6d (2,0) superconformal field theoriesconf.itp.phys.ethz.ch/string14/talks/lee.pdf · outline •...

27
6d (2,0) Superconformal Field Theories Kimyeong Lee (KIAS) Ascona, July 22 2014 Recent Developments in String Theory Stefano Bolognesi, Hee-Cheol Kim, Jungmin Kim, Seok Kim, Sung-soo Kim, Eunkyung Koh, Sungjay Lee, Jaemo Park

Upload: others

Post on 24-May-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

6d (2,0) Superconformal Field Theories

Kimyeong Lee (KIAS) Ascona, July 22 2014

Recent Developments in String Theory

Stefano Bolognesi, Hee-Cheol Kim, Jungmin Kim, Seok Kim, Sung-soo Kim, Eunkyung Koh, Sungjay Lee, Jaemo Park

Page 2: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

Outline• 6d (2,0) Theories

• 5d Approach

• Junctions: Origin of 5d YM couplings, N3 problem

• Highly Effective Action Schwarz 2013

• (2,0) Theory on Rx S5 & R x CP2

• Concluding Remarks

Douglas 2014 KITP Lambert 2014 Banff Papageorgakis 2014 Simons Moore 2014 Princeton

Page 3: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

6d (2,0) Superconformal Theories

✴ A, D, E type: type IIB on R1+5 x C2/ΓADE Witten 1996,

✴ AN-1, DN type: N M5 branes, N M5 (+OM5)

✴ superconformal symmetry: OSp(2,6|2) ⊃ O(2,8) x USp(4)R ✴ fields: B, ΦI (I=1,2,3,4,5), Ψ (3+5, 8)

✴ selfdual strength H=dB=*H, purely quantum ℏ=1

!✴ Nonabelian Version

✴ covariant derivative?

✴ interaction?

✴ N3 degrees of freedom: Klebanov and Tseytlin 1996, Harvey-Minasian-Moore 1998…..

!

✴ Say something exact about (2,0) theories?

Page 4: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

5-dim Approach

✴ Douglas (2010), Lambert-Papageorgakis-Schmidt-Sommerfeld (2010)

✴ x6 ∿ x6 + 2πR6

✴ Low energy dynamics: Fµν~R6Ηµν6 for abelian theory,

✴ 5-dim N=2 U(1) Maxwell Theory with g52=8πR6

✴ N M5 branes on S1 = N D4 branes

✴ 5-dim N=2 U(N) Yang-Mills Theory

✴ Instantons = KK modes: H0µνΗ6µν ~ εµνρσ Fµν Fρσ

✴ No additional KK mode is necessary

✴ Instantons= Kaluza-Klein modes , 8π2 /g52= 1/R6

✴ threshold bound states of k instantons for Kaluza-Klein momentum k quantum state

✴ massive tensor multiplet: Instanton (1,0), 4 (1/2,0), 5(0,0) ; anti-instanton (0,1), 4(0,1/2),5(0,0) of SU(2)lxSU(2)r of SO(4) rotational symmetry.

✴ the strong coupling limit (R → ∞) is the 6d (2,0) theory,

✴ perturbative approach: D2F4 term at 6-loop (Bern et.al. 1210):

✴ incomplete? need charged instanton contribution? (Papageorgakis and Boyston 2014)

Page 5: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

BPS Equations in Coulomb Phase

✴ Coulomb Phase for Group G of rank rG and dimension dG: SU(N)

✴ Cartan: 1/2 BPS rG massless tensor multiplets: N

✴ # of positive roots = (dG-rG)/2= hGrG 1/2 BPS selfdual strings: N(N-1)/2

✴ hG=Coxeter number = dual Coxeter number for simple laced group

!

✴ Locking the spatial rotation SO(5)rot and the R-symmetry SO(5)R

✴ H0µν=𝜕µφν-𝜕νφµ, 𝜕µφµ=0 (11 eqs) ???? Webs of 1/16 BPS selfdual string junctions

✴ 4d Kapustin-Witten equation, Knot invariance, …

✴ 5d dyonic monopole string webs: Kapustin-Witten equation (Ho-Ung Yee, KL) lock SO(4)rot with SO(4)R of SO(6)R

✴ Fab = εabcd Dc Φd -i[Φa, Φb], Da Φa=0 7 equations = octonion

✴ Fa0 = Da Φ5 4 equations: 7+4=11 equations

✴ Gauss law Da2 Φ5 -[Φa,[ Φa, Φ5]]=0

!

Page 6: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

1/4 BPS String Junctions

✴ Monopole strings, self-dual strings in Coulomb phase

✴ count 1/2 + wave BPS (Strominger 95)& 1/4 BPS objects:

!!!

✴ Bolognesi-K.L. (2011): Counting 1/4 BPS objects

x6

x7

k

j

i

x1

x2

N(N � 1)

2+

N(N � 1)(N � 2)

6=

N(N2 � 1)

6= hGdG /6

Page 7: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

N-cube

✴ The reaction of M5 branes under the general background of SO(5)R gauge field F and gravitational curvature R :

✴ Single M5 brane:

✴ pk=k-th Pontryagin class

✴ ADE type:

!✴ AGT reduction to 2-dim: Toda model with Q=(ε1+ε2)2 / ε1ε2

✴ central charge:

!✴ anomaly coefficient: cG=hG dG ??? 1/4 BPS objects Bolognesi & KL (2011)

✴ S5 partition function: Casimir Energy (Kim & Kim 2012, Kallen et.al.2012),

✴ E= rG/24 + cG/6 where cG= 2-loop = fABCfABC = 2nd Casimir

I8(1) =1

48

�p2(F ) � p2(R) � 1

4(p1(F ) � p1(R))2

I8(G) = rGI8(1) + cG � p2(F )

24

cToda[G] = rG + cGQ2

Alday,Benini,Tachikawa 2010

Harvey, Minasian, Moore (1998), Intriligator (2000), Yi (2001)

Page 8: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

5d Yang-Mills Theory in Coulomb Phase: Revisited

✴ 5d Massless Vector in Cartan = 6d Massless tensor: Fµν=Ηµν6 ✴ 1/2 BPS 6d massless modes

✴ 5d Massive W-bosons= wrapped selfdual strings for each roots ✴ 1/2 BPS 6d selfdual strings

✴ 1/2 BPS 5d magnetic monopole strings

✴ Interaction vertex: off-shell, structure constant fABC ✴ 5d γWW fα-αi : 6d selfdual string (α) + massless cartan i

✴ 1/4 BPS self string + momentum

✴ 5d WWW fαβγ : 6d wrapped selfdual string junction off-shell

✴ 1/4 BPS selfdual string junction

✴ for simple-raced group ADE: the second Casimir fABCfABC is equal to anomaly coefficient cG

✴ Weyl Vector ρ= Σ α>0 /2, (the sum of positive roots), 2ρ2 = cG/6

ij

i

i

j

k

Page 9: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

High Temperature

✴ N M5 Branes in the Coulomb Phase

✴ Heat Up ✴ massless rG: ~N

✴ self-dual string loops ~N2

✴ junction-anti-junction~ N3

1 1

1

2

2

3

3

44

1

1

5

5

6

6

7

7

88

8

8

8 8

8

8

Page 10: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

Highly Effective Lagrangian

✴ M5 brane probe on near geometry of N M5 branes ✴ Dirac-Born-Infeld action+ Wess-Zumino action (Schwarz 2013)

!

!!

!

!✴ 5d reduction: x6~x6+2πR6, φ = 2πR6 Φ,1/R6 =8π2/g52 , L5= 2πR6L

!

!

✴ 5d W-boson 1-loop => the second term

L = �2�3

N

��det

��M

N +N�M�I�N�I

4��3

�� 1

L = � 1

4��M�I�M�I +

N(�M�I�M�I)2

64�2�3

L5 = � 1

g25

(��)2 +N

64�2

(��)4

�3

Page 11: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

Τ2-compactification

✴ D4 on a circle of radius R5 : x5~ x5+2πR5 ✴ From 5-dim to 4-dim, L4=2πR5L5

✴ periodic D3 on dual circle: A5=σ~ σ+1/R5

!

!

✴ 1/g42= 1/(4πgs) = R5/(4πR6)=2πR5/g52,

!

!

✴ S-dual invariant (θ=0), gs ➔ 1/gs, φ2/gs ➔ φ2/gs

✴ DBI action for D3 brane in the Coulomb phase (S-invariant)

��

n=��

1

(�2 + (� + n2/R4)2)2=

�dz

2i tan �z

1

(�2 + (� + z/R5)2)2� 2�R5

4

1

�3

L5 = � 1

g25

(��)2 +N

64�2

(��)4

�3L4 = � 1

4�gs(��)2 +

N

16�2

(��)4

�4

L4 = � 1

2g2sN

�4

��

det(�µ� +

gsN

�µ��µ�

�4

�� 1

Page 12: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

higher order

✴ 6d term N2(∂Φ)6/Φ6 : junction-anti-junction??

✴ 4d term N2(∂φ)6/φ8 : 2-loop exact: Buchbinder-Petrov-Tseytlin (2001)

✴ Large N, finite N correction: for 2-loop: N(N+1)/2= N + N(N-1)/2 for 2-loop

!✴ BPS configuration? selfdual strings…

✴ Multi-centered: Harmonic function: H=1/|Φ-m1|3 + 1/|Φ-m2|3+….

!✴ WZ terms~ N(N+1)/2, 2-loop…Intriligator 2000

Page 13: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

New Minimal Principle (Old?) on R1+4 x T2

✴ The Optical Theorem: S=1+ T, S†S=1 ✴ Τ-Τ† = Τ†Τ

!

!

✴ Here the sum is only for electric sector or one of SL(2,Z) orbit ✴ After the sum, the result is independent of the choice of the orbit ✴ No double sum over KK modes of both directions: |m+nτ|

✴ Questions: ✴ instantons in 5d= KK mode along x6 = magnetic dof ✴ so how would they cure the divergence?

2iIm < i|T |i >=�

n

| < n|T |i > |2

Page 14: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

Dyonic Instantons in 5d N=2 SYM: SO(4)rot x SP(4)R

✴ Index for BPS states with k instantons

!!

‣ µi : chemical potential for U(1)N ⊂  U(N)color

‣ γ1, γ2, γR : chemical potential for SU(2)1L, SU(2)2L , SU(2)R

✴ calculate the index by the localization:

!✴ 5d N=2*   instanton partition function on R4 x S1: t ~ t+ β

✴ In β → 0 and small chemical potential limit, the index becomes 4d Nekrasov instanton partition function :

Q = Q+̇+̇

SU(2)2RSU(2)1R

�) SU(2)R

ai =µi

2� ✏1 = i

�1 � �R2

✏2 = i�1 + �R

2, m = i

�22

Scalar Vev Omega deformation parameter Adj hypermultiplet mass

q = e2⇡i⌧

instanton fugacity

Ik(µi, �1, �2, �3) = Trk

h(�1)F e��Q2

e�µi⇧ie�i�1(2J1L)�i�2(2J2L)�i�R(2JR)i

adjoint hyper flavor

I(q, µi, �1,2,3) =1X

k=0

qkIk

Page 15: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

Dyonic Instanton Index Function for U(N)

✴ The expansion is done in instanton numbers and some functions of the Coulomb parameters which can be regarded as the chemical potential for the electric charge.

✴ Instead, one can have a dual version of the index function which is expanded in the charge and a function of instantons.

✴ Nekrasov-Okunkov(2003), Kim-Kim Koh-Lee-Lee(2011), Haghighat-Iqbal-Kozcaz-Lockhart- Vafa (2013)

✴ Additional States appearing in dyonic instanton calculations

✴ Can be regarded as the degenerate limit of junctions

✴ There is a threshold bound states of W-boson for 13 and instantons on 2nd M5 branes

12

13

23

joint moving with speed of light

1

3

2

Page 16: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

6d (2,0) Theories on S1 x S5

✴ Difficulties with Non-abelian B field and its strength H=dB

✴ Generalize ABJM to M5 brane theory

✴ Mode out by R8/ZK

✴ Weak coupling limit

✴ No fixed point

✴ R1+5 /ZK has a fixed point

✴ Consider the 6d (2,0) theory on RxS5: TheRadial Quantization

✴ S5 = a circle fibration over CP2

✴ ds2S5 = ds2CP2 + (dy +V)2, dV= 2J, J=-*J , y ~ y + 2π !

✴ AdS7 x S4/ZK (Tomasiello, 2013): 6d theory with D6 and D6 : still 6d theory with H=*H

Kim-KL(2013),Kim3-KL(2013)

Page 17: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

Index Function on S1 x S5

✴ Supercharge

!✴ BPS bound:

!✴ 6-dim index function:

!!

✴ Euclidean Path Integral of (2,0) Theory on S1x S5

✴ S5= S1 fiber over CP2 : -i ∂y = KK modes

!!

✴ ZK modding keeps only k/K=integer modes

QR1,R2j1,j2,j3

� Q = Q12 , 1

2

� 12 ,� 1

2 ,� 12, S = Q†

E = j1 + j2 + j3 + 2(R1 + R2)

I = Tr�(�1)F e���{Q,S}e��

�E� R1+R2

2 �m(R1�R2)+aj1+bj2+cj3��

, a + b + c = 0

k � j1 + j2 + j3

Page 18: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

6d Abelian Theory (Fermion+ Scalar)

✴ on R x S5, ……. (Could Include H=dB)

!!

✴ gamma matrices ΓΜ, ρa

✴ Symplectic Majorana λ = -BC λ*, ε = BC ε*

✴ Weyl: Γ7 λ=λ , Γ7 ε = -ε

✴ 32 supersymmetry

!!!

✴ additional condition on Killing spinor:

Page 19: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

Twisting & Dimensional Reduction to R x CP2

✴ Killing spinors: SO(1,5)=SU(2,2) chiral spinor and 4-dim of Sp(2)=SO(5)R

✴ 32 Killing spinors = 3x8 (SU(3) triplet) +1x 8 (SU(3) singlet) under SU(3) isometry of CP2:

✴ (I) Ɛ+ ∼ exp( -it/2 +3i y/2)… : singlet

✴ (II) Ɛ+ ∼ exp( -it/2 - i y/2)… : triplet

✴ Twisting

�M �± = ± 1

2r�M�� �±

k � j1 + j2 + j3 +3

2(R1 + R2) +

p

2(R1 � R2), p = odd integer

Singlets ε+, ε- for Q = Q++���, S = Q��

+++

Killing spinor eq

Page 20: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

5d Lagrangian

✴ Lagrangian on R x CP2 with 2 supersymmetries for any p:

!!!!

✴ Supersymmetry Transformation

!!!

✴ p/2=-1/2 : k = j1+j2+j3+ R1+ 2R2

✴ additional supersymmetries: Total 8 supersymmetries

Q+��++, Q+�

+�+, Q+�++� conjugates

Q = Q++���, S = Q��

+++

Page 21: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

Coupling Constant Quantization

✴ Instanton number on CP2

!!

✴ Instantons represents the momentum K or energy K:

!!

✴ Another approach to quantization: F=2J: 2π flux on a cycle, 1/2 instanton for abelian theory

!!!

✴ ‘t Hooft coupling constant: λ= N/K ✴ Large K => Free Theory

1

g2Y M

=K

4�2r

Page 22: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

Expected Enhanced Supersymmetries

✴ Killing spinors with p/2=-1/2, k = j1+j2+j3+ R1+ 2R2

✴ k=0: 8 kinds

✴ k= ± 1: 14 kinds

✴ k= ± 2: 8 kinds

✴ k= ± 3: 2 kinds

✴ # of supersymmetries

✴ K ≧ 4: 8 supersymmetries

✴ K=3: 10 supersymmetries

✴ K=2: 16 supersymmetries

✴ K=1: 32 supersymmetries

Page 23: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

the index function on S1 x S5

✴ 5d SYM on S5

✴ S-dual version of the index

✴ Vacuum energy:

!✴ S1 x CP2 path integral off-shell

✴ Stationary phase: D1=D2=0, F= 2s J, φ + D3=4s, s= diag(s1,s2,….,sN)

✴ analogous to 3-dim Monopole operator

✴ Path Integral: Off-shell, localization (K=1 case_

!!!

✴ For K=1, well-confirmed for k ≤ N with N=1,2,3 with the AdS/CFT calculation

Kim, Kim (2012), Kim, Kim, Kim (2012), Minahan-Nedelin-Zabzine,(2012)

(�0)index = lim���0

Tr

�(�1)F E � R

2e���(E�R1)

=N(N2 � 1)

6+

N

24

Page 24: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

Strange Vacua

✴ K=1, F=2sJ background

!!!!

✴ the Lowest one sG = 2ρ · Η with negative energy -2ρ2=cG/6, where ρ = Weyl vector

✴ Ground State for Index: K ≤ N ( Strong ‘t Hooft coupling λ=Ν/Κ)

U(2) (1, �1)

U(3) (2, 0, �2), (2, �1, �1), (1, 1, �2), (1, 0, �1)

U(4) (3, 1, �1, �3), (3, 1, �2, �2), (2, 2, �1, �3), (3, 0, �1, �2),

(2, 1, 0, �3), (2, 0, 0, �2), (2, 0, �1, �1), (1, 1, 0, �2), (1, 0, 0, �1)

Page 25: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

Check with AdS/CFT

✴ Non-zero flux states contributing to the index

✴ s=(N-1,N-3,…,-(N-1)) = ρ : SU(N) Weyl vector

✴ index vacuum energy: 2ρ2=cG/6

E0 = �N(N2 � 1)

6

Page 26: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

SU(2) Case

✴ BPS Eq. for Homogeneous Configuration with instanton number n2

!!

✴ homogeneous bosonic solutions possible only with n=+1,-1

✴ but gauss law is violated

✴ for one of the constant bps solutions, the homogeneous fermionic zero mode is possible.

✴ gauss law can be satisfied with fermionic contribution for K=1 but not for K>1.

✴ energetic is more complicated to due to zero-point contribution to the classical one,...

Page 27: 6d (2,0) Superconformal Field Theoriesconf.itp.phys.ethz.ch/string14/talks/Lee.pdf · Outline • 6d (2,0) Theories • 5d Approach • Junctions: Origin of 5d YM couplings, N3 problem

Conclusion

✴ We understand more of M5 branes but want a lot more..

!✴ Interesting Avenue to Explore

✴ AGT, Toda, Instanton Partition function in Coulomb Phase,….. DOF

✴ 6d Theory on R x CP2 : Near BPS objects and their conformal dimension (perturbative approach, …..)

✴ Partition functions on S6

✴ Higher order terms in effective action, WZ terms,…. Intriligator…

✴ Understand the six-loop log divergence of 5d theory and its relation to instantons??

✴ Rastelli,… Bootstrap

✴ Curved manifolds, lower dimensional theories

✴ 6d (1,0) Theories