

Data taken with the minimum following conditions:

IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA Use PWRGOOD pin as indicator

Note 1:VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

2.5057

2.5062

2.5067

2.5072

2.5077

2.5082

2.5087

-40 -20 0 20 40 60 80Temperature (°C)

OV T

H R

isin

g Th

resh

old

(V)

Data taken with the minimum following conditions:IPOS = 5 mA (Enables VPOS at its self-regulating voltage) VREFIN = 2.5V, ISET = 10 µA VUVHYS = VNEG Use PWRGOOD pin as indicator

Note 1:VOVTH < VVREFIN VSENSE = VVNEG VVFB = VVNEG VDRAINTH = VVNEG VOVO = VVNEG VCL = VVREFIN VENABLE = 5V (open) VRESTART = VVNEG (open)

2.4775

2.478

2.4785

2.479

2.4795

2.48

2.4805

-40 -20 0 20 40 60 80

Temperature (°C)

OV T

H Fa

lling

Thr

esho

ld (V

)

2003 Microchip Technology Inc. DS20091B-page 31

Page 32: -48V Hot Swap Controller - Microchip Technology

MCP18480

NOTES:

DS20091B-page 32 2003 Microchip Technology Inc.

Page 33: -48V Hot Swap Controller - Microchip Technology

MCP18480

3.0 PIN DESCRIPTIONS

TABLE 3-1: MCP18480 PIN DESCRIPTIONS

Pin NamePin

Number Pin Direction

Buffer Type Description

SSOP

VPOS 1 I P Positive supply input.

Internal Shunt Regulator connected between VPOS and VNEG limits thepotential to 12V between these two pins. A series resistor must beplaced on the VPOS pin to limit the current into the device.

OVTH 2 I A Overvoltage protection threshold.An external resistor divider network is connected to this input pin toprogram the overvoltage protection threshold. The selected externalresistor values for the OVTH to system ground and OVTH to VNEG resis-tors should have currents in the 1 mA range. A typical Overvoltagethreshold is -76V. Internal hysteresis in the overvoltage input compar-ator will allow proper operation once VNEG falls below the selectedthreshold.

UVTH 3 I A Undervoltage lockout threshold.An external resistor divider network is connected to this input pin toprogram the undervoltage lockout threshold. If the voltage on UVTH isless than VNEG + 2.5V, the undervoltage comparator will trip, indicatingan Undervoltage condition.An external hysteresis resistor can be used to set the high-to-low(VTHF) threshold below the low-to-high (VTHR) threshold. For telecomnetwork equipment, it is desirable to have shutdown occur at -38.5Vand the startup set at -43.0V.

UVHYS 4 I A Undervoltage internal comparator hysteresis.

An external resistor is connected between this input to the UVTH inputpin to adjust the hysteresis of the internal Undervoltage comparator.Since it is desirable to shut down at -38.5V and restart at -43.0V intelecom switch equipment.

UVD 5 I/O A Undervoltage event delay.

An external capacitor is connected to this input pin to set the delaybetween when the UVTH pin drops below the trip point specified by thevoltage on the VREFIN pin and when the system shutdown occurs(causing the PWRGOOD pin to be driven to an inactive level and theGATE pin to be pulled to the VNEG pin voltage level). The UVD pinsources a current equivalent to the IISET (in typical applications, theIISET current equals 10 µA), which charges this external capacitorwhile an internal comparator compares this voltage on the UVD pin to|VREFIN|/2.Typically, for telecom equipment, the system is expected to shut downwhen the input voltage falls below -38.5V (±1.0V DC) for greater than100 ms.

Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power CMOS = CMOS-compatible input A = Analog D = Digital

2003 Microchip Technology Inc. DS20091B-page 33

Page 34: -48V Hot Swap Controller - Microchip Technology

MCP18480

VREFOUT 6 O A Reference output.

Internal reference output voltage (typically 2.5V). Usually tied back tothe VREFIN pin unless an external high-precision reference voltage isdesired.

VREFIN 7 I A Reference input.This pin allows a high-precision reference voltage for the followingfunctions:

• Undervoltage Comparator• Overvoltage Comparator• DRAIN Comparator• Current Limit Timer

If the precision of the VREFOUT output voltage is acceptable, tie theVREFOUT pin to the VREFIN pin.

CL 8 I A Current Limit.Input used to set the maximum current limit threshold allowed by thesystem via a resistor divider network (with the resistor RCL1 betweenthe VREFIN pin and the CL pin and resistor RCL between the VNEG pinand the CL pin). If the voltage across the sense resistor exceeds thevoltage on the CL pin, it implies that there is excessive current over theallowed limit and forces the GATE pin to the VNEG pin voltage levelwithout delay.

ISET 9 I A Current source set.Establishes the internal ISOURCE for the following:

• Undervoltage Delay• Current Limit Timer• GATE Pin Source Current

An external resistor RISET from the ISET pin must be connected toeither the VNEG pin or the VREFIN pin to set IBIAS, which will then estab-lish the current sources throughout the device. The IBIAS current is thesame for either connection.

Connecting the RISET resistor to the VNEG pin will establish thePWRGOOD pin output polarity to be active-high. Connecting the RISETresistor to the VREFIN pin will establish the PWRGOOD pin outputpolarity to be active-low.

TABLE 3-1: MCP18480 PIN DESCRIPTIONS (CONTINUED)

Pin NamePin

Number Pin Direction

Buffer Type Description

SSOP

Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power CMOS = CMOS-compatible input A = Analog D = Digital

DS20091B-page 34 2003 Microchip Technology Inc.

Page 35: -48V Hot Swap Controller - Microchip Technology

MCP18480

TIMER 10 I A Current Limit Timer.

The value of the external capacitor (CTIMER) connected to the TIMERpin sets the two time periods used during a current-limit event. Theseare:• The time that the GATE pin will limit the current through the

external FET• The time that the GATE pin will disable the external FET

During current limit, a pull-up current source charges up the externalcapacitor. Until the voltage on the TIMER pin reaches VREFIN/2, theGATE pin is driven to maintain a reduced current flow determined bythe VDS of the external FET.

While the capacitor is being discharged by the pull-down current (pull-up current is off), the GATE pin is at VNEG and the PWRGOOD pin isdeasserted. When the TIMER voltage falls below approximately100 mV, the GATE pin turns on, if the RESTART pin is low, to reset theinternal fault latch. If the RESTART pin is high, the GATE pin remainsoff until the ENABLE pin is forced low. It is then forced high or theRESTART pin is forced low (asserted). The PWRGOOD pin reasserts after the voltages on the DRAINTH andGATE pins meet the appropriate conditions.The TIMER pin pull-up current is proportioned to the IISET current(approximately a multiple of 16).

VNEG 11 I P Negative supply input.The negative voltage applied to the board by the backplane (typicallythe most negative voltage in the system).

RDISCH 12 I A External MOSFET activation delay.

An external resistor (RRDISCH) is connected between the RDISCH pinand the VNEG pin and is used to set the delay between the deactivationand activation of the external pass MOSFET during a current-limitevent. The delay is set by the values of the external capacitor (CTIMER)and the external resistor (RRDISCH). The formulas are:

TDEACT = (CTIMER x RISET) / 16TACT = (9.2 x RRDISCH x CTIMER)

TABLE 3-1: MCP18480 PIN DESCRIPTIONS (CONTINUED)

Pin NamePin

Number Pin Direction

Buffer Type Description

SSOP

Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power CMOS = CMOS-compatible input A = Analog D = Digital

2003 Microchip Technology Inc. DS20091B-page 35

Page 36: -48V Hot Swap Controller - Microchip Technology

MCP18480

SENSE 13 I A Over-current sense.

The voltage on the SENSE input pin is used to detect over-current con-ditions in the load connected to the external MOSFET. This pin isdirectly connected to the source of the MOSFET, with an externalresistor (RSENSE) (typically a low resistance) connected between thesource of the MOSFET and VNEG.

GATE 14 O A MOSFET gate driver.The GATE output pin attaches to the gate of the external MOSFET.The voltage on the GATE pin is pulled to the voltage on the VNEG pinwhenever the voltage on the UVTH pin is less than the voltage on theVREFIN pin, or the voltage on the OVTH pin is greater than the voltageon the VREFIN pin.

The GATE pin is also pulled to the voltage on the VNEG pin when theENABLE input pin is low.When current limit is reached, the voltage on the GATE pin is adjustedto maintain a constant voltage across the RSENSE resistor while theCTIMER capacitor starts to charge. When the voltage on CTIMERexceeds VREFIN/2, the GATE pin is pulled to VNEG to turn off the exter-nal MOSFET. A RC network can be added from the GATE pin to thedrain of the external MOSFET, along with a capacitor from the GATEpin to the VNEG pin, to control the slew rate of the GATE pin.

The GATE pin pull-up current is proportioned to the IISET current.VFB 15 I A External MOSFET drain monitor.

The VFB input pin monitors the voltage at the drain of the externalpower MOSFET switch with respect to the voltage on the VNEG pin foruse by the internal foldback circuitry. An external resistor divider net-work (RFB1 and RFB2) is attached between the drain of this externalMOSFET and the VNEG pin (RFB1 is connected between the drain ofthe external MOSFET and the VFB pin, while RFB2 is connectedbetween the VFB pin and the VNEG pin). This prevents high-voltagebreakdown of the VFB input.

DRAINTH 16 I A MOSFET drain comparator threshold.This pin is used during the power-up sequence of the inserted board,and after any fault condition that ‘turns off’ the GATE pin drive. Thevoltage on the pin indicates when the external FET is fully enhancedby comparing the pin voltage to an internal reference voltage(approximately 100 mV derived from the internal band gap reference).An external resistor divider network (RDRAIN1 and RDRAIN2) is attachedbetween the drain of this external MOSFET and the VNEG pin (RDRAIN1is connected between the drain of the external MOSFET and theDRAINTH pin while RDRAIN2 is connected between the DRAINTH pinand the VNEG pin).

TABLE 3-1: MCP18480 PIN DESCRIPTIONS (CONTINUED)

Pin NamePin

Number Pin Direction

Buffer Type Description

SSOP

Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power CMOS = CMOS-compatible input A = Analog D = Digital

DS20091B-page 36 2003 Microchip Technology Inc.

Page 37: -48V Hot Swap Controller - Microchip Technology

MCP18480

OVO 17 I A Overvoltage detect.

Typically for normal operation. This pin is tied to VNEG.This feature allows the overvoltage detection input to monitor an over-voltage condition across the power module. The voltage is sensed atthe drain of the external MOSFET. The voltage across the load is inter-nally determined based upon:• The voltage difference between system ground and the voltage

on the VNEG pin• The voltage difference between the drain of the external FET and

the voltage on the VNEG pin

An external resistor divider network (ROVO1 and ROVO2) is attachedbetween the drain of the external MOSFET and the VNEG pin (ROVO1is connected between the drain of the external MOSFET and the OVOpin, while ROVO2 is connected between the OVO pin and the VNEGpin).

When the voltage across the external MOSFET (source-to-drain)equals system ground voltage (- VNEG +), the maximum desired loadvoltage, the GATE pin is forced to the voltage on the VNEG pin(disabling the external MOSFET).

To detect Overvoltage on the board (instead of the load) directly,connect the OVO pin to the VNEG pin.

PWRGOOD 18 O D Power Good indicator.This state of the output is determined by four conditions. These are:

• Undervoltage• Overvoltage• Current Limit• External FET is fully-enhanced (from DRAINTH pin on power-up)

PWRGOOD is a CMOS logic voltage (VNEG or VNEG+12V).PWRGOOD is active when the device has completed power-up andthe system is neither in an Undervoltage or Overvoltage condition.

Connecting the RISET pin to the VNEG pin configures the PWRGOODpin to be active high. Connecting the RISET pin to the VREF pin config-ures the PWRGOOD pin to be active low.

ENABLE 19 I TTL Enable Gate driver.Used to enable the GATE pin and assert the PWRGOOD pin. TheENABLE pin is active-high and is internally pulled up to 5V. This pin ispulled low by the user to clear the current limit latch when a current-limit fault occurs with RESTART high, or to disable the GATE pin.H = Enable the GATE and PWRGOOD pins.

L = Disables the GATE pin, deasserts the PWRGOOD pin and clearscurrent limit latch.When the ENABLE pin is high, fault conditions will disable the GATEpin and deasserts the PWRGOOD pin.

TABLE 3-1: MCP18480 PIN DESCRIPTIONS (CONTINUED)

Pin NamePin

Number Pin Direction

Buffer Type Description

SSOP

Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power CMOS = CMOS-compatible input A = Analog D = Digital

2003 Microchip Technology Inc. DS20091B-page 37

Page 38: -48V Hot Swap Controller - Microchip Technology

MCP18480

RESTART 20 I TTL Auto-restart enable.

Enables the auto-restart feature of the device after an over-currentfault.L = The internal fault latch is reset and the device attempts to restartwith a frequency determined by the values of the external componentsCTIMER and RDISCH. H = The auto-restart is disabled, allowing the GATE pin to remain atthe VNEG pin voltage after an over-current fault. Internally pulled downto the VNEG pin voltage.

TABLE 3-1: MCP18480 PIN DESCRIPTIONS (CONTINUED)

Pin NamePin

Number Pin Direction

Buffer Type Description

SSOP

Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power CMOS = CMOS-compatible input A = Analog D = Digital

DS20091B-page 38 2003 Microchip Technology Inc.

Page 39: -48V Hot Swap Controller - Microchip Technology

MCP18480

4.0 APPLICATIONS INFORMATIONThe MCP18480 can be programmed to have the PWR-GOOD signal be either active-high or active-low via theISET pin and the connection of the external RISET resis-tor (see Section 6.8.8, “Bias Block”). If the RISET resis-tor is connected between ISET and VNEG, thePWRGOOD output pin is an active-high signal. If theRISET resistor is connected between ISET and VREFIN,the PWRGOOD output pin is an active-low signal.

For systems using an active-low-enabled DC/DC con-verter module, the MCP18480 should be programmedfor a high-active PWRGOOD output. Tying the RISETresistor to the VNEG pin configures the PWRGOOD tobe an active-high signal. The active-high PWRGOODswitches on the external NPN and the collector of theexternal NPN (labeled as GOODPWR) is pulled toVNEG, enabling a low-active GOODPWR and resultingin enabling the DC/DC module.

For active-high DC/DC converter modules, theMCP18480 should be programmed for a low activePWRGOOD output. Connecting RISET to the VREFINpin will enable an active-low PWRGOOD output. Referto Figure 4-1 and Figure 4-2 for schematics.

Figure 4-1 shows a typical telecom application circuitwhere the DC/DC module is active-high. Figure 4-2shows a typical telecom application circuit where theDC/DC module is active-low. The polarity of theMCP18480’s PWRGOOD pin (active-high or active-low) is dependant on the state of the ISET pin.

FIGURE 4-1: Typical Operating Circuit for Telecom Applications with Active-High power Module - foldback current limit enabled.

+

RUV1

ROV2RUV2

CUVD

RISET

Ctimer

RDISCH

RUVHYS

RPOS

CBYP2

RSENSE

RDRAIN1RDRAIN2

RFB1RFB2

CGD

RGD

RG1CG1

QPG2

QPG3

RPG2

RPG6

M1

CBYPLRBYPL

VNEG

RPG1 RPG5

4 kΩ

2 µF 10 nF

1.74 MΩ 453 kΩ

280 kΩ59 kΩ 30.9 kΩ

800 nF

124 kΩ

680 nF

1.6 MΩ

0.01Ω

7.5 kΩ

110 kΩ MPSA43

100 nF 10Ω 3.3 nF

18 kΩ

680Ω

36 kΩ

36 kΩ

1500Ω

100 µF51 kΩ

2N5400

NTE261

124 kΩ

115 kΩ

1.74 MΩ

1.6 MΩ

NTE2388

RZ

24.9 kΩ

5V RPG3

RPG4

QPG1

RESTARTENABLE

PWRGOOD

VPOSOVTHUVTHUVHYSUVD

VREFIN

VREFOUT

CLISETTIMER

OVODRAINTH

VFBGATE

SENSE

VNEG

RDISCH

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20

DC/DCConverter

Module

VIN+

VIN-

VOUT+

VOUT-

ON/OFF

100 V

78V

Fuse 10A

GND

Transorb

CBYP1

ROV1

GOODPWR

MCP18480

SRS

SEN

2003 Microchip Technology Inc. DS20091B-page 39

Page 40: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIGURE 4-2: Typical operating circuit for telecom applications with Active-Low power Module - foldback current limit enabled.

+

RUV1

ROV2RUV2

CUVD

RISET

Ctimer

RDISCH

RUVHYS

RPOS

CBYP2

RSENSE

RDRAIN1RDRAIN2

RFB1RFB2

CGD

RGD

RG1CG1

QPG2

QPG3

RPG2

RPG6

M1

CBYPLRBYPL

VNEG

RPG1 RPG5

4 kΩ

2 µF 10 nF

1.74 MΩ 453 kΩ

280 kΩ59 kΩ 30.9 kΩ

800 nF

124 kΩ

680 nF

1.6 MΩ

0.01Ω

7.5 kΩ

110 kΩ MPSA43

100 nF 10Ω 3.3 nF

18 kΩ

680Ω

36 kΩ

36 kΩ

1500Ω

100 µF51 kΩ

2N5400

NTE261

124 kΩ

115 kΩ

1.74 MΩ

1.6 MΩ

NTE2388

RZ

24.9 kΩ

5V RPG3

RPG4

QPG1

RESTARTENABLE

PWRGOOD

VPOSOVTHUVTHUVHYSUVD

VREFIN

VREFOUT

CLISETTIMER

OVODRAINTH

VFBGATE

SENSE

VNEG

RDISCH

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20

DC/DCConverterModule

VIN+

VIN-

VOUT+

VOUT-

ON/OFF

100 V

78V

Fuse 10A

GND

Transorb

CBYP1

ROV1

GOODPWR

MCP18480

SRS

SEN

DS20091B-page 40 2003 Microchip Technology Inc.

Page 41: -48V Hot Swap Controller - Microchip Technology

MCP18480

The MCP18480 can typically be implemented in abackplane system in one of two methods. Figure 4-3shows a system where the backplane integrates theMCP18480 for every slot. Figure 4-4 shows a systemwhere the backplane does not integrate theMCP18480s and each card that will be inserted intoany slot is required to integrate the MCP18480.

FIGURE 4-3: Backplane System Block Diagram #1.

FIGURE 4-4: Backplane System Block Diagram #2.

Card#2

Card#n

Card#1

MCP18480

MCP18480

MCP18480

Card # nMCP18480

Card # 2MCP18480Card # 1

MCP18480

2003 Microchip Technology Inc. DS20091B-page 41

Page 42: -48V Hot Swap Controller - Microchip Technology

MCP18480

NOTES:

DS20091B-page 42 2003 Microchip Technology Inc.

Page 43: -48V Hot Swap Controller - Microchip Technology

MCP18480

5.0 POWER-UP

5.1 VPOS and VNEG ConnectionFor proper system operation, it is required that the sys-tem ground and the VNEG pin have a solid connectionbefore voltages are applied to any logic on the board.

5.2 The Board CircuitryAfter the MCP18480 has “good” voltages on the VPOSand VNEG pins, the board may have voltages applied toany of the other signals (a “good” voltage on VPOS indi-cates a “good” voltage on the system ground). TheMCP18480 will start to source a small current to theexternal MOSFET to begin powering the board. Thiswill turn on the MOSFET starting to power the externalcircuitry (load) of the board. The current from the GATEpin (into the external MOSFET) increases as the VDS ofthe MOSFET decreases. When the VDS of the MOS-FET is below the voltage determined by the two resis-tors on the DRAINTH pin (RDRAIN1 and RDRAIN2), andthe voltage on the GATE pin is greater than 8V, thePWRGOOD pin is active.

6.0 INTERNAL SIGNAL DESCRIPTIONS

The figure on page 2 illustrates a block diagram of theMCP18480. Between the functional blocks, there aresome signals that have been named. These signals arebriefly explained in Section 6.1 thru Section 6.7.

6.1 Undervoltage ActiveA signal that indicates (when low) that System Ground- VNEG is less then the minimum voltage.

6.2 Overvoltage ActiveA signal that indicates (when low) that System Ground-VNEG is greater then the maximum voltage.

6.3 LATCHOFFA signal that controls the GATE pin due to a timeout ofthe current-limiting timer.

6.4 Current Limit TIMERA signal that controls the reduction of source current onthe GATE pin and starts the voltage ramp of the currentlimit timer.

6.5 Current Limit FeedbackA voltage that is proportional to the VDS of the externalMOSFET to set a trip point for current-limiting.

6.6 TIMEOUTA signal that indicates the completion of the foldbacktime and is used to start the latchoff time.

6.7 Circuit BreakerA signal that immediately causes the GATE pin outputto be driven to VNEG upon the detection of excessivecurrent in the external FET.

2003 Microchip Technology Inc. DS20091B-page 43

Page 44: -48V Hot Swap Controller - Microchip Technology

MCP18480

6.8 DESCRIPTION OF INTERNAL

BLOCKSThe internal blocks shown in the MCP18480 Block Dia-gram on page 2 are discussed in Section 6.8.1 throughSection 6.8.8.

6.8.1 UV (UNDERVOLTAGE) BLOCK

The Undervoltage lockout circuit monitors the inputvoltage by comparing a centertap voltage on an exter-nal resistor divider to a 2.5V reference. The centertapvoltage is fed into the UVTH input pin.

If the voltage on the UVTH pin is below the internal 2.5Vreference, the absolute magnitude of the supply volt-age is too low for proper system operation, resulting inthe external MOSFET being turned off. If the voltage onthe UVTH pin is greater than VNEG + 2.5V, the supplyvoltage is above the minimal operating voltage as setby the external resistor divider network.In telecom network applications, it is common to shutdown the DC/DC converter supply when the input volt-age falls below -38.5V (tolerance of ±1.0V) for greaterthan 100 ms. The system will not restart until the volt-age exceeds -43.0V (tolerance of ±0.5V). This voltagedifference is produced by an open-drain NMOS output(the UVHYS pin) that connects an external resistor inparallel with the lower of the two resistors in the exter-nal UV divider network until the supply ramps down to-43V. When the UVTH pin exceeds VNEG + 2.5V, theinternal NMOS transistor is turned off, disconnectingthe external resistor connected to the UVHYS pin. Thevoltage at the UVTH pin increases to 2.79V. The supplyvoltage would have to decrease to -38.5V in order toassert the internal “Undervoltage Active” signal.

An internal 10 µA current source and an externalcapacitor connected to the UVD pin adjusts the delaybetween the input fault and the notification of this faultto the system. This is usually 100 ms for -48V telecom-type equipment. For customized adjustments, the timedelay can be expressed as Equation 6-1.

EQUATION 6-1: INPUT FAULT DELAY

CUV is the capacitor connected between the UVD pinand the VNEG pin. A value of 1 µF would provide adelay of about 100 ms.

If the supply voltage dips below the programmedthreshold, the input comparator trips the other way. Thetiming capacitor is released to ramp-up at the previ-ously described rate and the Undervoltage blockswitches when the capacitor voltage reaches 1.25V.When the input comparator goes to a low level, the hys-teresis FET is turned on and the trip point forreassertion of good VNEG reverts to -43V.While the Undervoltage Active signal is low (includesUndervoltage input filter), the GATE pin driver for theexternal MOSFET is disabled, the GATE pin is pulled tothe voltage of the VNEG pin with a 60 mA current sinkand the PWRGOOD output pin is deasserted to indi-cate that the input voltage is out of range.

EQUATION 6-2: UNDERVOLTAGE HYSTERESIS

EQUATION 6-3: UNDERVOLTAGE CONDITION

Note: Voltage levels discussed are with respectto external component values selected inFigure 4-1.

TDELAY

VREFIN2

------------------ CUVD•

10µA--------------------------------------------=

RUVHYSRUV1

VUVDVREFIN------------------

RUV1RUV2------------- 1––

----------------------------------------------------=RUVHYSRUV1

VUVDVREFIN------------------

RUV1RUV2------------- 1––

----------------------------------------------------=

VREFINVNEG RUV2•RUV1 RUV2+( )

------------------------------------->

DS20091B-page 44 2003 Microchip Technology Inc.

Page 45: -48V Hot Swap Controller - Microchip Technology

MCP18480

6.8.2 OV (OVERVOLTAGE) BLOCK

The overvoltage block behaves similarly to the under-voltage block in that it monitors an input voltage bycomparing a centertap voltage on an external voltagedivider (on the OVTH pin) to the VREFIN pin voltage.

If the centertap voltage is below the reference, the inputvoltage is not excessive. If the centertap voltage isgreater than the VNEG + VREFIN pin voltages, the sup-ply voltage is higher than the programmed acceptablemaximum voltage limit. An internal flag is then acti-vated to inform the MCP18480 that the input voltagehas exceeded the preset limit.The “Overvoltage Active” signal deasserts when theinput voltage drops back below the thresholddetermined by the external resistors (ROV1 and ROV2).

EQUATION 6-4: OVERVOLTAGE VOLTAGE CONDITION

6.8.3 FET-GOOD BLOCK

The FET-good block monitors the voltage between thedrain of the external MOSFET and on the VNEG pin atpower-up. It delays assertion of PWRGOOD until thedrain-to-source voltage of the external FET is accept-ably low and the voltage at the GATE pin is about 8V.The comparator operation is similar to Undervoltageand Overvoltage blocks.To prevent applying excessive voltages to the gates ofthe FETs in the Undervoltage circuit, a resistive voltagedivider is employed between ground and the VNEG pin.Similarly, the drain of the external MOSFET can beexposed to voltages at around VNEG during normaloperation and as high as ground (typically 48V aboveVNEG).

The FET good block also monitors the GATE pin. Whenthe GATE pin becomes >VNEG +8V and the DRAINTHpin is within its programmed range, the output of theFET good block is active.

The internal FET good signal goes high and remainsactive until a fault condition (Undervoltage, Overvolt-age or Current Limit) is detected. Any of these condi-tions hold the PWRGOOD signal deasserted until thefault condition is removed and the external FET gateand drain voltages are acceptable.

VREFINVNEG ROV2•ROV1 ROV2+( )

-------------------------------------<

2003 Microchip Technology Inc. DS20091B-page 45

Page 46: -48V Hot Swap Controller - Microchip Technology

MCP18480

6.8.4 CURRENT LIMIT BLOCK

An excessive current flowing through the external FETis sensed as a voltage across an external resistorconnected between the FET’s source and VNEG. The drain voltage is sensed with a resistor divider net-work, as shown in Figure 4-1 and Figure 4-2. The volt-age tap is applied to a circuit whose output is 50 mVabove VNEG when the drain of the external FET is atVNEG. The output is 12 mV when the VFB pin is≥ VNEG +0.5V. This output voltage is the Current LimitFeedback (CLFB) signal to the gate driver block for usein the fold-back current-limiting.The CLFB voltage serves as the reference for a com-parator whose other input monitors the voltage acrossthe current limit sense resistor in series with the sourceof the external FET. When the SENSE pin exceeds thevoltage on CLFB, a comparator output goes high tostart the timer (see Section 6.8.5). The VDS dependentthreshold for the current limit helps keep the FET withinits safe operating area.

Another comparator in the current-limiting blockwatches the SENSE pin for potentially catastrophicover-current conditions, which require immediate ter-mination of conduction in the pass MOSFET. The out-put of this comparator trips a comparator used in theTIMER block to skip the first part of the timeout cycleand go straight to the “off” period. In some cases, theuser may want to program the system to shut off imme-diately if there is a short-circuit condition that exceedsa desired level. To use this feature, connect a dividerbetween the VREFIN pin and the VNEG pin, with its cen-tertap at the CL input pin. The circuit breaker currentthat would trigger this mode is given by Equation 6-5.

EQUATION 6-5: CIRCUIT BREAKER THRESHOLD

If this function is not needed in a particular application,it can be disabled by connecting the CL pin to theVREFIN pin. Equation 6-6 shows the current of the CLpin during current-limiting.

EQUATION 6-6: CL PIN CURRENT

6.8.5 TIMER BLOCK

Since the external FET can survive brief over-currentepisodes, it is unnecessary to turn off the FET instantlywhen the current rises too high (see external FET datasheet). The timer circuit uses the output of the compar-ator in the current-limiting block to begin charging anexternal capacitor with 16 • IRISET (typically 160 µA)when an over-current condition is detected. When thevoltage on the capacitor ramps up to 1.25V, a compar-ator output goes high. This output goes to anotherblock that tells the gate driver to turn the external FEToff and deassert the PWRGOOD pin. The complemen-tary output of the timer changes the state of a hystere-sis circuit that drops the reference input of thecomparator to VNEG + 100 mV (± 10 mV).When the FET is off, the current through it drops tozero, so that the voltage across the current sense resis-tor also goes to zero and the current limit signal to thetimer block goes away. The timer capacitor starts todischarge at a rate set by the external resistor, RDISCH.Equation 6-7 shows the equations used to calculate thecurrent at the TIMER pin. This current is used for othercalculations.

EQUATION 6-7: TIMER PIN CURRENT CALCULATIONS

The delay between the inception of the over-currentcondition and the deactivation of the FET is given byEquation 6-8.

EQUATION 6-8: OVER-CURRENT FAULT DELAY

The time required to reset the timer and reactivate thegate driver is given by Equation 6-9.

EQUATION 6-9: OVER-CURRENT REACTIVATION DELAY

As described above, the timer circuit operates as afree-running, multi-vibrator, if RESTART is low.

ICAT

VREFINRCL1 RCL2+-------------------------------

RCL2•

RSENSE-------------------------------------------------------=

V FB

0V

> 0.5V

50 mV 12 mVVSENSE

for VFB > 0.5V, VSENSE = 0.012V

ICLVSENSERSENSE------------------=

VSENSE 0.76 0.05VVDS RFB2×RFB1 RFB2+-------------------------------–

0.012V+×=

Legend: IRISET is the current through the externalRISET resistor

ITIMER 16 IRISET•= Typical

ITIMER 10 IRISET•= Minimum

ITIMER 20 IRISET•= Maximum

TCLD1CTIMERITIMER------------------- 1.25•=

TCLD2 9.2 CTIMER• RDISCH•=

DS20091B-page 46 2003 Microchip Technology Inc.

Page 47: -48V Hot Swap Controller - Microchip Technology

MCP18480

6.8.6 LATCH BLOCK

A current limit latch circuit determines whether, follow-ing the timeout period resulting from an over-currentcondition, the external FET should be latched-off untilreactivated by an external signal, or be allowed torestart automatically following the timer cycle.

If the RESTART input is low, the part will restart and thegate drive to the external MOSFET will be restoredautomatically. If the RESTART pin is high, a currentlimit event will turn the FET off after the programmeddelay and maintain an off condition until the ENABLEpin or RESTART pin is pulled low momentarily.

6.8.7 GATE DRIVE BLOCK

The GATE drive block sources a current equal to thevoltage at CLFB divided by 1 kΩ to the gate of theexternal MOSFET. So the current sourced from theGATE pin is determined by the VDS of the external FET.This current, and the external capacitors around theFET, control the slew rate of the drain of the externalFET, limiting the current that would otherwise have tobe diverted from other boards on the backplane. In theevent of a problem (Overvoltage, Undervoltage or cur-rent limit), the gate of the external FET is pulled downwith 60 mA. During normal operation, the GATE pinramps up to about 12V, sending the external FETdeeply into the triode region. If the drain currentbecomes excessive while the drain-to-source voltageis high, the inverting input of the op amp is driven to theCLFB voltage by the current-limiting block, causing areduction in the drive to the external FET to reduce thecurrent through it. This foldback current-limit remainsactive until the voltage on CTIMER reaches VREFIN/2,after which the GATE output pin is pulled to VNEG forthe duration of the timeout period, or until ENABLE iscycled low momentarily.For applications in which it is undesirable to have thedrain current track the VDS of the external pass FET incurrent limit, the user can tie the VFB pin to the VREF orVNEG pin. This will make the MCP18480 try to force thedrain current to 12 mV/RSENSE or 50 mV/RSENSE,respectively, until the TIMER block times out. If fold-back current-limiting is not desired at all, set the dividerassociated with the CL pin to detect the desired currentin order to shut off the GATE immediately.

A voltage on the GATE pin higher than about 8V is onecondition for the PWRGOOD pin to be asserted. Anyfault condition that causes the GATE pin voltage to bepulled to VNEG deasserts the PWRGOOD pin. Onstartup, a NMOS transistor with a resistor pulling itsgate up holds the GATE pin down until the MCP18480is properly biased.

6.8.8 BIAS BLOCK

The internal voltage generation or bias block generatesthe biasing currents for all internal blocks. It also pro-vides a 2.5V reference voltage that is brought out to theVREFOUT pin. This output pin is usually fed back into theVREFIN pin. However, an externally-generated 2.5Vreference voltage may be directly connected to theVREFIN pin, while leaving the VREFOUT pin uncon-nected. A VREFIN/2 voltage is generated within the biasblock, which is used as reference in the other blocks.A internal shunt regulator limits the internal circuitry to12V. An external current-limiting resistor in series withVPOS absorbs the excess voltage. The resulting regu-lated 12V source is used in the gate drive block andPWRGOOD output circuit.

The 12V source is also stepped-down to generate a 5Vregulated source. Most of the other circuitry and blocksoperate with the internally-generated 5V.

EQUATION 6-10: EXTERNAL RISET CURRENT

6.8.9 POWER GOOD BLOCK

The “power good” block monitors the state of the OVactive, the UV active, the current limit circuitry, and out-put of the FET good block to generate the PWRGOODoutput signal.

IRISET

VREFIN2

------------------

RISET------------------------±=

Note: The direction of the current is depen-dant on where the external RISET resis-tor is connected (the ISET pin to eitherthe VNEG pin or the VREFIN pin).

2003 Microchip Technology Inc. DS20091B-page 47

Page 48: -48V Hot Swap Controller - Microchip Technology

MCP18480

NOTES:

DS20091B-page 48 2003 Microchip Technology Inc.

Page 49: -48V Hot Swap Controller - Microchip Technology

MCP18480

7.0 PACKAGING INFORMATION

7.1 Package Marking Information

Legend: XX...X Customer specific information*YY Year code (last 2 digits of calendar year)WW Week code (week of January 1 is week ‘01’)NNN Alphanumeric traceability code

Note: In the event the full Microchip part number cannot be marked on one line, it willbe carried over to the next line thus limiting the number of available charactersfor customer specific information.

* Standard marking consists of Microchip part number, year code, week code, and traceability code.

20-Lead SSOP Example:

XXXXXXXXXXX

XXXXXXXXXXX

YYWWNNN

MCP18480

I/SS

0348058

2003 Microchip Technology Inc. DS20091B-page 49

Page 50: -48V Hot Swap Controller - Microchip Technology

MCP18480

20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)

10501050βMold Draft Angle Bottom10501050αMold Draft Angle Top

0.380.320.25.015.013.010BLead Width203.20101.600.00840φFoot Angle

0.250.180.10.010.007.004cLead Thickness0.940.750.56.037.030.022LFoot Length7.347.207.06.289.284.278DOverall Length5.385.255.11.212.207.201E1Molded Package Width8.187.857.59.322.309.299EOverall Width0.250.150.05.010.006.002A1Standoff §1.831.731.63.072.068.064A2Molded Package Thickness1.981.851.73.078.073.068AOverall Height

0.65.026pPitch2020nNumber of Pins

MAXNOMMINMAXNOMMINDimension LimitsMILLIMETERSINCHES*Units

21

D

p

nB

E

E1

L

c

β

φ

α

A2A

A1

* Controlling Parameter

Notes:Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.JEDEC Equivalent: MO-150Drawing No. C04-072

§ Significant Characteristic

DS20091B-page 50 2003 Microchip Technology Inc.

Page 51: -48V Hot Swap Controller - Microchip Technology

MCP18480

APPENDIX A: REVISION HISTORY

Revision AThis is a new data sheet

Revision B• Add device characterization information• Enhanced functional description

2003 Microchip Technology Inc. DS20091B-page 51

Page 52: -48V Hot Swap Controller - Microchip Technology

MCP18480

NOTES:

DS20091B-page 52 2003 Microchip Technology Inc.

Page 53: -48V Hot Swap Controller - Microchip Technology

MCP18480

APPENDIX B: MCP18480 SCHEMATICSThis appendix contains the schematics for the MCP18480 Evaluation Board.

2003 Microchip Technology Inc. DS20091B-page 53

Page 54: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIG

UR

E B

-1:

Typi

cal O

pera

ting

Circ

uit f

or T

elco

m A

pplic

atio

ns w

ith A

ctiv

e-H

igh

Pow

er M

odul

e - F

oldb

ack

Cur

rent

Lim

it E

nabl

ed.

MC

P184

80

+

RU

V1

RO

V2R

UV2

CU

VD

RIS

ET

CTI

MER

RD

ISC

H

RU

VHYS

RPO

S

CBY

P2

RSE

NSE

RO

VO1

RO

VO2

RD

RAI

N1

RD

RAI

N2

RFB

1R

FB2CG

D

RG

D

RG

1C

G1

QPG

2

QPG

3

RPG

2

RPG

6

M1

CBY

PLR

BYPL

V NEG

RPG

1R

PG5

4kΩ

2µF

10nF

1.74

453

280

kΩ59

kΩ30

.9kΩ 80

0nF

124

680

nF

1.6

0.01

Ω

7.5

110

kΩM

PSA4

3

100

nF10

Ω3.

3nF

18kΩ

680Ω

36kΩ

36kΩ

1500

Ω

100

µF51

2N54

00

NTE

261

124

115

59kΩ

1.74

1.6

1.74

NTE

2388

RZ

24.9

5VR

PG3

RPG

4

QPG

1

RES

TAR

TEN

ABLE

PWR

GO

OD

V PO

SO

V TH

UV T

HU

V HYS

UV D

V REF

IN

V REF

OU

T

CL

I SET

TIM

ER

OVO

DR

AIN

TH V FB

GAT

ESE

NSE

V NEG

RD

ISC

H

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

DC

/DC

Con

verte

rM

odul

e

V IN

+

V IN

-

V OU

T+

V OU

T-O

N/O

FF

100

V

78V Fu

se 1

0A

GN

D Tran

sorb

CBY

P1

RO

V1S R

S

S EN

DS20091B-page 54 2003 Microchip Technology Inc.

Page 55: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIG

UR

E B

-2:

Typi

cal O

pera

ting

Circ

uit f

or T

elco

m A

pplic

atio

ns w

ith A

ctiv

e-Lo

w P

ower

Mod

ule

- Fol

dbac

k C

urre

nt L

imit

Enab

led.

RIS

ET

124

MC

P184

80

+

RU

V1

RO

V2R

UV2

CU

VD

CTI

MER

RD

ISC

H

RU

VHYS

RPO

S

CBY

P2

RSE

NSE

RO

VO1

RO

VO2

RD

RAI

N1

RD

RAI

N2

RFB

1R

FB2CG

D

RG

D

RG

1C

G1

QPG

2

QPG

3

RPG

2

RPG

6

M1

CBY

PLR

BYPL

V NEG

A 1

RPG

1R

PG5

4kΩ

2µF

10nF

1.74

453

280

kΩ59

kΩ30

.9kΩ 80

0nF

680

nF

1.6

0.01

Ω

7.5

110

kΩM

PSA4

3

100

nF10

Ω3.

3nF

18kΩ

680Ω

36kΩ

36kΩ

1500

Ω

100

µF51

2N54

00

NTE

261

124

115

59kΩ

1.74

1.6

1.74

NTE

2388

RZ

24.9

5VR

PG3

RPG

4

QPG

1

RES

TAR

TEN

ABLE

PWR

GO

OD

V PO

SO

V TH

UV T

HU

V HYS

UV D

V REF

IN

V REF

OU

T

CL

I SET

TIM

ER

OVO

DR

AIN

TH V FB

GAT

ESE

NSE

V NEG

RD

ISC

H

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

DC

/DC

Con

verte

rM

odul

e

V IN

+

V IN

-

V OU

T+

V OU

T-O

N/O

FF

100

V

78V Fu

se 1

0A

GN

D Tran

sorb

CBY

P1

RO

V1S R

S

S EN

2003 Microchip Technology Inc. DS20091B-page 55

Page 56: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIG

UR

E B

-3:

Eva

luat

ion

Boa

rd S

chem

atic

(A

ctiv

e-Lo

w P

ower

Mod

ule

- Fol

dbac

k C

urre

nt L

imit

Ena

bled

).

MC

P184

80

+

RU

V1R

OV1

RO

V2R

UV2

CU

VD

RIS

ET

CTI

MER

RD

ISC

H

RU

VHYS

RPO

S

CBY

P1C

BYP2

RSE

NSE

RO

VO1

RO

VO2

RD

RAI

N1

RD

RAI

N2

RFB

1R

FB2CG

D

RG

D

RG

1C

G1

QPG

2

QPG

3

RPG

2

RPG

6

M1

CBY

PL

V NEG

RPG

1R

PG5

RLO

AD

S RS

S EN

4kΩ

2µF

10nF

1.74

453

280

kΩ59

kΩ30

.9kΩ 80

0nF

124

680

nF

1.6

0.01

Ω

7.5

110

kΩM

PSA4

3

100

nF10

Ω3.

3nF

18kΩ

680Ω

36kΩ

36kΩ

1500

Ω

75Ω

100

µF

2N54

00

NTE

261

124

115

59kΩ

1.74

1.6

1.74

NTE

2388

RZ

24.9

5VR

PG3

RPG

4

QPG

1

RES

TAR

TEN

ABLE

PWR

GO

OD

V PO

SO

V TH

UV T

HU

V HYS

UV D

V REF

IN

V REF

OU

T

CL

I SET

TIM

ER

OVO

DR

AIN

TH V FB

GAT

ESE

NS

V NEG

RD

ISC

H

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

RBY

PL51

DS20091B-page 56 2003 Microchip Technology Inc.

Page 57: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIG

UR

E B

-4:

Eva

luat

ion

Boa

rd S

chem

atic

(A

ctiv

e-H

igh

Pow

er M

odul

e - F

oldb

ack

Cur

rent

Lim

it En

able

d).

RIS

ET

124

MC

P184

80

+

RU

V1R

OV1

RO

V2R

UV2

CU

VD

CTI

MER

RD

ISC

H

RU

VHYS

RPO

S

CBY

P1C

BYP2

RSE

NSE

RO

VO1

RO

VO2

RD

RAI

N1

RD

RAI

N2

RFB

1R

FB2CG

D

RG

D

RG

1C

G1

QPG

2

QPG

3

RPG

2

RPG

6

M1

CBY

PL

V NEG

RPG

1R

PG5

RLO

AD

S RS

S EN

4kΩ

2µF

10nF

1.74

453

280

kΩ59

kΩ30

.9kΩ 80

0nF

680

nF

1.6

0.01

Ω

7.5

110

kΩM

PSA4

3

100

nF10

Ω3.

3nF

18kΩ

680Ω

36kΩ

36kΩ

1500

Ω

75Ω

100

µF

2N54

00

NTE

261

124

115

59kΩ

1.74

1.6

1.74

NTE

2388

RZ

24.9

5VR

PG3

RPG

4

QPG

1

RES

TAR

TEN

ABLE

PWR

GO

OD

V PO

SO

V TH

UV T

HU

V HYS

UV D

V REF

IN

V REF

OU

T

CL

I SET

TIM

ER

OVO

DR

AIN

TH V FB

GAT

ESE

NS

V NEG

RD

ISC

H

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

RBY

PL51

2003 Microchip Technology Inc. DS20091B-page 57

Page 58: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIG

UR

E B

-5:

Eva

luat

ion

Boa

rd S

chem

atic

(A

ctiv

e-Lo

w P

ower

Mod

ule

- Circ

uit B

reak

er C

urre

nt L

imit

Enab

led)

.

RC

L1 (N

ote)

210

RC

L2 (N

ote)

40.2

MC

P184

80

+

RU

V1R

OV1

RO

V2R

UV2

CU

VD

RIS

ET

CTI

MER

RD

ISC

H

RU

VHYS

RPO

S

CBY

P1C

BYP2

RSE

NSE

RO

VO1

RO

VO2

RD

RAI

N1

RD

RAI

N2

CG

D

RG

D

RG

1C

G1

QPG

2

QPG

3

RPG

2

RPG

6

M1

CBY

PL

V NEG

RPG

1R

PG5

RLO

AD

S RS

S EN

4kΩ

2µF

10nF

1.74

453

280

kΩ59

kΩ30

.9kΩ 80

0nF

124

680

nF

1.6

0.01

Ω

7.5

110

kΩM

PSA4

3

100

nF10

Ω3.

3nF

18kΩ

680Ω

36kΩ

36kΩ

1500

Ω

75Ω

100

µF

2N54

00

NTE

261

115

59kΩ

1.6

1.74

NTE

2388

RZ

24.9

5VR

PG3

RPG

4

QPG

1

RES

TAR

TEN

ABLE

PWR

GO

OD

V PO

SO

V TH

UV T

HU

V HYS

UV D

V REF

IN

V REF

OU

T

CL

I SET

TIM

ER

OVO

DR

AIN

TH V FB

GAT

ESE

NS

V NEG

RD

ISC

H

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

RBY

PL51

DS20091B-page 58 2003 Microchip Technology Inc.

Page 59: -48V Hot Swap Controller - Microchip Technology

MCP18480

FIG

UR

E B

-6:

Eva

luat

ion

Boa

rd S

chem

atic

(A

ctiv

e-H

igh

Pow

er M

odul

e - C

ircui

t Bre

aker

Cur

rent

Lim

it E

nabl

ed).

RIS

ET

124

RC

L1 (N

ote)

210

RC

L2 (N

ote)

40.2

MC

P184

80

+

RU

V1R

OV1

RO

V2R

UV2

CU

VD

CTI

MER

RD

ISC

H

RU

VHYS

RPO

S

CBY

P1C

BYP2

RSE

NSE

RO

VO1

RO

VO2

RD

RAI

N1

RD

RAI

N2

CG

D

RG

D

RG

1C

G1

QPG

2

QPG

3

RPG

2

RPG

6

M1

CBY

PL

V NEG

RPG

1R

PG5

RLO

AD

S RS

S EN

4kΩ

2µF

10nF

1.74

453

280

kΩ59

kΩ30

.9kΩ 80

0nF

680

nF

1.6

0.01

Ω

7.5

110

kΩM

PSA4

3

100

nF10

Ω3.

3nF

18kΩ

680Ω

36kΩ

36kΩ

1500

Ω

75Ω

100

µF

2N54

00

NTE

261

115

59kΩ

1.6

1.74

NTE

2388

RZ

24.9

5VR

PG3

RPG

4

QPG

1

RES

TAR

TEN

ABLE

PWR

GO

OD

V PO

SO

V TH

UV T

HU

V HYS

UV D

V REF

IN

V REF

OU

T

CL

I SET

TIM

ER

OVO

DR

AIN

TH V FB

GAT

ESE

NS

V NEG

RD

ISC

H

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

RBY

PL51

2003 Microchip Technology Inc. DS20091B-page 59

Page 60: -48V Hot Swap Controller - Microchip Technology

MCP18480

NOTES:

DS20091B-page 60 2003 Microchip Technology Inc.

Page 61: -48V Hot Swap Controller - Microchip Technology

MCP18480

PRODUCT IDENTIFICATION SYSTEMTo order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Sales and Support

PART NO. X /XX

PackageTemperatureRange

Device

Device MCP18480: -48V Hot Swap Controller

MCP18480T: -48V Hot Swap Controller (Tape and Reel)

Temperature Range I = -40°C to +85°C

Package SS = Plastic SSOP (209 mil, Body), 20-lead

Examples:a) MCP18480-I/SS = Industrial Temp.,

SSOP packageb) MCP18480T-I/SS = Tape and Reel,

Industrial Temp., SSOP package

Data SheetsProducts supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-72773. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification SystemRegister on our web site (www.microchip.com/cn) to receive the most current information on our products.

2003 Microchip Technology Inc. DS20091B-page 61

Page 62: -48V Hot Swap Controller - Microchip Technology

MCP18480

NOTES:

DS20091B-page 62 2003 Microchip Technology Inc.

Page 63: -48V Hot Swap Controller - Microchip Technology

Note the following details of the code protection feature on Microchip devices:• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of ourproducts. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If suchacts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding deviceapplications and the like is intended through suggestion onlyand may be superseded by updates. It is your responsibility toensure that your application meets with your specifications. Norepresentation or warranty is given and no liability is assumedby Microchip Technology Incorporated with respect to theaccuracy or use of such information, or infringement of patentsor other intellectual property rights arising from such use orotherwise. Use of Microchip’s products as critical components inlife support systems is not authorized except with expresswritten approval by Microchip. No licenses are conveyed,implicitly or otherwise, under any intellectual property rights.

2003 Microchip Technology Inc.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, Application Maestro, dsPIC, dsPICDEM, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark ofMicrochip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of theirrespective companies.

© 2003, Microchip Technology Incorporated, Printed in theU.S.A., All Rights Reserved.

Printed on recycled paper.

DS20091B - page 63

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.

Page 64: -48V Hot Swap Controller - Microchip Technology

DS20091B-page 64 2003 Microchip Technology Inc.

MAMERICASCorporate Office2355 West Chandler Blvd.Chandler, AZ 85224-6199Tel: 480-792-7200 Fax: 480-792-7277Technical Support: 480-792-7627Web Address: http://www.microchip.comAtlanta3780 Mansell Road, Suite 130Alpharetta, GA 30022Tel: 770-640-0034 Fax: 770-640-0307Boston2 Lan Drive, Suite 120Westford, MA 01886Tel: 978-692-3848 Fax: 978-692-3821Chicago333 Pierce Road, Suite 180Itasca, IL 60143Tel: 630-285-0071 Fax: 630-285-0075Dallas4570 Westgrove Drive, Suite 160Addison, TX 75001Tel: 972-818-7423 Fax: 972-818-2924DetroitTri-Atria Office Building 32255 Northwestern Highway, Suite 190Farmington Hills, MI 48334Tel: 248-538-2250 Fax: 248-538-2260Kokomo2767 S. Albright Road Kokomo, Indiana 46902Tel: 765-864-8360 Fax: 765-864-8387Los Angeles18201 Von Karman, Suite 1090Irvine, CA 92612Tel: 949-263-1888 Fax: 949-263-1338Phoenix2355 West Chandler Blvd.Chandler, AZ 85224-6199Tel: 480-792-7966 Fax: 480-792-4338San JoseMicrochip Technology Inc.2107 North First Street, Suite 590San Jose, CA 95131Tel: 408-436-7950 Fax: 408-436-7955Toronto6285 Northam Drive, Suite 108Mississauga, Ontario L4V 1X5, CanadaTel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFICAustraliaMicrochip Technology Australia Pty LtdMarketing Support DivisionSuite 22, 41 Rawson StreetEpping 2121, NSWAustraliaTel: 61-2-9868-6733 Fax: 61-2-9868-6755China - BeijingMicrochip Technology Consulting (Shanghai)Co., Ltd., Beijing Liaison OfficeUnit 915Bei Hai Wan Tai Bldg.No. 6 Chaoyangmen Beidajie Beijing, 100027, No. ChinaTel: 86-10-85282100 Fax: 86-10-85282104China - ChengduMicrochip Technology Consulting (Shanghai)Co., Ltd., Chengdu Liaison OfficeRm. 2401-2402, 24th Floor, Ming Xing Financial TowerNo. 88 TIDU StreetChengdu 610016, ChinaTel: 86-28-86766200 Fax: 86-28-86766599China - FuzhouMicrochip Technology Consulting (Shanghai)Co., Ltd., Fuzhou Liaison OfficeUnit 28F, World Trade PlazaNo. 71 Wusi RoadFuzhou 350001, ChinaTel: 86-591-7503506 Fax: 86-591-7503521China - Hong Kong SARMicrochip Technology Hongkong Ltd.Unit 901-6, Tower 2, Metroplaza223 Hing Fong RoadKwai Fong, N.T., Hong KongTel: 852-2401-1200 Fax: 852-2401-3431China - ShanghaiMicrochip Technology Consulting (Shanghai)Co., Ltd.Room 701, Bldg. BFar East International PlazaNo. 317 Xian Xia RoadShanghai, 200051Tel: 86-21-6275-5700 Fax: 86-21-6275-5060China - ShenzhenMicrochip Technology Consulting (Shanghai)Co., Ltd., Shenzhen Liaison OfficeRm. 1812, 18/F, Building A, United PlazaNo. 5022 Binhe Road, Futian DistrictShenzhen 518033, ChinaTel: 86-755-82901380 Fax: 86-755-82966626China - QingdaoRm. B505A, Fullhope Plaza,No. 12 Hong Kong Central Rd.Qingdao 266071, ChinaTel: 86-532-5027355 Fax: 86-532-5027205IndiaMicrochip Technology Inc.India Liaison OfficeMarketing Support DivisionDivyasree Chambers1 Floor, Wing A (A3/A4)No. 11, O’Shaugnessey RoadBangalore, 560 025, IndiaTel: 91-80-2290061 Fax: 91-80-2290062

JapanMicrochip Technology Japan K.K.Benex S-1 6F3-18-20, ShinyokohamaKohoku-Ku, Yokohama-shiKanagawa, 222-0033, JapanTel: 81-45-471- 6166 Fax: 81-45-471-6122KoreaMicrochip Technology Korea168-1, Youngbo Bldg. 3 FloorSamsung-Dong, Kangnam-KuSeoul, Korea 135-882Tel: 82-2-554-7200 Fax: 82-2-558-5934SingaporeMicrochip Technology Singapore Pte Ltd.200 Middle Road#07-02 Prime CentreSingapore, 188980Tel: 65-6334-8870 Fax: 65-6334-8850TaiwanMicrochip Technology (Barbados) Inc., Taiwan Branch11F-3, No. 207Tung Hua North RoadTaipei, 105, TaiwanTel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPEAustriaMicrochip Technology Austria GmbHDurisolstrasse 2A-4600 WelsAustriaTel: 43-7242-2244-399Fax: 43-7242-2244-393DenmarkMicrochip Technology Nordic ApSRegus Business CentreLautrup hoj 1-3Ballerup DK-2750 DenmarkTel: 45 4420 9895 Fax: 45 4420 9910FranceMicrochip Technology SARLParc d’Activite du Moulin de Massy43 Rue du Saule TrapuBatiment A - ler Etage91300 Massy, FranceTel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79GermanyMicrochip Technology GmbHSteinheilstrasse 10D-85737 Ismaning, GermanyTel: 49-89-627-144-0 Fax: 49-89-627-144-44ItalyMicrochip Technology SRLVia Quasimodo, 1220025 Legnano (MI)Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781United KingdomMicrochip Ltd.505 Eskdale RoadWinnersh TriangleWokingham Berkshire, England RG41 5TUTel: 44 118 921 5869 Fax: 44-118 921-5820

03/25/03

WORLDWIDE SALES AND SERVICE