a comparative framework between new product & …...a comparative framework between new product...

10
PHARMATECH WHITE PAPER.DOCX Page 1 Pharmatechassociates.net FRESH THINKING, BETTER OUTCOMES 1.510.732.0177 | PHARMATECHASSOCIATES.COM A COMPARATIVE FRAMEWORK BETWEEN NEW PRODUCT & LEGACY PRODUCT PROCESS VALIDATION By Mark Mitchell, Principal Consultant, Process and Engineering, Pharmatech Associates, Inc.

Upload: others

Post on 08-Jul-2020

12 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: A COMPARATIVE FRAMEWORK BETWEEN NEW PRODUCT & …...A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc

 

PHARMATECH WHITE PAPER.DOCX Page 1 Pharmatechassociates.net

FRESH THINKING, BETTER OUTCOMES  1.510.732.0177 | PHARMATECHASSOCIATES.COM  

 

A COMPARATIVE FRAMEWORK

BETWEEN NEW PRODUCT & LEGACY PRODUCT PROCESS VALIDATION

By Mark Mitchell, Principal Consultant, Process and Engineering, Pharmatech Associates, Inc.

Page 2: A COMPARATIVE FRAMEWORK BETWEEN NEW PRODUCT & …...A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc

 

A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc.

Page 1

FRESH THINKING, BETTER OUTCOMES  1.510.732.0177 | PHARMATECHASSOCIATES.COM  

ABSTRACT

This  paper  is  a  comparative  analysis  between  application  of  the  FDA  Process  Validation  Guidance  (2011)  to  new  products  and  legacy  products.  While  the  three  stages  of  process  validation  (design,  qualification,  and  continued  monitoring)  provide  a  clear  framework  for  the  development,  scale-­‐up,  qualification,  and  manufacturing  of  new  commercial  products,  the  application  of  these  process  validation  principles  to  legacy  products  is  only  briefly  mentioned  in  the  FDA  guidance.  A  practical  approach,  which  applies  analysis  of  historical  data,  risk  assessment,  and  statistical  principles,  is  outlined  for  legacy  products  in  order  to  assess  whether  these  existing  processes  require  further  supporting  experimental  and  qualification  activities.        

INTRODUCTION

The  current  FDA  Process  Validation  Guidance  1  introduces  a  new  paradigm  for  the  validation  of  pharmaceutical  process.  The  concept  of  Process  Validation  is  no  longer  defined  as  a  study  of  three  consecutive  manufacturing  lots,  which  must  pass  in  order  to  allow  the  start  of  commercial  production.  Process  Validation  is  now  defined  as  a  lifecycle,  which  starts  at  the  development  of  the  commercial  process;  continues  through  the  qualification  of  equipment,  facilities,  and  other  systems;  proceeds  with  the  qualification  of  the  process  itself  (previously  referred  to  as  the  process  validation  study);  and  finally,  an  ongoing  monitoring  phase,  which  continues  until  the  product  is  no  longer  marketed.    

Page 3: A COMPARATIVE FRAMEWORK BETWEEN NEW PRODUCT & …...A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc

 

A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc.

Page 2

FRESH THINKING, BETTER OUTCOMES  1.510.732.0177 | PHARMATECHASSOCIATES.COM  

Figure  1  shows  the  Process  Validation  Lifecycle  as  it  is  defined  in  the  FDA  Guidance  with  three  stages:  Process  Design,  Process  Qualification,  and  Continued  Process  Verification.  A  New  Product  enters  the  lifecycle  at  Stage  1,  Process  Design  and  follows  the  Lifecyle  through  drug  product  commercialization.  The  underlying  principles  of  this  Lifecycle  are  also  referred  to  as  Quality  by  Design  (QbD)  as  per  ICH  Q8/9/10  2,3,4.  Legacy  Products,  which  are  produced  by  previously  qualified  processes  prior  to  the  introduction  of  the  current  FDA  Guidance,  are  unlikely  to  have  been  developed  using  QbD  principles.  However,  it  is  necessary  for  a  pharmaceutical  company  to  align  all  products,  both  New  Products  and  Legacy  Products,  to  a  common  approach  to  the  Process  Validation  Lifecycle.    It  is  neither  feasible  nor  required  to  restart  the  process  validation  of  a  Legacy  Product  with  Stage  1  experimental  studies  as  if  it  was  a  New  Product.  A  more  practical  method  is  to  assess  existing  historical  data  (i.e.,  Stage  3)  to  determine  how  to  apply  the  Process  Validation  Lifecycle  approach  to  Legacy  Products.  

 Figure  1.  Process  Validation  Lifecycle  per  the  FDA  Guidance  (2011)    

Page 4: A COMPARATIVE FRAMEWORK BETWEEN NEW PRODUCT & …...A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc

 

A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc.

Page 3

FRESH THINKING, BETTER OUTCOMES  1.510.732.0177 | PHARMATECHASSOCIATES.COM  

INCORPORATING LEGACY PRODUCTS INTO A LIFECYCLE

Per  Figure  1,  Legacy  Products  are  incorporated  into  to  the  Process  Validation  Lifecycle  at  Stage  3,  Continued  Process  Verification.  The  FDA  Process  Validation  Guidance  refers  to  Legacy  Products  in  this  manner:  

Manufacturers  of  legacy  products  can  take  advantage  of  the  knowledge  gained  from  the  original  process  development  and  qualification  work  as  well  as  manufacturing  experience  to  continually  improve  their  processes.  Implementation  of  the  recommendations  in  this  guidance  for  legacy  products  and  processes  would  likely  begin  with  the  activities  described  in  Stage  3.  

Per  the  FDA  Guidance,  the  primary  activities  of  Stage  3,  Continued  Process  Verification  (CPV),  involve  the  continued  monitoring  and  sampling  of  process  parameters  and  quality  attributes  and  should  include  relevant  process  trends  and  quality  of  incoming  materials  or  components,  in-­‐process  material,  and  finished  product.  Legacy  Products  are  already  subject  to  trending  and  analysis  through  Annual  Product  Reviews  (APR),  but  this  only  assesses  the  product  trends,  i.e.,  quality  attributes,  not  the  process  trends  of  process  parameters,  in-­‐process  controls,  nor  critical  material  attributes.  Additionally,  the  frequency  of  APRs  may  not  be  sufficient  to  allow  for  early  detection,  and  thereby  correction,  of  processes,  which  are  not  in  statistical  control.    

A  comprehensive  CPV  program  should  include  the  following  elements:  

• Collated  process  parameter  data  and  in-­‐process  control  results  from  Master  Batch  Records.  

• Collated  quality  attribute  data  from  finished  product  testing  (may  be  obtains  from  LIMS  databases,  where  available).  

• Collated  material  attribute  data  from  incoming  raw  material  testing.  

• Defined  data  analysis  emphasis  and  frequency,  which  is  based  on  process  parameters  and  material  attributes  with  the  highest  risk  to  product  quality,  also  known  as  criticality.  

• Defined  application  of  quantitative  statistical  tools  and  other  qualitative  methods  used  to  detect  unintended  process  variability.  Scrutiny  of  intra-­‐batch  as  well  as  inter-­‐batch  variation  should  be  made.  Selection  of  such  tools  should  be  done  with  the  involvement  of  a  statistician  or  a  person  adequately  trained  in  application  of  statistical  process  control.  

• Defined  action  plan  for  investigation  of  root  causes  of  unintended  process  variability.  

• Defined  action  plan  for  when  additional  monitoring  or  sampling  is  required.    

Page 5: A COMPARATIVE FRAMEWORK BETWEEN NEW PRODUCT & …...A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc

 

A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc.

Page 4

FRESH THINKING, BETTER OUTCOMES  1.510.732.0177 | PHARMATECHASSOCIATES.COM  

• Supportive  data  used  in  supporting  CPV  root  cause  analysis  from  other  elements  of  the  quality  system:  complaints  and  adverse  events;  process  deviations;  process  change  control;  equipment  and  facility  qualification,  calibration,  and  preventive  maintenance  frequency  or  status  changes.  

Analysis  and  interpretation  of  CPV  data  should  be  performed  by  not  only  quality  personnel  and  trained  statisticians,  but  also  process  subject  matter  experts  from  production  and/or  engineering  and  personnel  from  the  quality  control  laboratory.    

SO MANY PRODUCTS AND SO MUCH DATA

Companies  with  a  sufficiently  large  number  of  Legacy  Products  may  be  quickly  overwhelmed  by  the  shear  size  of  implementing  a  comprehensive  CPV  program.  A  timeline  for  implementing  the  Process  Validation  Lifecycle  approach  to  Legacy  Product  should  be  developed  by  justifying  the  priority  of  each  product.  This  is  documented  in  a  process  validation  plan  or  as  part  of  the  site’s  master  validation  plan.  For  example,  the  product  priority  could  be  set  by  a  risk  assessment  including  factors  such  as:  history  of  lot  failures,  history  of  process  deviations,  number  of  lots  produced  per  time  period,  time  from  last  process  validation  study,  success/failure  of  previous  validation  studies,  stability  history,  history  of  adverse  events  or  complaints,  and  date  product  was  approved  (newly  approved  or  near  obsolesce).  This  priority  plan  should  include  provisions  for  increasing  the  priority  of  a  Legacy  Product  if  a  change  to  any  of  these  factors  may  occur  such  as  sudden  increase  in  lot  failures  or  a  stability  failure.    

Product  data,  such  as  from  a  LIMS  or  other  electronic  database,  may  be  more  easily  collated  than  process  data  from  non-­‐electronic  sources  such  as  master  batch  records.  The  CPV  database  must  be  evaluated  for  both  computer  systems  validation  and  CFR  21,  Part  11  (Electronic  Records)  compliance.  This  includes  both  the  data  entry  method  and  verification  and  the  application  of  control  charting  and  other  statistical  tools.    

New  Products  that  have  gone  through  both  Stage  1  and  Stage  2  of  the  Process  Validation  Lifecycle  have  an  advantage  going  into  Stage  3  over  Legacy  Products.  For  New  Products,  the  criticality  of  process  parameters  (and  material  attributes)  and  their  relationship  to  Critical  Quality  Attributes  (CQA)  are  well  understood  and  the  overall  Process  Control  Strategy  (PCS)  has  been  qualified  with  a  successful  Process  Performance  Qualification.  This  allows  for  the  CPV  program  to  focus  the  statistical  analyses  on  those  process  parameters  and  material  attributes,  which  have  the  highest  impact  on  CQAs.  Legacy  Products  may  or  may  not  have  process  parameters  with  a  defined  criticality  supported  by  development  data;  this  may  lead  to  a  fairly  large  number  of  process  parameters  being  analyzed  during  the  early  phases  of  CPV.  

The  CPV  program  for  Legacy  Products  should  be  sufficiently  resourced  such  that  data  from  newly  produced  lots  are  entered  and  analyzed  within  a  reasonable  timeframe  without  creating  a  backlog.  

Page 6: A COMPARATIVE FRAMEWORK BETWEEN NEW PRODUCT & …...A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc

 

A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc.

Page 5

FRESH THINKING, BETTER OUTCOMES  1.510.732.0177 | PHARMATECHASSOCIATES.COM  

Historical  lots  are  added  working  backward  from  present  lots  with  a  defined  minimum  target  for  the  number  of  lots.  For  statistical  control  chart  purposes,  more  data  is  always  better,  but  to  establish  meaningful  control  limits,  a  target  of  at  least  25  to  30  lots  is  reasonable.    

ASSESS DEVELOPMENT HISTORY AND THE PROCESS CONTROL STRATEGY

For  New  Products  Stage  1  Process  Design  involves  the  application  of  first  principles  and  prior  knowledge  (also  called  the  Knowledge  Space)  combined  with  risk  assessment  to  determine  a  statistically  designed  set  of  experimental  studies,  Design  of  Experiments  (DOE).  The  resulting  data  along  with  the  risk  assessment  allows  for  the  determination  of  criticality  of  process  parameters  and  material  attributes  relative  to  their  impact  on  quality  attributes.  This  is  called  the  Design  Space  and  it  consists  of  modeled  relationships  between  parameters  and  attributes  where  known  combinations  of  process  parameters  and  material  attributes  will  produce  acceptable  product  quality,  i.e.,  critical  quality  attributes  within  their  acceptance  limits.    

These  combinations  of  ranges  for  critical  process  parameters  and  critical  material  attributes  are  frequently  called  their  Proven  Acceptable  Range  (PAR).  Parameters  may  have  narrower  ranges  of  control  (or  even  fixed  set  point)  to  ensure  the  highest  quality.  These  narrower  ranges  of  control  are  called  the  Normal  Operating  Range  (NOR).  The  combination  of  all  NORs  for  a  process  is  called  the  Control  Space.  The  culmination  of  all  risk  assessments,  models,  PARs,  NORs,  etc.  is  documented  as  the  Process  Control  Strategy  (PCS).  It  is  the  PCS  that  is  qualified  during  Process  Performance  Qualification.  

Few  Legacy  Products  will  have  a  documented  PCS.  A  gap  analysis  will  assist  in  compiling  the  necessary  information  in  order  to  define  the  PCS  for  a  Legacy  Product  as  it  currently  exists.  Some  of  the  sources  for  this  gap  analysis  include:  

• Existing  development  reports  for  the  commercial  process  (including  those  which  may  have  occurred  after  the  transfer  to  commercial  manufacturing)  

• Process  change  controls  affecting  set  points  or  ranges  or  parameters  

• Process  descriptions  or  process  flow  diagrams  

• Previous  process  validation  studies  

• Documentation  of  the  criticality  of  quality  attributes  (note:  quality  attributes  are  not  only  finished  product  specifications,  but  also  may  include  in-­‐process  controls)  

• Documentation  justifying  the  criticality  of  process  parameters  (data,  first  principles,  or  prior  knowledge)  

Page 7: A COMPARATIVE FRAMEWORK BETWEEN NEW PRODUCT & …...A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc

 

A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc.

Page 6

FRESH THINKING, BETTER OUTCOMES  1.510.732.0177 | PHARMATECHASSOCIATES.COM  

• Process  risk  assessments  such  as  FMEA  5  

• Incoming  material  specifications  (for  Critical  Material  Attributes)  

As  part  of  this  analysis,  how  criticality  is  defined  for  process  parameters,  material  and  quality  attributes  should  be  thoroughly  reviewed,  documented  and  uniformly  applied  to  all  products  both  new  and  legacy.  ICH  Q8  defines  as  follows:    

Critical  Quality  Attribute  (CQA):  A  physical,  chemical,  biological  or  microbiological  property  or  characteristic  that  should  be  within  an  appropriate  limit,  range,  or  distribution  to  ensure  the  desired  product  quality.    

Critical  Process  Parameter  (CPP):  A  process  parameter  whose  variability  has  an  impact  on  a  critical  quality  attribute  and  therefore  should  be  monitored  or  controlled  to  ensure  the  process  produces  the  desired  quality.    

These  definitions  are  useful  starting  points  but  additional  enhancement  is  usually  necessary.  From  the  definition  for  CPP  the  phrase  “has  an  impact”  is  vague.  Any  process  parameter  may  “have  an  impact”  at  some  extreme  conditions;  therefore,  it  is  more  relevant  to  understand  what  reasonable  range  this  applies  to  (such  as  the  PAR  or  NOR).  Many  companies  find  it  useful  to  re-­‐evaluate  the  criticality  of  parameters  using  a  risk  assessment  in  order  to  evaluate  how  the  variation  in  the  parameter  can  impact  on  product  quality.  For  example,  process  parameters,  which  are  essential  fixed  set  points  without  any  variation  or  have  very  tight  control,  may  be  considered  to  be  low  risk  or  even  non-­‐critical  since  they  cannot  impact  the  variation  of  product  quality.  This  allows  a  focused  effort  in  CPV  on  the  high  risk  critical  process  parameters  since  it  is  known  that  within  their  PAR  or  NOR  there  is  an  impact  on  the  variation  of  product  quality.    

Completing  a  documented  PCS  for  a  Legacy  Product  allows  for  identification  of  possible  gaps  in  the  process  understanding  and  the  ability  to  control  the  process  effectively  (Note:  this  is  the  purpose  of  Stage  1).  Quantitative  evaluation  of  the  control  strategy  for  a  Legacy  Product  is  the  focus  of  the  next  section.    

EVALUATE CPV HISTORICAL LOTS

One  of  important  elements  of  a  Legacy  Product’s  process  understanding  is  how  well  the  current  process  is  controlled.  In  Statistical  Process  Control  (SPC)  process  variation  is  defined  as  either  Common  Cause  or  Special  Cause.  Common  causes  occur  in  all  processes  since  there  is  always  some  variation  of  control  from  lot-­‐to-­‐lot,  and  from  day-­‐to-­‐day.  Common  causes  are  the  culmination  of  the  PCS  and  will  have  a  statistically  predictable  outcome  over  a  number  of  lots.    Special  causes  are  events,  which  are  

Page 8: A COMPARATIVE FRAMEWORK BETWEEN NEW PRODUCT & …...A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc

 

A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc.

Page 7

FRESH THINKING, BETTER OUTCOMES  1.510.732.0177 | PHARMATECHASSOCIATES.COM  

unexpected  changes  in  the  process.  Special  causes  are  not  necessarily  bad,  however,  they  are  a  bellwether  that  the  statistical  nature  of  the  process  has  changed.  Since  the  root  cause  of  special  causes  is  not  immediately  known  or  predictable,  the  process  may  become  unpredictable  in  how  it  produces  product  quality.  The  process  may  be  out  of  control.  

By  generating  control  charts  and  process  capability  histograms  of  the  CQAs,  CPPs,  CMAs,  etc.  from  the  historical  lots  of  a  Legacy  Product,  statistical  analysis  can  be  made  on  the  capability  and  the  state  of  control  of  the  process.  First,  parameters  and  attributes  should  be  assessed  for  control  using  control  charts  such  as  X-­‐bar/R,  Moving  Range,  etc.  With  sufficient  number  of  lots  (20-­‐30  usually)  control  limits  for  the  charts  are  calculated  (usually  ±  3  times  sigma,  the  process  standard  deviation).  Control  charts  using  statistical  rules  (e.g.,  Western  Electric  or  Nelson)  can  be  used  to  identify  Special  Causes.  

To  properly  use  these  statistical  rules  requires  interpretations  from  personnel  trained  in  SPC  and  those  with  specific  knowledge  of  the  process,  measurement,  and  analytical  method.  The  rules  will  flag  unexpected  statistical  differences,  but  further  investigation  is  required  to  understand  if  this  difference  is  undesirable.  Example  1:  a  control  chart  of  tablet  hardness  shows  a  shift  in  the  process  average;  the  root  cause  is  a  different  hardness  tester  was  used  which  produced  an  acceptable,  but  statistically  measureable,  difference  in  average  hardness.  Example  2:  analysis  of  a  capsule  filling  machine  shows  a  see-­‐saw  type  pattern  in  the  control  chart  for  fill  weight  and  two  peaks  in  its  histogram;  the  root  cause  is  that  there  are  two  filling  stations  on  the  filling  machine  and  their  average  and  variability  is  statistically  different.    

Even  if  the  process  parameter  or  quality  attribute  is  determined  to  have  an  acceptable  level  of  control,  it  may  not  be  capable  to  its  acceptance  limits.  Capability  is  a  measure  of  how  well  a  process  performs  to  its  limits:  NOR  in  the  case  of  CPPs  and  specification  limits  in  terms  of  CQAs.  Here,  Ppk  or  long-­‐term  capability  is  used  since  there  are  a  large  number  of  historical  lots.  The  histogram  will  generally  appear  as  a  normal  distribution.  There  are  some  examples  where  the  distribution  may  not  be  normal,  however:  operators  are  arbitrarily  setting  different  set  points  for  a  CPP  in  a  fixed  range,  or  cases  of  titrating  to  a  pH  limit  or  drying  to  a  target  limit.  The  Ppk  should  be  1.33  or  better.  If  the  Ppk  is  significantly  lower,  than  even  an  in  control  process  is  statistically  likely  to  exceed  its  limit.    

The  batch  record  limits  (essentially,  the  NOR)  for  Legacy  Product  high-­‐risk  CPP  may  not  have  supporting  development  data  to  show  that  product  quality  is  achieved  throughout  the  range.  This  may  be  due  to  missing  or  incomplete  development  data.  The  PAR  (and  therefore  the  narrower  NOR)  for  a  high-­‐risk  CPP  should  be  justified  by  data.  Additional  development  studies  may  be  not  feasible  or  even  necessary  to  justify  a  wide  NOR.  The  author  recommends  a  statistical  evaluation  of  the  range  of  historical  stage  (such  as  tolerance  intervals)  to  justify  the  NOR  for  the  CPP  since  this  historical  range  has  presumably  produced  acceptable  product  quality.  

Page 9: A COMPARATIVE FRAMEWORK BETWEEN NEW PRODUCT & …...A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc

 

A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc.

Page 8

FRESH THINKING, BETTER OUTCOMES  1.510.732.0177 | PHARMATECHASSOCIATES.COM  

PROCESS CHANGES AND WHEN PPQ IS NEEDED

Evaluation  of  historical  data  may  determine  the  product  quality  variability  is  either  unacceptable  or  requires  ongoing  improvements.  In  these  cases  a  process  change  may  be  justified  that  will  improve  the  control  of  CPPs  or  CMAs  to  ensure  product  quality.  These  changes  may  be  minor  such  as  tightening  the  NOR  of  a  critical  parameter  (as  described  above),  or  improving  sampling  technique.  However,  changes  may  be  significant  such  as  adding  new  CPPs,  new  control  technology  or  equipment,  or  even  revising  an  entire  unit  operation.    

Significant  process  changes  will  require  revised  risk  assessments  and  new  experimental  data  (new  DOEs).  Effectively,  the  process  has  now  returned  to  Stage  1,  Process  Design,  of  the  Lifecycle.  These  data  may  create  the  need  for  new  CPPs  or  updated  PAR  and  NOR  for  existing  CPPs.  Since  this  is  a  revision  of  the  PCS,  its  documentation  must  be  revised  and  the  new  control  strategy  must  be  qualified  by  PPQ.  The  scope  of  the  PPQ,  including  number  of  batches  and  sampling  plans,  is  commensurate  with  the  level  of  risk  of  the  process  change.  It  may  be  a  PPQ  focused  only  on  affected  unit  operation  and  affected  downstream  process  or  it  may  cover  the  entire  process.  Acceptance  criteria  for  this  PPQ  should  reflect  the  required  reduction  in  variability  that  the  process  change  is  designed  to  achieve.    

The  FDA  PV  Guidance  does  not  mention  the  concept  of  revalidation.  Periodic,  such  as  annual,  revalidation  of  process  has  been  replaced  with  CPV.  Any  new  PPQ  is  driven  by  process  changes,  which  are  in  turn  driven  by  ongoing  evaluation  of  process  and  product  data.  After  a  CPV  program  is  fully  implemented  for  a  Legacy  Product,  the  author  recommends  that  periodic  process  qualification  studies  be  discontinued.    

CONCLUSION

Table  1  provides  a  summary  of  the  application  of  the  three  stages  of  the  Process  Validation  Lifecycle  to  both  New  Products  and  Legacy  Products.  New  Products  follow  a  straightforward  path  from  Stage  1  to  Stage  2  to  Stage  3.  Legacy  Product  starts  with  creating  a  Stage  3  CPV  program  and  evaluating  gaps  in  the  PCS  (Stage  1).  Data  from  Stage  3  will  determine  if  the  process  is  in  control  and  capable.  If  a  process  (either  New  Product  or  Legacy)  is  determined  to  have  too  much  variability,  a  process  change  may  be  required.  Minor  changes  may  not  require  a  new  PPQ  (Stage  2)  only  additional  monitoring  and  increased  sampling  (Stage  3).  However,  significant  changes  to  the  process  may  require  experimental  studies  (Stage  1,  Process  Design)  to  support  an  improvement  to  the  PCS  and  a  new  PPQ  (Stage  2)  to  qualify  the  change.    

Page 10: A COMPARATIVE FRAMEWORK BETWEEN NEW PRODUCT & …...A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc

 

A Comparative Framework Between New Product and Legacy Product Process Validation – Mark Mitchell, Pharmatech Associates, Inc.

Page 9

FRESH THINKING, BETTER OUTCOMES  1.510.732.0177 | PHARMATECHASSOCIATES.COM  

Table  1.  Comparative  Framework  between  New  and  Legacy  Product  Process  Validation  

Process  Validation  Stage  

Purpose   New  Products   Legacy  Product  

1   Process  Design   Through  process  understanding  determine  Process  Control  Strategy  (PCS)  

Apply  first  principles,  risk  assessment,  and  design  of  experiments  to  design  small-­‐scale  and  full-­‐scale  experimental  studies.  Risk  assessments  and  study  data  used  to  establish  PCS.  

Evaluate  level  of  process  understanding  and  control  through  review  of  PCS,  development  history,  historical  data  (see  stage  3),  previous  process  validation  studies,  deviations,  lot  failures,  etc.  Close  any  identified  gaps  in  PCS  documentation.  If  process  is  not  well  controlled,  a  significant  process  change  may  be  required  with  supporting  experimental  studies.  

2   Process  Qualification  

Qualify  equipment,  facilities,  cleaning,  methods,  etc.  Qualify  process  control  strategy  using  PPQ  

New  products  require  PPQ.  Use  process  design  data  and  risk  analysis  to  determine  number  of  lots,  acceptance  criteria,  and  sampling  requirements.  

PPQ  required  only  if  significant  process  (or  PCS)  change  is  needed.  Use  historical  data  and  level  of  change  to  determine  number  of  lots,  acceptance  criteria  and  sampling  requirements.  

3   Continued  Process  Verification  

Ongoing  verification  of  process  control  and  identify  any  new  risk  to  product  quality  

Collect  data  on  CPP,  CQA,  CMA,  etc.  Action  and  control  limits  are  determined  after  a  number  (e.g.  20-­‐30)  of  commercial  lots  are  produced.  

Collect  data  based  on  existing  CPP,  CQA,  CMA,  etc.  (or  new  risk  assessment)  from  existing  production  records.  Sufficient  lot  history  to  establish  action  and  control  limits  usually  exists.  

 

References:  

1. FDA,  Guidance  for  Industry,  Process  Validation:  General  Principles  and  Practices,  January  2011,  Revision  1  

2. ICH  Harmonized  Tripartite  Guideline,  Pharmaceutical  Development,  Q8  (R2),  August  2009  

3. ICH  Harmonized  Tripartite  Guideline,  Quality  Risk  Management,  Q9,  June  2006  

4. ICH  Harmonized  Tripartite  Guideline,  Pharmaceutical  Quality  System,  Q10,  April  2009  

5. IEC  60812,  Analysis  Techniques  for  System  Reliability  –  Procedure  for  Failure  Mode  and  Effects  Analysis  (FMEA),  Edition  2.0,  2006-­‐01