a mathematical model for the starting process of a

138
AEDC-TR-76-39 A MATHEMATICAL MODELFOR THE STARTINGPROCESS OF A TRANSONIC LUDWlEGTUBE WIND TUNNEL t I VON KARMAN GAS DYNAMICS FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TENNESSEE 37389 June 1976 Final Report for Period July 1974 - April 1975 I Approved for publicrelease; distribution uniimited, l Prepared for DIRECTORATE OF TECHNOLOGY (DY) ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AIR FORCE STATION, TENNESSEE 37389

Upload: others

Post on 11-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

A MATHEMATICAL MODEL FOR THE STARTING PROCESS

OF A TRANSONIC LUDWlEG TUBE WIND TUNNEL

t I

VON KARMAN GAS DYNAMICS FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TENNESSEE 37389

June 1976

Final Report for Period July 1974 - April 1975

I Approved for public release; distribution uniimited, l

Prepared for

DIRECTORATE OF TECHNOLOGY (DY) ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AIR FORCE STATION, TENNESSEE 37389

Page 2: A Mathematical Model for the Starting Process of a

NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). I t NTIS, it will be available to the general public, including foreign nations.

APPROVAL STATEMENT

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

MARION L. LISTER Research & Development

Division Directorate of Technology

o

ROBERT O. DIETZ Director of Technology

Page 3: A Mathematical Model for the Starting Process of a

UNCLASSIFIED REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIEN'''S CATALOG NUMBER

AEDC-TR-76-39

4. TITLE (and Subtitle) 5. TYPE OF REPORT /I PERIOD COVERED

STARTING Final Report - July 1974 A MATHEMATICAL MODEL FOR THE April 1975 PROCESS OF A TRANSONIC LUDWIEG TUBE WIND TUNNEL 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Frederick L. Shope - ARO, Inc.

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Arnold Engineering Development Center (DY) AREA II WORK UNIT NUMBERS

Air Force Systems Command Program Element 65807F Arnold Air Force Station, Tennessee 37389 II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Arnold Engineering Development Center (DYFS) June 1976 Air Force Systems Command 13. NUMBER OF PAGES

Arnold Air Force Station, Tennessee 37389 134 14. MONITORING AGENCY NAME II ADDRESS(iI dillerent Irom ControlllnS Olliee) 15. SECURITY CLASS. (01 thl. report)

UNCLASSIFIED

ISo. DECL ASSI FICATION/ DOWN GRADING SCHEDULE

N/A 16. DISTRIBUTION STATEMENT (01 this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of tho abstract entered In Block 20, If different from Report)

lB. SUPPLEMENTARY NOTES

Available in DDC

19. KEY WORDS (Continue on reverse side if necessary and JdentJ/y by block number)

mathematical models test facilities transonic flow Reynolds number wind tunnels aerodynamics

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

A simplified mathematical model is presented for the unsteady flow process of starting a transonic Ludwieg tube wind tunnel. The hardware modeled consists of a porous-walled test section surrounded by a plenum chamber with an exhaust system independent of the tun-nel's main starting valves, which are located downstream of the diffuser-test section. In the present method, the hardware is modeled as three control volumes: the plenum, the test section,

DD FORM I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

UNCLASSIFIED

Page 4: A Mathematical Model for the Starting Process of a

UNCLASSIFIED

20. ABSTRACT (Continued)

and the diffuser. The plenum is treated with the unsteady integral continuity equation with one-dimensional influx or outflux through the porous wall, through the plenum exhaust system, and through the flaps, which exhaust into the diffuser. The other two control volumes are treated with the steady integral continuity equation and a steady, adiabatic, one-dimensional energy equation whose stagnation conditions vary in time according to the classical solution for an unsteady expansion wave. Numerical solutions are compared with experimental pressure-time histories of a small, transonic, high Reynolds number tunnel referred to as HIRT. Agree­ment between the model and experiment is good.

AFSC Arnold AFS Tenn

UNCLASSIFIED

Page 5: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

PREFACE

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 65807F. The results were obtained by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of AEDC, AFSC, Arnold Air Force Station, Tennessee. The research was done under ARO Project No. V37 A-32A in support of the High Reynolds Number

Wind Tunnel (HIRT) project. The author of this report was Frederick L. Shope, ARO, Inc. The manuscript (ARO Control No. ARO-VKF-TR-75-147) was submitted for publication on September 26, 1975.

The author wishes to acknowledge R. F. Starr and M. 0. Varner for their many helpful discussions and the fruitful suggestions they made during the course of this effort.

1

Page 6: A Mathematical Model for the Starting Process of a
Page 7: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

CONTENTS

1.0 INTRODUCTION ............................. .. 2.0 THE MATHEMATICAL MODEL

2.l Description of the Physical Situation to be Modeled

2.2 Goal of the Modeling

2.3 Formal Assumptions

2.4 Mathematical Formulation

2.5 Solution Procedure

3.0 RESULTS 3.l Description of Pilot Hardware ...... .

3.2 Comparison of Math Model and Experiment

3.3 Other Results from the Math Model

3.4 Application of the Math Model 4.0 SUMMARY AND CONCLUSIONS

REFERENCES

ILLUSTRATIONS

Figure

1. Major Components of the High Reynolds Number Wind Tunnel 2. Schema tic Illustration of the Flow Process during Start

3. Qualitative Plot of the Energy Equation

4. Energy Dome versus Position in Test Section for

7

8

14

16

17 25

31

35 43

47

50

51

9 10

11

Normal Subsonic Flow .............................. 12

5. Energy Dome versus Position in Test Section for

Normal Supersonic Flow ........... . . ........... 12

6. Energy Dome versus Position in Test Section for Subsonic

Flow with Choked Nozzle ....... . . . . . . .. ............ 13

7. Porous Wall and Flap Flow Coefficients

a. Porous Wall Flow Coefficient versus Porosity (7) .............. 19

b. Ejector Flap Flow Coefficient versus Area

Ratio (Ad Ats) ....... 19 8. Wall Porosity in Pilot HIRT .......... 20

9. Flow Chart of Solution Procedure ...... 26

10. Logic for Numerical Solution of an Algebraic Equation Y = F(X) for X,

Given Y when X = F-l (Y) is not a Closed Form Function . . . . . . . . . . . . 27

3

Page 8: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

Figure

11. Plenum Pressure versus Iteration Number for Convergent

and Divergent Cases .................. .

12. Pilot HIRT Elevation Line Drawing .......... .

13. Cross-Sectional View of Nozzle, Test Section, Diffuser, and

Main Valve System .................... . 14. Plenum Exhaust System 15. Plenum Pressure versus Time for Subsonic Run with Medium

29

32

33

34

Plenum Volume ...................... ........... 37 16. Plenum Pressure versus Time for Subsonic Run with Small

Plenum Volume ............ 38 17. Plenum Pressure versus Time for Subsonic Run with Large

Plenum Volume ..................... . 18. Plenum Exhaust Area-Time Curve for Mach 1.039 Run 19. Plenum Pressure versus Time for Supersonic Run (Mach 1.039)

with Plenum Exhaust 20. Plenum Pressure versus Time for Supersonic Run (Mach 1.228)

with Plenum Exhaust . . . . . . . . ~ . . . . . . . . . . . . 21. Plenum Pressure versus Time for Supersonic Run with Sliding

38 39

......... 39

......... 40

Sleeve Valve and Plenum Exhaust . . . . . . . . . . . . . . . . ...... 41 22. Plenum Pressure versus Time for Supersonic Run with I-I/2-percent

Porosity and No Plenum Exhaust ......................... 41 23. Plenum Pressure versus Time for Subsonic Run with Small

Flap Setting .................................... 42 24. Plenum Pressure versus Time for Subsonic Run with Large

Flap Setting ...................... 42 25. Various Pressures versus Time for Nominal Conditions 44 26. Various Pressures versus Time for Supersonic Run with

Plenum Exhaust .....,.............. ....... 44 27. Steady-State Values of Correction Coefficients, A15 and Al6

a. Momentum Correction Coefficient (AI 5) and Flap Correction

Coefficient (AI 6 ) versus Steady Test Section Mach Number ....... 45 b. Assumed Variation with Test Section Mach Number (Md) of

Momentum (AI 5) and Flap (AI6) Correction Coefficients during Starting Process .................

28. Relative Theoretical Mass Flow Rate for Nominal Conditions ......... 45

(Run 2258) of Subsonic Flow with No Plenum Exhaust . . . . . . . . . . 46 29. Relative Mass Flow Rates for a Supersonic Run (Mach 1.228)

with Plenum Exhaust (Run 2255) ........................ 47

4

Page 9: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

Figure

30. Nondimensional Equal Area Plenum Exhaust Area-Time Curves 48 31. Plenum Pressures versus Time for Three Plenum Exhaust Area-Time

Curves with Same Integrated Area ............ . ....... 49

32. Transient Loading of Test Section Wall at Exit for Nominal

Conditions and Selected Deviations ........... 50

TABLES

1. List of Exact Simultaneous Equations . . . . . . . . . . . . . . . . . . . 23 2. Geometric Data for Pilot HIRT Required by

Mathematical Model ............... 34 3. Summary of Run Conditions for Experimental Data

to be Compared with Theory ......... . .............. 36

APPENDIXES

A. SMALL PERTURBATION SOLUTION 53

B. APPROXIMATED EQUATIONS 56

C. DESCRIPTION OF THE COMPUTER PROGRAM HIRTSMl 57

NOMENCLATURE 133

5

Page 10: A Mathematical Model for the Starting Process of a
Page 11: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

1.0 INTRODUCTION

This report documents an effort to mathematically model the aerodynamics involved in the unsteady process of starting a Ludwieg Tube wind tunnel. In essence, the model represents the end product of many people assimilating a large amount of experimental data obtained from a transonic Ludwieg tube facility and, thus, depends on several experimentally derived parameters and assumptions. The wind tunnel configuratibn studied here consists of a very long, circular supply tube which contracts to a rectangular, porous-walled test section. The test section expands through a diffuser into a valve manifold. Surrounding the test section is a plenum chamber with exhaust valves which can be controlled independently of the main valves. In addition, the plenum contains a set of ejector flaps which allow the plenum to exhaust itself into the diffuser.

When one considers that larger scale transonic Ludwieg tube facilities would have a price of order $10,000,000 and would produce a usable run time of only a few seconds per run, it is clear that considerable effort must be concentrated to ensure that the tunnel can be started rapidly under a wide range of operating conditions. A laboratory scale pilot facility (Ref. 1) (known as "Pilot HIRT") at Arnold Engineering Development Center provides an experimental vehicle to measure the effects of many of the important parameters in the tunnel starting process and to provide basic experimental data for verification of math models.

To clarify the need for a mathematical model of starting such a device, a brief explanation of the tunnel operation is required. Prior to a run, the tunnel is pumped to the desired charge pressure and temperature. A tunnel run is initiated by first opening the main valves downstream of the diffuser. This opening process sends unsteady expansion waves up the tunnel to the supply tube. Were it not for the plenum, the flow in the test section would become steady soon after the trailing edge of the unsteady wave from the valve, initiated by the valve area becoming steady, passed the test section into the supply tube. The test section flow cannot become steady until the plenum volume has been exhausted to the point where the summation of mass flow across the porous wall, through the flaps, and out the plenum exhaust (dumped to atmosphere) becomes zero and allows the plenum pressure to become steady. Since current state-of-the-art fast-opening valves easily reach the required flow area in advance of the plenum becomin~ steady, the plenum is the primary limitation upon how quickly the tunnel can be started and steady flow established in the test section.

The present model assumes that the unsteady expansion wave emanating from the main valves propagates instantaneously to all parts of the wind tunnel and that property variation within the wave at any location in the diffuser, test section, nozzle, or supply tube is totally controlled by the area-time curve of the main valve. While partially retaining

7

Page 12: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

the effect of the unsteady wave, this assumption allows use of the steady continuity equation in the test section coupled with the well-known exact solution for one-dimensional, variable area, isentropic flow (Ref. 2). Use of these equations at any instant requires a knowledge of stagnation conditions driving the flow, which vary through the nonisentropic expansion wave. Variation of the stagnation properties is computed via the exact solution for a one-dimensional unsteady wave in a variable area duct (Ref. 3). The unsteadiness of the plenum is handled via the unsteady continuity equation by equating the rate of mass accumulation in the plenum to the summation of all the flow rates entering and leaving the plenum. The air in the plenum is assumed to be a calorically perfect gas and its temperature is assumed either isentropic or equal to the stagnation temperature of the flow in the test section (whichever is greater), an experimentally based assumption. The main valves are treated as one-dimensional sonic orifices driven by the stagnation pressure and temperature of the unsteady wave. The plenum exhaust valves are handled similarly by assuming that the flow in the plenum is stagnant. Flow through the ejector flaps and across the porous wall is computed via an adaptation of the work of Ref. 4, which empirically corrected the flow rates with the pressure drops across these

devices.

In the discussion which follows, the mathematical model will first be presented, including a more detailed description of the physical situation, the assumptions underlying the model, the mathematical formulation, and the solution procedure. Next, the model will be compared with a sample of experimental data from the Pilot HIRT facility. The appendixes contain some of the mathematical details and a brief user's manual for the computer program.

2.0 THE MATHEMATICAL MODEL

2.1 DESCRIPTION OF THE PHYSICAL SITUATION TO BE MODELED

A11 of the essential features of the proposed HIR T facility which are to be modeled are given in Fig. 1. The overall length of the facility is 1,880 ft, and the supply tube has an inside diameter of 15 ft. The main valve system consists of a number of fast-acting valves, and the plenum exhaust also requires a multiple valve system. The pilot facility provides a precisely scaled (1/13) flow envelope but has a single sliding sleeve valve in place of the valve manifold of the full-scale tunnel and a single plenum exhaust valve fed by multiple tubes from the plenum.

A tunnel run is initiated by opening the main valves and possibly the plenum valves, not necessarily together or in the same length of time. Both sets of valves send nonisentropic expansion waves throughout the tunnel and primarily up the charge tube. The main valve system produces the steepest (or strongest) wave because it handles a much greater portion

8

Page 13: A Mathematical Model for the Starting Process of a

Main Valves

Valve Manifold Diffuser

AEDC-TR-76-39

II Plenum Exhaust Valves

Test Section

~ppDY Tube

~------'l

Nozzle

Porous Test Section Walls

Figure 1. Major components of the High Reynolds Number Wind Tunnel.

of the flow rate than the plenum exhaust. At any point in the supply tube, the gas remains totally stagnant until the first expansion wave reaches that point; and the flow at that point does not become steady until the last expansion wave passes the point. The main valve system sends out its last expansion wave when the flow area becomes constant. The' plenum also continues to send out expansion (and sometimes compression) waves until the plenum pressure becomes steady. But the plenum does not become steady until the sum of all the flows into and out of it are zero (Fig. 2), and it invariably controls the start time of the tunnel. Since the main valves are much faster than the plenum response, the pressure in the test section drops rapidly below the plenum pressure, causing mass flow to enter the test section from the plenum. As the plenum gradually catches up to the test section, the wall crossflow (across the porous test section wall) gradually decreases and, in some cases, reverses. This process, coupled with the increasing main valve area, gradually increases the flow rate drawn from the supply tube. However, the flow rate from the tube may continue to increase only until the nozzle exit becomes choked, after which the supply tube flow becomes steady since the choke point will no longer pass additional expansion or compression waves (unless the compression wave is strong enough to unchoke the nozzle). Whether the nozzle eventually chokes and whether the test section eventually steadies out to supersonic or subsonic flow depends on the relative flow areas of the main valves, the plenum exhaust valves, and the test section, the direction of the flap and wall crossflows, and how the various steady conditions are approached in time relative to each other. Subsonic and very slightly supersonic test section Mach numbers can be obtained without steady-state plenum exhaust, though the plenum exhaust may be opened temporarily and then closed in order to reduce the starting time. For subsonic flows, the steady main valve area - in terms of the ideal, one-dimensional area

9

Page 14: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

at the choke point - must be as much less than the nozzle area (where the nozzle meets the entrance to the test section) as is dictated by the steady test section Mach number to be attained (neglecting diffuser losses). A slightly supersonic test section can be obtained with a steady main valve area greater than or equal to the nozzle area if the flaps and porosity are set properly, giving a flow situation as follows: with the nozzle choked and the plenum steadied at a pressure very near the static test section pressure such that the static pressure and dynamic heads of the main flow force a small crossflow into the plenum, the net test section flow decreases from the choked flow rate at the nozzle. The slightly sub critical flow rate leaving the test section thus produces a slightly supersonic condition, resulting in a favorable pressure gradient for the plenum to exhaust its incoming crossflow out the flaps and hence become steady. Normally, however, supersonic conditions (up to Mach 1.3 in the pilot) are obtained by having the plenum exhaust area become steady at a flow area sufficient to pass all of the mass flow rate entering the plenum via wall crossflow and sometimes via reverse flap flow.

Plenum Control Volume

Test Section Control Vol u me

Pet ' Tet ' Pet o 0 0

(Stagnation Conditions)

P e ' Te ' P e (Stag nation Conditions) o 0 0

Figure 2. Schematic illustration of the flow process during start.

To understand the flow in terms of the mathematical model, the various flow configurations might be best thought of in terms of the steady energy equation relating the local pressure to the mass flux (Fig. 3). Subsonic flows fall on the branch to the

10

Page 15: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

right of the choke point, supersonic flows to the left. In general, all points in the tunnel

are initially at point A, which corresponds to no flow. Higher flow rates with correspondingly lower static pressures are illustrated by movement from point A to B

Choke Point

1.0 ---------* 'E --'E x· :J rr:: VI VI ro :z: c:: 0 VI c:: Supersonic Subsonic CI.> E "0 c:: 0 Z

0 0 1.0 P IPr>

P/P* 0

Nondi me ns ional Press ure,

Figure 3. Qualitative plot of the energy equation.

on the energy equation. Flows which become subsonically steady would halt to the right of C; while for supersonic flows, some portions of the tunnel would proceed beyond C to D. If the energy dome is then plotted versus axial position in the test section as shown in Figs. 4, 5, and 6, the importance of the wall crossflow and the relative timewise approach of various components to their steady conditions may be made clearer. For a normal subsonic run, Fig. 4 shows the energy dome at the entrance and exit of the test section. The constant time contours are shown as straight lines for purposes of illustration, though in reality they would have to be nonlinear to some degree in order for all points on the contour to fall on the surface of the dome cylinder and because the wall crossflow does not necessarily vary linearly along the test section. As the flow begins, the constant time contours do not remain parallel because the flow rate leaving the test section will not balance that at the entrance, the difference being the wall crossflow. For the most probable case of the plenum lagging the test section pressure, the crossflow will be into the test section, giving a greater flow rate at the exit than at the entrance. As time proceeds, however, the plenum pressure eventually catches up to the test section

so that the contours do become nearly straight and parallel as the crossflow becomes insignificant. This process assumes that the plenum exhaust, if opened, is eventually closed.

11

Page 16: A Mathematical Model for the Starting Process of a

A E DC-T R -76-39

* 'E -'E x' 1.0 ::J u:: en en m ::E ro c: .!2 en c: Q)

E :a c: 0 Z

0

" ·E 'E x' ::J 1.0 u:: en en C1:I

::E m c: .!2 en c: Q)

E :a c: 0 z

0

Steady, Uniform Subsonic Flow

1.0 Nondimensional Pressure, P/P*

t = 0

Figure 4. Energy dome versus position in test section for normal subsonic flow.

Steady, Supersonic Flow

Real Nonli near Steady contOUl

t = 0

1.0 Nondimensional Pressure, P/P*

Figure 5. Energy dome versus position in test section for normal supersonic flow.

12

tl

Exit

XIL

tl

Exit

Page 17: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

If the plenum exhaust is not closed and the steady main valve area is sufficiently large,

the supersonic case of Fig. 5 may result. The initial constant time contours are similar to the subsonic case. However, the odgins of the contours at the entrance eventually stop at the peak of the dome while at the exit they proceed over the choke point downward on the supersonic branch as the crossflow reverses from entering to leaving the test section. The contours, however well approximated by straight lines in the subsonic case, become significantly nonlinear for the higher supersonic Mach numbers, as illustrated by the dotted "real nonlinear steady contour'! in Fig. 5. This results from a combination of the nonlinear

vadation of the wall crossflow and boundary layer growth. These nonlinear effects, though certainly present in the subsonic case, are more pronounced in the supersonic case because the pressure at the nozzle must remain unchanged at the choke value while the pressure at the exit varies significantly with the exit Mach number.

* 'E --'E x-

1.0 ;;;:J

u:: III VI ro ::2: ro c:::: 0 III c:::: Q)

E :c

c:::: 0

Z

Actual Condition

Desired Condition

steady, Subsonic Flow

t = 0

Entrance

o 1.0 Nondimensional Pressure, P/P*

Figure 6. Energy dome versus position in test section for subsonic flow with choked nozzle.

The slopes of the constant time contours in Figs. 4 and 5 depend on the magnitude of the wall crossflow, which in turn depends partially on the pressure difference between the plenum and the test section. Since the timewise variation of the plenum pressure can be controlled by controlling the flow area-time curve of the plenum exhaust valves,

13

Page 18: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

it appears that the shortest starting time for the tunnel would be obtained by controlling

the plenum pressure to precisely follow the test section pressure so that the plenum would

reach its steady conditions simultaneously with the main valve system. This would result in the constant time contours remaining parallel right up to their final position, or up

to the choke point for a supersonic run. In Fig. 6, the plenum is exhausted fast enough

so that the wall cross flow is always out of the test section, resulting in less flow rate

leaving the exit of the test section than entering. Thus, the constant time contour at

the entrance dome reaches its peak while the point on the exit dome is forced by the

plenum exhaust to become steady before reaching the peak though the desired steady

condition lies on the other side of the dome and cannot be reached. Hence, it appears

that the manner in which the various portions of the tunnel approach their steady

conditions in time relative to each other can affect the final outcome of a run.

The foregoing discussion of the test section flow in terms of the energy domes serves as an introduction to one of the key elements of the mathematical model, namely, the

steady energy equation in an unsteady environment. The domes also provide graphic

visualization for the flow process.

2.2 GOAL OF THE MODELING

The purpose of this mathematical model is to study the starting process, controlled by the plenum, in order to size the plenum exhaust system; determine the effect upon start time of the interaction of the area-time curves of the main valves, flaps, and plenum exhaust; and, in general, to provide the essential information necessary for trading off

facility cost and start time. To provide this information, the model must accept the following input data. The gross level mass flow rate depends upon the cross-sectional

area of the supply tube and nozzle exit. The geometric factor, on which the wall crossflow primarily depends, is the porosity, the fraction of the total surface area of the test section

walls drilled out to allow flow between the test section and plenum. Thus, the dimensions

of the test sections and porosity must be provided along with the experimentally derived

coefficients for the flow model. A key design parameter having first-order impact on the start time is the plenum volume ratioed to the test section volume. The area-time curves

of the main valves, plenum exhaust valves, and the flaps are required along with the experimental coefficients for the flap flow model. Finally, the characteristics of the gas

must be provided in terms of the ideal gas constant and the specific heat ratio.

This input to the model is then used to compute the following data concerning the flow. As functions of time the static and stagnation properities - pressure, density, and temperature - along with mass flow rate and Mach number are computed for three stations

along the tunnel circuit: the supply tube at the nozzle entrance, the test section entrance,

14

Page 19: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

and the test section exit. The plenum properties along with the mass flux through the

porous wall, flaps, plenum exhaust, and main valves are computed as functions of time.

There are many other considerations, neglected herein, which might be of interest

for other applications. One of the most important is the boundary layer, whose growth on the walls of the supply tube and test section varies with time. This unsteadiness occurs because at any given station along the tunnel, the particles of air passing that station at succeeding times into the run have travelled over successively longer lengths of tube from their starting points. If the effect of the boundary-layer growth on the local mass flow rate is thought of in terms changing the effective flow area, one might suspect that

the test section would never become steady. In reality, however, the boundary-layer growth, sufficiently late in the starting process, varies with approximately the same proportion in the nozzle and test section so that, though the effective flow areas may be varying, the area ratios (AI A *) are not. As experimentally documented in Refs. I and 5, this results in essentially constant Mach number once the plenum has become steady, thus

justifying the neglect of the boundary layer herein.

Neglect of the boundary layer means that no prediction is made of property variation

over the cross section of the flow area. Similarly, detailed variation of properties along the length of the test section is not predicted. Such information would be useful for

studying wall loading or flow uniformity but is of secondary importance for present purposes. Very severe non uniformity occurs in the diffuser section (connecting the test

section and main valve manifold), which has been subjected to a detailed experimental

study in Ref. 4. The complexity of the diffuser flow results from a combination of effects: shock waves, flow separation, flap exhaust, and the presence of the model or probe support sector. The performance of the diffuser is important because of its effect on the noise environment in subsonic flow in the test section and because its stagnation losses significantly impact the sizing of the real flow area of the main valve system. However, for purposes of the starting model, diffuser losses may be neglected if the main valve area is assumed to be the ideal, one-dimensional flow area needed to pass a given mass flow rate for a given set of driving stagnation conditions as determined from wave mechanics.

Three additional effects neglected herein deserve mention. First, wave spreading is neglected. This phenomenon is due to the difference in propagation speed between the leading and trailing edges of the unsteady wave. Since the wave propagation speed (equal to the local speed of sound minus the local velocity) is less for the trailing edge than the leading edge, the time delay between a change in main valve area and the sensing of this change in the supply tube is greater for the last area change than the first. In

fact, this delay is different for each position along the tunnel. However, over the greatest

15

Page 20: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

distance of importance in the pilot facility, this difference in delay is less than 0.5 msec

and is neglected in the model. Besides wave spreading, the model also neglects the finite time required for a disturbance to travel from one point to another. Such a consideration is important for determining the relative times for first motion of main valves and plenum exhaust valves; but for purposes of the starting model, the tunnel components determining start time - plenum, test section, and supply tube exit - are sufficiently close together that the propagation times (on the order of one millisecond in the pilot) are small compared with the starting time under study. However, neglect of the propagation time and wave spreading should not be construed to mean that the finite wave width is neglected. This width, or time difference between passage of a given point of the leading and trailing edges of the wave, depends primarily on the opening time of the valve but is also increased by the nonideal flow processes in the diffuser. Such effects are a ccounted for herein by correction of the area-time curve of the main valve. A final additional effect, accounted for empirically but not modeled in detail, is the nonisentropicity of the thermodynamics of the plenum. It has been experimentally observed that the temperature in the plenum approximates an isentropic process only during the initial portion of the starting process, but over the entire start time for the tunnel, the asymptotic plenum temperature is much closer to the stagnation temperature in the test section than that for a completely isentropic expansion. A good model of this process would have to include the mixing of the virgin plenum air with that entering from the test section as well as account for the heat transfer from the walls of the plenum. This possible refinement to the present model is not yet

included.

2.3 FORMAL ASSUMPT!ONS

Before proceeding to the equations comprising the mathematical model, the following list of assumptions should be reviewed:

a. Flow across all control volume surfaces is one dimensional.

b. The fluid is assumed to be a calorically perfect gas (constant specific heats).

c. Flow within the envelope comprised of the supply tube, test section, and main valves is inviscid, adiabatic, and irrotational except as accounted for by the unsteady wave equations.

d. Within this envelope and at a constant time, property variation from point to point is isentropic. Entropy variation with time is governed by the wave equations. Thus, at any given instant, the one-dimensional, variable area, isentropic equations of gas dynamics (Ref. 2) are applicable.

16

Page 21: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

e. Wave propagation time and wave spreading are zero. This justifies the steady

assumption needed to invoke the equations of Ref. 2.

2.4 MATHEMATICAL FORMULATION

The set of equations comprising the model naturally divides into two groups, one for subsonic flow and one for supersonic flow. Since the set of equations for supersonic flow is nearly an exact subset of the subsonic case, the latter will be presented first, followed by a discussion of the changes needed for supersonic flow. The subsonic model is in the form of 19 algebraic equations, not necessarily linear, involving 19 unknowns. This system of equations must be solved numerically at successive points in time until all properties have approached their asymptotic values. The solution at any time t depends entirely on the property values obtained for the solution at t - ..1.t, a short time earlier, as well as the given valve area-time curves, which may be thought of as forcing functions. Quantities which vary between t - ..1.t and t are usually evaluated at an intermediate time

t* such that (t - ..1.t) < t* < t. The time t* is usually taken as the midpoint of the time interval.

The model is based on mass conservation for three control volumes as illustrated in Fig. 2. Conservation of mass for the plenum is derived from the unsteady integral continuity equation for a control volume to give

pp(t) = pp(t - tu) + [mp/t*) + mpe(t*) + mlt*)] ~t p

(1)

Here Pp is the mass density in the plenum, assumed uniform throughout, and Vp is the volume of the plenum. The quantities mpt(t*), mpe(t*), and mf(t*) represent, respectively, the mass flow rates between the plenum and test section (pt), out the plenum exhaust (pe), and through the flaps (f). The formal continuity equation can not be precisely integrated because the dependence of the mass flow rates on t or Pp can not be written in simple closed form. However, the law of the mean provides that pp(t) may still be precisely computed if the flow rates are treated as constant but evaluated at a suitable intermediate point t*. If ..1.t is now chosen sufficiently small so that the flow rates may be suitably approximated by linear functions of time, t* can obviously be chosen as t - 1/2..1.t, the midpoint. For the other two control volumes in Fig. 2, the steady continuity equation is used, having been justified by assumption (e) of the last section. By noting that Eq. (1) assumes the flap and wall crossflows are positive when flow is into the plenum, continuity for the test section becomes

(2)

17

Page 22: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

and for the diffuser-valve manifold control volume

(3)

The three new mass flow rates introduced here are, in terms of the subscripts, that leaving the supply tube (ct, for charge tube, as it is often called), the primary tunnel exit (e) provided by the main valves, and the diffuser-end (d) of the test section. It should be noted from Fig. 2 that md corresponds to a point upstream of where the flap flow enters the main stream.

Proceeding next to model each of these six mass flow rates, consider first the flow through the plenum exhaust and the main valves, which are both treated as single one-dimensional sonic orifices driven by the stagnation conditions.

(4)

(5)

In Eq. (4), Peo and Teo are the stagnation pressure and temperature in the valve manifold; and in Eq. (5), Pp and Tp are the pressure and temperature in the plenum, approximated as stagnant. The quantities Ae and Ape are the total flow areas of the main valves and plenum exhaust valves. These areas are assumed to be the ideal, one-dimensional flow areas of a sonic orifice. If the real valve areas are used, discharge coefficients must be included in Eqs. (4) and (5). The constant a is given by

y+l

(_2 )y_l ~ Y + 1 R

(6) a

where R is the ideal gas constant and 'Y is the ratio of the specific heats.

Consider next the flap and wall crossflows, which have been neatly modeled by Varner (Ref. 2) as simply proportional to the pressure drop across the devices. With a second order adaptation added here, Varner's model takes the following form

A _ m (t*) = - ~ [p (t*) - A15 Pt(t*)]

pt kw p (7)

mft*) (8)

18

Page 23: A Mathematical Model for the Starting Process of a

AEDC·TR·76·39

Here Aw and Af are the effective flow areas through the porous wall and through the

flaps. While Af is the actual geometric area, Aw depends on the total surface area of

the test section walls (Atsw ), the porosity (7), and a flow coefficient. Varner gives this

relationship as

(9)

The flow coefficients kw and kf were determined by Varner from experimental data from

Pilot HIRT and are given in Fig. 7. The values of kw in Fig. 7 are for the porosity shown in Fig. 8. The coefficientsl A 15 and Al6 multiplying, respectively, the mean test

section pressure P t and the diffuser end test section pressure P d were added in an effort

to improve the accuracy of the asymptotic values of the numerical solution. The rationale

for each of these constants is different. Rigorous modeling of the crossflow must include not only the effect of pressure forces but also the momentum of the fluid as it moves along the test section wall. The coefficient Al5 thus represents an attempt to include momentum effects as a small correction to the existing crossflow model. Experimental evidence from the pilot facility indicates that this small momentum effect can make the

difference between choking and not choking when the desired steady conditions are very near sonic flow. In particular, it has been observed that during supersonic flow, where the net crossflow must be from the test section to the plenum, the test section pressure is actually slightly less than the plenum pressure.

500 500

400 400 u 0 O--~ u Q,) 300 300 ..!!!

Q,)

..!!! ¢:: ¢::

J! 200 (Ref. 4) .;:.. 200 ..:.<:

100 100 (Ref. 4)

0 0 2 4 6 8 10

0 0 O. 1 0.2 0.3 0.4 0.5

T Af/Ats a. Porous wall flow coefficient b. Ejector flap flow coefficient

versus porosity (7) versus area ratio (AdAts)

Figure 7. Porous wall and flap flow coefficients.

IThe subscripts 15, 16, and 17 have no significance beyond consistency with variable names in the computer program.

19

Page 24: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

Flow Direction

118 Diameter

30de~" Test Section Side

Note: Not to Scale All Dimensions in Inches

Figure 8. Wall porosity in Pilot HIRT.

0.078

O. 063

This has been attributed to the fluid momentum in the test section overcoming the slightly adverse pressure gradient. The other constant, AI 6 in the flap model, was added to account for'some of the losses in the upstream portion of the diffuser. Unfortunately, both of these constants were found to be functions of the test section Mach number, thus indicating the need for more accurate modeling,

The mean test section pressure Pt in Eq. (7) is computed from a weighted average of the pressure at the nozzle-end of the test section P n and at the diffuser end Pd' That is,

(10)

where 0 ~ Al 7 ~ 1. Since a detailed model of axial property variation in the test section has not yet been included in the start model, properties are computed only at the nozzle and diffuser ends of the test section. For subsonic flows, the value of AI7 was not found critical to the accuracy of the solution and was thus taken as 0.5, assuming a linear variation. For supersonic flow, a value of 0.9 was used to account for the more pronounced axial gradients.

The remaining two mass flow rates (met and md) may be related to pressures already introduced above using the steady energy equation discussed earlier and shown in Fig. 3. At the diffuser end of the test section, the energy equation is

2

[md(t*) 12 = _2_ ~ P d(*) J Y m (t*U y - 1 Pet (t*)

o 0

20

_ [ P it*)lY;ll Pet (t*)J

o

(1)

Page 25: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

where as before the subscript "ct" refers to the charge tube and the subscript" 0" indicates

stagnation properties. The quantiy rno is defined as

P ct (t*)

m (t*) == Ir a A a \,fRVT (t*) ts

cta

(12)

where Ats is the cross-sectional area of the test section. The stagnation properties (Peto and Tct o) are thought of as originating from the unsteady wave when it reaches the charge tube and are assumed the same, for any given time, throughout all of the flow envelope except the plenum. At the nozzle end of the test section, the flow rate is equal to that in the charge tube, since its value has not yet been modified by any wall crossflow. At this station, the energy equation is, therefore,

fPn(t*)] ~ _ [Pn(t*)lY;1 \

l!' ct (t*) P ct (t*~ a a .

2

Y - I (13)

To complete the portion of the model not ansmg from the unsteady wave, the thermodynamic equations of state for the plenum are needed. To compute the properties at t* for use in Eqs. (5), (7), and (8) while Eq. (1) gives the density at t, the density at t* is computed from

p (t*) = li2[p (t) + p (t - ~t)] P P P

(14)

The plenum temperature is assumed equal to the greater of the isentropic temperature and the stagnation temperature in the test section.

That is,

{ ~ p (t*) ~ y-l } T (t*) = max Tp(t* - ~t) P ,T (t*)

P P (t*-.0.t) cta P

(15)

In either event, the pressure may then be obtained from the perfect gas law:

(16)

Closing the system of equations presented so far requires relationships for how the stagnation properties vary in time. A careful accounting of the number of equations and the number of unknowns to this point would reveal that, given values of Pet and Tet

o 0

and assuming Peo = Peto and Teo = Tct o (which is what is done for the subsonic case),

21

Page 26: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

it is possible to compute the value of met. This value of the flow rate from the charge tube represents that required by the sum total of all the expansion waves which at a given time have reached the charge tube from all parts of the tunnel. That is, met identifies an intermediate point within the entire unsteady wave, which begins with the first motion of a valve somewhere in the tunnel and ends when the plenum reaches its asymptotic pressure. Thus, met may be used to compute all other stagnation properties for that point in the unsteady wave. By using the equations of Ref. 3 and after some algebra, the charge tube Mach number at the desired point in the wave may be related to met by the equation:

_ y+l

mct(t*) = MCt(,t*) [1 + Y ~ 1 Mct(t*1 y-l mc (17)

where me is defined from

(18)

Here Aet is the cross-sectional area of the charge tube, and P e and Teare the charge conditions, that is, the air pressure and temperature after the tunnel has been pumped up but before any valves are opened. These charge conditions are assumed to apply uniformly throughout the envelope, including the plenum. After obtaining the charge tube Mach number, the stagnation pressure and temperature are readily computed from the following equations from Ref. 3:

P ct (t*) o {

I + I-=--!:. M2 (t*) }y~l 2 ct ----------------- Pc fl + Y - 1 M ( t* )12 L 2 ct 'J

(19)

(20)

Equations (1) through (20) thus comprise the subsonic portion of the starting model and are summarized in Table 1. The supersonic case is physically different from the subsonic case and requires solution of a different set of equations as noted in Table 1. The distinguishing factor of the supersonic case is that the nozzle exit is choked, making the

flow rate and stagnation conditions steady there. Once the nozzle chokes, the charge tube Mach number is a constant depending only on the area ratio between the charge tube and nozzle exit. From Ref. 2, the steady Mach number can be obtained by reverting the equation:

22

Page 27: A Mathematical Model for the Starting Process of a

Table 1. list of Exact Simultaneous Equations

Equation

() ( ') [' () . () . '*)l~ Pp t = Pp t - Lll + mpt t* + mpe t* + mf\t V

"',(t*)

Peo(tt)Ae(t*)

VTeo (tt)

_l':':!. "'e/t*) ~ 'Ie/ t*) ~ + y Me"t*~ y-l"'e

laRequlre Numerical Reversion

p

23

Independent Variable

to be Computed

"'ct' M < 1

p a n

Pp (t*)

Yes

Yes

No

No

Yes

Yes

Yes

Yes

No

No

Yea

Yes

Yes

No

No

No

No

Text Equation Number

2

3

4

5

7

8

10

11

13

12

14

15

16

17

19

.20

AE DC-TR-76-39

Program Equation Number

5

6

7

2

4

3

11

12

13

14

18

17

19

8

9

10

Page 28: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

~ Act 1 {2 [1 y - 1 ------- +--A

ts - Mct(t*) y+l 2 ~}

2(y-l) M2 (t*) ct (21)

With this final Mach number, the steady stagnation conditions (Peto ' Teto ' and mo) along with the steady charge tube flow rate (met) can be computed one final time from Eqs. (19), (20), (13), and (17), after which these equations and variables may be dropped from the simultaneous solution. Since met is now constant, the flow rate leaving the test section (rud) is solely dependent on the wall crossflow (rupt) according to Eq. (2) and is independent of the flow rate out the main valves (me), assuming the valve area Ae is sufficient to pass all the charge tube flow not removed by the plenum exhaust. Thus, Eqs. (3) and (4) may also be dropped from the system of equations. This is fortunate since it is no longer true that Peo = Peto ' which results from the nonisentropic recompression of the supersonic flow entering the diffuser. Thus, the original system of 19 equations and 19 unknowns reduces to 10 equations and 10 unknowns for the

supersonic case.

These two sets of equations were solved using an iterational technique which unfortunately failed to converge in the vicinity of the choke point in time. To provide an alternate solution procedure when the iterational technique failed to converge, a small perturbation solution was developed for the original exact equations. The small perturbation solution was then used as an initial guess for the iterational procedure when it converged and as the complete solution when it did not. The results of this lengthy derivation are recorded in Appendix A, but the essential ideas are discussed below.

The exact solution already assumes that ~t is a small quantity. For the small perturbation solution, therefore, any of the 19 variables at time t* may be assumed to be related to their values at t* - ~t by the general form

v.(t*) = v. (t* - ~t) + ,dt*) 1 1 1 (22)

where €i is the small increment in the variable and i = 1, 2, ... , 19. If these small perturbation equations are used to expand the original exact equations,a new system of equations involving the increments rather than the variables themselves is obtained. For all exact equations, except the energy equations relating the pressure and mass flux at the entrance and exit of the test section (Eqs. (11) and (13)), only terms of order €i need be retained in the small perturbation equations. Such is not the case for the energy equations because in the region of the peak (or choke point) in Fig. 3, there is no linear approximation to the function. In the expanded equation, the coefficient of €i approaches zero as the Mach number approaches one. Thus, the term of order €i 2 , whose coefficient is nonzero

at Mach number one, governs the form of the expansion. The resulting subsonic system

24

Page 29: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

of equations is thus comprised of 17 linear equations and 2 second-degree equations, which can be solved analytically. The supersonic case is composed of 9 linear equations and

1 of second degree.

2.5 SOLUTION PROCEDURE

The procedure used to solve these two systems of equations is discussed in the following section. Included is a discussion of the overall logical procedure, the order in which the equations of the exact solutions are used, convergence considerations, and a general description of the computer program used to accomplish the calculation. The general solution procedure is illustrated by the flow chart in Fig. 9. The decision whether to use the supersonic or subsonic branch is decided by whether P d (t* - ..6.t) < P* or Pd(t* - ..6.t) > P*, that is whether the diffuser end of the test section was supersonic or subsonic at the midpoint of the previous time interval. If the previous interval was supersonic, the current one is also assumed to be supersonic. If the previous interval was subsonic but 1 - M(t* - ..6.t) ,;:;;;; M(t* - ..6.t) - M(t* - 2..6.t) , then the supersonic branch is used for the current time interval; otherwise the solution is assumed to remain subsonic. This cliterion is checked for both ends of the test section, and the switch to the supersonic branch is contingent upon either or both positions satisfying the inequality. In either event, the small perturbation solution is computed to provide a good starting point for the exact iterational procedure. If convergence does not occur before a given number of iterations, the small perturbation solution is used as the final solution, and the next time interval is begun.

The II exact iterational procedure" referred to above is accomplished by taking an initial guess for one of the 19 variables and then proceeding from equation to equation, determining new values for each of the 19 variables until a complete circuit is made and a second value of the variable initially guessed at is obtained. This process is repeated until the difference between two successive values of certain of the variables is within a preset limit. For the subsonic case, the equation order is as follows:

4,3,11,10,7,2,17,19,20,12,13,10,7,8,1,14,15,16,

5, ...

The supersonic equation order is

10, 7, 2, 11, 10, 7, 8, 1, 14, 15, 16, 5, ...

Some of these equations (Eqs. (11), (13), and (17)) require reversion from the form given but cannot be reverted analytically in closed form and must be solved numerically. The variable to be solved for in each equation is indicated in Table 1, and the three requiring numerical reversion are marked with an asterisk:

25

Page 30: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

Defi ne Charge Conditions, Tunnel

Geometry, Fluid, Area Time Curves

compute Supersonic Small Perturbation

Solution

Compute Exact Supersonic

Solution

Yes

Redo Small L------------l Perturbation

Solution

Compute Subsonic S mall Perturbation

Solution

Compute Exact Subsonic Solution

Figure 9. Flow chart of solution procedure.

No

The complete solution thus requires numerical iteration at three distinct levels, which necessitates careful consideration of convergence criteria as well as what to do when the criteria can not be met because of stability problems. The most basic level of numerical iteration involves reversion of the two energy equations and the mass flux - Mach number

26

Page 31: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

wave equation. Considering the general case where the function Y = F(X) must be solved for X given a value of Y and a guess Xl, the procedure is simply to adjust Xl in the direction which reduces the error criterion

El = y - ;(X) (23)

until IEll ~ IEmax I, Emax being the present, maximum allowable error. The precise logic of the procedure is illustrated in the flow chart in Fig. 10. Since this procedure must

Subroutine SOLVER Compute y

Estimate Xl

Choose I::.X Choose Emax

Figure 10. logic for numerical solution of an algebraic equation Y = F(X) for X, given Y when X = F-1 (Y) is not a closed form function.

27

Page 32: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

be repeated many times at each time interval, it is of considerable importance (because

of impact on computer time) to achieve a solution with as few iterations as possible.

Since the number of iterations depends to a large extent on the accuracy of the guess

Xl, considerable effort was expended in obtaining approximate reversions of the three

equations. It was inadvertently discovered that the energy equation may be approximated

with surprising accuracy over the entire range of present interest with a single ellipse,

the reversion of which is trivial. The wave equation presented more of a problem. Since

an easily revertable second-degree expansion around Met = 0 failed to match the accuracy

of the elliptic energy equation, the expansion was carried to the seventh degree and then

formally reverted according to the procedure of Ref. 6. These expansions are summarized

in Appendix B.

The next higher level of iteration is, of course, the simultaneous solution of the

exact model equations, during which stability problems were encountered in the vicinity

of the choke point. The error criterion for halting the iteration may be generally expressed as

(nl (n+l) v· - V. I I

.:::; P err (24)

where test variables (Vi) are the pressures Pn , Pp(t), Pp(t*), Pd, Pt , and Peto ; Perr is

the maximum allowable error; and n is the iteration number. Figure 11 illustrates the stability problem encountered in striving to meet this error limit. Shown is how the plenum

pressure Pp (t*) varied with iteration number at two succeeding time points, one converging

and one not. Such stability problems are known to occur in applying the iterational technique to locating the intersection of two curves on a plane when the curves have

the same slope (same or opposite sign) at the point of intersection. Whether this simple

explanation in 2-space is applicable to 19-space where no two of the 19 functions lie

in the same plane is unclear. In any event, improvement in convergence rate was sought via the following procedures, most of which improved the situation:

a. Relative Errors. It was found that if Emax was much greater than 1/10

Perr , the numerical reversions could oscillate enough themselves from one iteration to the next to slow convergence.

b. Computational Precision. Single precision arithmetic (-~8 digits on an IBM

370) was found inadequate to achieve errors of Emax = 10- 5 (Perr = 10-4), and double precision (~16 digits) was, therefore, adopted.

28

Page 33: A Mathematical Model for the Starting Process of a

AE DC·TR·76·39

36

.~ 35 VI c.. (J,) .... ::l VI VI (J,)

ct 34

33

36

co 'iii Co.

(J,)-

35 ... ::l VI VI Q) .... c...

34

Y

r- -

I

o 10

21 msec /-----1---

1-----

----1-----1-------SlIghlly Tergenl

20 msec

AAA " V v ~O~I~~e nl

20 30 40 50 60 Iteration Number, n

Figure 11. Plenum pressure versus iteration number for convergent and divergent cases.

c. Solution Weighting. The clearly periodic oscillation of Fig. 11 suggests that

the average of any two successive values should be closer to the final asymptote than either value. Accordingly, solution weighting,

(nl A (nl (1 _ Ajj)V(in+ U vi = jjVi + (25)

was employed on a regular basis;

d. Weight Cutting. It was further discovered that convergence rate could be greatly improved after the number of iterations reached a certain point if a lesser weight was applied to the current value Vi(n).

e. Error Cutting. It was found that, later in a computation when some of the pressures were very near their asymptotes, the amount of variation from one time point to the next eventually approached the error limit. This in effect allowed these values to vary at random within the error limits and deteriorate the convergence rate. It was thus found prudent to reduce the

error limits as necessary so as to maintain

29

Page 34: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

\

v.(t*) - v.(t* - L'1t) I Perr ~ Y,[~Jt*) + ~j(t* - L'1t)]

and Emax ~ 1/10 Perro

f. Extrapolation. A second-order extrapolation function

vj(t*) = 2v j (t* - L'1t) - Vj(t* - 2L'1t)

(26)

(27)

was tested in an effort to improve the starting values for iteration through the 19 equations, but this generally produced no improvement in

convergence rate. A third-order function

was found not much better. Ultimately, of course, it is illogical to expect any finite order extrapolation scheme to predict the effect of changes in the forcing functions (area-time curves) if those coming changes had not been anticipated by the derivatives of less than that order.

g. Small Perturbation Solution. In place of an extrapolation function, there was used the more logical small perturbation solution. This considerably improved the convergence rate and provided sufficiently accurate results in lieu of the exact solution when it failed to converge in a reasonable length of time.

The complete mathematical model along with the above described convergence enhancement logic have been programmed in Fortran IV for solution on an IBM 370/165. The computer program HIRTSMI (for HIRT Starting Model) is composed of the normally expected components: the main program (MAIN) containing the exact equations, the convergence control logic, and the overall solution control logic; subroutines to control input (INPUT), output (PRINT and DUMP), and variable definition and initialization (CONST and INIT): and a subroutine which performs the calculation for the analytical solution to the simultaneous small perturbation equations (SMPERT). In addition, the program contains a package of utility subroutines : one routine contains the logic o(Fig. 10 to numerically revert any given function (SOLVER); a second expands out the binominal coefficients (BINOM) to give a series which is reverted by a third subroutine (REVERT) to the seventh-degree term; a fourth subroutine (QSIMUL) determines the points of intersection of two conics (the two final energy equations resulting from SMPERT) by converting them to a single fourth-degree polynominal, which has an exact analytical solution for the four roots (QANDC). Use of this program is described in Appendix C.

30

Page 35: A Mathematical Model for the Starting Process of a

AE DC-TR-76-39

The program can be run in a partition of 11 OK bytes and easily completes about 200

time increments in less than a minute of central processor time, though occasionally a run may require up to three minutes. Peripheral storage is not essential, though provisions are made to dump the entire solution on to a direct (random) access data set (such as a disk file) so that the solution may be picked up at any point and continued. The results of calculations with HIRTSMI are compared in the next section with experimental results

from the Pilot HIRT facility.

3.0 RESULTS

Presented below is a comparison between the mathematical model and experimental pressure-time histories from Pilot HIRT. Included is a brief description of those characteristics of the tunnel important to the model. After a comparison of the model and data, some other results of the calculations are shown. The section concludes with a discussion of how the model can be applied in the design of certain portions of the

tunnel.

3.1 DESCRIPTION OF PILOT HARDWARE

Figure 12 shows an elevation line drawing of the Pilot HIRT facility, to which the present mathematical model was applied. Figure 13 shows most of the geometric data required by the model and also accurately illustrates the real life hardware, which is simplified in the model. The geometric parameters in the precise form used in the model are summarized in Table 2. The tunnel uses two alternate types of starting devices, the sliding sleeve valve shown in Fig. 13 and, for quicker starts, a Mylar@ diaphragm and cutter

located at the interface of the diffuser and the valve assembly. The plenum exhaust system, shown schematically in Fig. 14, also uses a diaphragm in addition to two valves to control the exhaust flow. The diaphragm initiates the flow, and the ball valve, whose setting cannot be changed during a run, determines the amount of plenum exhaust during the steady portion of the run. The quick-acting valve, however, may be rapidly closed during the run to provide a temporarily elevated plenum exhaust in excess of what the ball valve will pass. The complete system in Fig. 14 is modeled as the area-time curve of a one-dimensional sonic orifice, as is the multiple port system on the main valve.

The portion of the tunnel shown in Fig. 13 was heavily instrumented with pressure

taps to measure pressure-time histories at various locations in the nozzle test section , , diffuser, and plenum. Output from the pressure transducers was sampled every 2 msec by a data acquisition system based on a PDP 11/10 digital computer with certain of the signals also displayed on a recording oscillograph. Of primary interest here are the plenum

pressure-time histories, which comprise the primary basis for comparison of the theory and experiment.

31

Page 36: A Mathematical Model for the Starting Process of a

W N

111 ft -+- 7 ft -I" 7 It .1

Transition Section (Nozzle)

High Pressure Air Charge System

Thrust Collar

Charge Tube

Thrust Stand

Test Section Liner

Plenum Chamber Ejector Flap Cylinder

Model Support Section

Diffuser

Plenum Exhaust

Figure 12. IPilot HI RT elevation line drawing.

Building Wall

Main Sliding Sleeve Valve Starting Device

45 in.

Exhaust System

» m CI (")

~ :D .!..I OJ tv c.o

Page 37: A Mathematical Model for the Starting Process of a

w w

13.94 INom.

130.4* • 1

Model Support Strut Diffuser 12-in. Sliding Sleeve

Start Valve IShown Closed)

-/--m+.h 30.3 \ 29.0 '1

Ejector and Pressure Tube Bu ndle

"NOTE: All Dimensions in Inches

L r-

Figure 13. Cross-sectional view of nozzle, test section, diffuser, and main valve system.

52.0 -------~

» m o (")

.:., :Il .:.n m W to

Page 38: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

Table 2. Geometric Data for Pilot HIRT Required by Mathematical Model

Charge Tube Diameter

Charge Tube Flow Area

Ratio of Charge Tube Area to Test Section Area

Test Section Length

Test Section Width

Test Section Height

Test Section Flow Area

Test Section Wall Surface Area

Test Section Porosity

Test Section Volume

Flap Flow Area

Ratio of Plenum Volume to Test Section Volume Nominally

Plenum Chamber

Section

Ej ec tor Flaps

1.162 ft

1.060 ft2

2.271

2.114 ft

0.7633 ft

0.6117 ft

0.4669 ft2

5.813 ft2

3.5 to 10%

0.9870 ft3

o to 0.2062 ft2

1.75 to 4.0 2.8

A-----c ...... To Main Exhaust (Valve or Diaphragm)

Plenum Exhaust Line (Ten 2-in.-ID Lines Manifolded Ahead of Diaphragm)

~~~-----Diaphragm (Ruptured to Initiate Flow)

To Atmosphere

--~ ... ~ To Atmosphere

6-in. Ball Valve (Orifice Variable)

Quick Acting Valve (Open or Closed)

Figure 14. Plenum exhaust system.

34

Page 39: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

3.2 COMPARISON OF MATH MODEL AND EXPERIMENT

Data for nine different tunnel settings were studied with the mathematical model. Some basic data for runs typical of these nine conditions are summarized in Table 3. The data of primary interest in this table include the plenum-to-test section volume ratio,

porosity, the opening times of the main valve and plenum exhaust valve, the maximum plenum exhaust area, and the experimental test section Mach number. The conditions listed for Run 2258 may be considered nominal values from which variations in plenum volume, porosity, flap setting, and test section Mach number were examined.

Figure 15 compares the experimental plenum pressure as a function of time with the present mathematical model for the nominal conditions (Run 2258). The data illustrated is for a plenum volume 2.8 times the test section volume, a porosity of 4-1/2 percent, and a flap setting of 0.4 in. (the gap between the flap and the test section wall where the flap flow empties into the diffuser). The main starting device was a Mylar diaphragm; and the exit flow area, the primary factor determining the asymptotic test section Mach number (0.921), was obtained by capping off the proper number of exit ports on the main exhaust manifold (Fig. 13, 16-in. valve). Since the desired Mach number was subsonic, the plenum exhaust system was not used. The resulting data for these tunnel settings are plotted in Fig. 15 as circles, and the solid line represents the output of the computer program. The program was run for the indicated tunnel settings (Table 3), but several not readily apparent inputs were assumed. The starting device (diaphragm) was treated as a linear area-time curve reaching its maximum area in 2 msec. The maximum area shown in Table 3 is approximately 99.46 percent of the test section flow area, which is based on the ideal, one-dimensional flow area ratio needed to produce a test section Mach number of 0.921. The resulting theoretical plenum pressure-time history shown in Fig. 15 agrees well with the experimental data. The greatest discrepancy occurs at 25 msec and reaches a peak there of 6.5 percent. This difference, due to a temporary leveling of the experimental data between 10 and 25 msec, results from the finite time required for the initial expansion wave to traverse the plenum volume, which includes the plenum exhaust lines shown in Fig. 14. These lines extend to a distance of about 4 ft from the major portion of the plenum. Since the model assumes a uniform plenum, it cannot account for this factor. Figure 15 also illustrates another deficiency of the model, which in this case produces the 3.I-percent error at a time of about 100 msec. Part of this error is due to error accumulation in the small perturbation solution, to which the program reverted entirely beyond 45 msec because of non convergence of the exact iterational solution. Another part of the error, in this case the smaller part, is due to neglect of the axial momentum of the test section flow by the crossflow model, which results in the smaller slope of the theoretical curve in the region of 60 to 90 msec. Since this discrepancy has been found to be generally small for subsonic runs, the coefficient in the crossflow model (AI 5) has been left equal to one.

35

Page 40: A Mathematical Model for the Starting Process of a

W 0\

I

I I

Run Number

2226

2236

2241

2251

2255

2258

2260

2263

2742

(a) -

(b)f

Charge Pressure, PC' psia

60.11

62.37

61.84

81.47

81.27

70.51

70.90

74.10

152.15 -

0.2 in. 2

0.9 in. 2

Plenum Volume (-) ,

Vp/Vts

2.8

2.8

2.8

2.5

2.5

2.8

4.0

1. 75

2.5

(C)"'f Co 0.4 in.

(d)Nominal Conditions

Table 3. Summary of Run Conditions for Experimental Data to be

Compared with Theory

Maximum Flow Area Total Opening Times

Porosity, Main Valve, Plenum Ex, Flaps'2 Main Valve, Plenum Ex, Flaps, Plenum

Ae , ft2 Ape, ft2 Delay, " 1,. Af , ft sec sec sec , sec

4.5 0.466886 0 0.045835a 0.002 --- --- ----

4.5 0.466331 0 0.2062 b 0.002 --- --- ---1.5 0.465911 0 0.09167 c 0.002 --- --- ---4.5 0.465911 0.1090 0.09167 0.002 0.040 --- 0.005

4.5 0.465911 0.1090 0.091G7 0.002 0.040 --- 0.004

4.5 0.464351 0 0.09167 0.002 --- --- ---4.5 0.466290 0 0.09167 0.002 --- --- ---4.5 0.466662 0 0.09167 0.002 --- --- ---4.0 0.465911 0.1090 0.09167 0.030 0.040 --- 0.005

Asymptotic Plenum

Pressure, psia

25.00

2;'.55

23.83

30.56

24.04

30.47

29.36

29.64

53.25

Test Sect ion Mach Number

(-) , M,.

0.992

0.962

1.013

1.039

1.228

0.921 d

0.960

0.975

1.100

~ m CJ (')

~ :0 ~ O'l

W to

Page 41: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

1.0 0------------------------,

Conditions

VplVts = 2.8 Q)

T = 4. 5 percent 5 Theory VI VI 0.8 Mm = 0.921 ~ CL

'" Ii f = 0.4 in. E' ro

Ape = 0 .c u .s Run No. 2258 Q) .... 0.6 :::l Starti ng Device: Diaptmgm VI VI

~ 0 CL

E :::l c: .!!!

00000000 CL

'0 0.4 0

~ 0::

0.2 o 40 80 120 160 200

Time, msec

Figure 15. Plenum pressure versus time for subsonic run with medium plenum volume.

Since the amount of plenum volume which must be drawn down to the asymptotic

pressure may logically be expected to have a first-order impact on the starting time, the

plenum volume was the first parameter varied from the nominal conditions for Run 2258

(Fig. 15). Figures 16 and 17 show the plenum pressure for a smaller plenum volume ratio 0.75) and a larger ratio (4.0), respectively. As expected, the smaller volume case flattens more quickly than the medium volume case, and the larger volume more slowly. As in Fig. 15, the accuracy of the model is generally good for both the smaller and larger plenum volumes, though the effect of the wave propagation time in the plenum is much more pronounced for the larger volume.

Now return to a medium plenum volume case but vary another parameter - plenum exhaust - for a slightly supersonic run. The theoretical analysis depends on an

experimentally derived plenum exhaust area-time curve, shown in Fig. 18, in the nondimensional form used by the computer program. Unfortunately, the uncertainty in

the shape of this curve is quite large, and only the steady area is known accurately. Illustrated in Figs. 19 and 20 are the data for, two supersonic cases, Mach 1.039 and 1.228. Both the theory and experiment of Fig. 18 show a slight over-shoot bottoming out at 30 msec and then approaching the asymptote from below. In addition, the experimental data show a slight rebound peaking at 60 msec, a result not predicted by

the model. The rebound probably results from the overshoot, which would tend to draw

the test section below its asymptotic pressure while the plenum exhaust area was decreasing

37

Page 42: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

1.0

Conditions

VplVts = 1. 75 Q)

T = 4.5 percent .... ::J on

Moo = O. 975 on 0.8 Q) .... "- Theory Q) lif = 0.4 in. 0> .... '" Ape = 0 .c:

<..)

oS Run No. 2263 Q) .... 0.6 ::J Starti ng Device: Diaphragm on on Q) .... "-E 0 ::J 0 c: ~ 0 "-

LOOOOOOOOO '0 0.4 0 0 0 0 0

~ 0:: Data

Time, msec

Figure 16. Plenum pressure versus time for subsonic run with small plenum volume.

1.0 Conditions

VplVts = 4. 0

'" T = 4. 5 percent .... ::J on Moo = 0.960 V> 0.8 ~ "- lif = 0.4 in. Q) 0> Theory ....

Ape = 0 '" .c: U 0 oS Run No. 2260 Q) .... 0.6 Starti ng Device: Diaphragm ::J on V>

E <>-E ::J c: Q)

0 a:: 0 '0 0.4 ~ '" 0::

O. 2 01..--..l.--....J401...--.J..---I80--.l----'---'---:-':"::----''---~200

Time, msec

Figure 17. Plenum pressure versus time for subsonic run with large plenum volume.

38

Page 43: A Mathematical Model for the Starting Process of a

AEDC·TR·76·39

1.0

>< 0.8 '" E Ol> 0.

~ '" 0.

« 0.6 ",'

~ « ro Conditions c

0.4 0 'Vi

Moo = 1. 039 c

'" E Ape max = O. 1090 It2 :0

c 0 0.2 z tF = 40 msec

Run No. 2251

0 0 0.2 0.4 0.6 0.8 1.0

Nondimensional Time, t!lF

Figure 18. Plenum exhaust area-time curve for Mach 1.039 run.

1.0o-------------------------------------------~

Conditions

Vp/Vts = 2.5

'" ... T = 4.5 percent '" V>

VI 0.8 Moo = 1. 039 ~ c..

'" 01= 0.4 in. E' '" = O. 1090 ft2 .c A u pe max .s E 0.6

Run No. 2251 '" V> Starti ng Device: Diaphragm V>

'" ... c.. E

'" c Data '" c..

'0 0.4 :8 '" 0::

Time, msec

Figure 19. Plenum pressure versus time for supersonic run (Mach 1.039) with plenum exhaust.

to its steady value at 40 to 50 msec, This combination of occurrences would then produce

a slight refilling of the plenum, manifesting itself in the observed rebound. For the higher Mach number 0.288) of Fig. 20, the plenum exhaust curve of the previous case was retained intact up to its peak but was linearly stretched beyond the peak to make it approach the steady area needed for the tunnel to reach the desired asymptotic Mach

39

Page 44: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

number. The peak area and closing time were unchanged. The disagreement between theory and data at the knee of the curve may be charged to the uncertainty in the plenum exhaust area-time curve, which is known to vary somewhat from run to run since the plenum diaphragm rupture is not precisely repeatable.

1.00-------------------------------------------,

Cl> L. :::J VI

~ 0.8 L. c... C1>

E' '" .c U

.s '" ~ 0.6 ~ ~

c... E :::J C

'" 0::: '0 0.4 o

:;::;

'" e>::

Theory

Conditions

VplVts = 2.5

t = 4.5 percent

Men = l. 228

6f = 0.4 in.

Ape = O. 1090 ft2

Run No. 2255

Starti ng DevIce: Diaphragm

0.2 '----'-----'-----'-----'---"'----'----'----'-----''------1 o 40 80 120 160 200

Tim:.- msec

Figure 20. Plenum pressure versus time for supersonic run (Mach 1.228) with plenum exhaust.

The next parameter variation for which the model was tested was the opening time of the main starting device. Figure 21 shows the data and theory for a supersonic run made with a relatively slow opening 12-in. sliding sleeve valve instead of the diaphragm. Though not apparent from the excellent agreement for this case, there is also some uncertainty in the effective opening time of the main valve, assumed to be 30 msec for the theoretical calculation. This uncertainty results because the choke point of the tunnel changes position as the valve area increases, moving from the valve to the nozzle exit. Since the time at which this change occurs is not easily determined experimentally, the exact effective opening time is not known. In addition, the area-time curves are not precisely repeated from run to run.

To continue with the testing of the model for variations in other parameters, the program was run for a case of reduced porosity 0.5 percent), maintaining the nominal conditions of medium plenum volume and flap setting. Figure 22 shows that the model agrees well with the data. Cases were also run for which the flap flow area was halved

40

Page 45: A Mathematical Model for the Starting Process of a

E ::l VI VI Q) .....

0..

'" en ..... '" ~ u .s '" .... ::l Vl VI OJ ....

0..

E ::l c: '" c:: '0 ~ '" De

1. 0 0.-------------------------,

0.8

0.6

0.4

Theory

Conditions

VplV ts = 2.5

T = 4. 0 percent

Mco = 1. 100

of = 0.4 in .

Ape = O. 1090 ft2

Run No. 2742

Data Starting Device: 12-in. Sliding Sleeve Valve

Time, msec

AEDC-TR-76-39

Figure 21. Plenum pressure versus time for supersonic run with sliding sleeve valve and plenum exhaust.

1.0

Conditions

'" Vp/Vts = 2.8 .... ::l

'" T = 1. 5 percent V> Theory E c...

Mco = 1. 013 '" E' '" Ii f = 0.4 in. ~ u .s Ape = 0 E ::l 0.6 Run No. 2241 VI V>

E Starti ng Oevice: Diaphragm c... E ::l c: '" c:: '0 0.4 :8 '" De

0.20L---~--4LO-~L---~80----L---J12-0-~--~16~0-~-~200

Time, msec

Figure 22. Plenum pressure versus time for supersonic run with 1-1/2-percent porosity and no plenum exhaust.

41

Page 46: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

Q) ..... :::J

~ E 0.. Q)

1:' '" r; u .s Q) ..... :::J

'" '" E 0..

E :::J c: ~ 0..

'0

~ '" ""

1.0 0---------------------------------------------,

0.8 Theory

0.6

0.4

0.2 o 40 80

Time, msec

Conditions

VplVts = 2.8

T = 4.5 percent

Moo = 0.992

6f=0.2in.

Ape' 0

Run No. 2226 Starti ng Device: Diaphragm

120 160 200

Figure 23. Plenum pressure versus time for subsonic run with small flap setting.

E :::J

'" '" a.> ..... 0.. Q) C'> ..... '" r; u .s E :::J

'" '" E 0..

E :::J c: Q)

0:: '0 0

'" ""

1.0 0---------------------------------------------,

0.8 Theory

0.6

0 0 0 0.4

0.2 o 40 80

0

Time, msec

Conditions

VplVts = 2,8

T = 4.5 percent

Moo = 0.962

Ii f = 0.9 in.

Ape = 0

Run No. 2236

Starting Device: Diaphragm

120 160 200

Figure 24. Plenum pressure versus time for subsonic run with large flap setting.

42

Page 47: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

and doubled from the nominal settings. Illustrated in Figs. 23 and 24, both theoretical

calculations are in acceptable agreement with experiment. As in previous cases, the

disagreement just above the knees is due to the neglect of the finite wave propagation

time across the plenum. The disagreement very early in the run (10 msec) is due to uncertainty in the rupture time of the diaphragm, and the slowness of the model in approaching the asymptote may be charged to inadequate handling of the momentum

terms in the crossflow model.

3.3 OTHER RESULTS FROM THE MATH MODEL

To predict the data of primary interest, plenum pressure, the model must also calculate many other quantities including pressures and mass flow rates at various locations in the tunnel. Figure 25 shows the pressure-time histories for the case of nominal plenum volume (2.8) for a subsonic run with a diaphragm starting device. Besides plenum pressure, the stagnation pressure and static pressures at opposite ends of the test section are shown. This graph illustrates that the test section pressure initially drops much faster than the

plenum, as expected since the rate of plenum depletion is limited by the porosity and

flap area. Early in the run, the pressure at the exit of the test section leads the pressure at the entrance because the wall crossflow leaving the plenum increases the flow rate

from the entrance to the exit. Eventually, of course, the test section and plenum pressures approach each other as the flap and wall crossflows become negligible and the steady

conditions are reached. The stagnation pressure becomes nearly flat long before the static pressures in the test section and changes very slowly beyond 20 msec.

The subsonic case in Fig. 25 may be contrasted to the supersonic case in Fig. 26, which shows the same set of pressure curves. Besides the more rapid drop of all curves prior to 40 msec, due to the plenum exhaust, the most striking difference from the subsonic case is the approach of opposite ends of the test section to distinctly different asymptotes. The entrance to the test section levels rather suddenly at the choking pressure ratio, while the exit continues to drop to the lower pressure ratio corresponding to the supersonic Mach number. Another interesting feature is that the asymptotic pressure at the test section exit is lower than for the plenum even though the net wall crossflow must be into the plenum (to reduce the flow rate along the test section as needed for supercritical flow). Crossflow against the pressure gradient occurs because of the increasing momentum retained by the crossflow while separating off from the high-~peed test section flow. Another feature

of Fig. 26 due to this momentum is the crossing of the test section pressure curves at 12 msec, which signifies the reversing of the wall crossflow. To improve the cross flow model's representation of the effect of this momentum (which is neglected in modeling

the crossflow rate as a function of pressure difference only), the momentum correction

coefficient A15 in Eq. (7) was introduced. This quantity expediently models the small

43

Page 48: A Mathematical Model for the Starting Process of a

AEDC·TR·76·39

'" ... i;l '"

1.0

~ 0.8 a..

E> 10 .c (.)

.s !Q ::I 0.6 :a '­a.. !9 o ;: ;! ~ 0.4 o

~

0.2 0

stagnation Pressure, PctolP c

Conditions

VpIVts = 2.8

T = 4.5 percent

Moo = 0.921

6f·0.4in.

Ape = 0

Run No. 2258 Starti ng Device: Diaphragm

Plenum Pressure, P piP c

Test Section Pressure, Nozzle End (Entrance), PnlPc

Test Section Pressure, Diffuser End (Exit), PdlPc

40 80 120 160 Time, msec

200

Figure 25. Various pressures versus time for nominal conditions.

1.0

(1)

'-::J III VI

'" 0.8 I-a..

'" C> I-m .c: u .s '" ~

0.6 ::J

'" '" Q.) .... a..

'" ::J 0 ·c '" > ~ 0.4 0

~ er::

0.2 0

Figure 26.

40

Conditions VpIVt = 2.5

T = 4.5 percent

Moo" 1. 228

6 f • 0. 4 in.

Ape = O. 1090 tt2

Run No. 2255 Starti ng Device: Diaphragm

Test Section Pressure, Nozzle End (Entrance), P niP c

Test Section Pressure, Diffuser End (Exit), P diP c

Pie nu m Press ure, P piP c

Choke Pressure

80 120 160 Time, msec

200

Various pressures versus time for supersonic run with plenum exhaust.

44

Page 49: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

additional crossflow due to momentum in terms of a slightly elevated driving pressure.

The steady-state value of Ai 5 at a given steady test section Mach number was derived empirically for a given steady plenum pressure. These steady-state values of Al 5 are shown

in Fig. 27a. During a run, however, AI5 was assumed to vary according to the ramp

function of Fig. 27b to simulate the increasing momentum.

~ « ~ ~ Q)

'" ;:;:: Q> ... ::I VI

'" E <>..

1.4

1.3

1.2

1.1

1.0 1.0

Normal Shock

1.1 1. 2 1.3 1. 4 Steady Test Section Mach Number, Moo

a. Momentum correction coefficient (Al 5) and flap correction coefficient (A16 ) versus steady test section Mach number

~Iateaus Correspond

to the Asymptotic Test Section Mach Number

I A15 I

......+_->-__ -;1 A16

I I I

b. Assumed variation with test section Mach number (Md ) of momentum (Al 5)

and flap (A1 6) correction coefficients during starting process

Figure 27. Steady-state values of correction coefficients, A1 5 and A1 6·

Looking at the mass flow rate-time curves corresponding to Figs. 25 and 26 provides further insight into the behavior of the mathematical model. Figure 28 shows the flow rate entering (from the charge tube) and leaving the test section, the flow rate through the flaps, and across the porous wall for the nominal conditions and subsonic flow. The flap and wall crossflows, though leaving the plenum in this run, are shown on the positive

45

Page 50: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

axis for convenience. All data are expressed as ratios of the steady, asymptotic flow rate through the main valves. The flow in the test section is seen to rise very rapidly, in concert with the breaking diaphragm, and to approach the final flow rate only as the flap and cross flows approach zero. Both flows from the plenum reach peaks at about 3 msec, which results from the pressure differences between the plenum and test section reaching a maximum. The crossflow further manifests itself in the disparity between the flow entering and leaving the test section. Various experimentally derived flow rates are given in Ref. 4 for the pilot tunnel. These relatively well behaved results for the subsonic case may be contrasted to the tangle of curves resulting from a supersonic case with plenum exhaust (Fig. 29), which is based on the same conditions as Fig. 26. Initially similar to the subsonic case with peak flap and crossflows at 3 msec, the curves are considerably modified by the opening of the plenum exhaust at 4 msec (a programmed delay). The leveling of the flap and crossflow curves at 22 msec is associated with choking in the test section. Eventually, the plenum exhaust forces both the crossflow and flap flow to reverse and eventually to exactly balance the plenum exhaust flow rate when steady flow is reached. Reversal of the flap flow requires, in terms of the flow model (Eq. (8)), a driving pressure at the flap exit greater than the plenum pressure and in general greater than the computed pressure at the exit of the test section. Though the flap correction coefficient (A16) is applied much like the wall crossflow coefficient, the physical explanation cannot be the same since the free-stream momentum is in the opposite direction of the reversed

0.8

.lB ro ~

!'5 0.6 u:: III III

~ '" 0.4 ~ '" <ii ~

0.2

10 20 30 40 50 Time, msec

Figure 28. Relative theoretical mass flow rates for nominal conditions (Run 2258) of subsonic flow with no plenum exhaust.

46

Page 51: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

1.2 Charge Tube, mct/me(t -co)

----l.0

0.8 Test Section Exit md/me(t -+co)

In

~ '" a:::

~ 0.6 u: Flaps, mf/me(t-+co) Vl In

'" :2:

'" 0.4 :5 '" Q; Porous Wall, a:::

0.2 mpt/me(t -+co)

-0.2 '--__ "--__ "--__ ..1..-__ ..1..-_---1

o 10 20 30 40 50 Time, msec

Figure 29. Relative mass flow rates for a supersonic run (Mach 1.228) with plenum exhaust (Run 2255).

flap flow. A more likely explanation is the shock structure and flow separation at the diffuser entrance. Since precise modeling of this complex flow is beyond the scope of the present work, the flap flow correction coefficient (A16) was added to Eq. (8). Experimentally derived values of A16 as a function of steady test section Mach number are plotted in Fig. 27a along with the static pressure jump across a normal shock. The pressure rise during the reversed flap flow must be due to a flow more complex than a normal shock, since the pressure jump across the shock rises much more rapidly than experiment indicates. The lines through the circled points are cubic fits and are probably not accurate beyond Mach 1.25. As with the momentum correction, the flap correction was assumed to vary in time according to the ramp function in Fig. 27b.

3.4 APPLICATION OF THE MATH MODEL

Besides prediction of tunnel start time, there are several other ways the model can be applied in the design of a wind tunnel. Since the plenum exhaust area-time curves

can be varied arbitrarily in the model, the number of plenum valves (or total valve area)

47

Page 52: A Mathematical Model for the Starting Process of a

AE DC-TR-76-39

to achieve various start times can be determined. In addition, the sensitivity of the start time to the shape of the area-time curves can be predicted. This is important because it indicates how finely controllable and repeatable (and expensive) the valves must be. Another potential application is estimation of the structural loading of the test section wall due to transient pressure differences between the plenum and test section.

To illustrate some of these possibilities, the program was run for the three different plenum exhaust area time curves shown in Fig. 30. The solid line is a typical area-time curve from Pilot HIRT, and the two broken lines are variations having the same average open area. Processing the model with the triangular curve should indicate whether a curve with the same peak as the basic curve but having a different shape would significantly affect starting time. The trapezoidal curve should indicate whether a smaller number of valves kept at full open for a longer time could achieve the same start time as the more peaked curves. The plenum pressure-time histories for these three curves are shown in Fig. 31. It is clear that the triangular curve has little effect on the shape of the pressure curve and does not affect starting time. On the other hand, the trapezoidal curve has a larger effect but still does not lengthen the starting time. The logical conclusions for the tunnel configuration studied here is that very accurate controllability is not required of the plenum valves and that the tunnel could be started just as quickly with about

1. 0 ..-------.:---~-.;:----------,

~ O. 8 E

Q) c.

!'f <l> 0.

« 0.6 ro Q)

'-« ~ o 0.4 VI c Q)

E :.c c ~ 0.2

I

I I

Area Is Same under All Curves

I "'-, I '" I r--------~ ------, I, \: \ I '\ I '" \ I , \

I '" \ I '" \ I " \ I '

-- Basic Curve --- Trapezoidal Curve --- Triangular Curve

o L-~ __ ~~ __ ~ __ ~~ __ ~~ __ ~~

o Q2 Q4 Q6 Q8 1.0 Nondi mensional Ti me, tltF

Figure 30. Nondimensional equal area plenum exhaust area-time curves.

48

Page 53: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

2/3 of the available valve area if the valves were kept fully open for a longer duration. If these results were found to apply to a large scale facility, a considerable cost reduction could be realized.

'" .... :::J VI In

'" .... CL Q)

C"l .... '" .c: u .£ VI

'" boo :::J In In

'" '-CL VI :::J 0 '': co > '0

~ co a:::

1.0

Conditions

V plV ts = 2.5

0.8 Moo = 1. 04

T = 4.5 percent

0.6

-- Basic Plenum Exhaust Curve (Fig. 30) --- Trapezoidal Curve, Same Area --- Triangular Curve, Same Area

0.4

0.2 ~ __ ~ ____ ~ __ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ __ ~ _____ d

o 40 80 120 160 Time, msec

Figure 31. Plenum pressures versus time for three plenum exhaust area-time curves with same integrated area.

200

A second example of application of the model is illustrated by Fig. 32, which shows

the pressure differential across the wall at the test section exit as a function of time for several conditions. From these results, it can be seen that reducing the porosity has little impact on wall loading, but raising the Mach number from 0.921 to 1.228 or reducing the flap gap by 1/2 significantly increases the loading by 25 and 50 percent, respectively. In contrast, lengthening the effective valve opening time from 2 to 30 msec reduces the peak load to about 1/3 of the nominal case. The peaks of the curves for the diaphragm runs occur just as the diaphragm reaches its full open area. The curve for the valve run, however, peaks first when the plenum exhaust area peaks and later when the valve reaches its steady area around 30 msec. Two data points for the peak pressure differential from Ref. 4 are shown in Fig. 32 and agree with the model.

49

Page 54: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

0.3

u a... ~ 0.2 a...

I 0-

.e::

'" ~ Q) .... Q.)

!E Cl Q) .... ~ VI VI Q) L-

a... 0.1

Sym

o Experiment (Ref. 4)

Reduced Flap Setti ng, /) f = 0.2 in. (Run No. 2226)

High Mach Number, Mro = 1. 228 (Run No. 2255)

(

Nominal conditi~ns (Run No. 2258);

VplVts - 2.8

T = 4.5 percent

/ Mro = O. 9~1 Ii f = 0.41 n. Diaphragm

rLOW Porosity, T = 1. 5 percent / (Run No. 2241)

(

Valve (Run No. 2742)

Notes Indicate Deviations from

Nomi nal Conditions

O~---d----~----~----~----~--~ o 10 20 30

Time, msec 40 50 60

Figure 32. Transient loading of test section wall at exit for nominal conditions and selected deviations.

4.0 SUMMARY AND CONCLUSIONS

A mathematical flow model for the process of starting a transonic Ludwieg tube wind tunnel has been developed. The present model uses the integral continuity equation for three specific control volumes, the steady form for the diffuser and test section control volumes, and the unsteady form for the plenum. The solution in the two former control volumes also uses the steady, isentropic energy equation, assumed applicable throughout the diffuser and test section control volumes for a given set of stagnation conditions. However, the stagnation conditions are allowed to vary in time according to the well-known exact solution for an unsteady, one-dimensional expansion wave. Application of this model

takes the form of a numerical solution of 19 simultaneous algebraic equations to be solved at successive time points until the flow becomes steady. The iterational solution procedure

50

Page 55: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

for these exact equations becomes nonconvergent in the vicinity of choking and is replaced

with an analytical solution to a set of small perturbation equations until the choke point is passed. The numerical procedure is programmed for computer solution.

The mathematical model was evaluated by comparison with experimental plenum pressure-time histories from a small Ludwieg tube wind tunnel. Agreement between the

model and experiment was found to be good. Other numerical results from the computer model were also presented to illustrate application of the model to design of a large facility. Specific conclusions drawn from the present study include (1) verification of the model's ability to predict accurately plenum pressure-time histories and, therefore, tunnel starting time; (2) prediction that starting time is insensitive to the precise shape of area-time curve

of the plenum exhaust and, therefore, that very precise controllability is not required of the plenum valves; (3) prediction that starting time is not significantly lengthened by

even large changes in the shape of the plenum exhaust area-time curve if the area under the curve and open time are maintained, thus permitting considerable reduction in the number of start valves suggested by data from the pilot facility; and (4) verficiation that

aerodynamic loading of the test section walls (and, therefore, the support structure) can

be reduced by lengthening the opening time of the main starting valves, within limitations of the required starting time.

REFERENCES

l. Starr, R. F. and Schueler, C. J. "Experimental Studies of a Ludwieg Tube High

Reynolds Number Transonic Tunnel." AIAA Paper No. 73-212, January 1973.

2. Ames Research Staff. "Equations, Tables, and Charts for Compressible Flow." NACA Report 1135, 1953.

3. Hottner, T. H. "Investigations at the Model Tube Wind Tunnel." AVA Report No. 64 A 04 (Technical Translation), 1964.

4. Varner, M. 0., Stallings, D. W., and Starr, R. F. "Experimental Evaluation of the Aerodynamic Design Criteria and Performance of a Transonic Ludwieg Tube Wind Tunnel." AEDC-TR-75-132 (AD ), October 1975.

5. Porter, J. H., Mayne, A. W., and Starr, R. F. "Boundary-Layer Development in the

Nozzle and Test Section of a Transonic Ludwieg Tube." AEDC-TR-76-35.

6. Hodgman, Charles D. (ed.). Handbook of Chemistry and Physics. The Chemical Rubber Co., 1961 (42nd Edition).

51

Page 56: A Mathematical Model for the Starting Process of a
Page 57: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

APPENDIX A

SMALL PERTURBATION SOLUTION

This section presents the essential details of the small perturbation solution, the knowledge of which may be important to a user of the computer program HIRTSMI. Table A-I shows the small perturbation variables and the exact variables they represent. Use of the expansions (Eq. (22)) in the exact equations listed in Table I produces the

approximate small perturbation equations listed in Table A-2. Definitions of the coefficients

AI, Bl, Cl ... , if needed, should be extracted directly from the computer program (subroutine SMPERT) where they are coded as CAl, CBI, CCI, ... , respectively. The equations of Table A-2 can be solved analytically without recourse to numerical iterative procedures. To accomplish this task, the linear equations were solved algebraically to eliminate all variables except those contained in the quadratic equations, Eqs. (12) and

(13). After eliminating all variables but E12 and E13 from the two quadratics, Eqs. (12) and (13) were converted to a single quartic (subroutine QSIMUL), which was solved

analytically for its four roots. If necessary, the reader can extract the algebraic details of this procedure from the computer program. The correctness of the algebra has been infened from computation of residuals from the equations of Table A-2 (replacing the

zeros on the right-hand side with residuals). For all cases tested, the residuals were found to be on the order of the computer's accuracy (~l 0-16 ). Similarly, the accuracy of the

expansions in representing the exact equations was tested by computing residuals from the exact equations using perturbed values for the variables. The largest residuals (percentage basis) were generally less than 10-4 .

53

Page 58: A Mathematical Model for the Starting Process of a

AEDC·TR·76·39

Table A-1. Perturbation Variables

Original Variable Perturbation Variable

· me (t*) El

· mpe (t*) E2

· mf (t*) E3

· mpt (t*) E4

Pp (t) E5

· (t*) md E6

· met (t*) €7

Met (t*) E8

Peo (t*) E9

Teo (t*) ElO

Pt (t*) Ell

Pd (t*) E12 -""'

Pn (t*) E13

· m 0

(t*) E14

P (t*) E17 a p

Pp (t*) E18

Tp (t*) E19

Ae (t*) EAe

Ape (t*) EApe

I Af (t*) EAf

(a)Variables 15 and 16 were eliminated.

S4

Page 59: A Mathematical Model for the Starting Process of a

Program Equation

Numbera

1 AIEl

2 A2E2

'" ASES ,y

Table A-2. Perturbation Equations

+ B1 E9

+ B2E17

+ BSEAf

Perturbation Equationb

+ CIEAe + D1 EIO = 0

+ C2 EApe + D2 E19 = 0

+ C3 E17 + D3E12 = 0

4 A4E4 + B4E17 + C4 E11 - 0

S ASES + BSE2 + CS€3 + DS€4 + ES = 0

6 AG E6 + B6€4 + C6 €7 = 0

7 A7€S + B7€3 + C7 €1 '" 0

8 Ag€7 + Bg €8 = 0

9 A9 E9 + Bg€g '" 0

10 AIO €10 + BlO€S = 0

11 AII€ll + Bll €13 + C1I €12 = 0

AEDC-TR-76-39

12 A12€6 + B12 €14 + C12(PctoE12 - Pd €9) + D12 (Pc t o €12 2

- Pd€g) = 0

IS

14

17d

18

19

A13€7 + Bl3 E14 + C13 (Pc t o €13 - Pn€g) + D13 (Pc t o €13 - Pn €g)2 = OC

A14 €14 + B14 €9 + C14 €10 - 0

Al7E17 + B17E18 = 0

AlSE lS + Bla E5 + CIS = 0

A1g €19 + B19 E18 + C19E17 = 0

(a) See Table 1 for Corresponding Exact Equations

(b)Refer to Listing of Computer Program, Subroutine SMPERT, for Definitions of Ai' Bi' ...

(C)Variables PCto ' Pd , and Pn Are Evaluated at t* - 6t As Are All the Coefficients Ai, Bi, ...

(d)Equations 15 and 16 Were Eliminated

55

Page 60: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

APPENDIX B APPROXIMATED EQUATIONS

Reversion of Eqs. (11), (13), and (7) requires a time-consuming numerical procedure which has a major impact on the run time of HIRTSM 1. To reduce the number of iterations needed for the reversions, approximations to the original equations were used to provide accurate initial guesses to the numerical procedure. Since these approximations may be of general interest, they are listed below. A good approximation to the mass flux-Mach number wave equation was obtained by expanding

(B-1)

in a series of powers of M using the binomina1 expansion. Reversion of this series for 'Y = 1.4 then produced

M = A

m - 1.200 ~2 + 2.0400 ~3 + 4.0480;ti4 + 8.7965 iiJ.5

+ 20.106 iiJ.6 + 47 .960 ~7 + ... (B-2)

where Iri == mime. The approximation used for the energy equation is much simpler and was discovered quite by accident. It was found that the equation

y+l

~2 = p2/y _ pY (B-3)

could be very reasonably approximated over the interval 0 ~ M ~ 1.4 by the ellipse

where

and

p

~ + p-;: = 1 ("'-')2 (- ,.....,*) 2 ffi* 1 - p*

,.....,=Jy-l~ m 2'

m o

p -

]"5* m ,

P

Po

56

m* for M

(B-4)

1

Page 61: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

APPENDIX C DESCRIPTION OF THE COMPUTER PROGRAM HIRTSM1

Because of the complexity of the numerical calculations, potential users of the model must have access to the computer program (a manual calculation on a scientific calculator took about six hours to step through five time increments). For this reason, a listing of the source deck is given in this section along with a brief description of its content and use. Table C-l lists the 15 subroutines comprising HIRTSMI. Of primary interest are the routines MAIN and SMPERT, which house the exact model equations and the small perturbation equations, respectively. Table C-2 defines some of the more important variables used in the program, information which is potentially useful if a program modification is necessary.

Of primary interest to the potential user, however, is the input, instructions for which are listed in Table C-3. The first card (NCTL) allows the user to retain manual control over some of the superficial program logic. While intended primarily for debugging purposes, the NCTL variable may be used to restart a run previously written onto a data file. To make a normal run and relinquish all control to the program, a blank card may be used. The second card (lNSTR) provides the means to invoke certain program options via integer instructions. Table C-4 gives a set of values which have been used successfully to date, though occasional adjustments are necessary for some cases. Of particular importance for supersonic cases is INSTR(26). As the program approaches the choke point in the calculation (timewise, speaking), the number of iterations (ITER) for convergence always becomes inordinately large (~IOO); and the program must switch to the small pertubation solution entirely by automatically setting INSTR(23) = 2 when ITER;;:' INSTR(22). However, for supersonic cases, the solution is often not close to its asymptote, and significant error can accumulate from the small perturbation solution. To reduce this error, INSTR(26) may be used to direct the program to attempt to revert back to the exact solution a certain number of time increments (the input value of INSTR(26)) beyond the choke point. Sometimes the attempted reversion will be unsuccessful because the solution is either still too close to the choke point or is already too close to its asymptote; in which case ITER;;:' INSTR(22) will occur, and the program will continue with the small perturbation solution. When this situation occurs, the exact solution is not given a chance to correct the accumulated error, which may affect the asymptote by as much as 10 percent. If this result is encountered, different values of INSTR(26) should be tried, since even a temporary successful reversion to the exact solution can improve the accuracy of the solution considerably.

The remaining data cards constitute primarily a description of the tunnel and its

geometry. While most of the table entries are self explanatory, some of them deserve

more emphasis; On card number 4, the values of Al5 and A16, if used, should be entered

57

Page 62: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

as negative to invoke the use of ramps. On card number 5, the weight used in computation of the test section pressure for subsonic flow is programmed as 0.5. The input value is used only in supersonic flow. On card number 6, the variable A14 is used to sort the roots from the quartic. A value of -0.2 has been found more effective than -0.1. If the root sorting logic finds more than one value of E13 acceptable, the program will halt in bewilderment, requiring some trial and error adjustment of A14 by the user. On card number 7, it has been found best to keep $EMAX ~ PERR/IO. The quantity AlO is used to obtain debugging information when T > AlO. Following card number 10, three separate decks for the nondimensional area-time curves for the main valves, plenum exhaust valves, and flaps must be provided. Each deck must contain the number of cards entered on card number one. The times and areas must be nondimensionalized by the values entered on card numbers 9 and 8, respectively, and, therefore, will vary only between zero and one. The times must proceed in ascending order. Table C-5 gives recommended values for some of these entries. The remaining input instructions (11, 12, ... ) may be ignored unless NCTL has been entered as other than zero, in which case the user is invited to decipher the program logic in order to determine the endless uses to which this option may be put.

Table C-6 presents a sample job stream and data deck. The first four cards are peculiar to the computer facility. The first "GO II card designates data set 03 a dummy in order to suppress debugging printouts sent to DSRN* IDEBUG. The remaining data cards may be understood via Table A-3.

A portion of the output from this run is shown in Table A-7. The first four pages show the input data along with the initial values of most program variables. In addition, an interpretation of the INSTR(I) options selected is printed. The flow area-time curves are the redimensionalized form in units of seconds and square feet (or whatever units are used in the input data). The form of the remaining output is that due to the selection of INSTR(5) = 2 and generally displays all computed properties at the midpoint or end of each time interval. Each five lines of data separated by a space corresponds to a single time interval, and each block of five numbers corresponds to the similarly positioned block of five variable names in the page heading. Interpretation of these names may be accomplished via Table C-2. The illustrated run went to 180 msec, generated about 1,700 records (lines of print), and required 42.6 sec of central processor (CPU) time on an IBM 370/165. This run may be used as a check case by potential users.

Table C-8 presents a machine listing of the final source deck. All necessary subprograms are included except those available from the IBM subroutine library, from which HIRTSMI uses DABS, DSQRT, DSIN, DCOS, DATAN2, CDSQRT, and CDABS.

*Data Set Reference Number

58

Page 63: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

Table C-1. Description of Subroutines

PRIMARY MODEL SUBROUTINES

Subroutine Name

MAIN

SMPERT

Function

1. Overall program control

2. Exact model equations

3. Convergence control

Small perturbation equations

SPECIALIZED UTILITY SUBROUTINES

INPUT

CONST

INIT

DUMP

PRINT

Obtains initial data from DSRN lIN

Defines certain program constants

Initializes certain program variables

Prints out all program variables at beginning and end of run and as needed for depugging

Prints numerical solution and controls paging

GENERAL UTILITY SUBROUTINES

SOLVER

BINOM

REVERT

QSIMUL

QANDC

CVBRT

DREAL

DIMAG

Provides logic for numerical reversion of a function (see Fig. 10)

Expands a binomial to seven terms

Reverts a series to seven terms

Converts two conics to a quartic

Computes the exact roots of a quartic

Computes the exact roots of a cubic

Returns the real part of a double precision complex number

Returns the imaginary part of a double pre­cision complex number

59

Page 64: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

REAL ARRAYS

Variable Name

AREA

AREATS

AREAM

TV

E

TVF

TDELAY

RW

V

RSTR

ISTR

REAL SCALARS

Pxi

MDxi

Txi

Rxi

Mxi

Axi

Table C-2. Definition of Major Program Variables

Definition

Input nondimensional area-time curves for main valves, flaps, and plenum exhaust valves

Interpolated areas for time t*

Peak of area-time curves (dimensional)

Nondimensional times for area-time curves

Convergence criteria errors

Total time for main valves, flaps, and plenum exhaust valves (dimensional)

Delays times for first motion of valves and flaps

Coefficients for the reverted expansion of the mass Flux-Mach number wave equation

Array equivalenced to major property values

Array equivalenced to certain real commoned variables to simplify writing of solution onto a storage device for restarting a run

Array equivalenced to certain integer vari­ables for storage and restarting

Pressure

Mass flow rate

Temperature

Density

Mach number

Flow areas

60

Page 65: A Mathematical Model for the Starting Process of a

x-codes:

x N

P

PT

D

= T

= CTO

CT

E

= F

PE

C

i - codes:

i blank

i 1

i 2

i "" 3

G

R

PERR

KF

KW

TSL

TSH

AEDC-TR-76-39

Table C-2. Continued.

Nozzle exit (test section entrance)

Plenum

Plenum at time t (PPT) or wall crossflow (MDPT)

Diffuser entrance (test section exit)

Test section midpoint (PT)

Stagnation condition, charge tube

Charge tube

Main valve exit

Flaps

Plenum exhaust

Charge conditions

Values at current time interval and current iteration

Converged values from last time interval

Values from last iteration, current interval

Scratch area

Specific heat ratio (~)

Ideal gas constant

Error limit on pressures

Flap flow coefficient

Wall crossflow coefficient

Test section length

Height

61

Page 66: A Mathematical Model for the Starting Process of a

AE DC-TR-76-39

TSW

TSP

TSA

TSWA

TSV

CTD

CTA

PV

PVOTSV

TAUW

T

TI

DT

TSTR

TSTOP

Ai

INTEGER ARRAYS

INSTR

NVT

INTEGER SCALARS

I DEBUG

lIN

lOUT

ITER

Table C-2. Continued.

Width

Perimeter

Flow area

Wall surface area

Volume

Charge tube diameter

Charge tube flow area

Plenum volume

Plenum: test section volume ratio

Porosity

Time at end of current interval (t)

Time at end of last interval (t - ~t)

Time increment

Midpoint of current interval (t*)

Time for termination of run

Miscellaneous program constants

Program control instructions (see input)

Number of time pOints in each of three input area-time curves

Data set reference number (DSRN) for debugging output, normally dummied

DSRN of input data (usually 05 for card reader)

DSRN of primary output data (usually 06 for line printer)

Number of iterations

62

Page 67: A Mathematical Model for the Starting Process of a

NP

IFLGi

Variable Index Value

NCTL 0

1

2

3

4

5

6

7

8

9

10

11

12

13

INSTR 1 06

03

2 05

3 06

4

5 1

2

6 ,<0

0

7 1

2

8 1

2

9 1

2

10 1

2

0

AEDC-TR-76-39

Table C-2. Concluded.

Printing time interval

Miscellaneous program control flags

Table C-3. Description of Program Input a. Main Program

Action

Proceed through normal programmed solu tion procedure

Read INSTR(*)

Write heading

Read data file and print reaul til

Proceed to normal calculation

Call INPUT

Call INIT

Call CONST

Call DUMP

Call SOLVER

Call PRINT

Call BINOM

Call REVERT

Stop

Print debugging data

Skip debugging prints (DSRN 03 Is Dummy)

Input DSRN

Output DSRN

Printing time interval

Pressures in psf

Pressures in psi

Call PRINT on every i tara tion f Call PRINT on ON convergence set to zero when IDEBUG

Extrapola te to next time interval as an inl tial guesB

Do not extrapolate

= lOUT

Use reverted series from mass flux - Mach number wave equation Use second-degree approximation

Use iterative solution to energy and wave equations

Use approx1ma te expansions for energy and wave equations

Average current value with previous average value

Average current value with previous unaveraged value

Do not invoke option

63

Defaul t Format Value

0 13

2613

03 (One Card)

05

06

1

2

0

2

1

1

0

Page 68: A Mathematical Model for the Starting Process of a

AE DC-TR-76-39

Variable Index Value

INSTR 11 >0

12 1

>1

13 ,,0

0

14 >1

1

15 ~03

03

16 [1,1000 )a

17 [1,1000)

18 ~03

03

19 [1,1000)

20 0

>0

21 0

~O

22 0

>0

23 0

1

2

24 "0 0

25 1

2

26 0

>0

Table 3. Continued a. Concluded

Action

Iteration limit beyond which current weight is

Do not invoke option

Divide error limits PERR and $EMAX by INSTR(12) difference between successive time intervals (errors) x (INSTR(12) )

Print only time and pressure data

Print everything

halved

if the fractional is less than

Set DT ~ DT*INSTR(14) based on INSTR(12) ceiteria, do not cut error limi ts

Do not invoke option

Read solution from DSRN ... INSTR(15) , skip other input

Do not read solution

First record number to be read

Last record number to be read

Write solution on DSRN ~ INSTR(18)

Do not write solution

First record number to be written

Do not invoke option

When weight is halved, increment INSTR(l1) by INSTR(20)

Do not invoke option

Set INSTR(7) ~ 2 to extrapolate next time interval when weight is halved

Do not invoke option, set INSTR(22) ~ 23 1-1

Set INSTR(23) ~ 2 when number of iterations , INSTR(22)

Do not use small perturbation expansion

Use small perturbation initial guess for next time interval

Use small perturbation expansions as solution

SMPERT prints small perturbation results

Does not print without error

Use isentropic solution in plenum

Use anisentropic solution in plenum

Do not invoke option

Revert to exact equation after the input number of time increments beyond choking

aSquare brackets [] indicate the range of the variable.

64

Defaul t Format Value

0

1

1

03

0

0

03

0

0

0

9999999

0

0

2

9999999

Page 69: A Mathematical Model for the Starting Process of a

Variable, Card Value units Numbera

NVT(I) 1 [2, so] NVT(2) [2, so] NVT(3) [2, so]

PC, psia 2

Te, OR

TSL, ft 3

TSH, ft

TSW, ft

CTD, ft

PVOTSV

TAUW 4

!{W, ft/sec

Table 3. Concluded INPUT b. Subroutine

Meaning

Number of area-time points for main valve Number of area-time points for plenum exhaust Number of area-time points for flaps

Charge pressure

Charge temperature

Test section length

Test section height

Test section width

Charge tube diameter

Ratio of plenum volume to test section volume Porosi ty (fraction, not percent)

valve

KF, ft/sec Wall crossflow coefficient ~

Flap flow coefficient from Dr. Varner's flow model

AlSb Crossflow constant MDPT = -AWOKW x (PP - AIS x PT)

Al6 b Flap flow constant MDF = -AF/KF x (PP - AI6 x PO)

A17 S >0 Tes t sec tion pressure weight, PT AI7 x PO + (1.00

R, ft2/sec2_oR 6 Perfect gas constant

G Ratio of specific heats (1')

All (O,1)c Fraction of new values to be accepted

A13, sec Set INSTR(23) ~ 2 When T > AI3

A14 e:12 and e:13 limi ts

DT, sec 7 Time increment for numerical calculation

TSTOP, sec Time to halt calculation

$EMAX (0,1) Maximum allowable error - used in SOLVER! PERR (0,1) Maximum allowable error - used in MAIN fractions,

AID, sec Time at which 1NSTR(6) is set different from zero

AREAM(I) , ft2 8 Maximum main valve flow area

AREAM(2) , ft2 Maximum plenum exhaust flow area

AREAM(3) , ft2 Maximum flap flow area

TVF(I) , sec 9 Final time in main valve area-time curve

TVF(2) , sec Final time in plenum exhaust area-time curve

TVF(3) , sec Final time in flap area-time curve

TOELAY(I) , sec 10 Time delay for main valve TOELAY(2) , sec Time delay for plenum exhaust

TOELAY(3) , sec Time delay for flaps

TV(I,1)

! ! l 1

AREA(l,1)

TV(2,1) [0. ,I.] Nondimensional time (final = 1.0) and for AREA(2,1) nondimensional area (maximum = 1.0)

TV(3,1) AREA (3,1)

nd 1 0 Return 1

l 1 Read ISTR(I2)

2 Read RSTR (I2) one card

3 Read V(I2,13)

12 Indices of array elements to be read I3

1STR >1 } Enter one per card each preceded by a RSTR >1 no. I card above - see common and

V >1 equivalence statements to determine indices

acar4 order in Input Deck

bIf l4't!1!6 than Zero, P..ampe of Fig. 27b Will Be Used

cRound Brackets Exclude End Points

QTbeae carda Omitted Unless NCTL F 0

- AI7) x PN

not percent

{ main valve }

{ plenum exhaust }

{ flaps }

Note: Xf INSTR(3) - I, any .et of units for which gc - 1 1n F - l/Ro ma w111 work properly.

65

AEDC-TR-76-39

Default Fo:rmat Value

2613

SEI6. B

SEI6. B

SEI6. B

1.0

1.0

1.0 SEI6. B

SEI6. B

O.S

1.070

-0.1

SEI6. B

1.070

SEI6.8

SEI6.8

SEI6. B

2EI6.8

2613

13 EI6.B E16.B

Page 70: A Mathematical Model for the Starting Process of a

AE DC-TR-76-39

Table C-4. Suggested Values for INSTR(I)

I Suggested Value of

INSTR (I)

1 03

2 05

3 06

4 01

5 02

6 00

7 02

8 01

9 01

10 01

11 40 a

12 10

13 0 or 1

14 01

15 03

16 00

17 00

18 03

19 00

20 lOa

21 00

22 01

23 01

24 00

25 02

26 Oga

(a) Adjustment May Be Necessary for Specific Cases

66

Page 71: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

Table CoS. Recommended Values for Certain Variables

Variable Names

KW, KF

A15, Al6

All

Al3

Al4

Al7

PERR

$EMAX

Recommended Value

See Fig. 7

See Fig. 27a, Enter Negative

0.5 or Leave Blank

Leave Blank

-0.2

0.9

0.49999999E-04

0.49999999E-05

Table CoG. Sample Jobstream and Input Data Deck

1.~~iORITY 2 livKF05145 JOB (iRQ, Ii VRV00090901'VJ7A~J1AI~094S2S~O~E.MSGlEVElm(2901,ClASSmA,TIMEa3 ii EKEC FO~TEPDS,PGMNO=V~~00090 liGO.FTOJF~Ol DO DUMMY I(GO.FT05FOOl DD ® (lOO

02 01 20 10 10 00 20 01 00 09 02 10 02

O.iSt!150iioE+O) 2.11 4000nOE 00 O.04000000E 00 0.90000000E 00 0.111760~OE+04 O.OOlOOOOOE 00 0.4659ili6E 00 O.030tH)oiiOE 00 O.OOOOOOiiOE 00 o.oooooonOE 00 1.00000000E 00 O.OOOI)OOOOE 00 0.16400000E GO 0.20GOOOOOE 00 O.JOOOOOOOE 00 0.450000fJ!IE 00 O.SOOOOOOOE 00 0.660000(;0£ 00 0.8000oo00E 00 0.900000nOE 00 1.00GOOOnOE GO O.OOOOOflQOE 00 1.000noono!!: 00

005JOOOOOOI::+O) O.61HoOOOE 00 0.31000000E$03

O.16330000E 00 1.!6200000e: 00 2.S0000000E 00 O.20000000e:+OJ ~1.049B8410E 00 ~1.08312800E 00

1*

1.40(HIOOOOE 00 o. H~OOOOOOE 00 0.90311 fl4E 01 O.04000iHIOE 00 0.005000001:: 00 Q.ooooooooe: 00 1.000000001:: 00 O.OOOOOOOOE 00 0.9t!JOOOOOE 00 0.9S000000e: 00 1.OOOOOOOOE 00 O.M298055E 00 0.97332608£ Oil O.64902737E 00 0.52418305£ 00 0.49810913E 00 o.48687801e: 00 1.OOOOOOOOE 00 1.0!)(1(')0000E 00

O.49999999E-05 0.49999999[-04 0.09167000E 00 0.00000000£ 00 o.ooooooooe: 00

67

,,0.20000000E 00

Page 72: A Mathematical Model for the Starting Process of a
Page 73: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

TABLE C-7 SAMPLE OUTPUT FROM HIRTSM1 FOR RUN 2742

69

Page 74: A Mathematical Model for the Starting Process of a
Page 75: A Mathematical Model for the Starting Process of a

'" ... c< .... VI :2

• ... '" ... <II Z .. . .., '" ... c< ... .~

"I '" ~' ~ ... til Z

.... <>

... "I c< ... til Z ... Q ..o: .... ~ .... N, O!:c< ....... ' <II VI ~;f!

..oNOO

'" N :x:>: ..... n'" zz ... -

-$'0-'10 ru ...

"'''' ....... VI VI Zz .......

:'\I~!J'I"'I

XX ....... .,,,Il ZZ --

"' .. <!I J to. ... ... <!I J ... 1"1'" <!I J ... ... "I'" <!I J ... ...... '" .... ... ....

"'" J ... ...

"I'" ...

"'0 tAl ... ... Q.o ....

30 ... Z

W'" <!I./'I .. <L Z

Wc> <!I .. 30

Z./'I

JO ... U Z

....

, .... , ..

·.,nOt

4-0 ...

-"I .., ... ,. Z

- ... -:'\1-

:> Z

-"I .... .... '" Z

"'0 lit .... ....

>-0 U Z·

7:0 Z

00 z

0<0 <!I J ... :xl:> <!I J I.L

-0 <!I J LL

1"1 CO

o <> <>

10.<> ,",0 .. .. ..

N · '" 1"1 ."

o

'" <> lIo "',.

'" '" ... '" · .. ... '" I o

'" lB-:> :>0 CO .... '" <>

o • · '" ... .. '" >",

til'" >-'0 00 >" Q.O

./'I. "I · <:>

'" '" o :>

'" 1!1'" Vlo ... .., ... D .... · ::>

'" Q

... :>

'" <> <>

";0

"'0 .... ... .... N · <>

<>

'" o 1"1

'" '> (JI

"'4 ... '" ... '" (JI · o

· <:>

o <>

'C~

"'''' til 1"1 ' ......

'" VI · <>

... Q

o

'" '" "'" VlO "'0

'" .... N · ""

.... '" , '" :>

'" lito 10.0 ......

", .... (JI · <>

... '" , '" 4 ...

lit ... n._ .....

M <> 0< · ::>

'" :>

o ", ... ,. .....

W­.. '" Jl .0 .. · '"

1"1 '" , o ..

" '" ", ... 0'" ,.'" .. -

'" ... . '"

:> .0 N

'" ".", Q. ....

", ~ N . <>

... '" , o .0

'" ...... a. ... c<.o

'" • N · '" 1"1 <>

'" <:> <> .....

Q.", Q. ...

N

'" .... · <>

... 0'

o <> 0.

'" Q.O

.... '" "' ... '" · ",.

... .. , o .. '" D

Q. .. "'.0

<> ~

'" · .. M ".

o ::> 0:> o

UO ... 0

::> I') III · '" ... " , C> ",

'" .0 Up.. "'",

<> 4 N

,;

o :> <> '" UIIl

Q. ... '"\j ./'I

· ::>

... '" o Q ..

"'0 WI/'I Q. ....

N

'" ... · .. 1"1

'" <:> <:> <:>

CO'" 1-0 UO ..... ...

'" · '" ... .. I o ", (JI

0.0 ....... U.o !x'" ....

N · ::>

1"1 <>

'" '" <> ""0 .... '" U .. Q.N

'" .... · '" 1"1 0'

.. '" , o .0

'" ... ., Q.,.. "'",

<> <t N · <>

..., '" => <>

'" ~o Q. .0 30 ...

,"\j

./l .... · '"

o

'" <> -eo> ,,"0 1-0

71

o 1"1 III · ::>

... o '"

tAl o 11:

... ,U o

'11:

co · (3

.. · '"

o · "

:> · .. o ... " '" ""CI'

.... CO UN ..... .... · '"

4-

'" o ... N '\I

UO< "",CO

N ... · '" ..,

"" '" <> ::> .

",0

' .. 0 .... ."

::> ... Jl · '"

... '" o o

'" .. Z'" Q. ....

N

'" ... · .. ... .. <:>

'" '" .. 0", Q.­

N

o o lit

-.:. .... III ...

;z lit

... I-

!!! · <>

<> · '"

.. · <>

'" · <>

<> · <>

· <>

<> · <>

N ... U

'" '"

N ... '0 lit

'" W Q. o

'"

'" tAl o lit

<> · ..

c:> · '"

<> · '"

<> · <>

o :> <>

"\I 0' Q.'" Q. ...

N 1/'1 .... · <>

'" · <>

'" · '"

o .0

<> <>

1-./'1 Q.-

'" ./l

· ::>

.... <>

o .... orN ....... VI'" ........ o. :It 1"1 ... · <>

'" '" o <>

0 .... :It ... 00 til ... :1[<1) ...

'1 <>

'" '" o III "' ....

"':xl 0 ... III 0< "'..,

I') ", · '" 0:>

'" o .., 0'" ~,~

01"1 "'1"1 1-1"1 ... ~ <>

<> <> o

'" 0 .... 1. .... O:xl Vlru Q.",

'" c~ · o

N

'" • o :> <> ", ......

00 <> :> ... · <>

... "" o <>

'" 1"1<> 01/'1 "' .... ,,"N

... LL o lit

'" ... · C>

o · Q

... "" o '" 0.

1"1'" Q...n Q. ....

ru III -· <>

1"1 0'

o

'" '" ... "" ZIIl Q. ....

'" '" ... · o

ru

'" o .... 00 "'CO U ... 0 .... "'CO

:xl

'" · <>

'" o

C> .... UO'

... '" U.., 0_ r:o

:J) I\J · '" I\J

'" C>

'" ON VlN ,.. .. O:J)

"'", ."\1

,. .. -' '" o t-

O · '" ru

'" , o '" >-0 .. '" JO

tAl'" 00 1-0

>­.. J W o ...

~ '"

· ".

o <> "'0 0'"

.... '" U'" 30/\1

III ... · '"

· '"

o

"" '" "'0 '::>0 .... 0 0-'"

'" .n · <:>

AEDC-TR-76-39

'" '" o (JI

'" .... 0) .... .. ...

'" :II N · '" I

C>

'" o 4-., ...

.... '" i"'~ i ! ! ';1

'" <>

o ... "I

'" . ., ... C'" ... .... • · '" ...

<>

'" <>

'" C>

"'<> .. to N ~

· '" 0' 0'

-'" , o <t .., to ........

"N '" .0

· ::>

.. CO

o '" CI!l ... '" .... ... ..... '" <:> ... · .. ,

· <> I

'" '" o <> <:>

4-0 ... 0

"' .. '" .. N · '" , '" ...

"', 0'

o ::>

'" "",0 _0 CO .,.

'" ..0 · '" <>

'" o

'" <> ... 0 .... 0 "",0

'" 0> 'Ill · '"

... ::>

.", ::> <>

'" "'0 ,,0 o CO

'" · '"

'" '" , o • "', "".0 ",0 .. :0

N 1"1 • · o

0' CO , o ",

'" 0'0 ",,0 C .0'

III ru ~ · '"

"" ::>

'" '" <> ... '" "'0 «'" 0,

<>

'" · '"

Page 76: A Mathematical Model for the Starting Process of a

-..J N

G G041 bPI G14102 GPlOd! DOG G1410G 0.14UOOOOOO 01 0.400000UOO 00 U.24~t~UO 01 U.20000~OOO OU 0.120000000 01 0, 7l4d!6~710 ou 0.265714290 00

GOG~ll GOGPI SG14102 TOG TOGPI 00G141 GPOG141 0.350000000 01 O.583333330~ 00 0.447213600 00 U.i •• 265fl"0 ~l 0:833333330 0·0 0;25011000-00- 01- O~·600000000 01

TOGM1 I4GPGl4c I4GPOGI4 OObl'1 R OOR GFI O.~O~OOOOOO 01 -0.300000UOO 0& -0.6UOUQOOoO 01 O.4A666t,!611) OU .0.17116(601) 04 O.562205020-~3 0.240465120 04

OTOPy . __ ()Q!SL. _____ ~NfUL O.9999994~0 70·

~.~_ DDA! U. 605259660 -~Ol!

___ Jl.QDT ~. _ _.-!i~!LG.'ti __ 1.14~Ot>S -0.306122450 00 O.Io0521otl360-u3 0.500000000-02 0.100000000 04 -0.350000000 01

SGOR 0.265497290-01

v EQUIVALENCE ARRAY 0.152150000 03 O.-152150UOO 03 O.15215i10UOOJ------u.-i!o2I~uoilo- u-j~52i5I,--iloD oj 0.0 0.0 0.0 0.0 0.0 u.53000000D 03 0.530000UOO 03 0.5300000UO 03 0.2~0&7D9~0-Ul 0.240D76960-01 0.0 ~ 0.0 0.0 0.0 - ~ 0.0 O.ISl!150000 03 Q.15~150UOO 03 0.1521500UO 03 O.1~215UOUO 03 0.152150000 03 0.0 0.0 0.0 0.1261116l!~OO 02 0.21116138010 02

-~(,-. S30000000 03 0.240676960-01 0.2"06 76960-0r o. i~OE>ie'-9bO-Ol··ij-;2"0676\/t;O-Or

0.15215000·6 030.ISi!fsoooo 03 g.126862200 02 0.266136010 02 0.240676960-01 0.2100676960-01 .0,0 0.152150000 03 0.0 0.0 0.530000000 93 0.530000000 03

---o.-f1269UIO 04 O.O··----~·~

O.15c150UOO 03 0.152150000 03

GPlOG 0.171429570 01

GPG1412 0.300000000 01

OTOl! 0.500000000-0)

GPD2G5 0.6122"4900 00

0.0 0.530000000 03 0.112692210 04 0.152150000 113 0.0 0.530000000 03 O~ 0 --'-

0.152150000 03 U.O O,916700000-Uj 0.0 . 0.152150000 u3 0.15215UOOO 03 0.0 0.12b662cOO 02 0.2"U676\/60-01 O.2"U67bi60~01

0.0 0.530000UIIO

0.0· . - - 0.0 ~ 0.0

0.0 ~

O.15<!150QOO 03 0.2611138010 02 0.2"06769,60-01

IN5TR,( 1)"

INsnu 2)"

INSTRII ~!~

INSTO<.I 4)-

INSTR,! 5)"

INSTRU.)~"

IN5TR( 7).

IN5TIlI 6).

0.0 0.0 0.530000000 03 O.1l28922io 0 ..

03 0.530000000 03 O.~30000000 03 0.240676960-01 ·0.0 ~ .- - ·0.0 ~- - 0.0 . 0.0 0.1521500110 113 0.1521S0000 03 0.152150000 03 0.1521S0000 03 0.0 O.~3000QI!I!0 0.0

----0.-0- O.O~0.12e>ae>Z200 0"2~-

03 0.24U676960-01 0.240676960-01 0.240676960-01 - -0.0 . - 0.0 0.0

RW(4) R~(~) RWI61 R~171

0.404800000 01 0.876960000 01 O.201062~OO 02 O.~79614720 02

3 ~ S~I~lLPUl\iGGj.N~ 9U!£'li.I~.TO DSRtL 3

5 _Q!U~~!'4 JNPUTJRO-"'-.QSRN~ __ .~ __ .~

6 SEND REGULAR OUTPUT TO OSRN 6

PR~!'411NG !.LM~~INTERVAI.,! __ t

2 .-J_I!PUT~jU)..IJ.TfUT P~SSUHES 1~l'.~~_

o PRINT DATA ONLY ~HEN CONVERGED

2 ~~ ~QL~XTRIl!'9J."'TE TO NEXT. Tll4f_INT_E!'lV_AI, ..

.~ . ...JJ.SE SEVENTIi, DEGREE REVERTE.Q.~_RIES~S.~NJ!lAL GUESS~M.~SS FLUX-MACH NUM.~E,~ IjA~Y; EQUAHON

J,,!S.JFI,( 9,. USE ITERATIVE SOLUTION 10 ENERGY AND \!dAVE EQUATIONS

INSfRqO). . _L----.A.Vf;FlAGE VA\.UES OF CURRENT XTERHl9..N IiIJLH AVERAGE VALUES OF PRE'Il0US ITERATION

INSf.!!..!!l) •.. _?J! CURRENT IidEIGHT IS HALVED BEYOND l!1I ITERATIONS

~ m 0 C'l

~ JJ ~ en W to

Page 77: A Mathematical Model for the Starting Process of a

-..l W

INSTR (A21" 10

INSTR(&J'= 0

INSTR04,=

INSTIH15)= 3

INSTiHlbla

INST~(l71" 0

INSTill 18) z 3

INSTill 19)" 0

INST~C~O)= 10

INSTR (~1l" U

INSTR(22)" 20

INSH,(2JI=

INSTR(24)= 0

INSTR(251. 2

iNSFU"2b," \I

DIVIDE ERRORS 6Y 10 ~HEN TIME-DIFFERENCES ARE LESS THAN 10 TIMES THE ERRORS

PRINT AL~ )ATA

00 NOT INVD~E Of-RAISING OPTION

DO NOT REAO SO~UTION FROM PERMANENT DATA SE!

FIRST RECO~O TO BE REAOI 0

LAST RECORD TO BE READ: 0

00 NOT ~RITE SOLUTION ON PERMANENT OA!A SE!

FIRST RECURD TO BE .RITT~NI U

INCREMENT INSTRIlll BY 10 WHENEVER WEIGHT IS HALVED

DO NOT CHA~bE E~TRAPOLATION OPTION CIN5TR(l'l

SET IN5TR(23)=2 ~HEN ITER >= 20

USE SMALL PERTURBATION EXPANSIONS AS INITIAL GUESS FOR NEXT TIME INTERVAL

RESULT~ FROM SMPERT NOT PRINTEU

SET TP AND TPT .. MAXelSEN TP,rCrUI

REVE~T TO E~ACT SUPERSONIC SOLUTION 9 TIME INCREMENTS AFTER CHOIIE

J 1 J 2 J j J .. J ~ J ~ J 1 J b J .. JIU Jl1 Jl~ JIJ Jl4 Jl~ Jib JA7 Jl~ Jill J20 J~l J22 J23 J2. J25 J2b

3 5 6 2 U t!. 20 10 o 3 u o J o 10 o 20 1/ 2 ':I

FLU~ A~~AS VER5U5 TIME

T\I(100 A~tA (1. Ii TV(~,Il AREAll.II Tv 13. II ARI:.AIJ.!) =======:==:================:================:===:===========:=========Z&z========================a=

1 0.0 0.0 II.U 0.0 0.0 O.91bl00000-Ul C 0·30000UOOI1-01 O.4b~"'1l1bLl 00 U.5000UOUOO-02 0.0 0.0 0.91b70000D-OI 3 0.0 0.0 U.1150UOO~I1-Ul U.1:I3"lJ092u-11l 0.0 0.0

" 0.0 0.0 U.IJUOUOIIOO-Ol 11.1:11:1:>1'>,,2800-01 0.11 0.0 5 0.0 O.U O.17UOUOOUO-~1 1I.':IlIoS11714U-0l f).0 0.0 b 0.0 0.0 U.23UOUOOOO-Ul 0.119'313:'''0-01 0.0 0.0 1 41.0 0.0 U,~:,UOOOOOD-Ol U.llr<ibU4bu-11l 0.0 0.0 !l 0.0 O.U U,J140UOOOU-UA ~.:'!lbS.HH.U-Ol U.O 0.0 \) 11.0 0.0 U.37UOUOOOD-ill ij."7"~!>~4"U-Ol O.U o.u

lU 0.0 0.0 U,"lOUOOOOD-~l f~.4Siil .. 97b[)-0l 11.0 0.0 u 0.0 0.0 1I.4500UOOOO-Ul (~ .... UU()OIlUO-Ol G.U 0.0

» m 0 n ~ :0 .!..J en W to

Page 78: A Mathematical Model for the Starting Process of a

-..l ~

T pcn

MOF TeTO Ell)

T5TH PEO MOl

___ ._RP __ _ E(2)

H MCT

MOPE _~P.r_ E13)

PT MD

MDTSO R~~

EI4f -

PP MN

MOCTO RCTO E(5)

PO MDCT

TP AE

E(6)

PM MOPT

TPT APE

E (7)

PPT MOO TEO AF OT

NO NM

NCT ITER Jl6

------------~~~~---------------~~--~~~~~-------- .. --.---------------------------------------------------------------------------0.0 0.0 _ 0·0 0.1521500 03 0.1521500 03 0.1521500 03 001521500 03 0.1521500 03 0 0.1521500 03 0.1521500 03 0.0 o 4~O 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 O.126t1b20 O~ O.28813t10 O~ 0.!>300000 03 0.5300000 03 0.5300000 Q3 0 0,5300000 OJ --- ~2406770-oi-·-ij-;24,Ot._770~Ol O.2 .. 0b770-iH O.2 .. 0b770-ill 0.0·-- . - 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1000000-02 -1

0.1000000-02 0.5000000-03 0.0 O.151!>b80 OJ 0015207"'0 UJ 001515700 OJ O.1515b50 OJ 0.1519980 03 21 0.1515690 OJ O.1515b90 03 0.27381~0-o2 O"b9"';3l0-0l O.621917D-0~ O.78b3720-01 -0.9271'120-02 0.87847S0-01 19

.O.3J14110-0_1 __ 0 ..... gU~2JLQU __ ._O~,. ______ 0.1264410 O~ 0.2871940 02 0.:'299240 OJ 0.5298 .. 90 OJ 0.5294210 03 19 0.529"210 03 0.2405910-01 U.2"'050:'0-01 0 .. 240\1200-01 U.2 .. 002UO-01 o~ 71bS19D-O.f 0.0 0.91&7UOO-Ol J 0.4 .. 2199D-04 0.9899490-05 0.1980610-04 0,,782&240-0:' 0.1822670-04 O.43bb .... 0-04 0."366"'40-04 a.lo0DOUO-002 -1

P~RR CUT 10 0.499999990-05 ANO $;MAX CUT TO U .'.99999990-0b

o .2000IlQ~J!_2 __ .0 .1.5001100-02 O.lOOOOOQ.-O;L _ O,,1?Q~040 ~J 001517650 03 0.1502990 03 0.150J080 OJ 0.1515730 03 18 O.1503~80 03 0.15031080 03 O.855JA:'[)-02 0 .. 2152180-01 6 oi91o300D-or 0.-i2"39340-00- :'0.2624:'50-01 0.2701610 00 25

-0.92J4" .. 0-01 0.36251.1D. 00 0.0 0,,1255730 02 0.2852HO 02 Q.!>296~70 OJ 0.52942:'0 OJ 0.5281990 OJ 19 0.528199D 03 0.2402650-01 0.2"'002:'0-01 0.2386380-01 O.238b31:l0-01 0.2329:'60-01 0.0 0.9161000-4)1 10 o.8912~80-06 Q.b636.180-QE> _Q.._1J28560-05 (10022617:'0-05 0.1576 .. 60-05 0.8522190-06 0.8522190-06 0.1000000-02 -1

O.~Qllllll.~L Q.250J!~ O.20QOOO~l)~_ .O.H6~070 \11._ O.15l?~"0 03 -----'! .. H.§.!!_'!'2!! 0;3 ___ .Q .• 1489190 03 0.1509350 03 ~I 0.1490J90 oj I) 01"'90390 OJ 0.1"8910D-Ol U,.37u6IHO-Ol 0.3384010-01 0."'21'+780 00 -0."'01"'830-01 O.46162bO 00 21

-0.13806lf) 1)0 _ 0.5997710 00_ 0..0 0.12"/:,350 02 o.28J08UO 02 0,52911)60 113 0.5287870 03 o.52b8iHO 03 19 o.52b8S1D I)J O.239bf>JO~01 0.2393020-01 0.2371510-01 0.2371S10-01 0.'>882590-01 0.0 0.9167900-IH 10 0.1985410-08 0.1190350-0:" Jl.·~:)I?"2S0-05 O,,"~S19bO-~~ O.22917'!0-O5 0.2583:'90-08 0.2563590-06 0.1000UOO-02 -1

o. 400000Q.:O~_. ___ O ~ 350000D-02 0.300000D-02 0.147"200 OJ 0.15052100 OJ 0.1"'73980 03 0.1'01 .. ,,20 OJ O.150HElO 03 2" 0.1476900 UJ 0.1"'76900 03 0.21529:'0-01 ·--O~5j 1 tl2s-If-a 1--- 0.-"'8956;oD-Ol -------O'oO .. !i·59Doij-·· -0.S202600-01 0.6S656S0 00 21

-O.17b4S1D 00 0.6331620 00 0.0 Uol23bb80 U~ 0.2808830 02 o. !>2S:1780 03 0.5279680 OJ O.,,255HO ~J HI 0.525S1"'0 ,~3 (I. 2J8839D-C· A O. 23837bO-O 1 0.2356;1100-01 U.2356160-01 o. 5435&JO-0 1. 0.0 O.91b7000-al 10 O.35518SD-Ob. 0.lJ80660-0:' _ g.21666f>Q-OS O.4301!~70-,!5 O.2J31~~0-Q5 O • .;jl~O"90-~6 0.3130590-06 0.1000000-02 -1

o. ?«100.0Q!>~..i!~ __ Jl .... 500UOD-02 0."'000000-02 o • 1451$S50 03 O.1 .. 9b33D 03 0.1"'58190 03 O.14~S900 03 O.149h90 03 1S o .1"'6J170 03 0.141>3170 OJ O.28"Ob!>0-Ol 0.69713720;;01 -- 0.-&464950-01 --O.1911"'6000-;;ij~6227550-0l 0.8S3"'220 00--- 2Y

-0.2091440 00 O.lIlb2670 Oil 0.0 o oli!2f>8~0 02 0.2186 .. 30 02 0.:'2H600 03 0.5269920 03 O.!>241130 Q3 18 0.5241130 03 0.2378260-0.1 O.2J72ie.-o-·0l 0.23"'0500-01 O.234050D-Ol 0.6988670-01 0.0 .0.9167000-01 10 O.4516390-0b O.14~3HO-O~ O.2'1731~0-05 . o .Jll~5:'0-~5_ O.2U817~0-Q5 O.3858"I:IO-~b 0.3858480-06 0.UOOOOO-02 -1

O.bOOOQOO-02 0.SSOOOOO-02 0.SOOOOOO-02 0.14"'15"0 03 0.148"'390 03 0.1441050 03 0.14"'2030 1)3 0.1417310 03 9 0.1448750 03. 0.14"87S0 OJ 0.3576400-01 O~81i15ao-Ol O.Sl"'9UO-01 . 0.9873570 00 -0069410850-01 O.lOS6S30@T11

-0.2J089'1..1> 00' 0.12878JO 01 -0.9787320-01 O.121t.",~0 o~ O.27b2680 02 --

0.5262740 03 0.5255550 03 0.5226320 03 17 0.5226320 03 -0-;' 23/)"'690;;;oy-- -0.2356630-01 U.2324000-0[-- 0.232;'000-01 0.8541700-01 0.6JS7110-02 0.9U7GOO-1ll AO O.92"6i200·~6 0 • .1 ?B't;;~Q-05 o. JSll~.!!0:-.!l5 o .339!1261>-~~ O~2157~~0-<!.5 o~7651560-<!b_ O.7651:'bO-06 O.lOOOgOO-~2 -1

o. 7000~,OO-o2 O.b500tlOO-02 0.6000000-02 0.1"'221130 03 O.H6b1S0 03 0.1 .. 21"1003 0.110226"0 03 0.1'056270 03 19 0.14J2150 03 0.1'032750 03 0.4409220-01 O.106b290 Of) . u-;foii63110 00 O~205270~o.7ii7997D,;oT ·0;12761170 01 18

-0.231J490 00 O...tl5~1?10 01 -0. 29063!!Q.. gIL 1!.120~9~_ ~? O.273E>1l0 02 0.52 .... 820 03 0.5234060 03 0.5209710 03 17 0.52097'70 03 0.2J"'''610-01 O.23J2E>OO-Ol O.23o!>b"D-Ol O.2J051!o""i-OI o. iOU947D oii 0.1907310-01-' 0.9167000-01 HI o. A7311~'60·05 0.2411790-05 .Jl... 48"'1!210-0~__ I). J2"'127[)-!;i ___ 41 •. 2"89340-(15 o .1~82590-~5 \1.1J82590-0S 0 •. 1000000-02 -1

» m o (")

~ :c .!oJ a> W CO

Page 79: A Mathematical Model for the Starting Process of a

OX"'l'" , zzu ..... z ..... ..,.

I ; I

• I

I .... 00 0 (LOW .-1 1'l.2t ..... O' . ,

I I

. .1 za.. CI. 0..,'" tl.!3 .... -

X 1&1

I

... J-QUO. ...0 Q..0 ..... 11111-

% :LaJ I

I

II

<> :.1'1.:;), ..... e

t-Q ..... ..tJ. Q..%Oat:-

,. 1&1

I I , • , I I

i I

OLL,O_' ~""'Ot- ..... ,

U%U-I (1, t-W'

I • I I I ,

r\j ..... O· ..... Lfl ~oooo ;, u; 00000 :!II..nnl'\l~ 0_0'9)_" o-.t)N:I) O.n,...;:.f'\J Otll')r-"., ..... r-..n .... NN

o 0' •••

000000 , '\Irr') __ .n 0000'01 I I I 00000 C:HI)O",,., .:>0_....,.-­o'.ll_r--"""' 00 _N_ln .n..:t""MO ""''''''_'\1_ . . . .. . 0000.00

'\I('t')o!"').ll .::aoOOO? I I 0':;::;0::; o clLt'I N ""'} eOCl)M(J\ o..n.o_<I) 0-(1)01-.0 0,:&-0-:)\ 2)_:'\111\4'

eo 0 • 0 •

00000 ,

tvt .... ,.,. .... ru 0000C3 •• 00000 Cf\r'hflOo .... "'''OQO Q1)<D~,...e ~,.....o..oo ,..,,... ........ 0 ......... "'''' ....

• e • 0 • OQOOO

P) ..... C"l_1Il 00000

• •• 00000 "" ... \J1 (J\f\J ......... IOMCi' f'H:)(P\Q ..­.... ""'oDl.ft ..... Mc:) .... .,O ..... ~II'l .. ..... · ... .. OOQc:tQ , "'_~Q:.n 000000

I 00000 .... ti'HfHDf'\J 33.n."o"'" .... ,...,0\:> ... ""[\hON""'" P')~""MO ....... 111_ .... · " .... 000,00

I"') 0 N' ..... lI\ OQlCJOO , , 00000 """ .......... ·O(i1 ::0"'0\:1).0 «a"'OM ..... O 0(1) ..... "',.... 414''''NO ..... -$1'\11\1 N · .... OQJQO~

tT')OI'\l-t..n :J Q OI:t'O'

, I I 00000 ~~O::»"\I 4'~J'I')!J)4"

:'\1....., .... ~""" ,....~f'-"Ot'->o Mln .... ~,.... .......... _!'\df\) · .... OO~O:;)

N ..... O .... "O 0'010:)0 iii Ii 000-::.0 O:\l4'.D~ 002)'%)4'-0.00"" CO o"...",..offl o .... .nN4' CO.o<DNCO · ...... ~oooo

I

'\1>'9)_ .... .0 010:)010 I I I O=:)O·-:lI·;::) 0014001 :>n;'\Jt):> 01 -4' -D."" • OCf\NDrrt .llMO"l'\Ir--. 'D __ r\JN · .... ooo~o

'\1:"1 OrTt J') '::;)::;;0.:)';:)

I I 0.=100·':) .0 0·<'\1 il'I""" Qln,....\Oln 0 .... 0"3\4' OoCJ'l,....-o.o O(V')4_(V') 3'\ __ .1'1 .... · .... ':>':;'01010

I

p<t"""f"l...tN c:tc;:,°loo .. , 00000 4' C1H· ... 0 c:t lI\ ..... ,...oc:t eg ..... o',.... 0 \00 .... tn . .., Q ,.,o .......... @ .... t\ltft(V> .... · ..... 000<:)0

"_P')otD QQO,OO

I OOO.:aO ,....&n"a.. ,...."",..,1:"1"'. .0 ..n 0"." ...... -.4t ..... \.It,....­(f)\J\ ......... -........ Lf1_(\J

• ... 8 • OOQ<:IIQ

(9\0(\1_"" ooo,o'=>

, I OO~:lO "ON ..... » ..... ,... f"t .... 4'-o""",..=-,... <ON .... \() ,..,!'oo.oN­"""-NN"'" · ...... ::IIOOQO

fI):>'\J_tn 000'::110'

I I 00000 ::t-:D~o

.- ..... '.1\ _ • .,n 4" :J'::iiI'

.:t.o..o-4t1Jl (9\ ..... _C"\J"O ---NN · .... :»00'00

f\I_o""",.;£) 0000-0 I I II. 00000 0:0:):3""\ 0"'" 1O"'"" (Jt. Ol./H\I,....N C:H)"'.::DruM :')4''"\lNt"\I' ao.""'llN'" · ..... -:::)00001

I

'\IrV) ......... 'O 00010:>

I " OO.:a!::lO oQ\"...O',.... :»-"llJ')-0..0 2)"'" N O ...... N-4-(I) LOM_f\J:D ~_,'\IN'"

• • II •• 000001

...... ""\01,.",10 -:>0-::1:»-::» I , Q:5Q~:::' ":)(JI.4>"".X) OPl4""f")Q\ 0..0 ..... .;.>'" o,... ..... ~M Q(i') .......... ..... ............. tIlM

• ••• II ::)0000

I

,., .... "., .... (\1 C3QO;tO

• e 00000 "'-tlNOO 1'\10..000 \00 Ci'Q,""'O P'llftf'l\oOO ,.,N ........ e .... N 1I1 0\-0

• • 0 • (II 00000

MQN_lfl ooc;)·o,Q·

I' O~OOO ,...tnto--'\I -NIDON eJII .... t"Ui\ .... .... CO ........ (FI.

"""''''''\1'1 ...-J ..... Nt\I""" • e' CI • e

.::J.QOQ::t

Pl~N"""LO 0'0' 0'''01101

i • OQOOO ol)\._·~ 'Xl3'o1)!:),f' ~,!:),:::;.;j\':O

:'\J-:.n_4' Mc:> ..... (\"'"l -N_NM " ... "

O:')QO=>

--0_-0 :;)0000 I' I I 00000 ":,) '" :it ....... ""1 OfT)!1'Ul .... OCl)..".~.:t OI.t'l_a;)lf'I O.,.."' ..... N _<03\(\J(i')

II .....

00000 I

-,"i') .......... "O 001000 I I I 00010:::1 0_0'<=1"­=>::)3\.o.:t OJ}.n.n .... i.l\Ii'tNOtv) Qrv)MNI'\J .......... I'\J~.:t · .... 00000

.... (') .... r"')"O 00000:) I I I O~OOO O-,-,*N..o o C"&hO PI o~oo.,., 010 (111?) ~ -f'l\O_1.ft .......... .0.1'1_ ...... ':;')0000

I

75

etNNI ..... .... NN..." .... .

I

:;:i;~ • e

000,00 P'Hf) .... QQ cDt\JIIAoO ........ ·:H,.,.@ =Q ..... ~O ~lft .......... Q .....f\HfHJ"<""4

.. • • e .. @ooeo

P'I-P't-,.... 00000

I •• 00000 .... (fl .... NM .... .cno4' MOOllHlO 3\,.... .... 10(\1 N(J\ .... ru. .... .... lIlao"""

II ••••

QQOQ;O I

f"} .... Plo,... o ClH::'OQ

i 00::::'00 4.J'{()-o-M f")..nJleJo-4" N_Ql!.ft:D OHD"""::DI\J N ...... ,....'" .... f\t..ft ..... "...

o 0 8 e @

OQC)OO

(f')oN .... 1J) o ee·oe

I I 00000 :\Ilft.f'I'I)::i!I1 4t ,... !\I f'l ..0, .()CI)rV)"".o .... ..".tI)Q\o,f) tV) f\hfi_O .... t\JNf\lN · ...... 000::.0

MO"\l ...... :.n QIIO => 00 , , 00;:)010 '\I ,... D'n .q """"~~'\I "'"...-' ..... 4-3'.o!"'l",'\1 NN_ ..... I:JI _N_N ....

• .... II :;)0010.0

..... ...., ........... >0 !;)::;)O::iO •• I I 00000 ::;) 41 0 . .1\ 4' ofV')Q.Q-:;) o=-...n.n::J\ OIO-4"F"1~ _~"""-4::s;1 _@ ..... :\I"O

• ••• G 00000 • ...... "f} __ .o 000001 , I I O:::l:::lO~ 01..0""'00..0 :')4"..oIJl'"\l :>",,....,,,..0 Ll\t""J_tI\ ...... .... l"'IJ' .... N _ .... f\f~:'Vi

.. • • II ..

00100,:)

..... !?}_"'l-D ~!)!!)!):)

I , I O::').:).:l 0 :;,..oo_t""J o 4'olft a-0"''''''00 O('l1I"') ..... ~ NM"O .... .... .............. ..tl"""

.. .. .. I' I'

001000 I

"" ... .", ... N OOQ@O

I' 000:00 N@\ QIO QI \Ill GO .... '0. c:i!) GD .... CltI .... <::) ..oP)@..oo (\1 .... 01 ..... 0 _N"'·"" ..... ... 8 1 " e 000"00

~_t""JO..o 000'00'

I 00000 (9\_OO~ !i)(J\r-otT)® lY)(J'IQ, ..... O "'ON"' • ..., I'\I .... CII(J\CJ'I _N lft,....,(f)

€I €I III 1':1 0 OQOOO

:'¥lON ..... :n ::t,o =a.::';),':;'),

I I O~O.:'lO ..... _-anD Q:\J ..... _"D .... ~.q·"O,::::t1 'Of")(\,1 .... .. ('\.JJ'\ .......... :tl

":~~~~ :;)0000

_Ct ......... _

1;:)001::)15 . " O:lOOO :)_1l0 .... o.o..o_N 01,,01"1010 0""""':0-11 NO_O,(\Jp ---f\JUl I' iii 0 ••

00'0100 I

_"" .... _f', 0000000 I , I O:::l:::'O:::l 0.:00,..."" :>"":)\"1.1'1 O .... .,f>('\,!,..... tnru 0 ..... r­:'\1(9') .... _0

_""~'"Y"" II I' •••

000:)0

_'V)_I"f)..o !)-::l:::>-;:):::J I , ,

::::. :::l.=S.:l 0 O~,.".O-4' OM-.D,...CO 0_0'00"> O:'\li1'O>-_ M~(\JO"'" __ ("')0../'1.0

!III ••••

000.::;)0

C»CP>o'('\j ..... :\f P"I-a;_ •

I

:::1:: I' 00000

N ....... OO @OH.fDQQ 'ON ..... ,...Q Pl.., .... ~O N(JtI.O .... g __ N"""" ....

• • e 8 • 0011300

PIN,.,"""'" OO@OO . ' .. 00000 "' ........ :\101 1ft ,,'HDO e 1Il0 ...... @f") t")P'),.....,....".. N""CHOO' .......... tntON · .... OOO(::;a.o

(f")-4!"lod) 0'0<:)100, , :)00001 CJI ... .eoo lI't"i')~.oo ·n ........ .0 P') ~1I.l .... :J\"" t\I(J\Ooo­...... ~lftNN

e III III 0 e 00000

P)ON ..... 1.fl OJ! 0 Q,et Q . , 00000 ~ ;:, ...... 0\ l"'Iruooo O·r"t Iil..o 0 11\ (1\ f\Hn..o f\I .... ..n ...... t­..... NNN .....

• III ••• :::3001;)0

rrJ O·:\I ...... ..n 00010,::> •• OOO::lO ." .... I'i') .. ::O ,n p,." ..... :a :'\I .n .... _ ..0'::»' "'l0"'_1Il~ C".J,....,....-!l~0'> ..... N_NN .. . . . . ::')00'00.

..... 0 ......... r­~:::>ooo , ., 00000 ::tt).n""\"'\f (3):1).0"" ::tt't'H'Uq4' O~""4"O (') .......... 0 ..... ___ I\JI'Il

.. ..... 00000

I

_'"i') __ ....

0.00:::;)0 I I I ':::'0000 O(\j4..o..o :)..,,~::o..n

04' 'lhO I'll') in 0' to..o In MfT)CX)o" __ :\AN"\.!

• III ••• =>::>000

-t~_~..o ':);)~:;,::t

I I I =:lOOO:':' OI'\J4"-4"":'lJ OM-d-CC(fl o .. ,.... ..... ® OOt:l\,....:y. ..;t('V)fT)ofO') __ f"-.1OJ\

• • e •• 0::')000

AE DC-TR-76-39

f'l'h· .. e A ..... (\I 000100

e e 00000 0('1'1'\100 No4)OCl!lO .... "'4' ..... 0 =,...11\\00 "'.'·''4:.....,0 ....."'II\@II ....

• lit a 0 • 001000

Pl ..... P')et"O Q·Oa>IOO

I 000·00 - ..... ruo­(1)0\.01<3\ .... "...I'I')...,. .... =-0:1)11)11'" "' ..... oNO ..... "'l..nNN

e It ., 1/1 €I

0000.0

PlON .... U"I OOC:;iH::tQ •• 0:::3000 :;. ..... ,..,,....<J"I! (1)6'''' .... 0 eJ'IeJ'ICO""ca .... lI)(Jt.MeJ'I.

No."""'" .... f'I')NN ..... · .... OQQc:>a

rrJ::) ."\I .... .n 010 QlIO 0'

I I OOQOO ~ M.o"'" ..n 1.1\00 .... ..0 ,...._ Q~- n :;) \Il 0"". 0\ t'\Jo~~(J\ .... (9') .... NN II II •••

., 0 0'01 0

.... 0 .... _ .....

OOQ.:lO , " 00000 ::>:\1:;, ........ Q:>_lIlP-o­o-~:\Io o 'X)1j') 0 1'\1 ... r\J .... Q. ............ NM

• • 8 " • 000::»0 , .... :"') ........ ,... 0000.0-

I " 00000 O..O..O:DCO :)!""l..,..n..o 011)011""):0 ",,(1) ..... ;'\1 ..... 4"NOOPl - .... :"):'\1-

• • GI •• 0.0::;.00

'-'"9')0"'.0 :;,!:)":):=!:> I I O::lOOO o..o:\lNN Ot'lr-otn OeoN"O Ocx)Jhfto lONOOO _ ......... In..:t

• •• e .. 00000

Page 80: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

OX .... XDI ZZUW .... ,

Z)-'"')' ... ,

'" J) :»l_ .... :It-w ... o..lI:Oa::-

% '"

... t.IJ .... -.... U~O'M .... XOa::-

>[ I'"

a::::t!.AJ I

t-WOQ.,N "'0. 2t a::'-

1 I 1 I

t- ,W I, I, 1 II

o la" 0_ ....... 0 ........

Ull.U­C>. .......

M..-4M_N OQOOO •• 00000 N_ .... oO OCONCII:3 CJI..or-f"o-O ,... .... P'l-DO _".,0 .... 0 .... ,.,1.0"' .... It It • It •

000010

M .... fi') .... ." QOoetQ

• I I 00000 '" ,1\ ..... '" ,... ..0 CI'HlJ M,... (J\Np...O\M ~""C'1..oM -NO"''''' ........ IJlCO ....

.. It It • It

00000

M .... (I'IO"O 000-00 , OOOO=a "'.- ..... ,.... '4tIitN'\I"" o 0''''''''' M COCOI'I'J·ot""l .... (II)o ... M .... I'I1LnN0m4

• It It •• 001000

P')oN .... 1Il OC:»OoO

I I OOO-:l~ 0"":0..-<"1 .... QIo."O .... (JI,

-NttlG\<D 0'0 Nr--Q) -1"1 ......... 1/\ ..... (WJNN ....

• • It •• 00000

I'I'JO'\l .... ~ 00000

1 , 00000 1) ..... :\1 ... 1./\ :::t,o ......... ..n ::)'1)1)\'3\ D 'S)OW ..... ::;J _P'lO_CJ'I ....e""_NN

• It It • It :'01000

.... 0 __ ....

00000 I , • 00000 ;;>001'\10 o ..... ..nI'Vlo o..o~N'J) OCl)M..oN oJ"IM_,(J\f'il ........ --4'

• • It • It 0,0000

'!

..... :"') ......... '» 00000 I I I 00000 ON..QMQ\ o ........ => o/'V'fO\Nm lI\,.... ... (I')_

tnNNO'N ........ M_N · .... 00000

_."'lOP'l-D :;,":)o~o

• I 00000 ONN""''''' 00 4' ltH\I til Ot")M,.... 0""""1"")0 ..oNNOf"-- .... -lftN · ... . .00000

fV) .... f') .... ru OOOOQ

" 00000 ..o@"",oo ocDNOO "' ......... ,....00 LIl-.DN..oo .··.1111 0 ..... 0 _I"'lLllOO ....

• GI • GI • 00000

", ..... ", ..... ,.... 00000

I " 01010001 ar- ......... co@ PlNN:.n_ N."""4'N \O ..... N-"O _lIlao4-........ II\(J'I,...

• ••• II> 00000

Pl ...... ..."O­o 0-:;),0 Q

I ·~OOOO 0- (,."' .... - 0-(W).::t(\JiJl_ (W)~ .... NN ~~N.n~ .... 1I\0iJ') 4' _('F).nN""

• .... II> '!!';)OOOO

MON-Ill 000001

I I 00000 CO..op...-\tl ..o:ON,.....o P'JPl::tI'\l3l "HO Ul e r­_.n .... _ .... _fi"lNN ......

• • " • lit 01010010

MOI'\l-t!.n 01 0·0 co.

I I 00000 .,.../l ............... COOWf'--O i\I.ol.l'\t~ IJ)..o""";::'(j\ .... ,Jl0 .... ,.... ~('V) .... NN · ... . 0000001

_0 ................ 00000 , " 00000 o..nDe;:) 01.0"" LI''lCD O ..... ",,(Y)1"l o(l) .... ~lO ..o.-.(J\fil ____ 1.1\

· .... 0001010

• _(1') .............. 000010 I I I 00000 O .... ,....('i")Ln !) .., • .., :J\ ;:)

° 0''''' N,.... Lnll'lru ... ,.... "gN .... O'ln _ .... "" ...... -· ... . ::aooooo

_(i'}.-::;lI"'''' 01-:)000 I , 0:::l000 0,.... 0 p... 0 oP'lNN4' 0,(J'Ia.n_ .... olll-NO' ,....N ... OISl ___ Lfl ....

· .... 010010100

t'l_fil_N 000000'

I D 00000 t"l __ OO

_(J\_OO ...o~..o""o N.o..oe .... ,...0 .... 01 _t"lUl@""

• • lit • GI o o CH;:) 0

fiI'J_I"l"""" Oo,OQO

I " 01010001 .I\_ .... O'N ('F)- .... ao,... LIlCO>D"""'" N-oM..o .... .nQON __ II\"'M ...... 000010

r')_~O"" 01'01 01·010

• OQOO::ll (J'I(J'I-NN 4' ..0 _.co,... .,j'J lfl D·""'''''' N-DO·_..o .... "...0,...1\1 _rvt..n,Nfil · .... 00000

Pl o N, ..... 'n 000'001

I I 00000 ..o.-t"n,.....o ~O_CO~ ,... ... CO·..o ,... M.N<il ..... -,CX) 4 0""" .... f'l"'C\J ....

• • €I 0 Ii 00,0000

('V)o:'\& ..... ..n 00.0'00'0

II 00000 N ..... -,....;t ~...n;):D..-,

l.l\ 4" 0\ • ..0 :0 (\1(\1..0 a,p", .... (1)00...0 _M_ruru • e It •• 00000

_00 __ "'"

000000-I I' 00000 0:"\1---$­OO('V}Cf\~ o .... Ntn"O O,...O'(I)t'l t-LIlo~"'" .... ___ ..0 · .... 010000 , _;T) __ ~

00000 I • , OO::lOO ON-4fil ~_"'''''..n 0...0 ........ 0\ lfI 4'0 0...0 P-N..o~LI) _ .... rr')_(\1 · ... . 0,0000

..... '""10""""'" ::J;OOOO 1 I 00000 or\HIJ_M o....t(J'l_P'l 00...0..0...011\ 0.2)0'\1 CDN4'o..o __ ..... lIlt-

• ••• 0 000.00

P"l_tvl .... N OOOOQ

, I OQOOO ,..,N ...... oO 0..0..000 _M""'f'o..O ON(J'I..oo _ c;'(]" .... o .... fi1-4'(J\ ....

o • G • e 00000

M .... M_<iD 000010 , .. 00000 @I .... ,... ..... C\I ..".,..."'OM ..... CO- __ .o

(J\Q)(]\NcD 04"@loRl) ......... 40\4'

• eo • e 0 00000

f'I) ..... ('I')OC:O (,')·0000 , . 00000 "'",,...NN 4"".0 ..... -CJ\'X)_f'i"l-.Q ",,,,,,,,,,""'(0 O~a\(Ofil .... fYl .... N4-· " .. . 0'0000

MOC\l ..... .n 000000 I. 00000 :XLn 0-..0 (j\ CJ\-4tNOO:'\l ........ ,... ..... (\1 _oo,...~

- ...... 0(\1 ..... NN..-q Olt •• e 00

OOlOoOQ

fVlQ·"' ..... ..n 000-00

I I 0000:) 2)(;7'" .n .0 :0 ·::H\I1) CO"l .]\.l'IeJro.' ..... ,..n ~Wlftr-lfl 00001/) -"'!t_Nru

• e 41> (/,I & 0100000

_0 ..... ""''''' 000000 , , . 00000 .::)"'\JfV)o..o 04lNM..o o rVtttH" "" O..o..o<tN CO>4,)olDf'o.. .... ___ ..JJ

& e I) • I)

000.00

• .... (1')_ .... ,... 00000 I , , 00000 ° (lHl'IN 4" :>LI)-o,.g"'" 0."""'''''0 lI'Ifi'a,.....o,.... 3)ru""'Q)N ......... M ..... fil

• I) • I) •

000.00

-MQ(T) a;) 000000 I I O::aO~O OCD'Vf"'ooO 014\0;0..0(1\ OPl<t_Q\ or')O"o{}ro.('f'J C7'N~(J\Cl) -- ........ ,.." o ... iii '" 000010

76

M_(i'J .... ru 0000010

, I oeo.oo ~NOOO ol)f=.oeJloOQ

..0"'''''''''''0 ,...co ..... -.oo 0.00\ .... 0 ...,41.0\ ....

" 41> " til • 00000

M-M-"" OQOOO

I " 00000 MOO'''' (J'I ".. .... "',....-4' t=4t\Jt-OCD ,....,... .... 00 ON(J\ON

... -.... ""­• • " 0 00 OOOQO

Pl .... r>') or-0010100 , 00000 0401"'0'> '3l .... (1)..:.t4' ('\J(\J""(J) ~ P-Qr-NCO Q_"'ol\.l -4-.$"4"M'""'"

• I) • I) I)

00000

IV)Q,,, .... .t'I 0000'000

" 0000::1 Jl ,:::) ,"\J OIl,"" f'il..;j-·...."..oM

""""""'''-:'\1 m..o®LnIll orv)f'WlQ4" _.NNN

& " • & lit

00000

filo'\l_,..n 0·00010'0'

I I 00000 0"" .::>·0 It t'\I4'-..JJeJ'> ~ ;p..-4 ....... 1J)

l--$"lIllil..u or')oo::o ..... 4'-(\J4

I) \II •• I)

00000

_0 __ ..0

000010 I , I 00000 or-$:\Jo oO""'Mcn OQ ..... Mf>-011\ ......... 0 (I\,....o® .... ----­iii " e " I) 000010 • _I"'}_ .... ,.... 00000 • 1 I ~OOOO O_N_lft :::>,.....""l"~ o ..... .n .... ,... '.1\ N...tt (VJ en O'N(J'lC!)"'" ........ 1"") ..... .0

I) I) I) iii •

:;'0000.00

-=\l M C,;:H'f'l"'" 01.0000,;) I I 00.::')00 O __ O..fll

or-o(J'\_ 00=4.,....0 oru.,....f"') QN4"(J\oD "'_.-4""'"

• • E> •• 000100

r'f)_P"I_N 000·00

I I 00000 tvl>OMOO 1-:0,...001 NOO .... ,....O 1Il .... .","OO ONCI\ .... Q ........ -4-(J\JG4

• E> ••• OOOQOI

,'H\H", _,... OOOQQ

, I I 00.0.0.0 lnO(J)f'>-C\J (J\4,.... ..... M ..f-m.o-4 4"lfl..oOoCI) o-:JI.otl) .... co .... ", .... · . " .. 000010

M_:"1!:)"'" 001000

I O:::lOOO ,...NMrr"lN ,...."g,....f>o.fil lflr--:,tf'i'J ..... 4'\0.03)3) 0f\!(J\_1fl _4'.qM·t=4

• .... I)

000000

(i')ON-t.ll 00000 , , 00000 f>o."O(i') ...... NN4'ON M .... CO .... N .",fTl", ..... o..o;T)orv) ""'4-ryNN

• •• It • 001000

MON_ln 01·'0::;"0-:)

I I ClOOOO .0 f"l1)1 .... 0 fT'I...of'>--:>..o n ::I) ""\1.0$' 4> 4'_-4"-4'..0 00..0001..0 -","-No!@' · . " .. ~oooo

_o __ .,g

000010 , • I 00000 :;::,O' ..... ~N O-(!)""lfI 0 .... __ ..0

o,M~r-_

oc!lof«.~

(\1 ___ _

• • I) iii iii 0000,0 , _M_ .... "'" 0001001

I " 0000.0 o (1)-:._f'-0, 4" ®.n-:;). o04'-.nM \O ......... ('1\.. ON_I"-N N...q4"_"'"

41> • e • " 000010

_~O"'f)·,....

001'.:)010 , I O~O:::lO ofi'iwM .... 04'4'''''1!'I 000 .... ", O .......... ..,,(J'I _NMO'_ N .......... 4' 4"

• e (/,I • I) 000010

M_f'i'l...t(\J :»00·00

I I 00000. f"aM(\JOO 01/)_00 (7\ ..... ru ..... o NQLIl\DO 04"" ..... 0 - ..... Q\ .... • •• " eo 00000

(TIN:?!_"" 0·001 0 0

I •• 0000.0 i.Il(J\'\IO'. 01",,_1.1\..0 <l)4'N(I\ ..... _l.Ill1l«JO 0('1\.0"""'. -fTl .... t:Ot"l · ... . OQQQO

M_MO"'" 00'000

I 0'=='0010 ""CJ'Ii'\aM...,. 4' -:t _,::;, . .0 3llflNo\ ..... -o..n"") 0 O.f'Cf\M4' ......... (f)ro') · .... 000000

I"'lQ;\J·_LIl 00'0'0, 0

, I 0.0000 DM~'..o .-.II lIl4t4"O"" (71000.-. .... MOl1lM"" o,C)'\I'?lO_ -' .... ruNru

G " & III & 00:::;)000

··M"o~'-' ttl 00o,o,::;,

I I 000::;)0 D .o . ..n...o ..., !\J.....,'X):"o 2)4-$.-411 ..... ~...,fO'l"O 013)00004--..f'.-4(\J..:t

• & •• (I)

:::»;:):)001

,.qOO_\() 00000

I " 00000 :;t:'\jO:g ..... 0""_ .... 1"­o '.n ..... N<I) O_O'4"i,\, ..... (}\Cj\',.... N_O'I __

e 00 0 00 0

:'00010 , ...... .., ......... ,... 000100 I II 00000 0 .... '414'_ :)""'-:1\'\1 00\<'\1"' .... a.O(J\(lJlI)..o _ .·"H\lP-lf\ :'\1-.". ..... ,...

• It • iii e 00000

..... I'?l~."i') ...0 000:)0 I I OOOO~ 0-0(11. NO OP-Q) .... f") O(JI.,....NIJ) OO'«JlI'IN N .... -Q'lN N __ ...... · .... 00000

P'I_t"'t_N OOOQa

I I 00000 'l!)o.noo tn_OOO tftCDO",""O 0 ....... ...00 01.1\0'_,0 .... .... ..".0' ....

Go •• 0 •

00000

NNPl.-t,... 00000,

I I I 00000 4'M..nI'\lCJ\ .... '1)00,.... (J\.O"'OO'(I) OO'o"'P-...o (I\~"'~-0' ....... (0 .....

I) ••••

000000 I

N-I"')O"'" 0·00100

I ~OOOO NOltH9lO' ~NOII.""I"'" .... .,o04'al 0 ........ .,....0 ""'1J)0'4''''' eJro. 4' 4'.,." 4-· .... ::)0000

",,<::JiN .... .n 0·0 o'::t 0, . , 00000 ..oo~_...n 00 ri'H''',.... 0\ ."g\J\rTt~.o .... ,...", ..... 11\ Q-el"')OO _·.lH\JruN

& It •• Go

00,0000

NO·N ..... ..n .::>·001:1'01

I I 00000 ::0'\1 ........... 2) ""l4'",,""'(J) ""0(3) -''0.:11 O,....:"\I_~

,7'I ...... OON O"!I"I-N4'

• •• 0 0 00000

.... 00_...0 00000 , " 00000 o"\l-#-$"-:' OtT),...i.Il...;t Ol1lll'l"".n 0(7'1..000 ru(J\,....~ .... N_(J\ .... _ · ... . 000000

I

-...., ......... ,..... 000100 I I I 00000 ~"""II\...o .. ::J;.nN"'\4-O(J\::ro...:tP­LtHI) 4tNlI'I N- .... ,...LIl :'\I ............. ,... · ... . 000,00

...... .., ..... ..-,..0 00000 I I I 00000 o .... ..w-lfi..e otnQro.Q_ 00'.0"" O«JCO.lIl f") ..... COa-M N_a-. .... _ · ... . 00000

Page 81: A Mathematical Model for the Starting Process of a

--.J --.J

T peTII

MD. lCiO E: !AI

0.2400000-01 0.1119S10 03 0.7414950-01 0.4928520 U3 1.150 •• 10-010

0.2500000-ul 0.1170640 U3 D ••• 349E>D-dl D.49175'0 u3 0.14'9160-U6

G.'>S9153D iJ3 0.IQ"2410-U"

D.~B@ij()U[)-ijl

Otdj4615U oj

-O,859bi>OO-UI O,.8866SD 03 0,63326,0-07

0.2900DOO-UI D.H,DUD uJ

-O,14S71!l1J 00 U •• SSD550 U3 D.1I>239890-07

o,:>OOOOOO-u& 0.11311>150 03

-D.21S0S4U 00 0.41373240 03 0.1866950-01>

0.3100000-0A O.! 12989lJ 03

-0.<:310430 00 0.4868010 03 O.J21E>940-0S

1STI'< PEII HOt; RP

E (21

0.2350000-01 0.1179810 03 0./01011>510 01 0.IE>8861D-Ol 0.7129180-07

O.2450UOD-OA 0.11101>4D OJ O.477tHSO 01 Od1>5262D-OA O,651,liI98D~ij I

ij,

O.!580~W-O O.J33;:';2l)-07

0.2750000-0J. O.H1I>675D 0:

0.28"OUOD-')1 O.U40110 OJ 0.543""90 01 0.1509,,60-01 0.;':00;':'>60-01

O.~95000D-Ol 0.1134150 03 0.:'599911) 01 O.h73uSll-01 O.9062~20-0S

0.3050000-01 0.1129890 03 O.S61E>560 01 O.143bIlOD-Ol 0.3737I1.D-OE>

n I'Irr_

HOPE __ BE.L

E(3)

O.2300011l:HH 0.2012310 00

-0.9'9925D QO 0.11>706110··0A 0.1322010-06

0. ij.12129H)-1i6

0.25QOOOO-0&

.2700000-01 O.2J4;7UD 00

00

PT PO' 140 I1N

MD1S0 HOCTO __ RE\!.. ______ RkIL. _~

EI41

0.9630180 02 0.5472500 00 0.102013D 112 ~.200~950-ill O.40i>4MO-~5

0.93.1JU) 02 ~.511ii31:10 ijO

0.1013320 Oi:! O.A9957I:!D-lil O,JB71'490-~:;

O.S769!:>SD 02 0.""'29800 ilu d:~OlYW 02 ;-. "1~5SD-ih

U,3S"\l96D-~5

Ed5l

0.99210770 02 0.545102D 00

_0 .. 2:3110980 Got ~.2006\l5D-Ol 111.1955921)-05

0.9693530 02 O.5746~31J 00 0.2301520 02 @ ~ 1995 ,I:lD-O 1 O.Hl639ID-O;'

u.~23'>!>JO 02 ~.6JII>5l'W '0,0

02 0.901085D 02 OQ D.6653611) DO

riO 01 D.226121D 02 I \l61\>61~i)!--O.1966&!\);'~1

ij.333~~~D-~~ 0.1628600-05

0.280000D-01 O.8~1bl>OO 02 ij.8787BOD ij2 O.24047~D GO ij.71'~~~D 00 O.69&19JD 00

-U.6BU16~D aD D.99Ub2bO 01 0.2249913D D2 0-;14,115 fO-O! --- ii ~ 195esi.6D-iiT---O:19SS"i:oo';;lii 0.39511>1:>0-01 D.3D9;:15D-~5 D.1512140-U~

0.2900000-DI O.24572~0 DO

-U.E>2156AQ 110 O:I';S46IJO-aJ! 0.1103180-01

a.300000D-OI 0.211>95160 00

-0.5647700 00 0.14"1920D-OI O.63!15&\lD-OE>

0.18100:;0 02 0.7541040 00 O.981>it:17I) 01 O.195i150-OA O.29692b(j';05

U.1f,3JHiD 02 0.7851820 00 0.9830140 01 0.19,,5920-01 0.27 SltlB ul-o!>

U.I3Se2!'>"D 02 0.7281160 00 0.223':18100 02 0.i951150-:01 Ool5&UJD-05

0.8343330 02 O.1S .. SUO 00 O.223269[) 02 0.19451120-0 i 0.296105\10-05

I'D PN HDCI HOPT

TO' TP1 __ Af ;!'PE

EIE» E (7)

0.91>247110 o~_ 0,96355100 02 0.'619880 01 -0.13782530-02

_~\! .• ~~J!..520 03~~i.8520 03 0.3649640 00 0.8929330-01 0.4015270-07 0 •• 07S2;0-07

O~93JbU1D Ii:! 0.11351600 D2 D.'Sij6410 01 -0.1611970-01 0.4917540 03 D.~911540 03 o .38-049~;j-oo ---0 '-S84IlS2D-O I 0.3601700-07 D.36011CO-01

PPi NO '1400 NM TEO NCT

_M: _____ .l!.E.f!_ 01

O.982hlD 02: 0.4688&60 01 0,"928520 03 0.916700-0':01 0.1000000-02

Jib

21 16 II> xi -I

a.Iss1S.D D2 11 D.4123130 01 11 0 •• ,.1540 03 II O.91i!;1000:'OlAl a.loOGOOD-IZ -1

0.904D&9D 02 0.90794"0 D2 I if 0.4925130 01 -0.2585120-01 11

__ o..'>"Ol!1'JL-,!~_~_D-,,-~9Q1lJO OJ 11 D.396D~'0 DU D.8567150-Ul 0 Ii 0.2;'3.'50-01 U.253.750-07 D.IUDDUDD-D2-1

0" UJ

~.48"7530 03 -~!i~"ii~55D-ilo-- .

~.IZ9S~7D-~1

02 01

vo""ovU'"":...l'''''' 03 -~"27065lJ 00

O,HQ<;,:l2D-Y7

0,8IU9\)41) 02 ij,:;U121O 01 ,D. "880550 03

·-()~4.Rr;160 -lio-ij.75A2800-0El

O.1'l13001~D oz -O.36"il5W-U

D.4S97:;3D 03 O.810922D-ijl ~.12;JS070-01

U.6S21390 02 -0."1:I30941}-01

0,'>868650 03 0.1651290-01 U.Hg4;3;:0-07

o.El2~2a61) ®z -Q.6A501I>D-@l

0, 4;B80550 '~3 O,7193:>bD-U O,'SA2S~D·0I3

0.7774160 02 0.19653S0 02 Q,S3092130 01 [email protected]

_\! .. "-tl1.324D._~.~_. 0".4673<2_".0 03 0.11>581"&0 00 O.61354~D-OA

0.2513910-0, 0,2513910-01

0.7521410 02 0.77 .... 800 02 O.~361SSD 01 -O.776S0~0-OI Q .. ~1368!!1Q..93~ O."136BO~0 03 0.4659110 00 0.6277S10-01 O.II>O~5~20-0o 0 •• 035020-06

O.913C930 02 O.50n4;QO 01 0.'>891530 ij3 O.9161000-Wl O.IOOOOOD-ij2

02 01

O.86S3l~5D 02 O.S26B1!0 III 0."880550 03 @,916,@OD-ia O.AOOO@OD-02

0,''''5511D 02 (I,53B"920 @1 0.4873211>0 03 0.9167000-01 0.1000@00-02

0.82.056D 02 0.5445530 01 0.4868010 03 0.9167000-111 0.1000000-02

17 H

-I

lIB 13 14 H -I

H U

-I

14 AS J~ II -l

14 14 113 14 -1

» m o n ~ :0 .!.J Ol

W to

Page 82: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

......... w­ZQ..Q..o..r-­o..:::a .... <l­

x IIJ

-l!J~­...... uo.::a.!""I -:1:0(%­

:It W

"''''.., t- L&..I n!1. '\J lIIo.%(t.­_ :..0

C::>L!..o_ .... ~:;)I-­

U:i:U­"- ~W

~_M_!\I 00101":)0

I I 00000 ."\11.0_00 NCO..ooo r'lM ........ O 1/),.....0..001 04',00"'" 0 Ql:.n..,.O\~ · ..... 01001001

N_M_.Q 0100010101

I I I 00000 Xt __ N_

-CO..of'l')N tOFJ"I .... .n1n CDC)'t...o4'CO ..nr-~:O.1') ,.......o .... LI\lJl · ... . 001000

I

r\J ..... "'o..o 010000

I ~::l=aoa .00'- ......... DCO..o_:"\I M oJ") 4' 0iI . .n r-o..o..n.ll M.o{f:ll..o,'"

'~"!.s:~"'! o~oo-:::>

NO'\J ... .n 0000001:;)

I I 00:::;''='0 .at 4' -" \\1 41 O(!)otn·:I) ... .nro'\l4' .... !""I"\J.:t,..... .-.r-'\IO''''' COr-'\I_4' · .... 00-:)001

NO __ 'll 0010001

I I ::l:::l::lOO '\H\J.n'\J"'Y :7'o..n.n""" ol)::J'Il\Jo ::o~o .... O' .qo:l)""~ r-tOJ'I._M

e e e @ ..

o-:;t:'fOO

,.. -0101_..0 ..J ':'010010 W I I I a:: OO:::lOO t-4 :;'.l)4'o..n .... O()\ofl\-t Z OO'l.n-..n IJJ O_~a)-t

_1I'I .... II"lc:J'ro Z I"'lN.n ..... Cf\ :) · . . .. .... 00":)00 ....

I ::> -' o .n -9~ __ D

0'000101 '? I I I 0 .":lO::)O~ -011"1""'1.001 .... O_D'J"I''\J '" 01"".""'10 1) .n:'\JD~a) rr ...-i_"O .... "O :;) :"9'1 _ ,n ..... .n t-

o It • •• IX 01:'0000 W

Il.

-' -'

...... "'0"9').0 c( ":J:)O:;:)O r I l.n .:lO::tO:::l OMrr')_O" 0 o_Q\..oo e-01""""-4'(1) QNoo..o4' t!) N .... Q\CI) ..... Z ,;"') .......... 4' 4' .....

• • • •• 1: 0100001 U , .--Jll

.J!

N_(f'I_"\I 000100

" 00000 N..o('l'}OO .... -4:)00 ~...,.(\J-o

mO\..o..oo Q04'.:Il .... o -tll .... O'­

II ••••

000000

N-,.., .... II'I 0'00000

I I I 00000 " ~~.'\If'I') ..n ,..., (]',) CD .... o..:t_4'N ...o .. ..o ... ..:t ...,.Q\~"04 ""'Ln4'lll,q · .... 01-:;")'0<::)00

I

N_MQln 01=>01001

I OO~-::::l'::' CD'-' ...... '""4('" CfI,,......o __

.o.;t4-::7'-!\J J'1~..o:.n4-N-:t'XlD..:t f'--J\..:t44'

• • II •• ::::tOo':'OQ

1'\101:\1_4-'0·0101010

I I 0000".:) n4".{)41t­·n ~ $" ~::> ooo4-~~ -0"I~('I"J0 'J''XIN:J'I''\J ""''''''!\I_4'

• •• 0 II 000100::'

("\10_-14" ::> 00 O!)·

I I 00000 4' _:"'"J..:t 'n 1"-..03''''.0 1')1:0 ..,., ;1\ 4' 11'1..0 ,.."'f') D ('i)'-'~:;J\(I>.

r--.(lH"_fY'I • ••• II OI~:;:)::Io"!:)

..... oo .... :.n =>00-:>0

I " 00000 ::t:"\J,f":\J-t Oo::O.l\.:g-·.o Q'l):7':::J\Q\ '0:""'141'"""'" N"':OM4'" (v)"'.:i'''''' ::f\

• ••• II 010000000

I

~"'~~.fI 000000'0 I I I ::l:::l'::too o4".n..oN ::::t::::t lJ..o·.1) => l/P\''''''_ lI\"\J:.n~'" :"'\.1-..0 1"'1 M :"I"'I .... "' .... Ll'I

II II " •• 000100001

_:'flQ""'''' ::t~O:>~ I I 0000::) 004"':01"'1..0 0000\00",," ol.fl-otC\Ja) oN:c..oN r"l_II'IC!) 4" 1i') __ 4'.;{t

II •• " II OOOQ::t

I

o

(\J .... M_N 000010

i j 00000. ,...~ooo _..0 c:o CO fTl_""r---:::t M_\J"I;t)O f""" til ,X} ..... .o ,...t.n..gQ\­

II " •• II 0000000

"\I-t"l-II'I 0000''00

I I I 00000 :D-:tMf\J.., _H\I 01:""'1_ No!\J.$-~ ...:t_"{)4"4" MNl)4"-:t r-lI\ 4">.n 4"

• II • II II' 000000'01

I

N_t""')CLO 00000':;:)

I :lOOOCl N,....o-M ,.....n..o-­::tl:::v. 4" ~ t\J 4" './'I .0 \I) 4" _4"~.o..:t

""'.04'''''4' (10 a (10 ••

~oooo

.'\100;"\1_4" 0100100

I I ':lOCO=:' il"DOO_ ..... ..0_4',....01 N.o __ O

..... ("'):\IMO ':(lO("\lCJ'l'\J r-WN .... 4"

Q ... II (0

~o::)oo

NO __ '~

=>'0":> ::::t.::> I I

0:::l0=:'0 .n..nD.-.:.n 4"I)~-D n :)'0 .... ·4"-4' ~ .X) • ..., ..0 '\J:"i)-IJ'o~ ,...QO;)\_f"l

• ••• 0 .:::11 =:t =- =:t":::J

_00 .... Lf) -:')0'0"":)::> , . , 00000 :)1)~:.Il.-t 0_:1'4..{) OLl'l::» ~.,. OLf)'X):"')f"o­o"I'lJl..n!"l4' (t')!"\J-$".-tQ\

• 0 ••• ":).0000

I

~~='lI~..n 0.0.000 I , I O~Ot':)O o(V),.... .. N :):'\I"\J~-l) ::> :''')(\1..0-tnru..:t.:t"'" M - ,,!)('t"j,., ''''_'.I\_.n

• •• II • 00'000

""''''O'''-$" :;)~~:;):)

I I ':)o=:.o~ ::> ,...,,..... o..jJ O(\J..oCDCfI O('i') If'IO'I CD ONOJ'lN -4-_tf):c-.v .~ __ 4' .s-

o •• 0 •

00000 I

N_l"'l_:'\J 00000

i ; ::lOOOO 0'0,...00 !\1(1l CD;:' 0 ru..o"...-o O't'\I ll)oJ') 0 1l)Lf):D_;:) ,....Lfl4"O"­

• 0 0 0 0 00,0000

N_M_il) 00000

I " 00000 ~"",o_{T)

4""""OOCO_ ru..oO'(T)N f?lr-LO-:t4" N..n«):\J$ 1'-4"4'.0";-

a II • ., 0

000000 I

'\I ..... ....,0lJ) 00000

I ~:::la.::lO r-fTllfl-M _00',....""'_ D_.:9""'"\I 4":o...o;ll4" Oo-II"'I)-O-.t" -./'I.$'4'.:t­

• • II II .. OOoOI=>O

·:"\10(\1_ 4-ooo::t.:::t

I I =:.o~ao :'\,Jrt').o'1":--­...... ..t-r-:-.=:t ~ r\HO.o::» ..0-_1"")0 ..0_'\113\(\.1 ,....:I)N-4-~ •• 0 0

":>":>000

r'\I":;:)-t_4" 00::>::>':::'

I I .:l:lQOO 1'"I')..;t'\lJ\:I\ ""''\I~ ..... ..o ::::t'.I\ n .n 4-.;t'\l..oM..o _4"_3\0\ r-a)Cf\-M

o •• " • .::11-:)0,:;)::>

-,oo_Lf'l 00:;:)00 I , I aoooo :::>..o"\l..n-0:""'J·4"""'"..{) O::1',.....a-O' o..o:"\lo~

4'.n~"""'" MN",,"_~

• •• III 0 0'-::)00'0

I

~""?)...-arl.n

0:'000 I I I 00000 or-_oN ::).0"1..0"1) O_M __

LO N ,,"}C'\J ...., 4"_..oMM ("f)_IJl_.n

e " (I (I (I

00000,0

_""""IOfl')..::t ~::I-:;'?~

I I ~~O::J.:l 0,.....0,.....0 0,£)0'000' O~4',..,.a) '0 (\J..o ./)(\1 dl_o31..::t M .... _.:r4'

o • II> Q 0

00000 I

78

::'\IF""4M,...,JN ~'OOOO . , 0.0000 N4"F""4QO .oOONOO M~..o,...O ...oMLO..oO -$tJ)al_O r-1Il .... ('J\ ......

• II> 0 " •

000000

N_M_..n o~ooo

, I I 001500 2)-$""""-:""1 ...... roCOM...-.I o~""M:\I Ml'\JlIl4"-# -40®:;:).$' .......... ...,..J"I4" •••• II'

O::)OOo-=> I

:\.I .... ,...,o.n :)01000

I .::lo~oa _4" ...... _(9')

-.n:'Jl--4""'.$""..:\1 c/lO'o.o...n..:!t ()\4'3)D4" 0.ft.$'4"4-o ., " 0 •

00000

:'\100.'\1_4-00000

I I 0.0::100 j)::)J.l')..:I"f"­:'\J_..:!t_=­-0..0-$":;) l'V)o_I"1)::::Jo .IlM'\J·j\'\J ,.....CO'\J-4"

& 0 Q I) 0

::)00.::10'::'

:\J::)""" _ 4' 000':::'01

, I .:::lOOO:::l .n i.fH7'1 4" J) ""''1''"-_..0 '\I'\I:o.;t4-4-.tlI)"'..o o./lf'-o.;j\l"> ...... !I)(J'I .... (V)

II • (> ., •

":>0:'::>.::1

_OQ_.n -:;)'00100 , " oooo~ o<T}.flD_ o.o_o..{) O...-.l .... ':D" 01 "X) :IHi)""" ..n.no:'\J...:t (i'}!'\14"_(f\

" 0 ., • a 000100-:;)

I

-!'"'l ___ "

000100101 I I I ~.::l:::l:::la of"'lCD-N ::':TIfl::J'l."""O :")-::.../lm ...... :.n N N 0\('') .t'I-..o'"\l!T} ;-., ..... .1"1 _.0

o .... . =>01=>0101

_"'1_"'14-!;)O~O=:.

I I I :::l"::)·:::s,oo .:) l"") ..0 ...... .0 OrlNNa­ooru..o.:o QN""t.O~ 'If}-..nl:-:t ~_1).a-4'

., ., • 0 0

00;:):)0 I

N_(V),...,JN 0000:;:)

;::)o06~ :\1""""':;;)01 NOf"o-OO -D_..::tp...:;:, .eLOm<oOO t"'ltJ')"1l_::'l ...... 11\4"-3\_ . . . " . 00000

f\J-M-ll"I 00000

I I I 00000 :)'1.0--:"1 .;t (v,){\1 :J'l -4 ..nr-..[,')N,'\I L'Tl..nln..:t-4" o '..n~-:D" f"a.(V)...:t4..:t

eo " • II • o::,.~oo

I

N_:-')O..n 00,0000

I .:).:::l 0. O:::l _O' __ t'I')

::0 .$"':),-­"-LO·n "';\J ..o'"""".o..n4" -.l)1J).X)4) 4' .D,n..t- 4' 4-

(I Q •••

0:>000

I"\JO.""\J ..... .". :::;:) 0 0001·

I I :l::::::'~::l~ -,.1)--"" o..o.nf'o-=.> ..... "'..tNO ___ ~o

4".:tI'\J:J\!'\J ,....'l')N ..... .:t

I) 0 0 0 0

00:)0-:)

:"\I:::» _ -4.(r

O'OO~='>' I I

0=:1000 IJl.". ~ ..... ,n _ .. '\1 __ D

"\J " :::. .. '\1 4-.n.1l"'....,O CJ'...o,......a-~ ...oW()\ ..... M

o (I (I 0 •

00:10':»0

_00-41f) 00':)00 , I I 00000 jfl::;;..n-i ':)NI"-:-\I.{) =.> N XHO (J\ 00,",,1.0..01"­..01/'1 "XI '\I 4-(1)'\1"'1_:1'>

(I • (I 9 •

000000 I

_ • ..., __ '-1')

oo::too I I I OO::::::'.-:l.-:l o""'f\J'If}N ::J_'J\ ..... 21 :.~-:o.:o­..n .... _,......., .o--oN~ :""'J .... If)_..n

• II •••

000000

_'7)_...,4-=>~=»-;:)!:)

I I I =-'::l~~O 00"""\1,...,..0 0_1.01-0-O()\NoIJ'-l'l o-::Olll"\J ,...-~«>.:t M_..o,q..q

e 9 & • " 000000 ,

o

N_M-.C\J 0000'0-

•• 00000 MCJ'I.MOC .or-tI)-::lIO ,...019')1"-·::. M..olO..oO NLnCO-.O ""'1Il4'0'_

o •• 0 "

00000

N_M-tll'\ 00000

I I I 00000 O'...:t I"-.'\IM ..o-Dr-4"-f ::c,,04"NN 4 .... "'-4-(J\_ro ..... .q-.oM...,. 4"4'

• •• (I " oojOOO

I

I'\J-tM-:JI.o 01000'0

I .:lO-:'lOO _N...c_M .Ilr'f'J __ -f

.0 ~ .n.:fo.'\J .1)"'\1..0""4 """1Sl®D4 .o.n.$'.$'4"

• (I " • (I 000100

:\10'"\1_4" 0010':)0

I I 00 ::l . .:::I-:l .n.o ..... -'i"-4'_rJ)-..$O ..o:"\ll'\l-=> 0·....,_,..,0 '9)J')'\J(J\.'\I I"-:J'lN_4" eo" • 1&

00":>000

(\J0_ ..... 4-O:>-:JI~::>

I I :::lO:::lOO ..nM·"'-·.t\ . .n ...., ..[,') -4' ..0 -'..0:'\1- .:!t -Olfl4"(v)-D alta...,....31~

...0 :Xh"-M · ... " ~-;:)':)O::::t

_OO_IJ') -::::too-=:)o I I I Cl.::lOOO :;':0..0-'-' o.;tlf)'ll..o o_..o,:J\ o:>()\..;t"'" -...0.0'\14" rWH\J(i'} _03-tI •• 0 "

0::10000 I

_.., __ ,n 000000 I I I QOOCla or-...,..oN 0. __ ;) D

oa)J"f")~-t 1J'l __ LnM

"""""'.0 '\1M ~_.n-to.n

" II ••• 00:'010

_"i')-4:""l4" :;):;:)::>":::t :::.

I I I .'.:):':) ~ =:l =-01,.... ..... ("'1..0 c;)_-e-U"ic;. O~M:t'):g

O ..... ,.'H/H\J CO_NCC.$­:""'I_,n ~ 4'

• 0 • (0 • QOOO?

I

o

r\.I-tf9') ..... ru GOOO-::;' , , 00::::'00 ,....::Q~OO "..ru-.$oo ..nO'oru""'O M..o t.n..o 0 _lfll.1)_::» ,...Ln4"Oo_

o •••• 00000

N-('I'1-lIl 00000 , " 00000 t""')::J'Irr)DM .0"1/'1-'_ J'\..;tMNN ..0 co lntll 4" ::C""''J')..o...:t ..oN""-I$" 4-· .... 01000::>

I

("\1-4,"'01./) 00000

I :::l~OaO ..oNM-M 4"4"'"'1 __

.::to _.n:::v. ru 01 4" ..0 '1'1...:t ,...I.n:O"O .... .011'1 4' 4' ..-s­eo. 0 II

00000

NO:'\J....t.:t 00000

, I t:lOO:::lO .0 Ci':"\I;()"'" :"\,.Ii'\J(f')(f') 0 (i')O\o=ll':) 0 0...,., .... ("')0 N..oI'\ICJ'o.:'\I t-a)!\I-4-

e e e II (I

:.00::100

NO __ 4"

·'0 ~ ~~o'o-I I

::l0000 'J') 4' .0 .:0 'n .n3'l:;":"'1..o _ . .n O'::Jo'4" -:O~:'""I:,,")D -:ot-~,. "'O<O"' ..... fI')

• • II •• =>,:)::;):;:)0

-400 ...... Ll1 -:>000:) I I I OOO:::lr:l ::::;l:I-t=»­O':.I\..n.o..o OC7'o..o~:f\ 003\~""" 'X)..o.n"J1lt \""'l')'"\J~_()\

• • 0 ., • 000000

I

_rY) ....... _ . ..n 00'0100' I I I 000,::)0 oO'\1i4"N .:;) " ":>"\1 :0 -:)"".:0 __

:.n_o..:t:""'l CI)...-.I..oNM 1'"'1-..n_1'1 · .... 000000

-...., .... ....,. ":::to :;:)00 I I I

::::1':::' O:::l ,::;:') O(J'\O..t..o OI"IV..$-G Q ..... CO [\HO O-r-LnN (J\_COC!04" i"')_~..:t4t

., • 0 ••

000000 I

Page 83: A Mathematical Model for the Starting Process of a

,. ~"'­

Q.zu~.n 3.:I[~.....,-

11:"'''''

.............. -~uO"Cl."V} -'X:~:::t: ....

r ....

Ol&.~ .....

--~- ..... UXU ...... 1 - • .u

(\11 .... (9\ ..... '" 000'03

, I 00,:)00 ..o(f'J«>O~ :p.,... ... OO CS'..o .... p..Qi fI1""'lIl.o0 :)lI\.2) .... O .... lft ... ""_

• III III • eo 00000

N-('f')P4l1l 00000

I " 00000 t/)O .... 3\"1 r-N4'®_ ..0"''''-1'\1 .:0..01.1\0>..--.-:0;,1) .... "'ON .... ... · ... . ':)0101,:)0'

I

!'\J-"")Oll'l ,=»010100

I O;::)O::::lO M::7'O_M .1)0,..0 ..... _

l.I\".n~N ;"'1..n..o.n ~ ..o..n~..o ... .01.1\.,. ....

III ••••

QOOOOl

"\101.'\1_ .,. 01:;:),:)00

I I ::l:,) ':) 00 .()..n.:t~ ..... ..... ':)01.'::11 ..0 NO:p. 0 04'_(\10 -I"""'"Y:::J'I" ..... ~N_. · .... ::>::)001:)

"\1:>-4_4' ~O':;:).:>:;) , , OO.,:)O=­:p.i.TI ..... "\I./'I '\J'::Il'\J.;tD ~f\Jo"~ .... ..n 1"")'\1 >0 ..... ~,..,::?o3' ..o~(JI. .... ", · ... . OO~OO

_oo_.n 00000 , " 00000 0..,...,'\1 ..... 0""- 0> fi') .0 0..0 0 4):p. 0I_0_f'­~.oJl'\J4' fi')f\I""_~ · .... -::>:::>::>00 ,

""'''''--..0 0001001 I , I 0::'::::\00 O_M..cN :>\JlD4'D 0-01"1') ....... ~_.:=tNI""'I

:J'_..o:\JfIl

~-:~-:~ oC':)O-:::J

..... (9') ..... .., 4' :>.::1::;)::»':) I , I O.:::;~::;·::; O-~2)..o o lI'IN4 ()I 0..0""""'(1) ::t-ll"o'\l ::>-..c~4' #-'\1 .. 4'

N_Pl ..... f\I OOOQtO , . 0'::'000 tIl.ntwl,:) 0 .J)i'\J.oOO (J\.""O""~ 4 mlfl..o 0 ~II\CO_::I ..otn..;t",_

• 0 It III • 00000

N_~_..n

000010 I I I

00000 CIl .... 3):")rv') 0:'"'1 .. ..0 ..... ""0>--'\1 ..... r--IJ'\I"'l ... "-<C:J\4 "ON ....

• • III •• OQQQO

I

'\t_"\o~ 0,:)0000 • ,:)::to:;)O 4'\I'!«)_f'f") .... ""l.I-_ ./'l ..... ./'l,l\N .J) ..0 I&) '.1'1 4t ./'l..n®.o.q .1)1'14'.4-

o • 0 0 0

00000000

'\I;;)i\I ..... ..:t' ,:)000:::'0

, I 0:;)0:30 '\10.1).0""'" D D coln:::t ""0:0.:00 _40:\40 :>IJ)NC}\'\J ,... :I:H\I ......

III • 0 • III

o::too~

"\.1':>_ ..... ",. 000:,:)00:,:) , , 0,:)000 _ '\I 1) '0 '.1'1 i..I\3\_..n..o .0'.:1 n 'D:i' "'''''\1''\1>0 DO""::J\:7'o ..oO'Q\-1'i'l · .... ,:,oo~o

_OQ_1.n :)000000 I I I ClOO~O ~'\I"'O_ ;;)::,I"I')~..o

01""lO'o0:::f\ 00'\100 ..... o.o.~4' 4'N .......... \)\ · ... . 0000:.

I

""''T) __ J'l

000000 I I I :)~u~::l O~_4N

~D-.,Q2) 0.1'1",:0_ ...0_0\0,,", o_.I)NM ..:t ..... .n_i.I'\ · ... . 0='10::>0

-""_I'O'J.q ':)~:;:J":):::>

I I I .::r'::'~:::Ja 0." ... ..,..0 o a:l.o..o 0-otn",oa) 0_4".J'l"\J __ .02)4

.:t ..... _4' 4'

:\J ..... Pl_N 00000 , . OOOQO ('9) ... 0'001 o@..:DOQl 4''3)'''' .... 0 ..0(1) .... ..00 "3)11\:0"'0 ..061\"",_

a •••• 00000

N_r'l_t!\ ooooc::>

I " 00000 I") (J>. ........ 09) o ... .oco_ o U"l0 Ci)N 4'NU"lCO-lt .00'1.1) ..... .0""4'4'. · .... o'Ooo~ , :'\1_""00'.1'1 000000

I .:;).:;).::t :l::l -CO,.....-M ..0..0.:0 ..... _ -:J'I.;f'I-":'\I ".o..oJ)~ ... .n'])0 • DJ'\~"''''

III III <I> e e :)OQOO

t\I:;,'\f ..... 4' 0000::'00

I I O'::J'=l::l::) .01 .... "4-­('jII. ,n » :0 ::> ,...tJl,...,....., <'\1..,0'\10 ~~:'\Io3\'\J ..0 (I)('\J ..... :t

III • III ••

-:)-::>00:)

"\1:)-_ .... 00:):)"0 , , OO~::)O '\1"' .... 4'.1'1 .D 'l''''' ,:o..tJ 1)1.f' -:;!I,r-....,. ..ofT)'"\I"'..g LI_-Q\3'I ..o::7''''_M

• • III •• ~:t.=t.=t!;)

__ 0 0 ...... './"1 0000:::10

I " 000.::30 ~ 0 "\1-' __ QJl.l'l .... ,f) O'2)4'.o~ :>'\11'0');0,... _..0'"") ..... .., 4'\.1Pl __ Cf\

• • III III (I

::;:)'!'>~o:>

I

"""' __ .0

0000000 I I I .::3.::3'::'-:l~ Orr') ..... -DN ~""'OD :../"1.0..., .... ~ ..... !Jo.('J'o('O"t __ .1'1_1"9')

.$' .... ..n ....... .n (I 0 0 0 •

:.')00:.'):;')

_"9')"\11')4-:)":):;'),:):)

I I I ::J:::l::J::J:J o ... o~,n Oo('\J.omQ\ O"" ..... :to .3) 00 __ =>4'\1 N_f'Vl'D4' 6_ ..... ".4

ru ..... Pl_N 0:>000

I , OO!:}.::;),:) ""0'1"')00 (f')CI)NOO NfIl!JI.""Q Ci') 01' ... ..0 0 ,......nCO_:) ..01.1\ ... 01'...., · ... . 00000

N-M ..... t.n 00000

I I I 00000 .n"1)"4'~ !'lOCi')4-_ _<:OC7"MI\I "'CJ'I,,-,l)4' ..n.o::o ..... "f)_44.

• •• (I •

0010':>0 I

"-fil:::;)1ll 000'000

I O.=J.=J::::'::) Jl--..o~r"") _ ~:;t ..... _

"\1..0..0,.'\1 "9')""..011;'/1 .t III 2hD 4-D~"'.t.:t

tit II • tit •

~OOOO

'\10." ...... ..g. 0;:)00<:)

I I O~'':)OO n4'4';:)­"''\I~''\IO .11"".0-0 ."\1::'''\10 1)-::t'\J::to"'Y >0 (}\C\J_4"

• III • 0 • 00-::;):):::>

"\J:::> ...... _ ...

'!'>~:::t~:::t

I I OOO.:)Q ..nn:J'lo~n

-- ..... ".0 -4"\10-4' :;)"\j .... ",f) _'1 '\!,... ".. '" "''''''' __ M III • (I ••

::):::t:):):)

_0 :,:)_'.1'1 0::;;':;:)0::;:)

I I I 0·':)000

~""4''''''''' :;')4'J')":;..o ":)(9').1''''71-0,..,""" .... ,.... :'\1..0"-4-.q'\l~_0'1

• • (I •• :')0':)0-::> , .... "i") __ Jl

00000

I " ::l:::l::l.:l::l 00-.(',0 C\J ='1-'14.1) :)-$":"1')"_ ,1"!_CI<_r9") '\J_U"l_('I') .:t ..... n_\J'l · ... . 0000::>0;:;,0

--4"''''''~ :::t =::::l:>:":) I , I ::\::l:l:l0 O_.Il...,,,, O .... O('\JQ>. O-f'OOO'ICI) :.')_t-.:t:"Y M->D~4 4'--4"o4"~

N ..... r;"i_N QOOOO , , 0':)0'00 O'CO..oOO N ..... .n:>:::it .::0::0,...00 OO(JlO4'-DO ,....iI\Xl-.::::t oDlO4'CJto­

o (I •••

00000

(\J-P1-~ 000000 , " 00000 4":)"'..0..., fI'}-Q'NO ..... ..nMCf\::i)N O"' .... :"l4t 1fl4'l)-$" 4 ..0_,,-4",,-

• •• III • 0::::»00000 , i'\j-tl"t');::t.n 0-;:)000

I :lOCOO ..:;..:;..0-('1') ..0 "'.'\1- .... :O..,"O~I\J oD:II.o.n4' ~..n2).o4' nn4'.tI4"

III III III III e 00000

:'\I:::>!'\J-..:t 0'000000

I I :l000:::) - ..,..0',., ...... In =- ..... .n :.') .0..0.0..0:> ..o-::.N:> .- --4 '\I oJ'.'\J .00\'\1"""4-

• GI I) ••

00:>-:;)000

'"\1:)--4_-1' ::::»-:t':)o~

I I O~::lO.:l .,.. 1\ .n . .., ..n .]\>0").0.0 D l),."f}.o .:t "'=-_".0 41"'f)r-CII::7'> D~(J\-(V}

• •• III • ~::s:):)::t

_oo_J'I 000:>::' , I I 0000":l ::Jo::sr--..,.._ or--r---::'D 0 .... :0.,..31-0;:;,-.,_.0"'" ~"'O.'\I ..... 4' ..;fI'\JI'f')-Cl' II • III • III

:.'>:)::"00 I

--4""_-0.1) 00000 I I I ,:::,.::)..;::)o~

olno..oN ::t'\J,o ...... I) :).e.::>.n­..n_O"o..o"'l t"f"I_.J)_t"f"I 4' .... ,n ..... .n

• ••• 0 -:IoCoo=",

...... ...,,,..., .... ':)::t?c=»'=­I I I 00:'),::):1 Ool.l)..n..o.o ON,....o(J\ o"'QQ'J~ 0_04'\1 4"_..oc:O.,f-4' ......... ..:1"4'

N_I'V)_ru ~Q:>OO

, I 00000 ..o~..ooo;) 4"CO_OO Ci'_ID"'':;' f\t04-oo .o..oCO_Q -O\n4'(J\_ o • III ••

000'00

f\J_Mv='I~ OOOoQ

I I I 00000 ,....,.."'''''.., :0 .. .0..0_ _:[l:DNN "-04'-4-...."'t'J1J..- • ..0_ ... .,.4

III •• III III

00000 I

"'\1_"')0"" 00':)0000

I ~O::loa C(I.o..t' .. =1(") :11,...4" __

,o~.oo.'\J 0'2)..0.0$ :"Vl.,n'X)..tJ4" 0./\4-4".

o 0 • 0 Q

000000

.\.1 :) ."\1 ..... ..:t 0::>-;:)00

I I :::):::)0:::)"::) - .n 1) • ..,­'3'04'_0 Oo'\I.lhO'Q o>o-::llNo ..o":\I~'\t .oO'!\J-$

It 0\1 •• 0

':1:),:)00

!'\f::> ........ -# :::>::to ':)'0

I I :l:::):lOO 1)2).1'1"'1.1\ .., 1).., .... n .:t ,,=tID 4-...... ,. .... '"\1 D M ""')-3> 0'0 .oC)\~-fi")

• •• III •

:)::s':):):::>

_OO_.Il ::>00;:)00

I " 00000 ::S"'::;'.)\_ 00-:1'':)'''\1.0 .::t-t..:t.o(J\ 04".,[)""" 4'..o--..:t 4"'"\1")_0'0 . .... '::> ;:;>00 0

I

-t~vt .... -tJ) 00000 I I I .:1:::),:)':)0 OU"lO'O'I:\I =>I)"'UDD 0..,"1)"'\1_ !I\_allll,., 4"_.n_~

4"""'1'1_.0 .. . . . . :::t:::l::t.:'>:::l

..... .." .... 1') 4t :":)::I::l'':>=t , I I :lOO':l:l :::>,nr--..o.o o ([)..o_Ot O:"l"""'%)<X) o_Jl..$"N .n_fV'I!]).;fI .:a ..... -t.$4'

0000_0,

N_('I)_~

00000 , , 00000 ..0."'00 r'IlCl\-oo ,... ... ~,....o tno.q..oo lIl..o::o ..... o ..01114'(7\_

• e •• 0 000.00,

NMj'Y')MLI"I 0(;)000 , ,., 00000 .:-9l.o.:>,." "" __ 0_

OO:l)Of\J 00 ...... 04' rv)--4'X)-t ... \I)--t ....

• •• 0 I/)

":)00000 I

l'\JO;"\l ......... 00'0001

" ':)O-::'":l~ ,J\-:t,:r.:t­·",,:..n3l"-0 .:0"" ... ·110 _::Il:';lor\lo ..0"\1'\10'0'\1 ..00"(\1_"" · .... 0.00101.0

"\1':) ..... -141 .00::>00

I I 00000 'O ..... O"=>J\ .0 ........ -..0 ..,Il ..... .n-t _ ..... :;'):'\11)

f?) -<t 1""- 3< ,... 1)0'''''_('1)

• • III •• ":)0:);:):';10

-o::)_,.n 0000'::>

I " ":It:l::;:,~o o.o-$"..-$ :::>..0 .... ,...0 ° 4'::> f") 1'> ':1-$''''''''''' I.Il..o __ -$"

"'r'\J""'l-~ • •• III • 00000-

I

_""l __ .n

00000 I I I ":l":l.:l,':l0 oO<}\ ..... N -:>.n'\J-t'D 0,"'.00_ .n ..... :tl..:tl"'l"l -n-..n_M 4'_ill_.fl · .... 0::).000

"",""-t:"'l-:t" :;'~-::IOO

I I I OO.:l:l.~ 00..0"".0 <:) L/U"l"" 0\ OM,..... .... CQ o_J)q"\J ..0_00004' ~ __ 4'4t

AEDC-TR-76-39

ru ..... ,.,_N 00000. , , 00000 _.."....000 ,fttft"'l 0:::.

""""'''''',...0 <004'>00 4'..ocn .... o ..oln4'O"­· .... 00000

('\J(\JP')=4l1'1 000.00

, I I 00000 O'9")!",)OI,., ,...1.Ilr--Q .... _N,....or'\f NlO.:tO.;it >'W')'i)'i)"' ... oDCJo4' 4' 4' · .... 0'::)0":)0

I

~_fI")::IIlI'I QOOOoO

I 00':)00 -I&)!.fl-C"l 4'"..01) .... _

""''''''.0 0"1 '"\J :00"1.01.1)4--Jl3:J.o..­o ,n -It " 4' o e til • III

00000

'\.100:'\1-*4 ':)0000

I I ~O::lOO ""'..0.3)"')"" ~..o",,'9\':> ,....o ... .no -4'0&>0:'\10 n,.,,,,CJ!."'\I .00'(\.1- •

(I It • (I •

00000:::>

'\Jo __ 4t

0000':)::>0 I I

':l':l:lOO:;:) 0 1 1"-0 '\I ..., .t'I .0-.0"".0 4'-.I'I.n4' .0.1).:>'\1.0 :'\J.nF'-::i'> 3'0 ",,,,,,,_M · .... 000::»0

_oo_tJl oo~~~

I " 010000 ':::l.l'l....,o_ ~4"-::J'I"O 0""0&>-'3'0 0, '" ~H\I""" ..0.00-"" 4!'\1!"'l_0' · .... ;:):>0100

I

_..,_ ..... .1'1

0'0:»:»0' I I I ::lO·"::)O~ OOf'lI"IN =>'"\InO"I) 0('1')4''''­lll_::DN-" D_LI'I_M ....... ..n .... :..n

• • It It • 0:»0::>0

_"l ...... :'V)~ ::t'::t"='~::t I • , :l.::::.:;:.::la 00 (i't "'.0 ON_t""I(t\ ot""l."of'~ o_a.4'." ~-N<I)..;t 4'_'\J..:t".:t

••••• e ................ a ••••••• a •••••• a •••• 00000 ::toooo ooo~~ ~oooo oo~~o oo~oo 00000 OoO~OO

I I I

79

Page 84: A Mathematical Model for the Starting Process of a

» m 0

T TSTR Tl PI pp PU 1>111 PPT NO ("")

"'CTO PEO MCT Hu MN MOCT MOPT MO~ NM ~ MOF MOl:. MUPE MOT!:>O MUCTU TP 1PT TEU NCT :0

TCTO RP RPT Rt:U RCIO AE APE Af ITER ~ E(ll E (l) E(3) E('+) E(51 E.I bl E (7) llT JIb Cll

----------.'-----------------------------------------------------------------------------------------------------.--------------_.--. W CD

0.4800000-01 0.H50UOll-Ol 0.47000UO-u1 0.b1901180 0, 0.6479020 0, 0.bll910U 0, O.ol6'+boO 02 O.b"19!>90 02 0 0.11129,40 03 0.1112\140 03 0.2b498cO 00 O,,9b3\1l00 00 0.94451>30 00 O.:>buUbO 01 -0.8408780-02 0.5b09:;70 01 0 O.264900ll-01 0.556J110 01 -0.305421>0 00 0.97U3b,W 01 O.2203~5ll 02 0.'+8610bU 03 0.48473bO 03 0.4847040 03 0 0.48470,40 03 0.1116140-01 0.1110320-01 0.1925u20-Ul o ol925UcO-O 1 o ."b5911U 00 0.4400000-01 0.916700[)-O1 1

0 O. ",,289'00-"4 0.5331820-05 0.9479b1O-05 0.3.,.b4050-04 0.4200U70-04 0.4442130-0:; 0.4442130-05 00100UOOO-02

0.4900000-111 O'''8~OOOO-01 0.4800000-01 ij.b14U!>70 02 0.0413100 02 0.0011490 Of:! 0.6209"'''0 02 O.0353!>bO U, U 0.1112730 03 0.lB2730 OJ 0.2b'>1810 00 Q.912U2!>0 00 O.952230lJ OU 0.:;004100 01 -0.7041180-02 0.5bllhU 01 0 0.292<;lO50-01 0.55B1880 01 -0.30220bO 00 0.970202U 01 0.2203:>90 02 0."lIb72bO 03 0.4841040 03 O.484b7!!O 03 0 0.48467S0 03 0.1l04040-01 001 098910-0 1 0.192" 7:;LJ-ia 0.19241'>U-01 0.4059110 00 0.44000UO-01 O.91b7UOlJ-Ol 1

0 O.44289bO-04 0.5331820-0:' 0.9,,79blO-05 0.39b40:;0-U4 0.4200070-04 0.44"213U-0!; 0.4442130-05 0.1000000-02 0

0.5000000-01 0.4950UOO-01 0.49000uO-U1 O"bOe;!:>oUO 02 O.b348320 02 O.b014""O 02 0.615b700 02 0.62892 .. 0 02 u 0.1112550 03 0.1U2550 03 0.2b534:>0 00 0.9801140 00 O.959b~90 00 U.:'bOI>510.0.1 -0.57170340-02 0.51>12230 III 0 0.31J8880-0! 0.5580870 01 -0.29918.:Hl 00 0.9700110 01 0.220329U 02 0.4867470 03 0.41146780 03 0.484b"1>0 03 II O.484b56lJ OJ 0.1093430-01 001087890-01 0.192"540-01 U.19l4:'40-01 0.40:>11110 00 0.4400000-01 O.9l!.7000-01 1

0 0.4428960-U4 O.:'33182l!-05 0.9,,79010-05 0.39b4050-0" 0."20007U-04 0.4442!30-05 0.44421JO-05 001 OOOOIlO-O;! 0

0.:'100000-01 0.:;050000-0.: 0.:.000000-u1 O •• 603~OOO 02 O.bc849cO 02 U.:'95f!!OO 02 1/.61Ob200 02 0.622b220 02 0 0.lH2410 U3 OolUlltlO OJ O.2b5""0!) 00 0.988.<030 00 O.9b61S90 00 0.':>oOtl440 01 -0.4399b80-02 0.501,,840 01 0

00 0.3280400-01 O. :'560U60 0 I, -0.2961b8D 00 0.91> ..... bbD Ul O.220JO:'LJ 02 0.4861b80 03 U.'>1l4b:'OO 03 O,"b4bJI:IO uJ .~

0 0'''846)80 U3 OolO8246!)-O! 0.10710:>0-01 0 .. 1924JoO-01 0.19243bO-01 o .4b5'JllO 00 0.4400000-01 0.9167000-01 1 0 Q'''4289&O-04 0.5331t!20-0S 0.9470;.61D-05 O.39&4b,>U-O .. 0.4200010-04 0.44"2130-05 U."4"21JO-05 O.1~OOOOO-U2 II

O.:;200000-U1 U.515000D-OJ, 0.5100000-01 0,.59791120 Ul 0.b22271:10 02 0.:>901"20 02 O.605S2~0 02 O.6H, .. "I>U 02 0 0.1112310 03 0.1112310 03 0.265:'700 00 u,996jl~0 60 U.973bU!>0 00 0.5>b09921l 01 -0.30432"0-02 O.561C970 01 0 0.3354930-01 0.557944U 01 -0.2932130 00 0.91>9118bO 01 0.2202810 112 O."1l61890 03 U.4S4b31:10 03 0.4B46250 03 II 0."846250 UJ 001071110-01 0.IU663\10-01 0.1924230-01 0.1924230-01 O.4050;.UO 00 0.4"00000-01 O.91e,7000-0l 1

0 O,442896U-U4 o .533At!2D-05 0.947\1610-05 O.3<,Jb"b50-D4 O.420007lJ-U" 0."442130-05 0.44"2130-05 Oo1000UOO-U~

NOZZ~E HAS CHOKtO

0.530000U-\,l1 O.:'250000-0JI 0.5200000-01 o.5!!40320 02 O,blbO\lltO Ol O.~836440 OO! 0.51175280 02 0.6101880 02 0 0.1112}:'0 03 00110915D 03 O.2b57420 00 001 OU,;oIilO 01 OolOOOOU!) 01 0.:'612080 01 -0.29009UO-02 0.5012890 ~l 0 0.2792220-u1 0.!>56 .. 960 O} -0.2902720 00 o .96 .. 7b70 01 0.2202600 02 0."8b8110 D3 0.464b050 03 0.41:1"6050 03 18 0."84b050 03 0.101>11110-011 0.105504[)-01 o 01 91 ti8!:>0-O A O.19240"O-U1 0.4b59110 OU 0.4400000-01 O.9H,7000-01 1

Q 0."426960-04 U.:'331820-0:' 0.9479610-05 0.39b,,050-04 tI."20007D-04 0.4,,"2130-0:' 0.4""2130-05 0.1000000-02 u

U.5400000~Ol O.535000D-D} 0.5300000-01 O,.578!:>010 III (I.6098~"0 (12 0.!:>7756:'0 02 0.587:'280 02 0.&040030 02 0 0.111215U 03 0.11 09490 03 0.2b574'0 00 00101"590 III UolOOOUQO 01 0.:'612080 01 -0.2123610-02 O.5f>120:'0 III U 0.253852D-Ol 0.5580660 01 -O.~8?32"D 00 \1,.9691670 III U.2202bOU 02 0.48b1:l331l U~ O."8"bU50 03 0.484b050 03 U 0.4846050 03 0.1050290-011 0.1044940-01 0.1919430-01 0.1924Ul&0-01 0.4Co!;':IllO 00 0.4"000110-(11 0.9161000-01 1

Q O.44289bO-04 O.53311l20-05 D.9479bAD-05 0,.39&41>5>0-04 11."20°970-04 0."442131l-05 O."44213[)-O5 0.1000000-02 U

0.550001l0-ul u.~45000U-Ol 0.5"00000-01 O.57J"0~0 02 0.b037:;;90 02 0.:'71':11120 UO! 0.51:175280 02 0.5979190 02 0 0.1112150 03 0.11 09,,00 03 0.265742D 00 0010221130 ii 1 0.10000UO 01 O.~612UI:ID ill -0.6835320-03 0.561UblO III \I O.i!539530-o1 O.558!:>clO O} -0.2844010 00 O.969(b70 O! U.220Zl>uO 02 O.4868!O60 03 U."1I~6050 03 0.4B .. b050 113 II O'''84b050 03 OolO39b70-QA 0.1034<>10-01 U.191ti"'''0-UA 0,19240"0-01 0.46'>9110 UU 11.4400000-01 0.91671100-111 1

Q 0'''4289bO-04 0.533182U-05 0.9479610-05 0.39b"1>50-9" 0'''200070-0" 0.4 .... 2130-05 O ... 4421JO:'O:' Q.100UOOO-'02 0

Page 85: A Mathematical Model for the Starting Process of a

O:lt ... ,,,, ZZU .... Z .,

0-0"

t~~~~ I

::> .n 0,_ p.--=»p..\AJ4' o..XOtX.­

:0: w

~O!..i.l t-ltl ~d... N \/):l.:E3:-

JJ

ou..o ..... f- f- '::H- .....

U'!:U-1. -~

N-a .......... 4' .0 00-00::>

, I 000100 ·n ""'f"-:o".n f'l)""oOi.n..o ,....o·"""~ :t CDM~-..o ..oo.oO':J\ Ill .... "' .... t"'}

G '" • II • 000000

<=tOO-tlfl 00000 , " 00000 01'\.1".0 ..... o4"ll_.o er-II\.'" o ln ""'" I'\p .... '..Il...ocoo...$> ll'II'\JN_O\

o ., • 0 eo 00000' ,

-4rY)-4""'Jl 0000.0 I I I -::::'O::tO::l O_iJ'lO'N .:')4''\I'\J:Q 0-::0 .... 0\-4 ·..notnN"'l lI'I .... l.IloM LJ'\_1Il-..ll

o It 0 • 0

0:;)000

.... ('f')-$"" -It 'O;:)~~-:>

I I I ::lI::l=:lOO o .. -, Ci', . .-, -D 0_000'1 CH\J.n..o ::0 0-44'~ "O.-. ..... C04-..0_"\.14"4-

• eo •• 0000100

i

NN~""'ln o c: °l~ 1" 00010'" :O .... lIloM NfF)QQI ....

~;! :I,g ~ ::;:~:OJ'!: Ell. e $I

0001::,)0

ru .... , Oln Q 0 o~o 0

; I

oo~"'o 4-CD -P'J Q)Q,Q -t_

~~~i~~ :g~:~: :-

1ft ,. 01 • .­O'OO!OO

N ..... ry .... ...,.. 000<;)00 I. 00000 4'Oo-:>.r­Mo..oo,o O'toO!'\l..:9'Q .... OQNO :J'.ON(J\N 1,f)_N_.­

o • I) • iii' .000000

ru ......... -f·. 0000,0'

" 00000 'l)'7)r---..nUl .fl:l\DLO..o :'fJ1"--.,......n 4' 4":'I')(i'I_..o ..0 O,g) :)q]'t. Ill_CI\ ..... M

I) • '" " 0 00000

_OO_lfl 00000 I , , 00000 :.!)"\J.:tr- ..... 04'::'ON'<O or-r-4'{J\ 00:.0«)""'''''' .0..0""'04'" Lf)Nt'\I ..... 3'.

• IJ •• " OO'::tOO , ..... r") __ LIl

000'0.0

I " oo~ao 04'4NN ':)'\J"'l '\I "1) Or-.nO\.-. ll\::) ........... :"V't 'O_~Of'll :.n.-till_~

o 0 II • 0

010000

_ ~~"'l q ":)O::ll~~ , , , 00000 00 y, w li"i..u 0_",,"00'1 Q(\Jo..om O ...... .-t4"N ""--CD..:t .n -H''l 4' 4-•• III III III

0000000

NN ", .. ,,,

I

CICI

I N_N __ .... 0.00100'

I I 0.0000 -00.:11"4'''''' MO\OO,o­ri')O!'\Hto \I) 0 Ot(\l 0 ~oN(J'I(\J i,fi.....a(\l_4'

til " .. 0 GI

0000.\00'

~.;-~~,;-'. I 00000:

-DfI)""...aQt.Il -4..0 ..o,o..a t'i'),e--:TJo#$' ~-<tlj\_.o -.() o..o(J'l~ tn .... O\_tTJ ••• 0 €I

":)00'000

_OO_Ln 000100 , .. 00000 =:t'\J"3\'X)_ 0"' .......... .0 o~_..:tCYi

O\J'l-4)Or­

""""'r-o~ lI\":\J('\J_(J'\ III .. III GI '"

00101:::»0 I

...... (1')- ...... ..0 00010100 I I I 00000 oa:n .... NN .::')-')\..n::o 00 ll''''''''!J'I_ lfl:>..o;:)r"') ""'_,J)OfV) ~_..n_1l\

8 III III • Go

o~:;')oo

~,..,.,-~ "* .::;,~~o::> I I , ~O=.lOO 0. lne;. Ul \,() Q_NQ('t\ O(\lCO.{)C'D Q .... 01o..:t'\l (X).-tLOa:;I-4' .n.-r"l..:t4J"

• • Go .. III

':>000000

I J N0=4 _4-OOOOQ

o'oolJ,~ -4' 0'1'0 ....... ' ..... 0...0,00·0 (J\oN.4'o QOO_NO

"'Q~"'''' .n .... --V .; .; ';1'; .;, N0m4 __ -e 0'01'010'0' . , 001000 .... M,......~!ll CfI.'J).Q_..o II) ':)I"""·~·-$" "01.('H'\ ..... -'O i.Oo-&)O'(1\ 4't_O'_tTI

• til " 0 III 00100000

.....a 0 Of\ll1l :>~ooo , " 00000 o :"\!(\!..., ...... 04"1'-1'91..0 Or-UH ... /J' OLJ\(TJIl\r­"l)..o,...(j\..:t lONNCJ'Ic}\

" 0 01> • 0 01000100

I

-~ __ Jl

0.:,)0.010 I I I ooa~:l OOIJ)..oN '::t ..... '-1\ '\J :D ':;)-4':;)\0'-' 1Il0 ·.noM \I)-;.flof"') .n ..... ~ ..... ..n

III III " III $

'OQOOQ

~""'l~""l.;t '::t":)'::t'::t'::t I I I O=:l~Oc) o\.fi-.n..g 0_,....01]'1 0(\1 .... ..000 O .... ,....""'N (1\~.=HD .;t J)_444-

III III III 0 •

o o =>:::t 0

81

aia a -t ~I ~""'Pl""'NI col "",. 1 11 0 10000 ~od:IIJlQO QHnQaO \D-CO..c ..... Q O(J\.~O

:;;::::;:::1 o e 0 It " 00000

,

~f"f111 0.0000 a)'..o Ln Of") NfOooP4 I/l..o 100 ON ~.M 4 C34 a)' ..... aD -4' 4-to) ..... 4' ... '*'1 1';"'; ':1 N, ..... I'f)Oll\

O,O·Q Ofl ",10000 III Q) ........ P"tl • IQ,.o .......... 1

~:~~3;~1 .. "Q <0 10-4'1

~~ ... "':,~ OQlOOQ'

I

, I " C\I,-tC\l ...... : 000 C'H,:'.

o'oOi~~1 .-10·014' f'o". (00..010-0_ >3) ON: .... 01 i.HIOO,NO ,....:ONi~N LI1:.....tC\lI ..... 4t

01 0 8] <9

"""''''1'''''', ru ......... · ..... OOIC'''':;:''!:) I. 000:00 (\").0""':0\.0 ..oI..O..o(J\..o ..... .01"",',014-f"i') 1.0 CP'O-D 1l'I0>D(I\Cf\ LI') .....t (f\ .... f9')

" III CI " III 000,00

_QoNl!i 000,000

~o~66 0:'\10·..0-O-4-..ntO..o O .... _ ..... 'J"I 0U"l .... r-,.... O'I...ot--:D1i UlNNOIo(J\

• 0 til III III

00000.

• _I""'I.-$Nm 00,.0.00 I I I ooo.=.o OO"NlilN :;t <\I .:ft -4' 'D oO;\J~-t"_ tnoLO_1"l eJ'-;J1Q>\M ll\ ..... .nCflotl\

$ e It ••

0001010

~('1-'l"".:t -;:)o'::to ~ I I I 00000 o Ulolfi..jj O .... MOO\ o ry r'hO cg o __ 4"N

o _(I':HI)-4' "0_4'.8,,,

o • 0 • III

00000

z o

... u ... >< w <> .... <!> Z -... .y w

'" w

'"

000:0 -<I)IJ"I .... ..... 01011.-$ cE)(\I..o ~ \00 ....... ,'" .<DG>;\O tI\ til ,:tLq 0.

o~J~C:

;:~~~~ c!.lo oc!. 6 O:\llft"',....

~!p! ~ g ~ Olll'lONCO 0.0""«>""" oDt\JNO" ....

o 0 0- III " ooooe:>

I

-t,M -...4 N"'" ooooe> I " .000::101 OCDlllN>(I 01\)..0..0 '2) O-4':::lI~ tnm .... tn .... oo4'ooc:;p. -D ..... .f\O\CO

• ~ •• 60

00000

-4 M 0 f') ~ ':)0':) , .0000 clfiLfiIJ'l 0..-1..00 ONCf'I"o 0..-10. -_lilt!) ..0_ .... 4>:::»

e • e iii •

:)0000

~OON..o

'il0o~f 010000 ~-'\!r-:"'1 <:> O..:t4'N..o 0.""..00,0 QIIl:J1.CJ"IO """"..o..o""'(J\ -.OU\J NO' .... '·

eo •••• 010000 • """'iPlf'O'1C\1..o 00010.01 , • I 0,.0.0.00 oNCO\l)1'­":>"'r-~:'9"I O-:JO'H"iJ'\ .nme"'lQ4t­f'O'1O-d"CO-4' "'O .... Il\(J'\N •• II ••

00000

..q('fJoM ';:)0:;:)0

I QC)-=:t::l oJlr'llfl O .... C\Io oN 4''''' 0 ..... -4-N_IIla> ..0_ ..... 4'0_

o •• e e OOOOe)

AEDC·TR·76·39

-=4~OM 000::) I O~OC) 0\11..0111 0 .... crt 0 ONCO..o 0 .... ,.... P'J _I/HI) ..o-t-t4>·O

• • II III iii

000001

Page 86: A Mathematical Model for the Starting Process of a

» m 0 (")

T TSTR Tl PT f>P PO PN PPT N() ~ PClO PEO MCT ,",I.) MN MOCT MOPT MOO N,", JJ MOf MDt. MOPE M()TSO MOCTO TP TPT TEO NCT ~ ICla RP RPT Rt:O Relu At. APE AF" PER Cl

E III E(2) E (3) E(4) E(~) E(6) E (7) OT J16 W -------.--.-_._------.---------.-----------.-----.-------------------------------------------------------------------.--------------. (0

0.1>4>00000-01 0.1>350000-01 U.63000UO-Ol U.S41>0440 U" U.5027:;"0 02 0.54>211110 02 0.5875280 02 O.51>1HSO 02 11 0.111215L) OJ OoA07846() 03 0.26574>20 00 u.I007500 01 uoloOOUUO 01 . U.51>12080 01 0.20"941>0-01 O.S591580 01 0 O.16113l1J 00 0.5430430 01 -O.~676UoO 00 U.91>9io7U 01 U.2202/>UO O~ 0."8"l'>uSO 03 0.4841'>050 03 0.10841'>0SO 03 0 0."8460SI.) uJ O.97357111-02 0.971 82"'0-02 0.180:'100-01 0.1924040-01 0."659110 00 0.4400000-01 0.9167000-U1 J 0.0 O. ',2I'>SUI'>0-01'> 0.854~4"0-Ob U.3918UO-05 O.3S5U5~0-US U.O 0.2238810-05 0.1000000-02 -1

0.6500001.)-ul 0.1'>450000-01 0.1'>400000-01 O.S4!o""9() 0" O.:'608011) O~ 0.:'401510 02 0.!o815~tlO 02 0.5596570 02 Ie 0.111215CI 03 OoA077580 03 0.2057420 00 001 061/S40 01 0.1000000 01 0.51'>12080 01 0.2173"1l0-01 0.55903"0 01 0 0.11>43571.) 00 O.542!o98IJ 01 -0.21'>66790 00 0.969"1070 01 O.2COe!>OO 02 u.484b05D 03 0.4t141'>050 03 0.4841'>05D 0"1 0 O.4841'>05Cl oj O. 970 19I'>O-O~ 0.9085I'>JO-02 0.181'>,>2JO-01 0.1924040-01 0.41'>59110 00 0."'400000-01 0.9161000-U1 4 0.0 0011'>72130-00 0.33498'>10-06 U.156~UUO-05 001 J91'>"20-0:. O.U 0.6",380320-06 0.1000000-02 -1

O. I'>I'>OOOOL1-ij A 0.6550000-01 0.6500000-01 0.544:';010 0" O.~Stl9fJO 02 0.~39'+980 02 0.5875<!tlO 02 0.S580900 02 e 0.1112150 03 001071'>730 OJ 0.2657420 00 U.1U714,,0 01 U.1000UOO 01 0.!>1>12U80 01 0.22917"0-01 0.5589160 01 0 o 01 I'> 7465L) 00 0.:'421110 U1 -O.26!>81UD 00 U.90971'>-;O 01 O.2202bUD 02 O.484b050 03 0.4841'>050 03 O.48"'I'>U50 03 0 0."846050 03 O.91>70o34D-Oc 0.91>55uoD-02 u.lSo~100-01 0.1924040-\)1 0.41'>59iiO 00 0.4400000-01 0.9167000-01 3 0.0 0.A71"1'>40-00 O.34J01UD-Ob U.l:'8d540-~!> Uo1417070-05 0.0 0.9403770-01'> 0.1000000-02 -1

0.1>7000001-01 0.6650UOO-Ol 0.&100000D-01 u.5432540 02 0.55721>40 02 O.~3B335U 02 0.587521!0 02 0.5564380 02 9 00 0.111215DI u3 0.A075\110 03 0.205742D 00 0.107:.;,,20 01 00100000U 01 O.!>1>1"U8() 01 0.2403710-Ql 0.55S6040 01 " N U • 170428UI 00 o.!>417&lD 01 -O.e649971l 00 0.969'070 01 0.22026110 Oc O."S4bU50 03 0.484&050 03 0.4841'>1ISO 03 0

o .4S4605~1 OJ 0.91>40771)-02 0.91'>26480-02 O.18bAJ50-01 U.1924U4[)-01 0."1'>59110 OU 0.4"00000-01 0.9167000-0} J 0.0 0.A787030-00 0.3579370-06 O.11'>~1500-0:' 001" 7lB90-05 0.0 0.1 0 12350-05 001000000-02 -1

O.e;60000~I-Ol 0.&750000-01 0.07000UO-01 O.542~850 02 O.:'5SI'>I>I>D 02 O.:'37C~80 02 0.S875280 02 O.5548g5D 02 Y 0.11l215UI 1)3 0.A015140 03 O.26574ei) 00 0.1074850 01 U.I000000 01 O.51'>1~U80 01 0.2510230-01 O.S586~BD 01 0 o. A7327'+~1 00 O.541371ll 01 -0.26"237D 00 0.909/1'>70 01 0.2~02I'>OI) 02 0."II"!>050 03 ().4t146050 03 O ... e"60SD 0,1 0 0.4S46050 03 0.9613130-02 0.959979D-02 U.180UOlll-U1 0.19240 .. 0-01 0.4659110 00 0.41000000-01 0.916700D-OI 2 O.~ 0.23S2980-01'> O.477259ll-06 U.223;11'>0-U5 U.1993;'30-0S 0.0 0.1132110-05 O.lOOOOOD-02 -1

O.1>90000L)-01 0.&8511000-01 0.6800000-01 O.S41Jd10 02 U.:'S4175l> 02 0.S302bOO 02 O.!>875260 02 O.5534:;6D 02 U O.11l215Ll u3 O.1014"OD 03 0.21'>S7420 00 001010380 ill 001000000 01 0.!>1>12080 01 0.21'>108"0-0} O.55S5970 01 0 o .17S979Ll uo 0.S409990 01 -O.2I'>jS2dD 00 0.9691&10 61 0.22020110 O~ O.'+II'>!>1l5() OJ 0.4841'>050 03 0.464&050 03 0 O.484605CI OJ 0.9587J40-0': O. 9S 7489D-02 U.185d"30-01 0.19240,,0-01 0.41>5\1110 00 U.4400000-01 0.9167000-01 ~ o.u 0.71 B 1':100-08 0.1 .. J94!>0-07 \)." 1 \) A U?U-ilf 0.3&55990-07 0.0 11.20582"0-06 0.1000000-02 -1

O.700000Ll-01 U.6950000-01 0.1'>900000-Ul 0.540"550 02 O.55278!o1l 02 0.!>353350 02 0.5875280 (12 0.S5211<o0 02 5 O.! 11215CI oj 0.1073700 0:'; 0.21'>574"0 00 O.107l11l0 ill OolOOUUUU U1 O.~612080 01 0.2(057jO-01 0.5S85020 0]. \I O. !7t1S4 It> 00 0.5401'>471) 01 -U.21'>286/0 00 O.969(b70 01 O.2202bUO 02 0."8401150 03 O.4t14I'>05D 03 0.411"'I'>USO 0,3 0 O. "84b05~1 uj O.95b3c91.)-U2 O.9SS11'>8D··Oc O.1857!>20-Ul 0.1924040-01 0.4059110 00 0.4400000-01 O.9167000-in ~ 0.11 O.lT50U20-00 0.3S04300-01'> O.162HI51l-0:' 0.1'>4551O-0S 0.0 0.9484120-06 0.lOOOOOD-02 -1

0.71 OOOoel-O 1 0.'050000-01 0.10000UO-01 O.53918~0 02 U.5514!NO 02 O.~34 .. tlOO 02 0.58752110 02 0.55081>SO 02 II 0.11121S0 OJ 0.A073U40 03 u.2b574"0 00 O.l07~090 01 001000UUO 01 0.!>olCU80 01 0.2795090-01 O.55e"13D 01 0 0.18U978D OU 0.S40314U 01 -0.21'>2251D 00 O.969f07ll 01 U.22U2f>UO 02 0."840U50 03 0.4846050 03 0.48 .. 605D 03 0 0."84605.1 OJ O.9540t:l80-0C 0.9530010-02 U.18SbJtlO-Ul O.1924U4,0-Ol 0.405>9110 00 U.4400000-0l 0.911'>7000-01 2 V.U 0.221'>0830-00 O.4!o21'>78D-UI'> U.207A580-U5 0.1841'>101)-0::' O.U 0.1370530-0S 0.1000000-02 -1

Page 87: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

TABLE 8 LISTING OF THE COMPUTER PROGRAM HIRTSM1

83

Page 88: A Mathematical Model for the Starting Process of a
Page 89: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

DATE " 75157 11/58/40 -- _._----------

r. HIRTS~l - ~JRT STnRTING MODEL _______ 1~IC.n~4L"_lLJA;:"fuM;O-Lt.ll ___ _=_-------------

COM~ON aAE.(3.5n),AREAT513).AAEA~(3).TV(3.50).A(lO).E(7).B(30). i_IV'( :n ,T ')£LA'(L311.AWLll ________ _ COM~ON PC.RC.TC.AC.MOtTC,FA(3) .MDTSTA,INFJN.TMGOGS.GP0265 •

.L.£G~_R___ __ __ COM~ON G.r,Ml.GPl.OOG.GP102.GMlOZ.GPlOG.GMlOG.GOGPl.GOGMl •

.1. JlJJ.ill1.l.ru:H.iP . .LoJiPOGM 1 • SG,., 102. TOGM! • lOG. MGpGM? IOGP! • BPG'" ) 2. Z MGPOGM,M30GMl,R.GA.OOR.PI,PEAA.AWOKW.OOAl.OQKF,KF,KW _~~QN...1SI I. TSthTSW. TSP. TSA .TSWII .TSV .CTO.CU .pV.PYOTSV.hlllll COM~ON T.Tl.DT.TSTA.DTOZ.TSTOP,OODT.OTOPV kQM~JLl~~A3~~A5.A6.A7.Aa.A9.AIO.Al1.Al?A13.A14.A1S.A16.A11 COM~ON PN. PP. PPT. PD. PT. PCTO. PEO, MOE. ~D. ~DF. MOPT • MOCT • MOPE .MOYSO .MOCYO. If 0 • Ip.

TPI • TeTo. AP. RPT. REO. ACTO • ACTO. MCI. liE. APE. A F. MN. MO

r.OM~ON PNI. PPI. PPII. POI, Pll. PCIOI, PEOl, MOEl. ~_~~~~~M~D~PlILIL.~M~D~CLTLLIL.~M~Q~P~E~l~.uM~DLTwS~O~lu.~M~OilC~I~Oulu'~~T~E~O~lu'~-2TLPAl~. ____ _

TPTI. TCIOI. RPI. RPTI. REOI. ACTOI. ACIOI. MCTl. Af1. APEI. AEI. MN1. Mol

COM~ON PN2. PP2. PPI2. ~D2. PT2. PCI02. MODZ. ~DF2. MDPT2. MDcT2. MDPE2.MDIS02.MDCT02. TPT2, TCI02. RP2. RPI2.

___ IIPE2. A.2. MN2. MDZ COM~ON PN3. PP3. PPT3.

RE02. RCT02. ACT02.

P03. PT3. PCT03. M1D3. ~OF3. MOPT3. MOCT3. MDPE3oMPYS03.MOCTQ3. TPT3. TeTo3. RP3. RPI3.,

~_~Af3. MN3. MOJ COM~ON Psnpo.TSOTO.R~OAO.MSOMO

RE03. RCI03. ACT03.

~QM~ON $V,SYl.sy2.SXl.SX2.$DX,SEl.$E2.SEMAX.SEp.SQE

pE02. IE02. MeTZ.

PE03. TE03.

MOE3. TP3.

COM~ON TNSTR(26).JOERUG.TIN.rOUT.NP.IP.llfR.NVT(3),i,NT,yPAGE. ~A::;E. $N.l Y ! 3) • J.1 "11.1 II ME. NO, NN,NCI. I FLG.IFLGI • tELA2. lEI G3,lF'LG4' ZIFL55.TFL56.IFLr.7.IFlG8.TFLG9.Il.y2.13.14.15 ~OM~!~J3.J4.J5.J6.J7.J8.J9.JIO.Jll.J12.J13.J14.J15.J16.J17. 1 JIB.J19.J20.J21.JZ?.J23.J24.J25.J26 ~QM~ON Nell

DJMENSYON V(30.4).RSIR(582,.lSTR(35).IEXIP(7).JV(26) _ DIMENSION C (4.2)

E QlI I VAL ENe!': (r~S TA ( 11 • ARE II ( 1) f. (I STf! ( 1) • Np, • (pN. V ( 1) ) • (JV ( 1) • Jl) INT::GER $\11

--R EAL;;-8T-N~I N • K F • K W DAT~ IFXTpVl.~.6.7.l0.14.161

DATA C/-.14895381DZ •• 453475010Z.-.43530673D2 •• 1406ASS4D2. -L-~5§23QO~702 •• 14939843D3.-.13208110D3 •• 38913333021

DEFINE FILE Ol(300.1200.U.J16) ~OP.QJDil?~~!~~~M~G~O~G~M~l ________________________________ __ MOOTPT(Dl.DZ)=-AWOKW*(Dl-D2*AlS)*A2

------.llJ "1E=O IFl!)l"l IFLG2=+1 IFlG6=1 IFL59=1

~-fFl510=1 YFLGll=~O~ __________________________________________________ __ IFlG12=1 IDEeUG=03

85

Page 90: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

DATE", 15151 11/5B/40

. IIN,;05--.----------------------------­IOUT=O/\ ;Ijf';i J5=Q ____________ _

10 REA)(IT~.120)~CTL

r.-----------------------C M-tlNUAL ~ROr,QAi1 -CO'lTROL . C_~--_~_~.::=_==_:__:_::!":_~_':'_~----_:___=_=_-----------__ - __ --­

IF('1CTL.E~.O)GO TO 100 \(RllfjJJ)UTli5) N"'-C-=-T~L,---._-------------------

15 FOR~AT(.0~CTL= •• I3) C__ . __ ._ .. _L ___ 1! .. ___ .J_. ____ 4 5 6 1 R 9 10 11 12 13 14

r,o TO(100.125.129.1116,20.30,40.50.60,10.BO.90,151.9S),NCTL ~_'Ab~~lNP~_111J~OL) ______________________________________ ___

30 CALL' HITT(~10) ~O CALL' Cn."lSHU.O_L ______________________ _ 50 CALLI DU~P(&oIO)

_ 50 CALl-' _501.. VC'R (UQ.L ___________________________ _ 70 CALL' PRINT(~10)

.. ____ 'liL .. CALL' !'IT NO'!1li~O~) -:--______________________ _ 90 CALLI RFVE~T (&010)

_95. CA.L\,.I_?MPEQ'TJ~10)

c---------------------------------------------------C REAl) AN,) I)ffI.'1~_ 6~FA..ll1.._H:n RUN CON-'-TR'-'-O:<.L"-""IN"-S::.T"-'R-"'U"-'C'<,.T:.cI..,O""N-'-'S"--_______ _

C---------------------------------------------------_ Jj)(l_ ~E"A'2_nl~.!J.2QJ 1 NSTR'-___ -'-_________________ _ 120 FOQI1ATt('6J3)

J F t J NS T R ( 1 ) • NJ;:. 0 t 'UltRl,JG_"i_"i!ilBU:~) ______________ _ IF(INSTR(I).EQ.O)JNSTR(l;=JOEBUG IF' (lNSTR(2) .N~.f)illN:::_ltiS.I_Rll_) ___________________ _ IC'(JNSTR(2).EQ.oiINSTR(2i=IIN

_____ JF.<I f'jS.T ~ Lll • ~£ IL. Q=+-) ~I O,,-,U~T=-:=?I~N~.S,L.IL!Rc-:(~37:):-_______________ _ IF(TNSTR(3).EQ.0)TNSTR(1):IOUT IF' ( T NS rr~ ( ~) • ~~. QJ ~p-" l."!.S~R,,--,-,t 4LIL-__ I~(INSTR(4).EQ.0)INSTR(4;=1 I~ (INSTR( 5) .EQ.OLWSJ_RJ_5j __ =l. ___ . ____ . _____________ _ IF(JDEPUG.EQ.IOUT)INSTR(6)=0

_ 1£ (JNSI~1.L ... EJh_~TR ( 7 i:2 . ~ Y~(INSTR(~).EQ.O)IN~TR(8)=1 Y' (YNSTQ(9) .EQ._Q) .TNs:rgJ'~i-=-L ____________________ _ I~(lNSTR(12).EQ.O)TN~TR(12)=1 I~(lNSTR(14) .~(l_.ILLTfIIS_18.1H)=1 ______________ _ I. (I NSTR ( 15) • t;:Q. 0) PJSTR (15) =03 Jt=:J T N,SJRJllU .LMHNS TR'-"~1_':'8CL)-="''::0_::3_=_=-=-_---_------_--_ IF'(TNSTR(22).EQ.O)TNSTR(?2):9999999 IF (T N5TR(?5) • t;:Q. 0LI.tI!STR_.l2Sl.= .. 2._._. _________ . _______ _ t~(TNSTQ(26).~Q.O)tNSTR(?61=9999999

DO 12.1 1.=1,26 _______ . ___ . 121 JV(l)=TNSTR(I)

I F . .l 'LC.IL.H::.ill.G0 TO -'1..,0'--____________________ _

C--------------r. PRINT HEIIDJNG

C--------------__ 125 IotRJ1':E (YOUT •. 13H ______ . _____ ,, __ _ 130 FORI1AT('1',29X.74('$')/30X •• ,o.1?X,'$'/30X"$ HIRTSMl = MATHEMATI _.--l'c'!.L ST.~_!D_l~fi. \100El FOR .A...LV.flIHEG TUPE WyND TUNNEL ~. 130X, ". ,

86

Page 91: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

DATE .. 75157 11/58/40

272X.'$'/30X.I$ AQNOLn R~SEARCH ORGANIZATION. ARNOLD UR FORCE STA _ ._JTHl.~LJ~' .. o...l.2)l...L!...i.!.IJOX. 1$ •• 72)(. "'130)('741 .'1 1~. ________ _

IF(~CTL.N!~O)GO Tn 10 129 _ILt J15aEQ. 03lJiQ_I0.--.lJ~ _____ .. _.

c---------------------------------------1:. RHD .. _Sl1UH J' ON _ EeO_'LD1\.J !LULE.......A...ND._fRl."I1_. ___ .

C---------------------------------------_ ... ___ . K.1~O __ ._. ___ . _._ 131 I~(J15.~E.07)GO Tn 1?8

REA r:> tJ 1.5~. £N.!L"'.lJ.2l.R]ilRllSI!L. Jl"'=Jl"'+l

.GO J.o_ 127 .. ___________ .. ____ ._. 12A READtJlS'JI6)RSTR.JSTR

___ ..cFIND (J15' J1.6"U-1 _--------------------127 I~(~l.FQ.O)CAlL DUMP

... _____ ~.Kl __ _ CALL' PRINT Kl=IPAGE._. ____________ . __ . _____ .. ____ _ I~(J16-1.~a.J17)GO TO 132

.. __ . .GlL.lJl..~ ___ . ______________ _ 132 IF(INSTRt~).EQ.o)r,n TO 1~4

.. WR nEJ lOUT .lJ3L_. ___________________ . __ ._ 133 FDR'1/1TPlQ

._.CII.LL.<...nU~P IPA3E=O CALL' PRINT

134 J16;:;Jlq . .!'I~IlE.il.0I,lJ.136J ____________ _

136 FOR'1AT( ..... ., o"'ru :::~O-M) 1 D'1Nl"MN-M~l

.. _ .... __ ~F.0!crL.N::'''-CWlll. TO 1 n GO TO 1116

.C------~~-----------~~~---~-~-----~~~~-_~----------C R~ary INPUT,lNTTIAL~lE V~RIARI.FS.ANn PRINT RFSULTS C-;;~-~;~:~;~-:'"-------------.~--=~---~=~~~~~~~

13q

140

141

II'"L'J4=O CALL INPUT CIILL' CO'lST CIILl' l~'TT CIILl' m,..,p I~(al~.GT.o.no)r,o TO 140 I~L:;lI"l TI'"(1I16.(';(. (-1.:)0) )(;0 TO 13q I\I..,a"f)A~S(A15)

AI6a=DM~S(Al"') I~l:;11=? 1115=1.'10 Al"'=l.no CAll PqyNT J~(JIB.EQ.01)r,0 Tn l~o

II'"(JIR.NE.07)SO Tn 145 W~ITE (JI8.!41) FOP"'AT(32(1"')"S~OPF - VK~/Af)P'.13('~'» W~LTE (JI8) PSf::ltlSTJL .. ~~_~ _________ ~ __

87

Page 92: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

DATE" 75157 - -----~

JI6=Jll'o.1 ... _!30JO_ 15_L ___ . ______________ _ 145 WQITEIJ18'JI6)QSTR,ISTR

c.~----~~-..,-..,---..,_=..,~.:':~~ __ C SURT N~W TIM::, INTERVAL .c -~ - -~ -.-- --.-. .., . ..,_-.~..,..,_ ~ ~~.-c...--=-:.::-__

150 Tl=T ... _ .... ___ T=I·DL __ . _________ .

Y-(TFLG11.EQ.0)GO TO 280

11/5A/40

J3(LTOL2b9J.2..B1J(?_16) tIFLGCA1.J.l ____________________ _ 269 I-I~Dl.r,E.l.00)GO TO 270

.. Al!2"L.DO _________________ _ 616=1.00 GO TO ?76

-T70-All) =0.00 _A!2L~.LDO ____ _ 00 274 1=1.4 ll!:') =.MD.lu U..,ll DO 272 J=I.2

__ 21.2_HJ1::Jd.J.Lti:J.l..l_J.lL*:JA'-'I ... 3u) ____________________ ---

274 CONTINUE .. 1I15=,tI III

1116=11(2) _.l30 TO. 27.6 __ . . _______ _

2q2 I-I~Dl.GE.l.00)GO TO 284 ___ ._. __ --Al ~=..1Al5A_-.1..JlilL) *~MC!!DCLl"_'+!..I"_'.o.JDJJO"-____________________ _

1116::(AI6A-l.DO)*MDl+l.DO GO TO_.27t? _____ . ____________________ _

2B4 1115=Alo;/I _Ill':> :: A.l M II'"LGll=3

____ ll~If,Jllllilt(i'_2}LJ8::7') M:!JQLl~.L.!A""IL5'-'.uA":!I~6'7__=_:c_:__=_c_:___:_:_;__:__=_:_;__=_:__-----__ _ 276 FOR~ATI' ~Dl= •• r.16.8.' 615='.EI6.8.' AI6:'.EI6.8) .2.9Jl.lE"1 IFLr,2. __ I.IT .Q.U5 .. 1.5.~._._=__:_=_------------------­

YFIY5.NE.YNSTQ(26»GO TO 143 _I ~ST!U2.:iL"1 ... ___________________________ _ WRITEITQUTol42)

_~~~}\Ji~~QTINr, TO EXAcT SUPERSONIC SOLUTION'I 143 I_IIINSTRIIO).EQ.O).OR.ITTF.R~LT.YNSTRIll»IGO TO 152

C W::YGHT CUTTTNG' _____________ _ 1111=.5*1111 A12=.l...-AU_ . ____ . ___ ~ ____ ~ _____________ _ I~STRIII)=I~STRIll).tNSTRI20f

____ lffi.UU1D!J.Ld.2.051 IIER.UI. TNSTR 1111 120~ FDR~IITI'O'.~X.'ITER='.Y].' WT ~ALVF.D TO ',F5.3.' INSTR(II) RAYSEn

10 TO '.171 . ______ . ____ ._. __ . _____ . ______ .. ____ . ___ . _____ _ IPIIGE=TPAGE+2

..l5Li-j T • (iE. f;.lQJ I OE.fiU~..I.I1!lI __ TSn=Tl+DT02

._---'lL!T .... l '1E_:;'lll=-~E~+ ~l :-:-::::0-::-:--:---------------------­TFIIFLGl.!Q.2)YFLA4=1

_C.... S.EJ" j)RFSSUR!':S OF \".~'E--.l!E~J'_LQN __ l.:L~£'1NITY FOR I':RROR COMPUT",II-'..T ..... Y.o<.O,-,-N __ _ DO 153 Y=I.7

._...i53..'IIJ I.~) :TN!",r", __________________ _ ITf':'l::O

___ -.-lL.LT ..... .L..f..JSTnPI GO TO !l55.240) tYFLGl

88

Page 93: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

DATE .. 75157 11/58/40 ---~----- --~------~ --=--'-----------------------

rFI~CTL.NE~O)GO TO 10 ___ ~15:LJtJilrE (lOUT • .L.S..!LL. ________________________ _

154 F'OR~AT (9 1 , ) _____ _ _J:ALLLD~

IFIJ18.EQ.07)WRIT'IJI8,1~6) __ .l.5I'LEllE!'1AI (2 (/60 ( , .. , II I 9999 STO~

_C!'_~~_==--------&_----------------C COMPUTE ARrAS OF VALVFS AT TSTR C--_-~~~~_!'~~~~=~~_~,---=-:.=-:.=-c::-c::-c::-.::.-=---=--:::.-__________________ _

155 DO 220 ,J" 1. 3 __ li=_IlY.I (.JI _____ '--__________________ _

IF(TSTP.GT.TVIJ.II»GO TO 200 T2gIT (.!!

DO 160 1=12.11 _ ~_~L""D!~L

IrIITSTR.LE.TVIJ.JMl».OR.ITSTR.GT.TVIJ.I»)GO TO 160 lliJl:;Y ____ _ IFL51=3

___ m_~ __ All.L;;_J5IR-TV ( J. 1M]1 A(2)=1./ITVIJ.I)-TV(J,I~1»

______ A5to.LS l.Jl:;.iAREA (J.x) -ARFA (J. I~lt ) <lA I U<lA (2) .AREA (JtI 'Ill GO TO 220

_ 1 ~o C.O}J..IViUL __ _ W!:lYTEIIOUT.190)

__ l.9JLf. OR 11H (i OS T oe AT ] 90 9) STO"

200 A!:lfATSIJ)=A~Lil~~~V~T~(J~)IL-____________________ _ GO TO/?lO.220.220) oIF'LGl

210 IFLG1=2 no CONTINIIE

_______ I.EJ.IrL(j].:-Q.31 TELGI::l

e-------------------------------------------C BEGIN ,IItEXLI1ERlLTlilN AI SAME TIME' INTERVAL

c-------------------------------------------(.'40 !TE~:::lI£R~L. __ . _________________________ _ 244 IF(YTEP.LT.INSTR/?2»GO TO 242

L'1518_L2.3_L::i:! ___ _ JF(TFLr.)2.FQ.)WRITEITOUT.245)

245 FOR'1AT (I 0SW!TCl-llNr, _t()-2'1.4~EBJJJRRAlrON SOLUTION ENTIREL V'l IFL312=;?

?4] ITE=l=l 242 ND=O

_. ___ !I!.'!=!L _______________ _ NCT"O I I" I I TEP .. G::.l !I! SIR J22.1. UN5.T.R..t2~ t~ ________ _

243 IF/!FLr,?~Q.l)GO Tn 250 c----~----"".:"-~~---""~"".""-_~~~~------------------=----------------r SFT CI-\ARr.F 'U~F AND NOZZLE VARYARLFS TO STEADY CI-IOKED VALUES c.,.- - -.,. -.,.- ~ - '::."".!'~ ~.,. -_.,._ =:-------. ---------.----------.-------------

IF(iFLr,~.~Q.2)GO TO 250 I ~L ;,6=2 ""Y"'CTAITSA IFLG=3 IFLG2".1 C~U.' snLV~R

- .. _---_._-----_.

89

Page 94: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

MCT=$Xl _-.liCl",.$t-[ .....

O/ITE " 75157

A(1)"(1.+~MI02*MCT**~)/(1.+r,MI02*MCT)**2 . _ .. _._ T C. TO:: T C. *.A 11.1... ______ ._

TEO=TCTO J' CJO : P L * A j l1. ..... ".G.OJi!1l. RCTO=PCTO*o.OR/TCTO*A?

__ ."A~C-=-T(!;;.DSQRT (GRIITCIO) MDTSO=RCTO*ACTOIITSA

11/58/40

___ Mf2rlQ.:=RCI!l.!.~rn,,,:*,,,Cc.lT-,,/lL-. _____________________ _ M!\I=l.

____ .. Y ~::?SOf:> 0" °C.UL MDCT=R50RO*~CTO*OSQRT(TSOTO)*ACTO*TSA IrLG2~~~ ____________________________________________ _ WRTTE(To.UT.749)

__ l.liJ':JJR'1AI1! 0 !\IOZ Z LE JiA5....,.,Cc!]H""O",KLEuD..:.·.L) _________________ _ MCTl =Mr:T

. ___ .... TCIO l:::1.c..ll PCTOl=PCIO RCTOl=RcTO ACTOl=/lCIO M"Il=MN PNl::PN

____ t-!J)C T 1 :':-ID.C.,!. MI')TSOl=MOTSO

-----~ClQ1~~~-~~~----~-----------------------------­PT=A17*PD+(I.DO-A17)*PN PTl =1"1

·-25·0 I"i'TYNSTRC231:-EQ·.OIGo. TO. 7'5<; _. ___ .. 1 F:.J I._f? T • A tJl ~S.J.R ( ?3) :: 2

ir«jNSTR(23).EQ.3).AND.(iTER.GE.YNSTRCll»)r,o. TO. 253

r._:~~_~~~~~:~:~:~!L~_L)~~~~_-~~~~_~:~~~:~_-_-_-.-_------------------------C C.ALi. .. 5MtlI..LP.ER"'tllH .. ~A.~

C--------------------------------..... ?5.1..PO .. i'.flLl ,,1,3.. ___ _ 11=1+25

____ ._Y~Jill=AR~E~AlT~Sl(IL)L_.~~--------__ ----__ ---__ __ EA(II= V(II.i)-V(II,2)

_ 2.60 CONUNJlL Ir«ARFATSr3).EQ.O.DO).AND.(EA(31.EQ.O~OO»MOFl=0.OO

__ ~~J2)Jffi.Jhilll) ./IND. (Et!!2) .EQ.O.OO) )MDPEl"O.DO CALli SMPE'lT

_____ ~~tG..~ 5.Dl)",. P"-T.L.~::JP,-,C,,-T!.CO,,,-*=-,P::..S;uoJ.!.P,-,OLJT,--_______________ _ IF(~1.FQ.JFLG2)GO TO 256

._. ___ If 1 TFl,GJ. () .. £Q ~.2.I.GQ..I.!l.~6. IPLGIO=2 IF(IFLr,2.~Q.l)IFLG2=Kl

··----1 mFLr.2. EQ. (:'~l '-') )"'G"'0:-=:::T~0"--::2-4-:-1------------------GO TO 756

258 rrLGIO=l _.2.S~ ..l.E.iCJ.III51BJ~3) • EQ. 3) • AND. (JTER. GE. YNSTR (11) ) ) r,o TO 254

IF(INSTR(23).EQ.2)GO TO 254 GO TO 755

254 Ir(JIB.EQ.03)GO'To. 1190 W3ITE(J18·J16IRSTR.ISTR

90

Page 95: A Mathematical Model for the Starting Process of a

-- -- --~.-~~-----------

F'jN')(JiA~Jl"') ___ .. _f.HLIO __ U911 _______ _ 2~S IF'(JFLr,2)500.9999.251

CG-----.~-------____ ._ . ___ .... __ . ___ ~ ____ . C SUASO~IC RoaNCH C.,--_-"'_---.~.----.. -.--_ .. _._ ...

251 ~DE=Al*PEO*AR~ATS(l)/nSQRT(TFO)*A? ______ .-ULG..2E.~.L_.

1 F'L 1';6= I __ HLG12 ... 1. __________ ._. ___ _

~Dn=MDF'+M'F

I)ATE " 75157

C DIFFUSE'! MACH NUMI:iER_..AI'IO .. E'BESSUR~ ___ - __ ~ ______ _ $Y='4Df)/~DTSO

____ IF"LG=2 CtlLli Sf'L IJ~R MO".~>!.L __ IIID",~N

PD::::::>CTO*POP01'tD.l PT".5*(PD+P~)

__ . ___ f1!1eI~l!lfllE.1lPP....t.tlL ____ . _________ _ MDCT=Mnf)+I.4DPT

C C'1ARGE, TUBE MACI-! 'l.UJotAER _________ _ $Y="IDCT/MDCTC Il'"lG=4 CALL' S()L VFR

._ ~C.L",$l\L ___ _ NCT=$N II ( 1 ) '" ( 1 •• G M 1 Q 2 II ,~C 111-" 21.1'..1 Ld_G111.Q2.II.M_ClLII~ rr.TO=Trt>tI(l) PCTO=Pc"/U 1) "IIGOG"Il ______ ._. ____ _ RCTO=PrTOt>nnR/TcTot>o? PE!J=PCTO . __ . ____ .. TEO"TCTO REO=RcrO ACTn=f)~QRT(r,R!lTrTn)

1\ () ::::RCTO!}ACTO MXTO=A (1) "CH ~IJlS()=A (1 L".15.!!. ___________________ _

C N:l77LE "IAC>4 IIIJMAF'! ANn PRESSURF $Y:I.1DCT /WlTSO I I'"L G:::2 CALL SOLV":R M"J::::'!;)(l

!II'IJ=$N -_._._._---------p~"'lJcro .. poPO("I'IJ) II'"(IJT.LE.ocrOIiPSOPO)GO To 241 GO TO 1000

C------------------C SJPERSO'IJIC RA~NCH

C------------------<i()O PT=A 1711PO+ (1. ')O-A 1 i,.ipiT . --------.. ---11'"I.S2=-) 11'"[ 512=) ~OPT=~"OTIJT(PO,PT)

~f)n=MDrT-\mpT

'iClf=-'if)F.IiD'l

91

AEDC-TR-76-39

11/5A/40

Page 96: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

TEO=TCTO _ ._f:>EJt=tiDE"J:tSQ8.lJJE!!.L!!Q.o1'I V.I'lHEAI!i.{ll.~

REO=PEO"OOR/T~O "A2

DATE = 75157 11/58/40

.C.DII"FUSF,::l P8E:55URE_ AN.I;LM.A~I:U!'U}1.f1.E.B._~ .. l>Y='1DD/MDTSO I 1l".LS=2 .. ____ .. ____ .... ____ ._ .. _ .. ____________ _

CALL' SOL VER .. ___ .. MD='tXl.

Nfl='tN PD=PCTI)"f>OPOL~.L .. __ ~ ___ ~.

C-------------------------C UOf)~ TE PLENUM CONDIT I Qt-l.'i .. _ .. __ ._._. __ _

C-------------------------.1000 1.1" (1F.J.Ji~J.LQQh99q9. 1002 1001 PT=(I.nO-AI71*PN+AI7"PD

GO TO 1003 __ . ___ .~_._. 100? PT=O.5nO"(PN+PDl 1003 Mr)PT='1nOToT (f>l>tPIL. _ ._

MDF=-APF~TS(31"OOKf"(PP-Pf)"AI6)*A? 8PT=RpJl~(MD£I~~~.~~eEL!~DuI~D~P~V __________________________________ __ RP=.S"fRPT)+RPT) I F ( I I" L r, 9. E Q. 2) G.Q_tQ_I Q I 0 ~---c-~----:-:-:;----:.,--~~ __ ~ __ ----­PPT~PPIl"(RPT/RPTl)""r, TPT =PPT"OOR IRPI"A..2 ___ . __ ... PP=PPTI"(~P/RPTI)""r,

_.1 P= P~OOR/RP .. <I.AL_~_:::::-__ ::-::c::-___________________________ _

II"fTNSIR(25).EQ.l)GO TO 1020 I I" (TPT .GE. TCTO) GQ._IO-.l1!.2D ___ ... IFLG9=;:>

1010 tP=TCTO . TPT=TCTO

.. _ .... _.P2~?,E. ... P.~.I~:D'I2... PPT=RPT"RIIIPT/A2

1 020 MDPE"'-~ 1"PP*t...REAT.5.121 IDSQRT / TP l!AL.

C------------------C CONVERGENCEc.."iEC~.. __ ._ .... ___ ... _. _____ . ______ .. ____________ _

C------------------. _ ... 1£LGJ..=.L_ ..... _.~ .. DO 1050 1=1,7

1050 E (1) =2. "Da8S (V (I tll~.VJ1 .• JJJ./ty( I 'l)~\/j.J.!.lll._ .. ______ . ___ __ DO 1100 1';1.7

.I.f ( E ( I 1 ... (;1.. 'PrggJ !;rL.J_Q....U.J)J1. _ .... _____ ~ __________ _ 1100 CONiiNtJE

c ... W~LJLD.I\ TA .. .olLf.I.LE .. AN.D PR LeI NC!..T'--'C...,.()!C.N'-'VCl.E.!CR"'G""E.l.LQ-1l.DAfl.T"-'A"--____ . _______ ~ IFUi3=? IF (JIB.EQ.03) GO TO 1115 .. _. . .... _~ .. _ ........ _ .. __ .. ~. ____ ~_ ... _ .. ~ ___ _ WRTTE(JIBIJ16)RSTR.ISTR F I N')/ Jl R, , JI (»

1115 CALL' PRyNT .-~-.--.--.------------------

. ...ll.l6 .. 1£..( LNS.1.P_I.IJ""£.P....llM TO 11 AD II"(TNSIR(61.NE.0)WRJIE(YOUT.1120)V

1120 FOR'1AT/1S(I' 19AEl,,-.A)... ___ . ____ .

r.---------------------------------------------c. PERFORM E>nq~POLA.I.lQNIO._NH.J._lD1U '-1T..,E".,R"-'V..,A"'l ________________ _

e---------------------------------------------DJL1l70 1=}.7

92

Page 97: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

MAIN DATE .. 75157 11/58/40

J:::I~XTPIIl .r SAVE DATA FOR ClIRRENT TNTERVill

AIII:::VIJtll TEITrIME.~Q.IIGO 10 ))6~ ____________________________ ~ ______ __

IEITELr;4.EQ.IIGO TO 1160 C OIRAPOIIAT!;'

V(J.ll=2.*VIJ.ll~VIJ.?1 __ ._. ___ lEJ..l.NSIR!61.NE e Ole,,11 PRINT C RESET ~4TA TO 8EGTNNINr, OF TIME TNTERVAL _-L15~Y~u(~JLI ________ ~ ________________________________________ __

IEITELr,4.EQ.IIIFLG4=2 _.11 rQ .CilJil.lNUE. .__ _._.

C-----------------------------------------------------. .c...JlE.Tnt~TE ~RROg CUTTING OR Dr DOUBlING IS REQUIRED

C-----------------------------------------------------_...l1.B1l .. LE.L1.liISIR II? i . EQ. I I • AND. (JN5TR 114 I • EQ.) I ) GO TO 1190 DO I1Bo; 1=1.7

.... __ . ___ U·.Ll.lll.G2. NL..U .• AND. I (T....e:.aJt .OR. II. rQ.M I I GO TO 1 185 EIYI=2.*D&AS(V(I.ll-V(I.211/fV(I.l,.V(I.2)I/INSTR(12)

_____ . ..u:.t.E.lli...aL...EERRu.I..IlGJlO--LTI.LO....J...lli..lB~S:>-__________________ _ IF(INSTR(141.GT.l'GO TO 11B4

. C.LQR OELC.UU .UJG ___ .... _. __ PERQ:PFRR/INSTR(12'

__ ... _ .. _ $£'''III}< =$EMAXLI.~IIHl21. ___ _ WRITE(iOUT.J183,PfRR.SEMaX

....llB3 EOR'IU.1..!O PERR ellI rol.Elb.f\ •• AND $FMAX CUT IQIoF'l(,.BI IPa3E=TPAGE+2

___ ... _.GO lJLU.2Jl .. C OT DOURL,IN!;

_lLB4. D.1!!:.tll!W£IuR-LI ... 1 ,..4 LeI ______ .

DTO>'V=n'fl>'v OODhl./OI DT02"OT*.5 wRTTElyour.11871DT

1187 FOR~ATI'O DT RAISE~ TOI.fI6.8) rpA'3E=YPAr,Et2 GO TO 1190

1195 CONTI NIIE.....-__________________________ .,--1190 IFIYTIMF.LE.2)GO TO 1191

.c,.",,.-----------------------------------------------C DEfERMI~f IE ~EXT INTERVAL ~s FREDYCTED TO CHOKE

L-------------------------------------------------D"tn=MD-MDl D'1N:::MN-MNI IEIDMD.LT.D'IDIIDMD=DMOI

. 1l'.1.!lM.l'l .. D.allMMl ... 1 ,.,.O"".M=N -=-D""M.llN"'l'-::c ___ ----, __ _ IELG2=n5IGN(!.SOO.FT-PCTooFSOPO' IEI!MD.nE.Il.DO-DMOII.OR.IMN~Gr.11.DO-DMNII)TELG2=-1

1191 DMDl=Mn-MDl O"1Nl "'MN-M"'I IE(IELG2.L~.0IIFLGIO=2 WRITEITOE3UG.2000IIELG2.DMO,DMN.MD.MN.MOl.MNl

2000 EOR'IATI'OJELG2=,.I3., DMQ.OMNm'.2E13.5.' Mn.MN:,.2E13.5, ._ .. _.....L. M01.M'I'1=' .203.51 C RESET DATA TO BEGTN~ING OF TIME tNTERVAL

IEIYNSTRI231.EQ.OIGO TO 1189

93

Page 98: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

00 llSA 1",1.30 11Be VIJ.Z':YIT.I'

c;o TO 150

DATE .. 75157 11/58/40

~_RP~T~l~=RruP~TL-__________________________________________________ __ PPT1=PPT

__ ~£(JNSTRI71.EQ.lIGO yo ISO 00 11B(I. 1=1.7 J=II"XTPIII

I1B~ VeJ,2'=VeJ.l' . __ .JiQ -<Y .... Q'--L1 a5,,"0 ______________________________________________ _

C-------------------------------CR!1i£1_CllI'iIl£RGI"NCE CONTROL DATA

C-------------------------------1200 IfIIDEBUG.EG.IOUT,CALl PRINT IfeJNSTRe~'.NE.OICALL PRTNT Il"XNSTR (l 01

1210 00 1260 1-1,30 ____ ~1220.1240) .ll

VCI,31 .. VCX,11 GO TO 1260

1220 Ife'TER.NE~ll VeI.II-All*VeI.l'+A12 *VCI.31 ______ ~l~LI ________________________________ ~ __ ___

GO TO 1260 _.~JL_Y.1JJ41."!~

V(T,3'=VeT.1I ___ --1f..1HER.NI"'.J.l Y I I ,II ::AIl*Y (I el, +U2*Y e I ,It I

1260 CONTI"JUf tiel. . .TO 21t0 _. ~ ________ . ___________ _ E"IO

94

Page 99: A Mathematical Model for the Starting Process of a

AE DC-TR-76-39

INPUT DATE '" 75157 . 11/58/40

SUB =lOUT! NEI r NPUT (*) IMPL~CTT REAL*B (A-H.M.O-Z,ST ·COM~ON ARE~(3.50).AREATS(3).AREAM(3).TV(3.501.A(lO),E(1),B(30I, I TVI'"I(3; .TDEI AY(3) .RW(7)

COMMON PC.RC.TC.AC.MOCTC.EAE'EAPE.EAF.MOTSTR.INFIN.TMGOGS.GPO2GS. 1 SGOR

COMMON G.GM1.GPl.OOG,GPl02.GMl02.GPlOG.GMlOG.GOGP1.GOGMl. 1 OOGM1.OOGpl.GpOGMl.SGMlO?TOGM1.TOG.MGpGM2.IQGpl.GpGMIZ. 2 MGPOGM.MGOGMl.R.GR.OOR.PI.PERR.AWOKW.OOA1,OOKF.KF.KW

COMMON TS~~TS~.TSW.TSP.TSA.TSWA.TSV.C'D.CTA.PV.PVOT5V,TAUW COMMON T.Tl.OT.TSTR.OT02.TSTOP,OOOT.OTOPV COMMON Al.A2.A3.A4.~5.A6 •• 7.A8.A9.AlO'All'A12.AI3.A14.A15.A16.i17 COMMON PN. PP ~ P~T. PO. PT. peTO. PEO. MOE. M~D; ~Dp, MOPT • MDCT. MOPE .MDTSO ,MPCTO -. lEO. IP. TPT • TcIO. RP, RPT. REO. RCTO • ACTO. MCT. AE. APE. Ap. MN. MD

COM~ON PN1. PPI. PpTl. POI. PTI. PCTOI. PEOI. MOE1. MDDl. ~nE~~D~p~I~l~.~M~n~C~I~l~'-DM~n~p~E~l~'DM~D~T~S~O~lL'rrMD~C~T~O~lL.~Iuf~O~l~'L-__ T~P~lu.~ __ _ TPTl; .TCTOl. RPl,RPT1. REOI. RCTOI. A~TOI. MCTI, AEI. aPEl. AEl. MNI. MOl

COM~ON PN2. PP2. PPT2. POZ. PT2. PCTOZ. MDD2. ~Df2. MOPIZ. MDCTZ. MDPE2.MOTSOZ,MDCTOZ. TPT2. TCT02. RPZ. RPT2. AI!)EZ. Af"2. MN2. MD2

COM~ON PN3. PP3. PPT3. P03. PT3. p~T03. WID3, ~O~MDPT3. MOen. MDPE3.MOTS03,MOr;T03. TP13, JCT03. RP3. RPT3. R~03. RCT03. ACT03.

PEO? IE02.

PE03. IE03. Men.

MOE3. . IP3.

AE3. __ .""_-APEJ-'. __ .A.E1.L MN",,3~''-c:-::~M!LD,,:3~:-:-__________________ _

COM~ON PSOPO.TSOTO,RSORO.MSOMO ___ ~PM~9~.~r!~~1.$Y2.$Xl.$XZ.$DX.$El.$E2.$fMAX.$fP.$DE

COM~ON rNSTR(26).JDEAUG.TYN.IOUT.NP.IP.JTER.NVT(3).I.~T.IP~GE. _~l "'",P,=!A 3E. $N. IT .LlL!_,,/ .. YMI • IT P;:IE ,NO. NN. NCT. iEt G tif'LGl • lELa? olEI G3 tiEl G4.

2IpLG§.JELG6,Y'LG7.IFLG8.TpLG9.II.r2.13.I4.IS ___ ~"'-~QflL.Jl.o..Ju.J3 .J4 .J5 .J!'> .,17 .,,/8. J9. Jl O •. Jli • J12. J13 .. Jl4 .J15.J 16. ,liT.

I J1S.J)9.J20.J21.J22.J23.J24.J25.J26 .. __ .Cl!.M.~ON_.NrrL. ----~-=-=c:----,--=-=.=-=---=-:=----------------­

DIMENSiON V(30.4,.RSTR(S79,.ISTR(3S) ______ E.Q.U1I/AI [NeE (VCl/.PNI. (RSTRCl! .ARfACll). (ISTRO) .NP)

TNTEGEP $\1,

REAl"9 IN"IN.~p.J!~W .. ______ _ Ip(\lCTL.N'~O)GO Tn 200

___ . ~EAr:)( IT ~ .SO) NjLI_~ _____________ ----, _________ _ 50 rOR~AT (2613)

_.RLI! ') (I I N.110ll) ~-"'c~ _____________________ _ 100 rOR~AT(:;E16.BI

R E:A') ( 1I N , 1 00) T 51...1_ IS H..J"21UJ:ID ~ P v 0 T 5 V • TIl UW • I< W !Kf..!A"-'15L .!.1A"'1...,,6'----______ _ 1.A17.AIA.A19.A20.A21

REA') ( J IN .JJHU q!:" G"'-::c' A::cl~1~.=~A,,-,1~32C.!-'A,,-,1,-,4,==-=:----,..,--::,---______________ _ REA')(ri~,lOO)')T.TSTOP,$EMAX.PERR.AIO

___ .RE:.~ '1 (J T Nol 00 I A~EAM REA~(JTN.IOO)TVp

8EA')(YTN.IOO)TOELaY DO 110 J=1.3 ---------

__ DO __ l(lS 1=1.50 TVeJoII:O •

.. 1 ~ ~_3£.~L..L.t..LI.!..1 ~=,,-OJL' _________________ _

95

Page 100: A Mathematical Model for the Starting Process of a

AE DC-T R-76-39

iNPUT DATE .. 75157 11/58/40

----IOl-:-\j-VTCO

·-:-J:--l -------------------------

-110 READIITN.1201 l~lL.~.aA~RLE~A~L~J.Llulu.uI~=ul~.dI~l~I ________________________ ___ 120 FOR~ATI2EI6.81

o __ ~UJBH-__________________________ __ 200 READIITN.SOII1.J2.I3

TEIIl.Eb.0IRE1URN I GO TOI220.240.2601.ll

.2.2.!L REA!') I TTN.501 151RI 121 GO TO 200

... ..2AlL REA' I T TN. I 00; R5rR (121 GO TO 200

_2.51L READITYN.1001 V/J2.Y31 GO TO 200 END

96

Page 101: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

CON';T nATE::: 7'>157 11/'>'1/40

SUR~OUTJN. CO~ST(n)

I~PL1C'T qEAL~~ (A-H.M,D-Z,I) (,OM\10"l 1\ R. A ( 3. 'i n) • M~F II T 5 ( 3) ,liRE II M (3) , T V ( 3.50) • II ( 10) • F (7) • R ( 30) •

1 TV. (3) • DELAY (·n .r~I' (7) COM'10"l PC.PC.TC.AC.M~C'C.FhF.FI\~F.F.F.MnTSTR.1NFJN,TM~OAS.GPO2A5.

1 S(;::)l-1 COMMO"l R.3MI.3 P\.nnG.GP\n?AMln?AP\(IA.AMlOG.GnAPI,A03MI.

I nnSMl.n03PI.3DOAMI,5GMI02.TnGMl,TO~.MGPGM?TOGP1.GPG\112. 2 MGgOGM.M30AMl.R.GR.OnR.PT.PERP,IWnK~.nolll.0nKF.KF,KW

COM\10N TSL~TS~.TSw.rSP.TSI\.T5wA.T5V.CTn,('TA,pV,PVOTSV,TAUW COM\10N T.Tl.nT,rSTR,nTn2.TSTOP.onnT,OTOPV COM~O"l DI.A2.A3.A4,A'i,A6.A7.A8.AQ,~ln.All.AI?ft13,~14.Al'i'A16'A17 COM'~O'll P"l, PP. PPT. PO. PT, prTO, PFO, MOF.

M')f). '10", MDPT , t1DCT • MOgE: .'11)150 .!~DCTO, TfO.t.. TI:' .•. TDT • TeTO. QP. qPT, RFO. RCTO • ACTO. MCT. AE. A~E. AF. MN. MO

CDM'1I)"l PNI. PP1. ppn. M~Dl, ~D~I. MDPTI. M~CTI. T:>f1. TCrOl. ~P·l. 'lPTI. agEl. A~l. .~Nl, Mnl

rOH~ON P~? PPl. oPT? M)02. '10F2. MooT2. M~CT?, T"TZ. T~T02, RP? RPT? A"E2, AF2, MN2, M02

r.OM~O"l P'II3. PP1. PPTl. M~nJ, ~O~3, MnOT], MOCT1, T:>Tl. TeT01, RP1. RPT1. ADE3. AF1, ~N1. Mol

PO). PTI. PrTOI. MDPEI.MDTSOl,MDCTOl,

REOI. h'CTOI. ACTOI.

PEOI. TEO 1, MCTI.

pn? I->T? PCT02. PE02, MDPE2,·II1[HS02,MDCT02 •.. Tf02·,

REO? i->CT02. ACTOe. MCT2.

MOFI. TP 1 •. IIf I.

MflF? - TP?..L

AF;>,

1->01. PT3. PCT03. PE03. Mr)F3. MIlDJ:"3.Mf)TS01.MnCTQ3. T E 03.1 ._._lElt. __

RE01. ~CTn3. ACTOl. MCT3, flF3.

COM~ON pSlpn,lsnTn.PS"HO,~SOMO

CO~~O"l ~Y'%YI.~Y2.~XI.~X?%DX.$EI,~F?,$FMAX,~FP.~nF

C Nl '10'1 l NS T P ( ?h) • T DFfiIIG. T TN, 'OUT ,~JP. J 1->, T TER. ~!V T ( 1) • T • ~T • ! PAGE. INDA3t::,'P~. T T (1) •. J. TMI, I TlMf,ND,NN.~ICT. lFU;, IFl!ll ojF.LB?"df.!'Jl.3_1J.E.l.M.L. ?lFL,,5, TFL3f-..!r:L!;7, TFI r,8, TFl..A'h T I, T? 13, T4, I.'>

CDMMO'II JI .J2.Jl,J4 .J'i,Jhhl7,Jt\,Jq.Jll~.JII.JI?,Jl3,JI4,JI'i .•. Jlf> .• ,1l1 . .!.._

1 JIQ.Jlo,J2n.J21.J2?J21.J?4,J2'i.J?h COM \ION NCTL I~T::GEP :!i1J QEbl~8 IN~I'II.~F.KW

PI=3.1415926Sj5A9793 G~I:::G-J GOl=G+l r,lAl~?::.5nSMl

GPI02=GPI".5 OO<"=I./G r,,,, I :JG=r:'ll "OOr, r,"'lJG=r:p!"OOG AP n?GS:0.;"A PIJA"nOG r.nA\H=I;/G~l

GOG:>l=I;/G:>1 58MIO?=nS~RT(3~IO?)

TOG:;>. "'"'0:; T)r,gl=?/:;PI Del!;-Il:::) .1';"11 r,,,nSM1=GPl"003 1A 1 G:>G"'12=.~"APOG~1 r)')G"l=I./:1P)

97

Page 102: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

OOR=l./R G~=" .. q 43P:lGM=-GPOGMI 4(;P"M2:-GPG412 MGO"Ml=-Ge»r;-"1 T~r,1GS=C?-G)~OOG""? TOr;-"I=;:>.I"Ml

CONC:;T

II'" C INST~ (5) .E~.l) GO_l'CL10IL ____________ _ ~<'=144.

A3=1./~2 r;(') TO ;:>00

Ion 4?=1. A3=~2

2!l1l. CO~IT l"'lIF

nATE'" 7!'1<;7

r S:-~TF'S i'"OQ \JNSTi'"A')Y M~C;S FLIJX F'R(lM MAOl NlJMqFR A (A)='1r,P()3M A(I~)=GMIO:> CALL qY'40"l· CALL ~I'"VF.:H

00 <>20 1=).7 no RWCIl=ACl)

sr;0~=Ds~~T(r, .. 004) Ii'" ('JCTI .E~. 7) ~FTURN

Rn JR'" F'Jn

98

11/'5"/40

Page 103: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

T"l1T DATE = 75157 11l5A/ltO

--.~----.---- --_. __ ._------------SUR~OUTIN" rNtT(~) I~PLICTT '1EIILtlA (A-H,M,O-Z.~) ._ . _. _____ .. ___________ . __________ . COM'10N II A ~ II (3. 'i n) • ARE.'IT S (3) • AAF II M (3) • TV (3.50) • fl ( 10) • E (7) ,R (30) ,

1 TV"! 3) • T lELA Y (1) • 'IVI (7) _ .. __ .__ _______ . ____ _

C~M~ON PC,Rr.TC.AC,MOCTC.FAF.FAPF.FAF,MOTSTR,TNFIN,TM30GS.GPO2r,S. I Sr.1A _____ .. ____ _ CnM~ON G.3M).~PI'nhG.GPln?AMl02,APIOG.AM10G.AOGPI,G03Ml.

I onSM I. OOSP I. SPOGN) • SGM 10.20 TOGMI • TO[., MGPGM.2. TQAP I, GP.G_~1?9 _______ _ 2 ~r,OOGM.M30GMI.P.GP.OOR.PT.PFRR.AWnKW,OOAl.onKF,KF.KW

COM'10N TSU. 1S .... TSW, TSP. TSh. TSw~. TSV. eTo .CT 1\ ,PV. PVOTSV •. T t\UJ1!_ .. ____ _ COM~ON T,TI,DT.TSTR.OTO?TSTOP,oonT,oroPV cnM~ON A 1,112. A3.AI;. A5,A6.lIr,AA, A9,A 1 0 ./111. AI~.A13,A Ilt,AI2-'A.l6~.L7 __ COM~ON PN, pp, PPT, PO. PT. pcTO. PFO, MOF.

M')D. "ot:. MOPT • MneT , MOP. ,MDTSO .• MQGIIL._!. __ !fJ!_L __ .Ir:_! __ TOT. TeTO. RP, RPT. REO.- ACTO- • ACTO. MCT. AE, ~oE. lIF, MN. Mf) . __ ._. __ . ______ . ____ _

COM'10N PNI. PPI. PPTI. POI. PTI. PCTOI. PEOI. MDEl. "1')01, "Dq, MOPTl. Mocn. MI)PFl.MorSOl''''DCTOl, .TEOl, __ TPJ_L __ ToTI. TCTOI. qpI. ~PTI. REOl. RCTOI. ACTOl. Mcrl, AFI. ~oEI. AF'l. "till. MOl ___________ . ______________ _

CO~~ON PN? PP2. PPT2. pn? PT2. PCT02. PF02. MDE2. ~)D2. '1Dr:? MOPT? MOCT? MDPE2.MOTS02.MOCTOcL_Tf..o~.L __ J.J>c.,-__ T~T2. T~Tn?. RP2. RPT? ~E02. RCT02. ArT02, MCT2. AE2. h OE2. AF"2. I.1N2. "102 . _______ _

COM~O~ PN3. PP3. PPT3, 003. pr3. PCT03. PE03. MDE3, M)03. '101'"3. MDPTJ. _Moen. MnpD.MDT$.03.M('lCT03L_TFQ)_~ ___ T~_ TOT3, TeT03, ~P3. ~PT3. RE01. RCT03. ACT03. MCT3. AE3. AOf3. AF3, "N3. MOl

COM"O~ pSOPO.TSOTo.RSORO.MSOMO cn~"o~ ,Y,IY1,IY2,IXt.IX?,'OX.IEl.IE2.'EMAX.IEP.$OE COM'10'" T N5 Tq (?6) ,TOFRlJG. T yllJ. Y OllT ,NP. IP. ITFR .NVT (3) '-1 -;iif-;JPAGE ;-_.­

l"'P~:;E ,'>N. TT (3) •• J. fMI. IT1MF,ND.NN,NCT. rFLG. IFL!?1.!lfJ..G_~!I[!,,_~~.!.I.f.l..t.4. 21.1. S5, TFL';"', rr:LG7, TFI_GS. Tr:LA9. r), P. 13, T4, I~ CO~"ON Jl. J? J3 .J". J<;, J6 .J7 •. J8. J9 "JI 0 .JII. Jl ?.H3.JI4 • .,J_.t5~Jl6.~11, __

I JI9,J19.J20,J21.J?2,J~3,J?4.J25.J?6 COM'ION ~CTL

nIM~NSTON V(30.4) f:lIITVAL FNeE (o'J.V ().t)) TNTt:GEP !Ii\) R~ftL~R TN~1N.(F.KW

nD :; I=lo~ ITCT)=?

t:; II'1FATSCT)=O. TSII=TSIJ"T5H TSP=?"cT<;w+TS>i) TC;W6=T<;L~TSP

CTA=PT*rTI~"?*.?~ TSV=TS,<llSL PV:;TSV"PV~)TSV

OTnov:::nT/':JV QC=oc"nORlTr"A2 "C=IS:-JnT(~Il"TC) ~)rTC=j;lr."aC"CTI\

WlTso=nr"lIc"TSIl I)J 50 ,J=I.4 f):} 10 1=1.7

99

Page 104: A Mathematical Model for the Starting Process of a

AEDC·TR·76·39

10 V(t.J)=PC flO 20 T=Atl"3

i.'O V(I,J)=I). V (14~J) :M)T50 V(15.JI=M)CTC DO 30 I"'1~'19

;0 V(T,J)=TC OC) 40 T=20,23

4(\ V(T.J)"qC V(;:>4.JI=AC [Ii) 4'> T=2,,30 4" V(I,J)={).

50 CC)NTI'JII, T=O. Tl",O. "1')=0. TSn=O nH)2=.c;~DT

OOnT=l./[lT MIJ=O. "1Cl=O. 00 160 J=1.1 11=IJVT (J)

INIT

OC) 140 T=ldl TV(J9J)=TV(J,T)~TVF(J)

)40 ftRFI(J.I)=AqEA(J,I)~ARElMJJ) T.<TOE"'Y(J).~Q.O.IGO TO 160 f)') I!>O Tl=1.4'1 1=<;1*I1 A=!E~ (J, I) =/IREA (J. 1-\)

150 TV(),II=TV(J.T-I).TOFLAV(J) NV T (J) =NVT (J) -I _____ . ________ _

1"0 CONTINI). 00 170 1=1,3

170 V(J+25.?)=IIREA(T.1I PSoPO=TOG~l~~"Or,MI T50TO=TOG~1 _ RSO=!O.Tf)G~l~~OOGMI

Msn~o=PSO~O~D5QR1(TSOTO;­"1)T5TR=MDTSo*~snMO

TIJFTN=I.E+70 A I =')S~PT (TOr-PI III1(;P0(1"11 IIGIIOORI. OO~I=I./AI A4=TOGPjIlIlGPG"112 1\5=1./"150"10 .1<,=) ,-P50:>O A7:::2."r,Pl/Mr')r.rr. ./1'I=-G"1\OG A9=?"r,Pl 1'(Al0.'Q.O.IAln=TNFTN 1·(I\I.FO.0.)1I11=.0; 1 F ( A 13. ,Q • I) • ) A 1 :1 = T NF I N IF(AI4.FQ.O.)~14=-O.1 IF(014.GT.0.)A14~-~14

A12=1.-All I'(nI5.fQ.O.DO)Al~=1.nO

OlifF. = 7">1'57 ll/r:;A/40

100

Page 105: A Mathematical Model for the Starting Process of a

TI'..J IT

J-(h!6.FQ.O.OO)Al~~1.~O T.(~17.FQ.O.OO)A17=I.OQ IPII"F:=O NPII3E=,,>O JP:O nOI<-=l./K­Awn<W=.)7·'AUW·T~WA/KW

JTE~=O T Fl (;=0 IrL52=) I rL 53=0 n"U,4::0 r-1.85=0 r-l.:;6=0 H"L,,7=0 TrLG8=n J rL ,,9=n ND=O N'J=O NCT::Q JI::O 12=0 13=0 14=0 '''>=0 00 ?OO r=),7

20f) E (TI =0. JF('JCTL.E~.~)~ETURN RETJR"J E'JD

AEDC-TR-76-39

nATE ::: 7~)c;7 11/'511/40

101

Page 106: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

~JR~OUTTN~ nu~p (~)

I'1f.>L1CTT =I-AL"'I !n,:"H.M'(')~l'_~! __ _________ _ r ~W \40\l II R .. II ( :4.0; 0) ,Mew II T S ( 3) • tU~f. 11'1 ( 3) ,TV ( 3,0;0) • A ( 10) • F ( 7) .8 ( 30 ) •

1 TVC"(J) ,T"lr:LAY(3) .RW(7) C3M\40N PC.Rr..TC,Ar.MnrTr.._II_.~IIP_._IIF.MnTSTp.TNFIN.TM~O"S.GPO2,,5,

I SG:lR __________________ _ cnM'10~ r,.~~I.GP1.nOG.r,PI~?r.M10?r,PIOG.r,MIOr,.GOGPl.GOGM\.

1 00SM1.003p1. 3 0 0<;;'11 ,Sr,;MIQ21- LOGMlt TnG,MGPGJ":12t 'Ul!.itl~.GE'Ji'il.2. _____ _ ? '1r, P OGM,M50r,Ml,P."R,OOH,PT.pFRR.AWOKW.OOA1.OOKF,KF.KW

CO M\40'l TSL.'. TS'1. T~\J, TSf.>. TSI\. TSWI\, Tc;v ,CTI), CT II ,?V~PVOT5V ,TA!J~ ______ . rOM\40'l T,TI,nT.TSTR,nTo2,TSTOf.>.OOnT,(\TOPV COMI40~ ~I, A2. ft). 114. AC:;. 111';. ~7 ,IIA. ACI.lll 0 ,A11.A 17./113, A14. 1115./1 16 tAl.J ___ _ COM\40'l p~. pp, pOT, PO. PT. PCTo. PFO. MnF.

M"ln, '11')_, MnpT • MOcr _. MnpF,M(lTSQ _?MIlCJ'!l __ L TFO • ___ IP.--",-__ TOT • TCTO. =lP. PPT, P~o. RCTO • ArTO, MCT. liE. A ~F . AF • 'IN. MI')

C)M -'O'l 1"'11. oPI. pPTI. P[lI. PTI; PeTOI.- pFOl, -"'00;----~"n I, ~nFI, MnpTI. MnrTI. MnoFI,MOTSOI,MnrTOI. TFOI, _ TPJ_t ____ _ T" I I. Tr. 1 n I. RPI. PPTI. RFOI. RrTOI. ArTOI, MCTI. AFI. A;:IF I. An. o.4NI, MDI ______________ _

r.n'-'''o'l P'l2. oP2. PpT? 1"(')2. PT? prT02. PE02. MOE2, "'02. '1nC"2. MOpT? MI)CT;>. Mf)PC"?~IDTSO?MnCT02. _ TF::02.L _T.P£J __ _ T~T? TeTO;>. ~P? PPT?, Q~O?, RCTO?. ACTO?, MeT?, AE2, n~E;>. A!"2. t.4N;>. IAD2 _______ _

r~M~O'l p~3. PP1. PPT1. pnl, pr3. PCTU3. PF03. MnF3, "jOJ, \4n'), MOpn. '0\[')(11. MOOF1,MOT503,"1I)_CTQ], __ Jf..QJJ_._....le-"3u.'--__

TPT3, T~Tn:4. ~Pl. QPT1, PF01. RCT03. hr.'O]. MCT3, AE3. ft~F3. ~~:4. ~N3. Mnl

r.~M\40~ p5'PO.T5nTo.~snRn.MsnMO r:)"'10~) ~Y.'\.Y1 o'l;Y?,,'\.xI,!bX?'!;nX,"FI .'\.Fl'.'i'F4AX.'l.Ep,'l.flF ____ _ C ~M \4n~ T 'II S T Q ( ?~) , T nF pur,. T TN, r nu T. NP. I Po T T F P, NV T (1) • T , 'IT • T PA GF ,

1 'IP~,E, ~\J. T T (3) .J. p.q • T T T"I;' .Nn. ')'l.NCl • T FI,.r,. TFUll.l_lr,;;> !I£L!i1,_IFlr,~ ?T'L,~.'~l~~,TC"l"7.TFlr,R.TC"Lr,Q.TI.T?I3.J4,15

C~M>1U'l ,J1 ,,)?J'I.,)4,,)C,.J".,17.JA,JCI.Jlli.J\I.Jl?,Jll.JI4,J15,Jl6,,117,_ 1 JI~.Jl[I'.l20, 121.,)??oJcl.:J24,J;>~.J?" r~M'10\J \JeTl nT~~NSTnN JV(?~).V(10.4)

E1lJ1VAJ.'W:F (.JV(j).,II).(V(}),Pf\J) I\JT~r,FP $\J Q~AL*~ TN~I'l.~F,K~

l~r.TCAI <>4 C>jA=ll (?) ,rHAR?(??1 ~ATft CHA~I/,osC"n",pC;IA".rHAQ?I'C;FrO"'Nn '.'SFVF','NTH 'I w'nT!:(T~UT.IOO) (1,1=1,,'(',).IN5T'1

Ion F~~\4~T(lO'ol6(' I'JSTP'tl?)/' '0\0(' 1"'5TR"I?)o2(/' ',l"l~)l. __ \0' Q 1 TF: ( T OU T • 1 ;:> 0) T DE SUC;' I TN. 1011 T , 1 I • T P 1\(," • f\Jp A r,F • ~IP • I P • T T E P • 12. J •

llC"I_~.IFlG).TFlG;:>.TFLA1'TFLr,"IFlr,C,.TFlr,".TFlr,1.TFlGA.1FLr,Q.ND,Nf\J. ? 'IrT.TTTMo.'IVT.T3.T4.15.1T,~lrTi.

I?I\ F"~\4AT(lO J1F~dr, TIN TOUT Tl I.' JT~R T? 1 'C"l~ IFLG) ?' IFI(;6'1' 'olRT7/'O TFLr,7 TFlr.R 1.' IT1"1[ ~IVT(]) 'JVT(?) '.lvT(l) ,~

4' TTP) lTD) NrTI' -I' '.IRP)

T~Ar,F

TFlG? rnr,q

J4

N~hr,F

TFun Nrl - Iii

f\JP 1",'_ IFlI~4 TI"l(.;C,'

f\JN __ .Nr:l!.._ IT (i ) , •

W Q T T F: ( T ()U T • I 4 n ) TSl • T '>H. T S II. r. Tn. P vn T S V • T /lliW. Kid, I( F • HIF ~ '-1. TC;A • lTSP.TswA,rTA.TSV.PV.~WUKW

14n C"~U~AT('U •• 7X.'TSl'.11~"TSH·.11X"lSW'.I]X"~Tnl.I?X.'PvnTSV'.

102

Page 107: A Mathematical Model for the Starting Process of a

AEDC·TR·76·39

-------------------------~~-----------------DUMP DATE; 75157 11/5R/40

lIX.'TbU~ •• 13x.'~W'.14X •• KF.I. '.8FI6.~/.0 •• 7X.'AEM'.13X •• APM', 213X~ '_L\F'l' t.13X 9'IS~.!1J.~.1 '.l.~h'...I..S.1'l.A. .In.' eTA' .13)(. qsy' I 3' 1.8FI6.B/'O •• 7X.'PV'o.!1X.IAWOKW'dOX.. '.lOX.' I,

4 lOX., _'~lOX, •. __ ._....!-'10~~ ',IOX • ., I' I.RElb.R) W~l TI::.( lOUT, 160J.PC~BC!. 'Lc .. l'E' .. tlW. TP. PP 1. RPI. TP 1. PPT .RPT. TPT. PCTO.

1 ~CTO,TCTO.PEO.REO.TFO.Ar.ACTO.~DPF.MDCT.MDE.MOF.T.TI.MN,TSTR, 2"1D~ t. '4DD,-PD IP 'il1'.I-L'1Il..t1:I.cr . ...E.!?Z1.':!DF2. MOpEZ. MDE2. MDC TZ. SF ~A X. 3TST~P. DT ,PSDPO,TSOTO.RSORO'MS0'40.MDTSTR.MDTSO.MDCTC,MOCTO.PERR 4.PN3.PP3.'10F'3tPEJ) .. 1.t.IE03.!1ID15.Q.J..!.~u-"O[J;;EJ.L"-"A,-,Y,--_____________ _

l'lfl FOR'1AT C' O •• 7X, 'PC' ,14)(. 'R.C' .14X,'TC 1 .14)(. 'PP' .14)(. 'RP' .14)(. 1 tTP1914l1' 'PPI' ol.3XJ ,qp.L'L!_.! '8El6.R/'.Jt!.l..7X. tIPl' .13X. 'PPT!..ll.3,.!>)(~, __ _ Z.qPT'.13X"TPT'.1~x.'PCTO •• 12X"~CTO'.12X.ITCTO •• 13X.'PEO'I' I •

.. __ Jf:lUfh.6.nJl' .. '.V!' 'REo' tl3X. lIFO '.13)( •• AC' .12X. 'aCTO' .13X. n.mpEt ,II X. 4'~DCT •• 13X.'MJF'.13X.'MD~'I' '.8F16.8/'O •• 8X,'T •• 14X"Tl',14X"MN' .5,13X"TST~ •• 12X~MDPT'.13~'MDD •• 13X"PD •• 14X.'PN'I' '.8E16.81 6'O'.7X.,PT'.14X.'MO,.14X.'MCT'.13X,'PP2'.I?X.'MOE2 •• 1?X •• MOPE2'. 7 .. 11 i'.! • "'DE 2' d 2..X I_' lillCJ.Z • ..L!.....-'.~.8E.1141lL~ 0 I • 6X. !...$..EM A X •• II X. IYSTO!?' • 81IX.· f'l •• 12X. 'P<;()POI.ll x. "<;OTO' .1lX. 'RSORO' .IIX. 'MSOMO' ,lOX, (.n~n.Is..IR 'I'_,.! . .t.B.ElJ>~..ll~..lliDTSO' .11 X.' MOCTe 1.11 x. '''1,)CTO'. ~ lOX.' PE~R ',lOX,' PN3 -.lOX,' PP3 '.10X., MOE3 '.10X. R , ;>FO) '/I ' •. REli ... e!'Q.'...i.M!!.TEJ!J..I..!.l.l>~"MOTSI1J..!...!11X"~CT031'olOX. CITD~LAY'.IOX.'TDELAY'.10X,'TOEL~Y •• I0X" '.10X.' 'I' '. ORO 6. f:l) _ --.--------.----.-.---~--:-:--c_=_-----,,----

WRITE(rOUT.?OO)Al.A2.A3.A4.A5,A6.A7.AS.A9.AlO.All.A12.A13.AI4.AI5. _. ___ ,Ltll'H.AtJ.ill.A.A19.!\?0.A21.A22.A23.A24

700 FOR'1ATC'0,.7X.·Al,.14X"A2'.14X~'A3 •• 14X"A4',14X"A5',14X. l' M,' ,14 x. '.1\ 7' .t.H)(.!..'-AB.!L~--'-.!Bli6. AI' fl' • 7X..t..!.A9L.:...~1 =-4!).X ..... .: •. 1!f\LoIlc'O'-'.'-'.'-:-c-:-~ ___ __ 113X,'AIl',13X.'Al?'.13X.'A13'.13X.'A14'.13X.'A15'.13X .'AI6'1' '. 4 8E16. BI' 0' • ,.I'!, • . '.Al1,! ... l..1X....!A.l8' .13X. • A I '1.!..t 13)(, 'liZ!)! .13)(. 'A21 I • ~ 13X,'A22·.13X.'A23'.13X,'A24t -II 1.6El.6 .. 1iL w~rTECTOUT.220)G.GM1,GPl.GMl02.r,PI02.00G,r,MlOG.r,P10G.GOGMl.

1 GOGo 1. SGM 1 02. T DB t.TO.BE'I • Oom·o .. GPDGMl.J.G.P..G.M.l.2..Uillit-!l. MGPGI12. MGPQr,M. 200r.0l.p.O~R.G~.DT02.nTopv.O()KE.INFIN.OOA1.OOnT.MGOGMI.TMGOGS. 3 GP)2GS.S50~ ... _._ .. _. , .. _., __ ,. __ .. ____ ..... _. __ .. _ ... _._'--____ __

??O FOP'1ATC'l •• RX.'G'.)4X.'GMl'.13x"GPl'.12X.IGMI02'.11X.'GPI02'. 1 l?X., f10G' ,12x.'-.' G'!lQf?-'..tl.lX!...! G~l.JlG II '-_.!...tlIll€?o..!U..!.~flll..!.'_G,zc0~GI.UM ... l.:.'~' ___ _ ?1Ix.·Gf1GPi·.lOX.·SGM1()2'.12x"TOG'.I~X.'iOGPl,.llX.,O~GMI'. 31 ox. 'GPOG'11 • .1 OX. I GP<1MJ.2'I..' 1 -/:lEI!>. t\,1'P' .Lt?x,L'If'lQ!:!J '.J lJ)!.!.!MG~:,-,2_, ';",;''--_ 4 jOX. 1 Mr,PJGI1'.11X.'0f1GPl',13X. 1~1.14X"OORI.ljX"GR'.13X.IDT02'1 .,. '. HE Iii. 'II' O •• 6X •• nTOPI/.' -' 11X. 'QQ.~F '.'.l.?J(.,! 1J'!£1.~.-'-!.U.X_L'.ililAJ.!.! _____ _ ~ 1?x,·nf1DT'.1IX.'4GOGMl'.10X,'TMGOGS'. lOX"GP02GS'I' I.AEI6.8 7 l'O',,,,x,'sGO~' - I' 1,F1El<'.R) W~ITFCIOUT'260)V

?SO F~Q~ATI'OV EQJIVALFNCE ARRAY'.15C/' '.AFlli.8» WRITE (!OUT,?40) Cl.r=lt7) tRW, ,. , __ ", _

240 F~RI1ATI'O',7C~X.'RWC',II.,) •• ~X)/' ,.7FI6.8) "H'lj5i~=2b D~ lOOn l=l.NI'ljST~

T~I!.En.12)WRITF(TOUT.4qo) 4(}fl FQP>4AT(tI')

WRITE(yOUT.500)i.iNSTR(I) ~oo Fnp'1ATI'OTNSTR('.12"):',I7)

I ? 1 4. 5 Ii

103

15

Page 108: A Mathematical Model for the Starting Process of a

AEDC-TR-76·39

DATF: :: 15157 11/5fV40

r. l~ 17 lR )9 20 21 22 23 24 2~ 26 27 2A 29 30 31 GO TO (~l 0 ,5~Q ,.5.]Q.,5.lt.(L,5;;.QtSnJ!u.HL,..58..2...U9fu 600.610.620.630.640.650

1·660.670.SAO.690.700.710.720.730.740.750,760 - ), I._. ___ ... __~~ ..

510 WqlTE(JOUT.~ll)TNSTR(l) 511 FOR'1AT ( '" , ,20 X " ~EJ'J!}_ ()~9U.G.G ING.QlLtPl)J~!1.SflN' • I3)

GO TO !OOO' 52 (l W q If E (J OJ! T , 5 Z \).1 N s...t~I~2~1_--=-:. 521 FnR~AT('.'.?OX.'O~TATN INPUT FRO~ nSRN9,I3)

GO TO ]000 530 WRITE(TOUT.531)TNSTR(3) 531 FOR~AT ('''' .20)(. 'S~Hf)_Ji~\>ll.UIJU]lHPULJQ_l)SR.N'_d')L __ .. _. _______ _

GO TO loon ?40 II" qJJ E.L1QU T .• ;;'tllJ~S T R J . .::47:)c::--==:-:-;::;--:-:-:-;;=:-:-:-~--=---=-=:------------__ 54i FOR~AT('.'.20)("PRI~TING TIME INTERVAL: •• I3)

GO TO.100P .. 550 WRITE(TOUT.551)r.HARl(INSTRI5r) 55) FOR~AT J ,_ .... 2tl)( .•. ' L"!PPT ... A"i!LOUTPUT PRESSURES IM... __ , ..... ,/I""4x..l'---_______ _

GO TO ]()()O _ ._.5 ~(l .1 l'"_tlN.!i.L~_t~J ..... EQ..Jll.J.1RllE.il..Oill..:<.-=5:>!.6 .... 2-'--) ________________ _

JF(tNSTRI~).NE.0)WRTTEltnUT.561)

5" 1 F DR \fAll! ~ • • i' 0 l!.t !J>~lN.L 0 AT /I AF'T~ . .<.E-'-'Rc..!.Y___'_I..!..T.hE_'_'R--"A..!.T.A.I""O"'N-'-• .Ll ___ ~ _____ _

562 FDP\fAT(''''.20X,'PRINT DATA ONLY WHFN CONVERGE~') GO TO 1000 . ______ .

570 IF(TNSTR(7).EQ.I)WRITFIIOUT.S71) J'" (U:LSrRJ71 .0. 2 .. H1Rl!f..lliUT ,572)

571 FOR\fAT(' ••• 20X,'LTNFARLV FXTHAP~O~L~AT~E~T~O~N~E~X~T~T~I~M~E~I~N~T~~~R~V~A~L--A-~S~A-N~l---INITIAL GUIOS5')

57? FOP'1AT('+I,20X;'OO-Nnf-fi'TR~POC4Tr::TO NF"XT TIMf INTERVAL') GO TO ]000. _ .. _.~ .. ___ ._ .. ___ .

590 WRITE (TOUT."i81) (CHAR2(J.3-JNSTR (8» .J::l.2) 5'H.FOP\fAJ.(!.~!_!~Q.)(.~USE t .21\4.' DEGRn: REVERTED SERTFS AS If\lJTIAL GlJF"S

IS T3 M~SS F"LUX-~ACH NUMAFR WAVE EQUATION') GO TO Inoo _. __ ~ __ . ______ .

59!) TF(TNSTR(9) .E~.1)WqITE(JOUT.591) I F I I NSTR (9) • E~. 2 L~.BlI.E.JJ OU.T. 5921 __

591 FOR\fAT('.'.20)("USF TTERiTIVE SOLUTTON TO ENF"RGY ANn WAVF" EQUATtON l?' I . . __ ._ ... _.

592 FOR\fAT('.'.20X"USF APPROXIMATF EXPANSIONS FOR ENERGY AND WAVE FQU 1 ATTONS')

GO TO 1000 600 I I'" (JNSTH( 10) • ~(L...QntRJ.TW.OUT.!i1.9J,::-,)'---___ _

J I'" ( INS T R ( 10) • E (). 1 ) WR ITE ( TOUT. I'> 0 2) IF (TNST'! I lQ) .r:.Q"'?J.WRlIUl.Q!lT.(03)

601 fOR~AT('+'.20X"DO NOT INVOKE AVERAGING OPTION') M? FOR"IA T (1+' • 20X. I A\lfRII..GI;.IlIl.\,VF,S~~ ._c:.lLFi~.f.t-I.L_U(EA.TJJlN \lUJ:l.....~VfBAGf V

'ALlIES OF" 0REVIOUS ITERA"ON') 603 FOR'1AT('.'.20X,'AVf.RAGE VALUES OF CURRENT ITERATION WITH UNAVERAGE

10 V~LUF"S 3f P9E"V-yOUS-tTF.RATYONI) GO TO 1000

610 WRITE-(TO·uf;ii,fi·)YNSTR(ll) b11 frlP\fAT('+1.20.)( •. "'~.l)_f!E~!'!..L.WFT_G!'U~_liI\LVEO BEYOND ',n.' ITERATIONS'

11 GO TO 100Q _ '_. __ . ______ .

620 Jf(Yf\lST'!(12).EQ.l)WRITEITOUT.621) IF (LNSTP 11.2.1 IL'it .... lJ WRITE (TOUT .(22) !l.-,-,N",S:..!T-,-,R,-,I .. l--"2~)-".-,,Jc:::" ... 1-'-'-,=2.J..) _________ _

104

Page 109: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

DATE '" 75157 11I5R/40

62] .OR~AT(,+,.20X,'DO NOT TNVOKf ERROR CUTTING OPTION') ._622 FQRIlAT('3_._.t2.0XL'JH.tlI2E....£RI'iI.1~S BY'oI3,' WHEN TIME-DIEfERENCES ARE L

lESS THoN',I3,' TIMfS THE ERPOAS') r.O TO 1000 .. _______ . _____________________________ _

630 IFIINSTA(13).~Q.O)WRITE('OUT.631) I F ( 1"'5 T R (13J • 'I E a O_J .w RlI£ilJlU1~ 6.~3 2 .... 1L--__ _

631 FOR~ATI .. ,.?O)(.'PRINT ALt nATA') .. 632 F:OR~AT(i •• _.2.Q.X_'_'_e...IliNT 0'11 y TtMFS AND PRESSUREsq

60 TO 1000 61+0 1-1'".1 I filS T R ( 141... Ell.1.tiLR1IT11JllJ.Lt1LUL--:::c---:--__ =-=-:::--:,-:--________ _

, IF ( Y NS TA ( 11+) • G T .1 ) WR TTE ( I Ol/T, 642) INS TR ( 14) tT NSTR ( 12) 641 FOR \1 A T I f+ , , 2D )(,'00. __ "'1.1 L.Lr-J.VI)~L.n~ . .LI £l.S~I !-'lNuG_O,,-,,-PLTLI O",N,,--,-' L) _--::-__ -,---,--:--__ _

642 fOP'1ATI'.'.20X,'SET DT :'.13,'*DT YE TJME-DTEFfRENCFS ARE LESS THA . __ . .!..IIJ.' "LUL.I.l~ TLlHi.<;.E-t:,E,nR.!:lRJ,lO.!:lf./-'!S..!.'L) _______________________ _

('.0 TO 1000 . _6511.1 E ( lNS T R_Ll.5.L .. .EQ.LJ!3.L_\'IB1 T f I J au T .6,5.1L ____________ . ____ _

IEIINSTRIlS) .NE.03) WRTTf(IOUT.65?)INSTR(lS) 651 f(lR'1AT J'_".i.ZJJ.x~'.IlQ_.NOI __ REAO.._s...O...LJlI1J)~L£ROM PfR.MANFNT 'lATA SElf I 652 EOR'1AT(O+t.?O~.'RfAO SOllJTYON fROM PERMANENT DATA SETt.13)

----6-6-i1~}1LgUlLQ!L~-. f,-6-1:--) y-,N-,-S-cT::-:R::-:'Cn:--"':--)------------------------_66.1EDR'1Al.L'_!.!...t...2..!Ut. 'FTRST RECORD TO 'BE llRL.EB.Al.LD.L:.:.i.L • .LI4~I ___________ _

GO TO 1000 __ 6] 0 ..II/ fillEJI O!H..t..6llil fi5.1P'-'( .... 1-L7,L)_---=

f,71 fOR'1ATI •••• 20X,'LaST RECORD TO AE Rf.AD:'.I4) GQ TO IO~ ___ ~~_~:__:__~~,---~-________ -------------------

690 I"'(TNSTA(lfl) .EQ. OJ) WPYTEfIOUT.6flll _ I F..!1 N.5.J RH B .L.....N£. 03 I W R I I£.LUlUL..ll6.aAL.2,L) -LX !-'IN;;>,SLT Rru.! L! BI:1.L) _:--=-_--::-_---:::-____ _

681 FOR'1ATt •••• ~Ox •• DO NOT WAITE SOLUTION ON PERMANENT nATA SET') 682 F'DRIlA T_(I +.' .• 20lt.t..' l'IJnlL..5.OLUll~ PERMANENT DATA SET', 01

r,0 TO lOOO ___ 69Q_. l'IRl.I£J.llWL.h.911 INSIACl91

691 EOR'1ATI' ••• ?O~XL.-,'E~J~A~.S~T~R~E~C.~,D~R::-:O~T~O~A::-:f::-W~~::-:I~T~T~E~N~I-,'-.~1-,47)---------------------GO TO ULQ1L _ ___. ______ ~ __

700 IE«IN<;TRIlll .Nf.O).IINt).!TNSTR(20).NE'.0)) WRtTEIIOUT.70U INSTRli'? II() .._ __ ______ . _____ . _____ _

IF' ( I I N<; IR ( 11 ) • EO. 0) • OR. IT NS IR (20) • FQ. 0) ) WR ITE' ( TOUT. 70 2) .1OlIQP.'1AIL' __ !...'J2.<l1t,tlNCREMENT YNSTRCll.LJi'i. ,.13.' WHENfYfq WEIGHT '5 H

ilIlLVEO' ) 70i' F'ORI1A T ('.', 20~j •. DON.QL':1.onIl"_ClN~TRllJi.J ________ . _______ _

GO TO 1000 no IE (INSTB (2.1l_oE.fJ I OJ J'iRllilLDJlJ,,711L ______ _

IfIINSTR(21) .~f.OIWRITEIJOUT.712)

_711 F'OR.'1li T { • +' 9 20X~_ • .DO_.NQLruaNGLLHRAPJlLAlJ.Q1! __ !lE.ll.D.N II \lSTR 1711' I 712 FORI1AT 1'.'.?OX.'lNvnKE .XTRAPOLATJON OPTION (SET IN5TR(7)=21 WHEN

II ,IE 18HT I S HALVED ') __ . _____ _ GO TO 1000

720 WRITE: (IOUT.721)1N5.IFI(22J. . _____________ ._. ___ 721 fOR'1ATI' ••• 20X.'SET INSTAI?3)=? WHEN ITER >='.17)

GO )'0 1000.... . ___ . ____ ... _____________ . ________________ _ 130 TeIYNSTR(23).EQ.0)WRITE(TDUT.731)

J E I T NS Hl (23) • E~. 1 ) WR Y IF! LOllI!.1~2) __ . _. __________ _ TfIINSTR(23).~Q.2)WRTTf(ynUT.7331

731 F::IR'1AT (f", 20X ~.!Dn NOT._ .. USL SM.f\LLPF:RLLJR8~LIJ2~_fl!.EA!~SJ ONS'.!..) ____ _ 732 EOR'1ATI'.'.20X"USf SMALL PFRTURRATION fKPANSIONS AS INYTIAL GUESS

______ J F'O~ ~I:)(.'t q'-1.L...ltfl£R.YAl..'i. __ ,-----..

105

Page 110: A Mathematical Model for the Starting Process of a

AEDC~TR-76-39

nUMP DATE:: 75157 Il/<;A/40

713 ~DR~AT('+'.?OX,'U5~ SMAll PFRTURAaTION ~XPAN5YON AS SOLUTION') _GO Tn lOQO __________________________________________ _

140 TI'"IYNSTRI;>4) .EQ.O)WRITF.ITOllT.7411 I I'" I J NSTR I 24) • \lE:.i') \VP TTf IIOllT...!]4_~I _________ _

HI ~OR~AT(I ... 20~.n:lI'"C;tJLT5 ~ROM ')MPFRT NOT PRINT!'O,) 142 ~OP~AT I' +', <,OX. '_Rf511US ~RO'1.. S"1e.[R_LA..I1.L._F'_FU1tl_EJ"_!l. __________________ _

GO TO 1000 7'50 IF" ( I /115Ta (25_1.L~ ~,,-ll j!.!llJ.E.Jl Cillh7.5.lL ______________ _

1F"(INSTRI;>5).EQ.2)WRYTEITOLJT.752) 70:;1 ~OR'1AT I 1+' .?OX, 'ASSLJ~f:. PLf.NIJ.M IS_ IS[tHROPlr.!L _____ _ 752 FOR'1AT('+'.?ox.'S~T TP ANn TPT :: ~A)(ITSfN TP.TCTO)')

GO TO 1000 ----------------7~O WRJTEITOUT.761IINSTRI2b)

_ 7"1 _~OR,,~:r .l1+'.!.ZO!<n.--'B.El!.f~~_LliL'£)(lIr~CSI)?e:.~~_9~LCSOJ.l~lJl!'!~' TIME IN ICRE~E~TS AFTER CHOKE')

GO TO 1000 1000 CONTI""F

WRITEIYOUT,lllO) ('JtJ=I'26) .JV 1110 ~OR~AT(III.;>61' J'.T?)/' '.132('-')1' 1.2610;)

11=0 _________________________________ _ 1)0 1020 1=1.1 TF"(\lVT (Tl.GT. Yl) II=NVT III

10;>0 C(lNTl\lIJ~

WR T TEl T ('IU T • I 040) I ('J. Y:: 1 .? I •• J= 1 .]) • I J • IT v (J, t "_A~F" A.J.J..!_U_t J= 1,.:;1) • 1 1=1.1,)

1 o_~o ~OR'4A T ( 'OC'lnw nR(!S _ IiER'iUS_ Tl Mf'j'(\ __ L!.lJ.l.5)(t' I'H_'--LLil.!..!..LTL) -c-' .... , __ _

I AX.'ARF"AI'.II.,.y),.3X)/' '.QQI'=').501/' '.Y3.6El~.A» YF"(\lCTL.El.AIRETURN 1 RETJR\I E\lO

106

Page 111: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

50LVFR DATE", 75157 11/58/40

.. ·5UR~OUTJ"'N,,"=-. '-=Sc::O.,...L7CWE:::c.P;::-(:-:,,:7,--------------------­._.l.MP.k:l..nJ .. ~ALII8 (II-H.M,O:'Z .$f

CDM'lOIlJ AR,,,n.50) .AREATSi3) .ARF.AM(3) .rV(3.50) .AIlO) .1"(7) .9(301 • .. L T.\I~ .. ! ~u.lJf.LA'Lil1,__'.'_'.R'-"W'--'(..L7-:':' ________ =::__.,--_=____,.-------

COM'lON PC.RC,TC.AC.MOCTC.FAE'EAPF.EAf,MOTSTR.INfIN.TM50GS,GPO2r,5 • .. .1 . .5.G.QR .... _ .. _ ... __ .

CQMMON G.5Nl,t,PI.OOG.GPl02.GMl02,GPIOG.GMlOG.r,Or,PI.GOGMl • .. ..1..JlMMl.oJl.OGPI.GPOGMJ .SGM102.TeGMI.TOG.MGpGM2.TOGpl.GPG!o!lj?

2 'lGPOGM.MGOGMl.R.GR,OOR.PI.PERR.AWOKW.OOAl.OOKF.KF.KW .... CQ.M~Q~1>.Wf.JS!:J. TSw. TSPt TSa. TSWIl!.ISV .CTO.CTA .Py.pVOTSV. fAUlt

CQMMON T.T!.OT.TSTR.OT02.TSTOP.OOOT.OTOPV ._ .CQ~MQN .ft.l t.AZ .• .A.J.i.1L~.s. A6. A7. A8. 119. UJl!.A 11. A12. A 13. A 14, A15. Al6. AlI

COMMOIll PN. PP. PPT. PO. PT. prTO. PEO. MOE. MJD. MOl". MOPT • MDCT • MOPE .MDTSO .MOCTO. TEO. Tp. TPT • TeTO. PP. PPT. PEO. RCTO • ACTO. MCT, AE.

_ ... ": .... ftr:>E_L ... ...A! .... _...:::MN:":-"'. _::'M-'"D::-:-_--::o::-::--_-=:-:----:::-::-::-:-:_-:::::-::-:-_-:-=-::-:-__ _ COM\10N PIIIl. PPI. PPTl. POI. PTlt PCTOI. PEOI. MDEl •

...... !:12Qtj._.\10Flj ... J~OPTl.~M~Q':'C=-T71~.~MO:=-PE~l~.M'-CD=-T::-:S=-0:-1:-.~M~O~C~f:cO~l:-9~-:T,:-,:E",O;-;1:-,,~_T-=P:-!1~. __ _ TOTI. TCTOI. PPl. RPTI. REOI. RCTOI. ACTOI. MCTI. AEI. AOEl. 4£1. MNI. MOl

CDM!o!DIII P1IIl'. PP2. PPT2. PO? PTl'. PCTOl'. PEOl', MDEl', M~Dl'. ~DF2. M~D~P~T~l'~.~M~o~C~T~l'~.~M=O=P~E~2L.~MD~TS~Ol'~.M~D~C~T~O~2~.~~T~E~O~2~'~~T~P~l'~.~ __ TPTl', TCTOl'. RP? RPT? REOl'. RCT0l'. ACT02. MCT2. AEl' •

...... ~. __ IIPE.2._ AJ" 2L .. ~.!_ .. MD.l' COM~OIll P1II3. PP3. opT3. P03. PT3. PCT03. PE03. MDE3,

. ___ .~ .. _):1!.lQJ.1....-\.1Di"3.t. '1..Q.~.J:!l1C.IkJiQ.e.u .... ",M~D::T~S:::-O::-3 .... fI..,.1D~C~T;-0!,3~i --:T~E~Q;-:3::--'L __ T~P;!3~.,--__ TPT], TC1 03. RP3. PPT3. RE03. RCT03. ACT03. MCT3, AE3. A PO t. M" 3 • . ... ~NJ.L ..... Hlll

COM~O~ PS~PO.TSOTO.RSORO.MSOMO COM "ION $ Y, $Y I, ~Y.2Jjij(..l.!.SX2.t.!nX. SEl. $E2. SEMAX. 'EP, SDE COM"ION yNSTP(26),IDEAUG.TTN.TOUT.NP.IP.JTER.NVT(3).!.NT.yPAGE,

. _ .. _ .... _1~f:)A3E. ~!:!ill . .t3) .J. Y M I, IT Y ME .ND .NN .NCT. I ELG .IFUH • IFLr,2 p tELG3. YfLG4 , l'rFLG5'TFL3~.IrLG7.IFLG8.TFLr,q.ll.T2.13,I4.r5

COM401ll J.J.! ~2' J~ '.-!'u J5 !.>!I',. ,)7 ,J8, J9,Jl Q. J 11. Jl2 .J}3 .J14 .J15.JI6 .J11. 1 JIB.J19,J20.J21.J2l'.J23.J24.J25.J26

COM'101ll ~C'fL i 'Jt~GER $.~:-.. .~ --------.--...

.. _._B.I;t\\,.,!,B. TN""'l'iLK£.!.KW C ELLIPTTC ENERGY EQUA~T7r~O~N~G~I~V~YN~G~,~P~R~F.~.S~S~U7.R~F.~. ~F~R~O~M~M~A~S~S~F~L~U~X~---------------

GUESSl (.F)l) ::PS()PQ.u£.lJj.?~M.!-'2S.QRIJ~ ... -,:(=A=5~*O","=1=-) 1I=:1I~l'=-;-;-) :-::-=-::::-:-;-::-_____ _ C ELLTPTTC ENrRGV EQUATTON GIVYNG MACH NUMBER FROM MASS fLUX

. _.r,UF5S?JDJJ=r)<;ll>l.T «GUF'SSI (01) UA'" -1.) IITOGM1) C fLLIPTTC ENrR3Y/CD~TIIIIUITY EQl/ATrON GIVING MACH NUMBER FROM AREA RATTO

.' G.l,IfSS3J[)U:;:GUE..~!l./Oli C APPROXYMATF U~STEADY ~W~A~V~E~E~Q~U~A~T~t~07.N~G~f7.V~y7.N~G~M~A~C~H-N~U~M~B~.E~R~F~R~O~\1~M~A:'S~S=-=F~L~U7.X~--

GVESS4 (01) "OOGP.L".1.lJL,,:ns.Q!Ull.~~JllU $Q)(",.OOI

.. _ .. JHt.JQ.Jl.Q •. ~(J.,J!l..!.:::!:4.!!.O.!.) L .... TFLL"-'Z.G ________ . ____________ _ 10 'Xl=GUES51($Y)

_._ GO_.LCL5.L ~o YF($y.r,F.~SOMO)GO TO 25

$)( 1 ::GlIF'SS2 ($.)') (;0 TO 0;0

.2.5 $)(I=I.DO ______________________ _ -$,,;'0 . ···--r

.. _ .. _.BE.'LJRN

107

Page 112: A Mathematical Model for the Starting Process of a

AEDC-TR·76·39

~--'--~~-'-----------------------

SOLVI'"R - ~... -.----~--

30 $Xl=GUFSS3('Y*~"i) .~. _~ G.O~ __ LQ 51L ________ ~ ____ .

40 II'"(TNSTR(~).EQ.l)r.O TO 4S __ $U :GiJ.ESSH$.,(L __ ~._

GO TO 0;0 __ 45.._S.lU~Q_IL ____ ~ __

DO 46 T=I,7

nATE " 7510:;7 11/58/40

_ A1l_.1IU =$.Xlt~R\II..lll~'..Jl ______________________ _ 50 II'"(INSTA(9'.EQ.2)RETURN

_ WR I TE (Il)nuG..t.l O.Il..U.Y.t..ll'CllO"'X""-,.ll$LE""M.aA-"X _______ -__:_-____ -__:_-----: ____ ---100 I'"OR~AT(' SOLVER'I'O$Y='.1'"}6.8.' $OX=',EI6.8,' $EMAX='.F16.81

l' 0 N~' • 5l\..t..!Jt~'~.!.1Jl_ltt..!..!'.lliU~t 2.lu_!JUl'I=.l.L! • ax. 'Y I N-l I , • 9X •• E (N I •• ? 9X.'EIN-I),.10X"OE'.12x.'EP'.12X.1DX'I' ',132('·1),

. _______ 1.'1;;;.0 _______________ ------------------120 GO TO(1100.1200,1300.14001.TFLr. ~13{)$El~=l$.'{~Lll _______________________ _

II'"('N.NF.O)GO TO 180 140 $E2=$EL___ _ _____ ~_~ __ ~ ____ ~~_ .. __

$Y2=Syt , .11t2;;_SXL_ $X 1 :SX?+S')X

J~Q$'j='Ii"l+L __ ._ GO TO 120

l~O 'EP='El*SE~ ~ $OF=DARSI'liEl)-nAAS($F2)

_ .~_~-'n.lE.1111E.3Ufu.2JH1.Llli! U 1. $V 1. $X2. !fiV2. SO dif2. $DE. $Ep. $r)X 700 FOR4ATI' ',J3.9fI4.6) ,

I I'" (JABS (!liE'lL. LEA $EMA!U.fIElURN II'"I~fP.r,T.O.)GO TO 220 $[)X=.5*$DK ~ __ . ______ . __ ~

210 $lq:$X?+$,)X ___ GO TJ2. u_L ____ _

220 JI'"(~DE.LT.O.)GO TO 140 !Ii[)X=-$f:\)(~ __ ~_ . ________ ~ ______ --'--___ _

GO TO ?10 C E 'J ERG Y :: QUA U 0 N G I'i I N fL MAS.£._r.l..illLE!li) ~M"__'P:.cR""EU2S ... S.I.I.UR!>Jf"---___ _

1100 $YI=$Xl**TnG-~XI*·APlOG 'Ii Y.l =u 5N~ Tt ~~ Yll. _____ _ GO TO 130

r F'JF"qr,y r::QUIlTION r.1Vtt-JAt1AS!;_ELI1X_J'RQ~L"1A.CH NUMBER 1200 $Vl=$XI*(1.+r,4102.'liXl*.~i**MGPGM2

GO TO 130 _ ~ ______ ~ _______________ _ r A~fA q~TIO V~RSUS ~ACH NUMQI'"R

1 ~Oo 'lin" (TOG~ 1* U ._.G'11D.2..*.$_l\.l~*.!Z1l uGPGMl21U 1 GO TO 130

C U'lSTfMW "'I\S5 FLUX FROM "1ACH "ItJ"lAE.R._ 1400 $Yl=$Xl*(1.+r.41n2*'liXl).*MC,POGM

GO TO 130 ~ ______ ~ __ ~_~ __ . ___ ~~. ____ _ f'J[\

108

Page 113: A Mathematical Model for the Starting Process of a

A E DC-T R -76-39

PRINT DATE" .. 75157 11/58/40

~ ~~ -~~-~ ~ - -~-.--=:------SUR~OUTINC', PRINT (It)

--I11PL'ICIT "iEAL*8 (A-H.M,O-Z,$1 COM~ON AR~~(3.50).AREATS(3).ARE"AM(31.TV(3.50).A(10).E(7).B(30).

__ ~1~!j:lh.I!1f.U.Yl.31 •. Rlttll __ _ COM~ON PC.RC,TC.AC.MnCTc.FAF.EAPF.EAF.MOTSTR.INEIN.TMGOr,S.GPO2GS.

_ 1 SGOR.. ___ . ____ ~_~~ COM~ON G.3Ml.GPl.OOG.GPl02.GMl02.GPlOG,GMlOG,GOGP1,GOGMl •

. .. -L-QO.ru1L..O..Q.ae.J .. .Gf.OGM I • SGM I n2. TOGM I ,TOG. MGeGM2. raGe I • OeMl? 2 MGPOGM,M30GMI.R,GR.OOR,Py.PERR.AWOKW,OOA1.OOKE.KE,KW

__ ~ ~ .c.rut"lQII/ J.SLlt T S"i..!.liW. TSP. IS At TSI/A. ISV. C To. C TA. PV. pva TSV. TAll'" COM~ON T,TI.DT.TSTR,nT02.TSTOP.OOOT,OIOpV

no c.w~~aN Al. 42. A.hM .• A.5...tA6 ... a.LMtl..2-'.Al.0. All. Ai? Al3. Al4, A15. Al6. A 17 CDM~ON PN. PP. PPT. PO. PI. PcIO. PEO. MOE.

MOD. ~OF. MDPT • MorT. MOPE ,MDTSO ,MOCTO, TEO. TP. TPT • ICTO. RP. RPT. REO. RCTO • ACTO. MCT. AE,

._ ~P(-1._ ~J5-,-__ ~~_. __ ~c:M,,::O,-:-_--::=c,----_--::c::-: COM~ON PNI. PPI. PPTl. prll. PTl. peTOI. PEOI. MOEl •

. _~-_ ~_"t:)Ql.J __ ._~OI"L..._MPP.HJlM!lC.J lL'1~Uern.!5Jtt.!'}lO,-"C,",:T-"O~l-"'_-,LT."-E~O~l-"-'_-LT!:.P~IL' __ _ TPTI. TC10l. RPI. RPTI. REOI. RCIot. ACTOI. MCTI. AEI.

_~~~---A':>.EL-Af..l.J..'_.-:JMJ.:jN..I.IJt._.....!!:"ll~Oul ______________ -:-______ _ COM~ON PN2. PP2. PPT? PO? PT2. PCTOZ. PE02. MDEZ.

__ ~_~~-'.~_.~Q[2L_~Ia.l1ru:I4_"'-QP(Z~O~TL>S~0,,-,2~!M,",OI.L<:~T!LQ~2""'~.:LY~E~O~2 .... _-,-,~T-:P.~2~.,--__ _ TPT2. TCT02. RP2. RPT2. REO? ReTO? ACTO?,. MCT2. AE2.

_ ~.~ __ ~E.2.L_ AFlL_ '1NC.L __ ~ __ ~ __ ~~~ CDM~D~ p~3. PP3. PPT), PO). PT3. PCT03.

WlD3 •. ~~DF3. '1DPTl~ Moen. MDPEJ.MDTS03.MOCY03. TPT3, TCT03. RP1. RPT3. RE03. RCTO]. ACT03.

.. APO. AF..3.L_._.>.1N.}L_~ COM~O~ pS~PO.TsoTO.QSORO.MSOMO

PE03. YE03, MCT3,

~ CDM'10~. JY ,HI ,~Y2-,HL~t.iDlL.Ji.E.L$E2.$EMAXL.'.!CE..,P~.~$l.LD ... E_--=_-=-_____ _ CDM~O~ INSTR(26).TOERUG.TTN.rOUT.NP,IP.rTER.NVT(3).y.~T,tPAGF.

_~~~~_.!~~t..1Jfl~l. IIIME ,NO.N~.NCT.IELG" IELGI. IEU;2. IELG3. IELG4, 2IFLG§.TFLS6.YC'LA7.TELG8.TELG9,Il.T2.13.I4.IS ~ C0P1'10~ _Jl .• J2. Jh"'4~J.'li.JL..JLt.JR. J9. Jl o. Jil. Jl Z .J13. J14 .JIS. J16 .J},.. 1 JIQ.JIQ,J20.J219J22.JC).J24.J2§.J?h C9M~ON NC TL ~ _ _ ... ___ ~ __ . __________________ _ DIM~NSTON V(24.4) ElWLVA!. F;NCL~~.!~ . .=..V-,-( .... l.r.. • .>..I!-) ... ) ______________________ _ l'.JT~GER $\1 REAL~8 INC"IN.'<F.~KJ;/ ___ _ lP:TP+] IF (JP.NF.\lP) RrrUR~L TP=O

_. I 1=.J.16~L IF(rN5TR(13).~E.0)GO TO Jon jF(yPAGE.EQ.O)GQ To.1O.0. ~_ ~ _____ ~~ _ .~~_.~ __ ~ JF(rpAGF.L~.NPAGE)AO TO 140

Ion WRllE (JOUT d20U I~.I=.Ltl~ __ ~ ___ ~~ 120 EOR~AT(')'.RX.'T'.IJX.'TSTR.,13X.'Tl'.14X"PT'.14X.'Pp'.14X.

_. _1 '~O'.d_.!XJ.'p"I·_,.1~.x. 'PPT' !'lX. 'ND'I' • .6X, 'PCTO, .13X, 'PEG' .13X. 'Mere -.13)(,'MO' 2.!4K,·M"I'.13X.'MOCT'.12X,'MDPT',13)(,'MOO,.BX"NM'I' ,.7)(,'MOE',13X. 3. 'M,)E' ~ 12K.' M')PE '. i-2X~-' MnTSo'·~,Tfx •• MOCTO' .12)(. 4'TP'.14X,'TPT'.13X.'TFO'.7X.'NCT'I' '.6X.'ICTO'. 5 13X;'RP I ~ 14)( •• QPii ~ flX.'RF:O'~T2X;oR:;;:c-;T-:;:O-':,20,·1-;3"'X'-"--"''-:A'';'E:-:i:-.-;1:-:4:-;X:;-':-':-A:-:p:::;e:;;",=-.------

... ~I.3..lL~.'.A.FI .• _7X. '~JTEB_'~_' .71~X.'E ('.y I,') '.6X) .5X,' OT '.6)(, 'J16'

109

Page 114: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

-I' '4132(1-", IP/l3E=1;

PRI~T DATE" 75157 11/5~/40

-140 wlli"TE-( T OUr.T60' T. TSm-;rt;P-r;;:;p-;PO.PN,PPT ,ND ,PCTO ,PEO. 14CT. "10 ,MN. __ lt~On, Mf'lpr ,·".1Dll, ~N.!!:1Jlf~"'DF, "tQP~.MD~S.ll.Mf)CTO, TP. TPT. TEO. ~CT, TCTO. RP,

2RPT,REn.RCTO'Aq~ATS.TTER.E.f'lT,11 _ J 6.0 F'ORI4/1 T (~II '-_" BE 1" .6. Et Ii.. _____ . __ . ________________ _

JP/l3E=TPAGE+6 _____ .R.E. Y.!ll't"'l ___ _ 300 JF'ITPAGF'.EQ.O'GO TO 320

_ T F' J I PAGE' ~.l..IT.L~~Mlf.' G!L.T_O __ .360 320 W~IT~ITOUT,340' 340 F'ORI4AT 1'1 't_6)~_1 or '..111.)( t '~!'T' ,.1.1)(., '_I'iIR.!.li ox" PT...! .ll X. 'PP' ,11 X..1 ___ _

l'P~'.llX"P~'IIOX.'PFO'.lOX.·PCTO'I' '.1321 ' _'" ___ ..iEl!.;;~:;L

360 WRYTEIYOUT,380IT,PPT.TSTR.PT.PP,PO.PN.PEO.PCTO 3[\0 F'ORI4AT (' I ,9E11..~ __ _

IPA3E=TPA3F+l II'" ('JCTL.E',l.lOI qr:IURIL.L ____ . ____ . ___ _ RET JRf.j

___ E .. ·'iD_

110

Page 115: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

AINO~ DITE " 75157 11/58/40

SUR~O-UTiNE' ~i~OM(*) I"4P\,.'ICU_I'.F.ItL~.B_( A-H.Mt~ COM 110 "J I R C" II!. ( 3 • 50 I • II RF" ITS ( 3) • I-=R-=E-:-IIC-:~-:-(-=3-:-) -. -=T77y-:-( -=J-. ::-5-=07") -. 7"A 7( :-1 0-::7") -:, E~(7:;;-):-.-:B:-:-:( J::":O:":):-,---

1 T Y. (3 ;., T 'E L 11..'( ! 11_!.fi\lLtIl __ ---,-::--:::-::-_-=:--,-=-::::-_-:-:-:-=-:::-:-:---=-:-:-:-::-::-::---::-::-:-::--:::--_ en~110N Pc.Rr.Te,~c.MnCTc.ElfiEIPF.EAF.MDTSTR.tNFIN~TMGOGS,GPOlaS •

.. L S."OR.. -------.------------:cc-:------------­eOMI10~ r,.3Ml.r, P l.00G.QPl02or,Ml02.r,PlOG.GMlOG,GOGP1.GOGMl.

__ .J .. nOGMl .nO.3Pl t_GE..QG.MJ • SGM) 02. TOGMI. TOG. MGpGM2. TOGpl .GpGI112. 2 I1G POGM.M30GMl.P,r,R.OOR.PT.PERR.IWOKW.OOA1.OOKF,KF,KW COMI10~ .TSLI. rS"i!..TSw, TSp uSA. TSWfl. TSY. C TO .CTA .pv .pVQTSY. T Awt COMI10~ T. T 1. DT. TS TR. OT02~.TSTOP. OOOT .OTOPY COMI10111 111.12 '.A '3 ~fllu A5.t.4fuA7.!A1hA.2..!.Al..!!..!.A 11. A 12.1 IJ. 114. fA15. A 16. A 17 COMI10~ P"J. PP. ppT. PD., pT. peTO. PEO. MOE.

": __ M')O._ , .. _I1JJF ___ LMDPLL..!iOCT • MOPE • MOTSO ,MOCTO. TEO. Tp. TPT • Telo. RP. RPT. REO. RCTO ,ACTO. MCT·. AE. ft,PE .' AF •. _ M."l .• ___ "111.

cnMI10N P"Jl. PPI. PPTI. POI. PTI. PCTOI. pEOI, MOEI, M,)D 1 • I1[W 1., MOPT l.!_!1DC Il.L-'if)PE.!-l.:L,,,,M~D-=-T::;-S~O~l ..... M,-,-Q,:"C~T!-O~l L' --:T:,:,E::cO~l~'L-_T~P:-!l~'L-__ TPTI. TeTOI. RPI. ~pTl. REOI. ReTOl, ACTOI. MeTI. AEl.

II PE 1 t . I\f 1 '-Jlli.l..L-.!IDl--=-c:---=-=-=---:::-::-:::-7:----:~:_:::_---:~:---_ COMI10N PN2. PP2. PPT2. po?, pT2. PCTO?. PEOl, MOE?'.

1.4')02. 140"'2, .MPYl.?_'!._ "lllJ:I2:-,.,--,-M""0"-P-,:E~2'-"'..c.M""D,-,-T.."S",O-",2,-,,.~M~Q~C-=T-,,O-':'2 ..... _-'-cT':'-E-=-Q=-2.L. __ .y.wPw2~. __ _ TPT2, TeT02,' RP2, RpT2, RE02. RCT02. ACT02. MeT?. AE2. A;>E? A.2 •. _.~N_2.! ___ '1ll2

COMI10N PN3. PP3. PPT3. P03. pTJ. peTOJ. PE03, MOEl. M,)O.3 •. 1401'3 I M..QP.l;;\J_._~llCI.h2!,::,D=P~e:~3 ..... ",M~D-=-T~S,,!O_,!-J ..... Mw.O",C~T=-O~3~. --:T:,:,E::cO~3~.,,--_T,,:P~3~.,--__ TPI). TerO), RP3. RPTJ, RE03. ReT03. ACTOJ. MCT3, AEJ. ~PE3. _ A.3, ... _MN1!. ___ ._~D.J...

COMI10N PSOPO.TSOTO.RSORO,MSOMO COMI10~ ~ v. 1-n • $Y_2 tilU..t'!"l!..2.t.!.D.lli.lli...ll.!E..2. 'lEMA)(. 'iEP, 'iDE eOMIlON tNSTQ(?6).rOEBUG.TIN.10UT.NP.=-IP~.~YT~E~R~.N~V~T~(3~'~ .• -t-.~N~T~.-I~P~A~G~E-.------

1 NPA 3E. ~~J, T.T (~) .~.d.'1ll.l.I..lMfJNO .NN, NCT oIFLlh J Fl Gl. I flG? tIEL GJ. IFLG4. 2I.l~~'Tfl"6.J.Lr,7.YFlGS.TfLG9,Il.Y2,I3.I4.15

eOM140'll Jl, Ji;' • JhJ4. • .)_~ ._JI?..t..J..U~~lig .Jl 0 ,Jl1. J12 • .,113 • .,114 ,..115 • ..116 • .,117. 1 JI~.JIQ.J?O.J21.J22.J23.J24.J25.J26 CO"'110~ ~CTL JIjT:GER $'11

!:l. AL"'S J I'!""J "I_ •. _'S..F....t.!<w 1=0 II. ( I ) = 1.

10 T=l+l II"(I.r.T.b)(;O TO 2fL. . .. _. _____ .. __ I'll"!-l A ( r + 1 ) = II. ( I 111 ( 1\ (8) ~I MJ ) 11..._ .. _____ ____ _ w~y TE (TDE.~lI(;.15) I. I 1. Pll

15 FORIlI T (I 1=', 17 •. ' r 1= I. T 7. ,_ 1'11."_'_d 7-'. _____________ _ GO TO In

20 W~JTE(yf')E'01UG,JOJA _ ._~ ____ ~ __ _ )0 FnRI1AT(.O~I"JOI1I/ ••• lOE1'.~)

no 40 T=1 ~ L _______ . ___ . 40 A (11 =A (TlIIII. (Q) fill (1-11

W~ITE(TOE~Ur,.30)1I.

RET JR~ E"JO

111

Page 116: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

O~H: = 75157 11/5~/40

SUR~OUTIN~ REVERT(*) . J "1PI • ..'I cr L ~.~.!I..!\ (A-H. M. Q~Z-'-'-"~L) :--__ -,-_=--:-.~---_-_:_-----­COt-l110~ /lR"iI\l3,50) ,IIREATS(3) .AREAM(3) ,TV(3.50) .A(10) 01':(7) .8(30).

I _TV. (3) 2 T.J£l.l~.Y 1..3 Ll..RW.(7) COMI10N PC.RC.Tc,AC.MnCTc.EIIE.EAPE.FAF,MOTSTR.INFIN.TMGOr,S.GPO2r,S.

l_ S<,OR. __ ~ __ ~_~ .~~._~~ ______ _ COMI10~ G,5Ml.GP1,Onr,.r,PIO?GMl02,GPlOG.GMlOG,GOGPl,r,05MI.

1 OOGMl.! O_!l~u_GPf')~5.GM 1 02. 10GMl. TOG. MGPGM2, TOGP 1. GPGI112. ? I1r,POGM,M50GMl.R.GR.nOR.PT.PERR.i\WOKW,OOIl1.OOKF.KF.KW COMI10./\J._rS!.J.J.~.J.DW.Ll?~.! TSII. T~. TSV.C TD.CTA,PV .PVOTSV. T /jUW COMI10N T,Tl.OT.TSTR,nT02,TSTOP.OOQT,OTOPV COMI10.~ 111.112 •. 4 3! At. .1\5 !.!I!>J.l!l-,.I\~.!..I!~._~l 0, All. Ai? _.1113.1\ 14. A 1 '5.1\ 16. II 17 COMI10N PN. PP. PPT. PO. PT. PCTO. PEO. MOE •

. _ ...':. _.~'l()~L .. ~F • MOPT • MoeT • MPPE .MOT50 ,MOCTO. TEO, Tp. TOT • TCTO. RP. RPT. REO. RCTO • ACTO. MeT. AE •

.. A OE, . .AL...!. -':'M.,.,N---"._--"M""OL-_--:,---__ --:=-__ :::-:-.,--_--:~----:-__ _ COMI10~ p~l. PPI. PPTI. POI. PTI. PCTOI. PE01, MOEI.

M ~o 1 t. _110 r: Li~.!1Q£'T~ D r Tl. MD PEl. 140 T Sol. MDCI.".O.&.l CL' _..LT .... E ... O~l-".---'T.LP'""lw.'--__ ToT1, TCIOl. RPI. RPTI. REOl, RCTOI. ACTOI. MCTI. AEI.

~_~~~Eli___AEl.~. __ ~M~N~l~.'--~Mlln~l~ __ ~~ ____ ~=_~-=~ __ ~~~ __ ~~~ __ __ COMI10N PN2. pp2. PPT2. pOZ. pT2. pC102. PEOl, MOEZ.

~~ _- _J':1.1I2?..L..~.~DE2 .. , -'M""DILP!:.-'-T&.2 .... --"!M~D ..... eJ.T.<.2-'!.--"'M!l.JD"'p":E.L2'-'.C!:M!J,D!JTwSl.IOLl2~.'-'M:!ln1JC~T"'0"'2"'-"-' _.LTE~O~Z-!.._--'.Tl:p..r;;ZJl' __ _ TPT2. TCTO~. RP2. RPT2, REO? RCT02. ACT02. MC'Z. AE2.

~~~_~I\l>.E2~.~_. A.f2.i.~~_!1NZ.~M . .:cD"'2'"___~ ____ _::c,-----:--:-:--:----::-::-c::_---:-__ COMI10N PN3. PP3. PPJ3. 1"03. PT3. PCT03. PE03, MOE3 •

. __ ~~2Q1L__~QrJ~.~M~O~P~T~3~.~M~0~C~T~3~.~M~D~P~E~3~.M~O~T~S:70~3~.~M~0~C~T~O~3~. __ 7T~E~O~3~.,----,T~P~3~'L-__ _ TPT3, TCT03. RP3. RPT3. RE03. RCT03. ACT03. MCT3, AE3. APE3. ~r:3. MN3. Mo3

-- CO~M-110N PSOPO;TsoYO.RSORo;-,;qSOMO . n~J:I_I1QN _H; ~n ... !iY2. $)( 1. $)(;>. !inK. $E 1. "EO!. 'JiEMAK. 'liEP. !iDE

COM~ON tNSTR(26).IDEBUG.TJN.IOUT.NP.IP.ITER.NVT(3).r.~T.IPAGE. __ --.!~£'Ai:t~!.1fu.1..u3) • J. 1M 1. IT I ME. NIh ~N .NCT dF'LG. I FLGI .rELGZdELG3. XFLG4.

21 n 65. T FL 56.1 F"LG7 .1 FLG8. Tn r,9 oJ 1 • T Z. I3. I (H 15 _ ~c.oM.~9~ _ .J.t, J..2.!.J3.. •. ,.L4.!.,15 .~6 .. J1_ .. 4~-,_.J9 .• ..>!lO. J 11. J 12. J 13. J 14 • .1 15. J 16. JU. 1 Jlg,JI9,J20.J21.J22.J~3.J249J25.J?6 . C0':1110N!H;;JL ... ~ ___ . ___ ~_ _.~ .... __ ~ .. _~~ _ .. _. ___________ _ INEGER $\1

... R...EAL~fLl~!pl"'<F" . .!'5.w_~_ A(l)=l./A(l) A(z)z-a(2)/A(J)~·3 . R (3) .. (;>. <t.a (2) .... 2-a ( 1 ) *A (:l) ) 1 II ( 1 ) U5 R(4)S(~.*~ll)DA(2)"A(3)-A(1)*"2*A(4)-~."A(2)""3)/A(1)*"7 B (.;; =~(i<:: * 0 (I ' .... -2 i a (21 "A~( 4).)~"~A il) U2*1I (3) **2·c.:+C=1'-'4..!..-""'-'A'-'(L!2"'1'-c .. ~*c..4~_-----

p. Jut L!.!J.! t\.l5 t -.2 t~ .. p. jJ~~~" 2!!A (]U_ail.L!*;-9"-:-c;-:-~;--:;-:-777-::--:-:-:;:-:-~-:::-_ A(6)=(7 ... a(I)* .. 3*A(2)*A(5)+7 ... A(1) .... 3*A(3)*A(4).S4 ... A(1) .. A(Z' .... 3

~ .. A(3)-A(1) .... 4 .. a(~)-2A.*A(1)* .. 2.A(2)**2 .. A(4)-ZA.*A(1) .... 2"I\(Z) C lOA (3) "*2-42. 11 6 (2; 1ID5; IA (-i'· .... ll ~~~ ............ ---~~--~--.. ~~--.... -~~--

A(7)=(R ... A(1) ... 4*A(2)*A(6).~ ... A(I)* .. 4*A(3)*A(5).4.*~( 1) .... 4*1\(4)* .. Z iI .12\J~.iI (U *"2"" (2) ';"3*" (4) ;Tg·o~-i~ 11 ""2"1\ (21 ""2*A (3! 11*2+ R 13?*~(2) .. *6-A(1) .... 'i*A(7)-36.*~(1) .. *3*A(2) .... Z .. A(5)-

--C 72·~itA(lf'j"j*i\(2f"Ai3) *11 (4) -12.*A (1) **3*11 (3) .... 3-330.*A( 1) itA (Z) o .. *4 .. A(3))/I\(1) .... 13 . 00 lOT .. 1 .7 --.- -- - ~ -~ .. ~--.... -~-. ---~- .~.~----

10 A (II =R (Il.. ._ .. ~ ... _~_.~~._._.~~ WRITf(IOE3Ur,,20)A

. a.Q. F'OR'1AJ(·.(J3~V(.>tl.!.L!.~UQF~3.5L_ RETJR~

.~~ t':.'I!L.~~ _.

112

Page 117: A Mathematical Model for the Starting Process of a

c:

AEDC·TR·76·39

C;MP~RT [lATE., 75157 11151'1/40

SUR~OUTTN~ ~MO~RT(~) I'H'L'ICYT '?E~L"A (A-:H,~\'O-Z,:ti!.. ._ _ COM'10N aR C:'II ( -i. 50) • /lRF' A TS (3) ,ARF II M (.]) • TV ( 3,50) • II ( 10) • F (71 • q (30) •

1 TV.(3) .TJELAY(.]) ,RW(7) COM~O~ PC.RC,Tc.Ae.MOCTe.F'I\F.FAP •• FAF.MnTSTR.INFIN.TM30~S.GPO?n~.

1 SGOA' _ eOM'10~ r,.~Ml.GP1,OOG,GPlO?,GM10?GP10G.GMlOG.GOGP1.r.03Ml.

1 003101 1 • 00 3P 1 • GPOGM 1 ,<;r:;MjD2.. IQGM It '.OSi. '1rlPGM?, TOGP 1, GPG 111 ~! ? '1~POGu.M30GMI,p.AR.00R.P,.PEAA •• WOKW.OOAl.00KF.~F.KW

COM'10N TSU,TS".TSw.T<;P.TS8.T~WI\.TC;V.CTD.CTI\.pv.pvorsv,T~IIW cnM~ON T.TI,oT.TSTR,DTO?,TSTOp,nonT.DToPV COMIAON AI,II?A3.1\4./lc:;,A6.A7.AA,,\9 •. AIO.AII.Al;>.III.J,A14.AIc:;.A16'All.._ rOM'10N P~, PP. oPT. po. PT. ,.>cTO. PF:O. 1.10F.

W)f). "'r) •• MnPT • Mr:lr:J .. ,._.I:![).Pf __ •. MOT~O_ .0MI'I.nO '. TFO ~ ..... 1.1>. .. ..2.--T~T • TeTn. ~P, APT. AEO. ReTO • ACTO. MeT 9 AE. I\<>E. /IF. I.1N.~ MD ... __ _

eJ~~O~ p~l. PPt. PPTl. pnl. PTI. PCTOI. PFOI. MnFI. M,)Dl. "'OFl. MDPTl. MDeTl. MOPFloMOTsnl.MOCTOl. TEOI,. JpI9_._. __ .. TO[l. TelOl. API. ~PTI. WEOI. RCTOI. ACTOI. MeTI. AEI. A <>E 1. M'l, "iN 1. MD 1 . _ _ ____ ... _. _____ . _______ _

COM'10N P~2, ppr. PPT;>. pn2. pT2. per02. PE02, "!OF2. MJ02. ~Dr:2. MOPT2. MDer? t-1DPE"2."'D1S_02,MOC.T.O.2.'. ___ T..EO~, ___ If..2... ___ _ T~T2. T~T02, QP2. ~PT2. ·QED2. ReTO?, ACTO~. 'MCT2; ~E2, o:>E2, 111'"2. MN? "[12 . ___ .. _ .. __ .. _ ... ____ . __ _

C04'10~ P~l, PP3. PPT3. pnl. PT3. peT03. PED3. MDF3. MJ03. '10.3. MDPn. Ml)cn, _~J2J'LhM.DI.'iQJ.!.~rlJ:.L~....I£Q_3~ ... 3,-". __ _ T~T1. TCTOJ. ~P3. ~PT1. REOl. RCT03. ACTOJ. MCT30 IE3. 0:>F3. Ar:3. 'AN3. Mol

COMMON PS1pn.TSoTn,QSORn,MSnMO r.DM'10N "''t'.1>Yl.~Y2.O;J(1 .1>)(?'!in)(''''E1''''f?$fMA)(.'!iEP.~Dr:: .. _ .... __ .. _ .. _ ... _____ .. ('OM'10'" TNSTQ(?h) .lnF~IIr"TTN.t()IJT.NP.IP.TTER.NVT(3) .T,NT,TPIGE,

) "lOll ';E • ",,~. TT (1) • ,)0 t M 1 • T TJ ME. N!). NN. NC T~.1 fLG ... .J!':LG I uf..LGl.!.lEL.lZhULr;4. ?II'"! r;s.TFL;;6.T-l.r,·'.TF'.GH.TFLr,Q,Tl,T?IJ.T4.J5

COM"'O"l J 1, ,J2' J3. J4. ,II), J6. ,)7. JA. J9. J 1 v. J 1 11_-.l.12, ,)1:;1, ,,1.1 A , ..J.15!J16.!..J..llL._ 1 JI A,Jl CI, J;>(1, Ji'i ,J22.·J23.J24.J?').,i?f.

CrlM"'O'" 'JCTL [)TM~NSTnfll lr:XTD(IC1) ,FPS(lC1) ,Q()9) .V(JO.4) DIM:;:NSYON JJ(4) tr}IJIVAI C:~I't (V( I) ,PN) COMoLFX~lr, )«4) ,Y(4)

I ~T=:GER f·" Rr:M,"H ~UI ."'U?,NU1fl.NlJ2n."IJlN."l1l?~I.INFlN.KF.KW

1 ? 1 4 c:; ~ 7 A ~ 10 11 I;> 11 17 15 16 17 lA IQ DATa I~:xr~1 A,l3910,1}.?I. 9tl2.?<;. 7016,5.4. Itl4. Q! 0 .• ?;>O-,_._.

It \71 4AC~(DI) " r)5r}QT(TnG41 lIi(fll I POO) 1I11(-r,MI0G)- 1,1)0)) W~JTE (JOE'lUr,,)

I rOR'1AT('15~PrqT'I' ""('='» e~---------------------------------c: COMPUTe: C.O~.IST liNTS. tOR npt\NSIClf'!S _

C---------------------~------------rr:(TF'Lr.?NF.l)r,O TO 90

(. E~lInTION 1 CAl =-1.00 A(I) = Al 1 DSORT( TFOI ) ~ A2 C91 '" ~El .. lUll

113

Page 118: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

nATE" 75157 111<;1'\/40

cn " pr:Ol II A()) C11 :: 0.510 II PfO] II A(I) .. ~E:l_/.!E.Ql __________________ _

r. F.'llIoTJ(1'J 2 ~(l C~;> = -1.)0 ---------------

AI;» :: III / r)S:lRTI TP\ ) II /12 CA? " -AP~l II A(2) CC? :: -PPI II A(2) Cr;I? :: 0.::1')0 II PPl_ It A (2) _II 1\.,0 l ___ JP_L _. ________________ _

r. F'JUIITJ(1'J 3 CA:) -1.)0 CQ3 :: -IP~l - pnl II A16) It OOKF II 112 CC) :: -Al"l II ~OKF II II? C11 :: -CC1 II AI~

(" DUATJ(1'J 4 CII4 = -].10 C~4 " -IIW')KW II A2 CC4 " -Cb4 II 111<;

C F JIIA T t O'J 5 CA'> :: -1.,)0 C~c; " nTO"'V CC'" = 1-85

---------------_._----

c:)c:; = r~5 Cfc; = CA5 II ~npFl • Mnr:) + MOPTll

(" FOUIITIO'J 6 Cl\~ :: 1.00 CRIi ::: 1.00 (,Cli " -1.,)0 Y.ITFLr.2.'JE:.I)GO TO 91

r FouaTIO'J 7 CA7 :: 1.00 CR7 "-1.00 CC7 = -1.10

C F,}UaTP)'J A CAR = -1.10 11(1) " 1.)0 -~CTI A(4) :: 1.10 + r,MIO? .. MCTI Cf-lR :: MnCiC <; 1\ (3) I A (4) ,;<. (GOGMI .. 2.1)0)

r E:)lIATTO'J 9 ('1\9 :: :'1.10 AI"') :: 1.10' r,MIo?" MrTI .. II 2 CRQ" -r. " /II]) " PFOI I A(4) / AI"»

C F111ATro'J 10 C/IIO :: -l.r)(\ C 'II 0 :: Q 3M I " II (1) " T c: 01 / II (4) / /lJ '" I.

C F,}UaTIO'J 11 ~I CAll = -1.00

1r:ITFLr.?)~9.Q99Q.IOO

Inn [~11 :: 0."'10 CC II :: cfH I (H) TO 101

90 C~'I=I.nO-III1 CC11=1I17

C F11)~ T TO\J 17 101 11(9) = - 3MI / '10T<;01 .. " ?

AIIO) :: (;'11 I '1nT<;OI "" 1 CII.l2 =11 (9) " '1 ':In 1

114

Page 119: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

i 1/<;8/40 -~ - -- --~-----. _ .. _-------

C91? " A(JO) II MDf'll H2 I F" I JI"Lr.2 .• EQ" lJ Al~J_;:;P1ULPI':Ol __________ _ rF"(TF"Lr.;>.~E.I)A(6)"pnl/pr.TOl II (7) ::: 1\ ( ~) .... TOG A ( A ) " II ( 6) 1111 GP I OG "H,JD:; TO:; 1I_IIL1L~ __ Gf>lD_~Jl\L __________________ _ NU2' " TM~OGS II A(7) - GP02GS II A(A) 1 F" I J FLG2) 94 19.9_~'U_9.J _____ ._. ____ . ____________________ _

93 CCI? " NUIO / POI/ PFOI COl? :; "lU2D / I PI)L _1I __ I"EOLL_ ...... _2. _____ _ GO TO 95

94 CCI?" "lUll/POI/PCTOI. - ------_._--.----- -------------CDl?:/I,1t12DI (POI OPCTO]) 11*2

95 I F" II FLG2. \jE .. 1) GQJ_IL9'L2 ________________________ _ r. f.:}UATJO\l D

CAl 3 ~ ( 9) II MDO 1 ___________ _ C913 :; ~llO) It ~1OCTl II" ? B(1) " PNI / PEO.!_ B(2) :; All) .... TOr.· BOt =!H1L .... 1I GPJ.OJL ~Ul\l=TOG*~(2)-GP10G .. A(3) NIJ? \l" T MGO 3S*B ( ;> L-GP_Q2.G~"JtL1L CCI3=NUIN/P"JI/PfOl CD13=NlI?NI (PNlllp~JUJ H2

C nUIIT!O\l 14 C ~ 1.4_ .. =: _-1 • .0.0 .. ______ ~__::,.--__ -=,__:_-:------:----------'-------CA14 TSA II SGOP / DSQPT( TEOI ) II A2 CC 14 =.0" 51)0_ II. PE'OL~_.l:R.L14"-/'--T1JfI:.:O!!..1'__ _________________ -

C FQUATJn\l 17 92 GO rOI9699B)tIFLG9 _______________ _ 9R CA17"A2

__ C911:::-@.."Ic.IJl.L GO TO "17

96 C1\17" RPI CA17 " - ~ II PPI

C E~l,II\TI()\l 18 _. ____________________________________ _ 97 CAl'!: -1.')0

C91'~ ::: Q.500_. ___ _ CCl~ " PPTI - PPI

C E'W"TJO~ 1"1 Cl\l~ " q I> PPI C"I]'i " R II 1Pl CC)9 :: -A2 IF" (IFLG2) ?,"I992.,_:3 _______________ _

C0l>OOIl**OOl>1I0ll001l1l1l1l01l1l1ll>1I01l01lIlllIl0*OIl*O*1I0*O*O*******************************1 r. SuPE~SO\lIC ARaNCH CIIIIOOO*OIlOIlOIlIlOOOIlIlIlOOIlIlIlIlIlOIlIlIlIlIlIlO**O***II***********************************'

? I~(TOE~UG.En.03)GO 107Q COl :::: TNI"IN C'11 INFTN eCl = T"JFJN C:ll = I'WIN CA7 :::: 1 NFIN CR7 '" Y'JF"1N CC7 :: T"lFTN C4A :::: TNFIN

115

Page 120: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

C"lP TNFTN CI\9 J"JFIN C~Q T'IFTN CC~ = TNFTN C ~ 1 0 = J N "',r ."J

DATI': " 15151 11/5'1/40

C31'l :: yN"'{"J C"l11 INC"I"J C312 ::: INC"I~

-----------

CII13 = yN"'!"J C'\l1 IN"'l"J r.C13 = TN:"Y'I CDI3 " TN"!'! CII14 :: IN"!''J CSlI4 " TN""!"! CC14 TNC'J"J

C F:lUATIO'J II 70 SALPII = -CCII / CAll

C FrlUATIO'J IA SAL P l8 = -CAI'I / CAIA S'lETlB :: -CCle / C.fdA

C FfWATTo'J 1"1 A(1) :: -1.00 I CAl 9 SAL Pl9 CAl9 ~ SALPIA ~ AliI S'lETI9 " eel9 ~ All) SGA~19 '" CAl9 0 SAETIA ~ All)

C f11J~TIO'J 2 /', I?) = -1.00 IrA? SAl P2 = ICP? • C02 ~ SBI"T19) 0 A5.1') ___ . ______ _ S"lF.T? " C~7 0 SALPI9 0 AI?) 'iGt.~2 ., ICC? 0 FAPF • Cr)? 0 SGA"I19) .. __ lt_A1?.l ___ _

C F'lUIITTO'J 3 1\(1) = -1.00 I CA1 SAL:>3 " CC) ~ A (3) -- .-.. --- .---- -----------

S'lET3 " C)3 0 A(3) SGA~3 :: C"l3 0 fllF 0 ~(3)

C F)U~TI('\'J 17 All,) ::: -C317 J CAl7 SALPI7 ::: SALPIB 0 AJ4) C;QFTI7 = SAFTIA 0 A(4)

C F::lIIATIO'J 4 SIL P4 ~ C~4 ~ SALPII

C F1UIITIf1\i 0; SAL~5 ~ CAS. CR5 ~ SBET? C;qFTS " C ~5 0 "ALP2 .• l;ts " 5A.1. P3. _______ . ___ _ Sr,A~S = ces * S'lET3 SFPC;S " C"lS 0 SAA~? • Ctc; "SA~M3 + Cf5.

C F1UftTTO'J 4 CO'JTT"JJFO S3FT4 = C~4 * SALP17 Sr,ft~4 " C34 * S8ETI7

C F1UnTTO'J S CO'J1TNUfO STOP; " SALPS + SIILPl'7' -II -'5AFTS AIS) " -1.00 I 'iIOTS SlETS = S"AMS " AIS) SETAS ::: C15 " A(5) SI(A P 5 " ISAns'" SAF.T17 + C;FPSS) .. A(5)

C EJUftTIO'J 4 CO'JTINJE~

116

Page 121: A Mathematical Model for the Starting Process of a

DATE II 75157

S~T~4 9 CAit + SAfIit * SpIA~ SEPS. r -/S9EI4 * S7fT5 t SALP" I SfTA4 SZ1"4 = -(SAfT' * SKAP5 + SAAM4) I SETA4

LE1U/I.JlJ)IL 6. _ _ ___ .. __ . ___ _ A (6) .. -C'l6 / CI\6

__ . __ ...5.AU'~._'" nSEe~_.A..LILL6)L__ S~1'T6 c 57fT4 * A(6)

C E:'lIIA IJO\l....l2... ___ ------,::--: __ -----------------Sr,~~12 '" C012 * PCIOl ** ?

___ .1iAL!>.l.2_JL.LC.Cl..2...* PUO! t CA!Z * SAl P6) I SGA"'!? S~ET12 = r.~12 * 5~fT6 / SGAM12

__ .Ul.lMeuG.. EikI1llCiO.....I"'-O_8 ... 0"---____________ _ SEPS3 ,. I 'JrI N

~GA~6 z 1\l1'1N SEPS6 '" I 'JET N

__ 5ZL16~=~I~\lF~INL_ ______________ _ SETA6 .. I\lETN

_Slil.llL.!L..1. \I F 1 N SLA"I6 " I\lrIN 5.,1/6 '" I \lEI N S"!U6 .. I\lrIlId

___ ~~~I~'J~E~JuN __________ . ___ _ sen1 " I\lFHJ

._ .. _ .. ~I' ....JXL\lILE...II.lJN'--___________ _ SEPS7 ,. I\lFTN 57FT! m 1~_XLrnN ______________________ __ SETH .. }\lnN

___ . .5.LO.lL_LDlE.J..y-"J!fII _____________ _ SKAPI ., !\lrIN

___ ._..5.A.U'1LJI101LJ.Y-"l".o:.E.Llno.fII _____________ _ SALP9 II I\lFIN S9EI9 .. BIEIN SGA"I9 .. I'JI"JN

___ .5.1.E.1.2..~--&I.ilN'---____ ~ _____ _

SALPIO ,. INn"! .. __ .. _ . .li9.E..U.l....!'.....1J:,!F~T'I:"-I-__ -----------­

SIILP13 Ii: JNET\I ___ . SBEIl3 .. INn\l

SGA~13 .. TNn" __ ... SALP.l"t_-'L IN!' .... X...,\I'---_________ _

S8nu " YNFPJ ___ 5.G.A.~.H_..!" ... lf1!IJ..I_"\I __________ _

SFPSU .. Jt~n Ij

_____ szrLL~~.~I~N~E~I~\I __ --------­SFTA14 " INn" 5IOli~. '!' I"IFl'L. __ . ___ ._' _______ _ SGA~17 " TN,,":!'''

. ,.5f P s.1.1 _::II llif,-,Y...lI'IIL...... __ ~O A(7) " 0.500 * SALP12

__ --..ti;2.L"' DSJRIIA!I) U ;2 s SAEnZ) V(l) .. -1\(1) • V(e')

_.__ .. 'i'(i.'L~AIJ'1 - _V'--(,..,Z .... l _______ _

r.------------C.SOBLBOOIS

r.------------1=0

117

A E DC-T R -76-39

11l58/4()

Page 122: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

SMPF.IH DATE .. 75157 11/5A/40

DO 200 I( .. 1 ... _.1.F"_l?A~JJaMAGIYIK»I.GT.I.D-12)GO TO 200

B()S) .. D~fAl(YII() )/1"['11 WRI IE-'-I DE3\J.lh.91K.!.YJJ ) • Y I 2) • A 14. !Hl51

9 FoR~ATI' ~= •• ll.' Yz'.4F.13.~.' A14=1-.~E71~3-.=5-'~'~B~(~15=c, .. ~.-.E~13~.~5~'~-------I F" DAile; 1 ~Jl5.ll. G T • 0 AR5 I A 14) ) GO TO ..z.0"-'9'--_-------------_ I II I .1

___ .. F.PS (12) " . ..YlKL-_________________________ _ 200 CoNTINUF

~H;;~~(~~~d~(~f~;_:_L·T__:nA-::FI:-:S:-:I;-:n:-;:R;-:E~IJ.~~l~(~Y:-:I~l~)~)~)~)7.Y:-:(71~)-.. 7:V:-:(~2~)------EPS(1c)=YIll .. _._ .... ___ _

'=1 205 IELG8".L._ .. _____________________________ _ I( .. 1 IF" IT .e:Q.l) GO rD .. 2Jl.!.._ WRITE(TOUT.210)T

21 0 FOR~A T ( • OSMIOE~J j SU~E:RS..O.NIC1J .. '_,_lJ ._'_S.oLUllD.N.S. fOUND ') IDF3UG .. 06

____ J.EL1HL=L.L _ .. K .. 0

220 K=I<+I. TF"(~.GT.2)r.0 TO ~o e: PS <12; .. Y (K)

;.-==-=======---===--C CDMPJ)JE" IN.CREI1E'HS. -------.----.------------i.===================

230 EPS (6) " SALP!) II F.PS1l2) .. S8.ET6 ______ .... [1"5(4) .. S[PSII II I'"PS(12) .. SIET4 EIOS (5) .. SZEr5 II F.PS (121 + SEI.A!L"_EF?lHitl.+._St<.AP.5. __ ._. [IOS(17) .. StlLI)17 II FPS('5) + SBETl7

.E"'SllL" SALf'3.~ . .EE'.S.lH~ELL~.lZ.l + SGAM.1-[1"5(2) .. SALP2 II F"PS(171 + SRET2 II FPS(5) + SGAM2 EPS(19; .. 5ALI)19 II EPSI5l_+_ SBEU9 ...... Ef'.s'U11._'Ls.G4.1tl'L [I)S(18) '" SALPlFI * rPSIS) .. SBETl8 EPSIll) ::: SALPll .. EPS(12) EI)S(l) " 0.1)0

.EPS(J) '" O.:>Q . __ . _____ .. _. EPS(8) ::: O.~O

EPS (9) :: O.DO EPS(lO) " 0.00 EPS!l3) ::: 0.00 EI)<;(l4) ::: 0.00 WR.I H. (JDE311G, 20)j hI::l ,241_,E.P.S ___ . ____ . ____ _

c------------------------. C COMPUTF" PROPE~TY VALUES.

c------------------------00 240 I ::: 1919_. J :: IEXTP(J) HI J. EI) ... !)JGO_U1._ ... 2."-4=O=-=-~---------­VIJ.l) ::: V(,J.2) .. FPC:; !I)

24r) CONTliIlllE T~o=TCTI) MDE .. ~[)O - MJr P~O ::: MnE * nSQPTITfO) I (~l .. A~ * AF) GO TOI?39.23A) tlfL(i~ ....

118

Page 123: A Mathematical Model for the Starting Process of a

239 PPT z PPTI 41 (RPT 1 RPTl; *41 G TPI = peT 41 42 II OOR I RPT GO TO 237

DATE" 75157

AEDC-TR-76-39

11/514/40

._ .. --231Lli'J.Al.1,.C-LTllo ___________________ --,-_________ _ PPT=RPT II R .. TPT 1 A2

_._~~~~* aA~2~*_O~0~R~/L_T~E~O~ ____________________ _ MD " MaCH(PD) YE(IINSTBj23).NE.2).AND.lYNSTRI?41.EQ.01)GO TO ?4! Jlb .. JI"+1

. __ .cALL!. __ E'RlfliT _ . ___ . __ . ___________ ----' ____________ _ J16=Jll\-1 WR IrE. (I OU T, 24 2J . _______ _

2112 FOR\.1AT(t.~I)

_. ___ --.2!tLlF I I II"I G~I .AND. ITPEBIIG.EQ. 03; ) RETURN WRITE (YOE'lUG'32) V .

C~~--.~_-_=_~.-.-..,--_'e...,_~'"_=.~~.~----=-:-~ ______________ ~ _______ _ C S~A~L PERTURBATION RESIDUALS .c----.-~..,..,~~-,.,,,.'"'_-_..,,,._"_"'_..,.,,._'"_"'==,,.~. __ ~ _________________ _

DO ('50 r :: 1019 ___ 250 OIT! .. TNI",TM

(;)(2) " CA(, II EPS(~I .. CB? 41 EPSIl7) + CC2 II EAPE .. C02 II EPSIl9) _. _____ ~(31 .. CIIJ II !'"PSI]) + CA3 II fAE .. CO II EPSIl7) .. CO] II EPSI121

0(4) ::: CA4 II EP5(4) .. C~4 It EPS(l7) .. CC4 II EP5(11) _Jll5J~-,,-1I-,,-5_' -=-II---,,-E P"-S,,,-,-I 5",-,-) _ .. "---'C..,B:L:5~II"-'f'_'p:..S"__lu?"_J)'____'+'____'"C .... C_5<--.;.1I'--I:E.<:P-,Sul ... 3L.Li--",+---,-c ... p""S_.::.4I---<:.E,,-P .. S .... I .. 'LI _

II .. CE5 Q(6) " cA!', II EPS(61 .. CAli II fPSI!!) Q ('J') " lNEIIN ~BJL_~_l~~~ _______ ~ _____________________ _ Q (9) " IN!'"'I"1 Q (1.0.1. !L l~H~----_------:c-:--::--:-=-:--------------­o ( 11) .. Call It fPS ( II) .. cell 41 E'PS ( 12)

_______ lHI2) " CAl? II 1"1'5(6) .. CCl? It perOI It EPS!l?l .. CPl? II pCTOI till 2 j/ II O:PSIl2) till 2

CH 13l !LJ .\!FiN. Q ( 1 4 ) ,. I '1FT N (Hll.L.;;C1U.1 II EP51111 t C917 II EPSOAI Q(IB) " CalB II I':P5(lA) + CBIS II EPS(5) t CelS Q.U2L'LC.U'L.!!_fPS/19) + CAlC) II EPSOM t CClli II EPSI171 w~TTF.ITnE~UG.131 <rtI=1o(0).Q

c--------------_-~ .. __ ._. C EXACT R~SInuAL6 C -~-.~_~~-~_---_~..,.-.~.~.

DO 40 T=1.19 _ItQ_Q( UtlAD].~ ____ _

Q(Z)=MnPE+Al*op*APE/nSQRT(TPF*A2 o (3) :MDF'+ ~F<!OO~f~IPP""-PD~Al!il_lI!~ __ Q(4)"MnpT+AWO~WII(PP-PTIIAI5)ItA2 Q (5 )=Rp1- =lPT 1 ~H1J2~~.f. M[1F'J:L~..n:-,-T-"O-,=-P-,-V _______________ _ Q(6)=Mno+~DpT-MOCT

11".1 1I"LG2125-'H9qq9..La~':i,:-:----:-:=::~_ 254 QIll)=PT-(1.OO-a17,*PN-a11 o pO

GD TO ;>56 _____________________ . ____________ _ 25~ QIIl)=pT-O.SDO*(PN+PO) 256 B (l~) =1.00/pC1L. __________________ _

~(13)=TOG~1IlM~rSO~1I2

Q(12)~MnQ*II~~gllJl_~(PDIIBI121)**TQG-(pn*B(12"II*GPlOG'

119

Page 124: A Mathematical Model for the Starting Process of a

AEDC·TR·76·39

SMPERT

GO TO (?51.2521.II'"lG9 2S1 Q(17)"PP-PPTIO!RP/RPTI,o*G

GO TO 253 252 Q(17)=PP-RP*R*TP/A2 253 (1)~'=PP-0.5DO*!RPT.RPTli

__ -----.GI19,=TP-PP*OOR/RPOA2 GO TO .19

!lATE .. 7S157 I1/S8/40

~** •• ****.*******.** •• ********* •• **.************************************ r. SJRSO~JC 9RaNCH C·***·*···***·*·····***·*******··****·******··****************************** C-------------------------------__ L-CQ~p~E_cn~5J_~_~SLiE~O~R~S~O~L~LJ~T~TllONN ________________________________________ ___

C-------------------------------C EQUATIOI/ 19 3 SAL o 19 .. -CBI9 1 CAl9

SBETl9 .. -CC19 1 CA19 C E~UATIOI/ 2

_________ B..i.il.. .. ~-.A.l.o.!. 0""O"--'I'-'C..tAu;2'---_..,---_~ ___ __,_--------------SALol.' '" ( CAl.' + C02 * SBFT19 ) * 8(4) S8ET2 .. C,Z * SALP19 * BI4' SGA~2 .. cce * EAPE * 8(4;

C DLJATIO"J S SALPS .. CBS * SALP2 SeET5 .. C95 * SAET2 SGA~5 .. C95 * S6AM2 • CES

C E~LJATTO"J! B SALPB = -CAB 1 CBA

_....J:..£QUA1l..rul~ __ _ SALP18 .. -CAIS 1 CBIS

________ 5.9£11JLJ;~.c.c ... 1 ",-B_'L~ --'CwR"-l..,A~ __________________________ ___ C EQUATIO~ 5 CO"JTJNUEO

SKAPS = CAS *~~A~L~PAl~A~.~SnB~ELT~S ____________________ __ 8 (S) .. 1.00 1 SKAPS

_______ ~5S __ .!O. __ ... ....SAU'_~_'*~Bu(""Su' ______________________ _ SZETS .. - ces * B(S) _______ ._.5n~_= - _C05... ..... __ Ili5.L) _____________ __

SlOTS .. - ( e~5 * SBfTle + SGAM5 ) * B(5) C EQUATIOI/ 10 .

SALPIO .. - C810 * SALPB 1 CAIO _LE.illlA.UO"LIL __

SALol1 .. ~ CRIll CAll ____ ---.S_BEll.L~_:...cI...JCk.lLlL--1/'___1.C..!'ALAl...Ll __________ _

C EQUATlO"J 17 SEPS}1 '" CAIL...c~~4C~B~J1L_ .. ~S~EuP~S~5L_ ______________ _ 8(6) =-eB17 1 SEPS17 . 5AL~ LL!iL SZET_S_ !I-'U6.L ___ : ________ ___ S~ET17 = SETA5 .. 8(6) 5~'UL!'__5HlJ5.~Jli6~. _______ _

C EQUATlO'l 1 B(V = -1.00 1 CAl SALPl = CBl .. B(1)

_______ ~9FTl =. C'll * SALPIO .. !H1) SGA~l = CC1 * EAE .. R(7)

__ c...J::~VAllJl'.1 3 SEPS3 = CA3 + CC3 * SALP17 8(1'11 '" -1.00 I SEPS3

120

Page 125: A Mathematical Model for the Starting Process of a

SMP!'"~T

SAL P 3 ~ CC3 .. SRET17 * BIR) 59ET3 '" C~3 .. *_13 LBJ_

DATE .. 75157

5GA"13 " ( CC3 * SGAM17 + CR3 .. EA!'" ) II R(e) C E:lUATl(l~ 4 ________ .

51'"P~4 = CA4 + C~4 * ( SAFTl7 • SALP17 .. SAlP3') B (9) =- lADO .LSEP..5.~

AEDC-TR-76-39

1110;8/40

SALP4 = I CR4 II SALP17 II SAFT3 • CC4 * SBFTIl ) .. B(9) S!:lH.4 " C.C.4. II 5A.LE.l..L....:*'---'9l..J('-'9 .... )'--_____________________ ~ SGA"14 = C~4 * I SAlPl7 II 56AM3 • SGAM17 ) * R(9)

C E~UAlIO'l (, ._. ___ . ______________ --,.. _____ _

9(}0) ,. - C96 I CII" SAlcf, ::: 51lLP 4 II B UO_L __ S9ET6 = 59ET4 II AIIOI

__ .SGA~HL.;: .. _~.c.C1LL_.J:ll_. ____________________ _ S~PS6 ::: S31144 .. BIIO)

C E.:lUAr1.Q~ ... 1 . ____ .. __ .. 5ZFT7 ::: CA7 II SGAM6 + CC] II S8ETI

.BUI.! ;;_~ L.llJLLSZEU ... __ _ SALP7", I CAT .. SIILP6 • CR] .. I'SRnJ + SALP:l * SALP4 ); II Bell; 59FT7 " I_CA? * S8FT6 + CB7 II SALP3 .. S6FT4 ) .. Bltl) SGAM7 " CC7 .. SALPI *BIlll

... 5EP..5.L,=_L.c.A·L~~!L.!.....C.8.1.. .. SGAM3 • Cr.7 II SGAMI + C!:!f' II SAL P3 II

'II SGAM4 I" 9 1111 .CEJlliA.llQ'i._LCJ!.'tILt\lLlf.!L..... _____ _

SZET(, " SAlP6 + SGAM6 .. SALP7 SETA6 '" S9ET6 • SGAM6 II SBET7 SlOT6 " SGAM6 II SGAM]

_____ ~~~~_S!~~L.£GA~Mm6~*~5~E~P~S~] _____________________ __ C E:lU4TIO'l 14 ___ .. _...JUl.2L..;;" CCli. .. SAl PI 0

SALP14 '" CB14 + 8(121 II SGAM7 S9EIl4 " 311?! .. SAl P7 S(;4"114 " 9(12) II 5BET7

__ . __ --.5Ef'.Sl..iL.;L.9..U2J.~-'lS..L7 ______________________ _ C F.~Ut\TJO\l 9 ______ ~~l_= C39~~P~8L-~~-= __ ----__ ----------__ ---­

SZFT9 ~ Ca9 + 8(13) ~ Sr,aM7 SGA~9 =-8(13) I SZETQ SaL D9 = SGA~9 ~ SALP]

_. 590'il.::;. .. S.Gl\'1':L!._S.B.Ell ______________________ ___ SGb~9=SGA49·SEPS7

C E.2UA!.Ht.'LH . ..cJ1flJll~!L.. 8(14) '" - 1.00 I CA14

_ ... _ .. _---SZ£~::;._LSilll!t. ... S4LP9 + SBETl4 ) .. 6(14) StTA14 '" 1 SALPl4 .. S8ETQ + SGAM14 ) It 8 (141 510114."1 SALP14. !!. SGA"t9 ~. SEP..5H_l . ...!. . .B..L1Al. __ ..

C E~UATln'l 6 CO'l'INUEn _ .. _ S LlL'ML "'._ S.ZEl.b ._L S.l11J.6_._~9.

S"1U6 .. S~TA6 • SIOT~ * SRET9 .. __ .. _...5!ill!l. _".-S.IiIlP6 + SlOT \L..*:.......;;SuGuQ"'M""Q'--_______________ _ C E~UATrO\l 7 CO~T'NUEn

SH &...7 . .!LSA LP1 __ LS.GAM.1_! .5.Ali'~ __ SlOT7 = S9ET7 • SAAM7 .. 5RET9

... SKAPL"'_ . .5.EP.5.1_Jo--.5GliMl. ~ SGAM9 h __

C E~UaTTO~ 1? _._. ___ .5.ALE'_lZ._'".....I:>£OL - PDI It SAl ~

121

Page 126: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

SMPI'"RT DATE .. 75157 11/58/40

S~fTI2 " ~P~l • SPfTq __ SGA'112 _= __ ~Dl_"_~'19 ___ _

SA? .. rnl? • SALPl2 ... 2 592 " CAl2 • SLAM£> _. __ CBI2._. _SZEI11L_~ .LCl~ SAl Pl2 • 2.00 II ent? ..

~ SALPl? • Sr,A~l? SC2 '" 2.00 II C')12 II SALP12. II_SBE1l2 _ ________--::-_-::-___ -----:--__ _ S1? " r~12 • S~U6 • CAl2 .. SETA14 • CCI2 .. SPETl2 + 2.00 .. Col2 ..

t.l SPEll2 • _%A"112 __ _________________ ._ SF? " r~12 • SRfTI? •• ~ sr:? " CAI2 I> S'-IU6. I;Rl2 .. 'lynTl4 _+ c'Ci2._"~MI2 • C~12 ..

'II SGAMl? •• ? C J:":}UATJO'J 1'3

SALP)3 :: - P~l .. ShLPQ SBFTl3 _0; "I;OL.- X~L.· 5pr::tL... __ . __________________ _ 5GA~13 :: - PNI. SGAMQ Sl\~:: Cn13 .. S~L.PI'3 <HI 2 ______________________ .---,--_--:: _______ _ SB~ " r~ll .. SfTA7 • CAl) • SZFTl4 • eCl3 .. SALP13 + 2.00 .. COl) ..

1il S~L.P)3 .. 5GA"1)3 _________ ._ SC'3 " ?OO • COl) • StlLP11 • SAET13 5:»_ " CA13 • !ilQIL..! CI:H3~. SETtll4 • CC13 .. SAfID • 2.00 • rOll.

~ SR~T13 • SGA~13 SE3 = coD" S3ETl3 <HI 2 _____________ _ sr:'3 .. rAil" SKAP7. CAll" 5TOT14 • eC13 • S"AMI3 • Col3 ..

'iI 5GAMl3 •• 2 JJ=JDERUG

- .. _----------- -----------

CALL'_QSIM_JL (51\2 ,~2J5CZ.15D2.5E?Sf2.~.fI3.5C1.5D3,5r:3.SE3. Ii.)( 1 • Y) c-------.----

C S1RT 'I('I1TS

C-----------1=0 DO 1 !iJ~_=_h4__ __________ _ Ir:«DAPS('IMAG()«(~))).GT.l.n-12).DR.(DABS(DYMAG(Y(K))).GT.I.D-1211

1 GO TO 15 _ _ ____ _ B(14)=nREALIXIK»)/POI B (15) "ORE Ill( Y (K IIlPN 1_ _ _________ . ______ _ WqTT£IT~E'llJC;.(9)K.XI!() ,Y(lO .A!4.RI!4) .AIIS)

_69 F l)P"1/tI t' '<=' J..U-, '_..!=-.' _t.2.F.L1..!it_' ___ v" '--t.2E 13.5.· al4=' tEl). 5. I • ~ ( 14) ,'I ( 15) " I .?F 13.5)

IF I (DAI'lS Ig I 14) j .GT .n.485 1~14») .0'1. IDABS(fi11S) j .GJ...nAB5JAHllJ ____ _ 1 50 TO 15

1=1+1 JJIIl=1< EPSI121=XnC) EPS(l1):V(K)

15 CO~.lTI~IJE I-(T.LF.l)r,n TO 340 K=J R(l4)=qJJII») 8<l5)=V(JJ(l) ) 00 320 T:?oe: J:oJJ (1)

Jr:('4RS(O~FtlLIX(J))).GT.n~RSI~114)))GO TO 300 II =J R(14)=qJ)

301) I ~ DA[-ls 10~EAL I V I.)) ) ) .(n .n ... ~s (p (1';) ) )_GO 1(L3_2Q ____ _

122

Page 127: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

SMPERT DATE" 75157 11/5A/40

I2=J .... ___ Bl.l.5.1_=_'U,LL._. _______________________ _

320 CONTINUE _I r.lll. ~JE.12) £lLTO .3!t.O I" I _____ ~_U2.J,.xul .... ) __ _'_ ______________________ _ EPS(13;=YII?)

_._-lilL.'EI138=0 1(=1

_____ li".J .. l .. E.O"lJ.)JlG.uO........LI.uO ........... 1.L7 ________________ ---------WRITE(TOUT.16) Y

.... _ U EDR'IAJ (' O'S~.F'.E.!U.L'...!..l...J3l.O • ...!.I_.!>S.urjLr.IJlJJ.TJ.'.uO"'N_"S...LEuOl.l.U1"-Nuri.!.., L..) _____________ _

JDF3UG::::06 ___ ..........l.f.L38=1

1(:::0 .. _._lJLJ.<_" K .. 1.... .. __ ._. _____ _

IF«~GT.4)GO TO 60 .. E"5.112) =HKI ____ .. __________ . E"S(13)=Y(I()

_.c,. .. "".,._"=,.~,. .. -. .,..,,.-_-,._"_"'.,..-"__ ______________________ _ C CO~PUT' INrRE~ENTS C.------.,.~D,.--".,.,.----. .,. .... ~---_-- ..

17 EI>S(6) '" SLIIM6 I> fPS(12) .. SMU6 .. EPS(13) .. SNU6 EPS 11 J p" 5..E..1Jl. L_'!..... .E.f>s (] 2) .. 5 r Q il..~...n .... SLJI'--'I....;3l.L)__"' .. '___"'SwK'_"A..cP..L7 ________ _ EI>S(9) ::: SALP9 .. FPSIl2) .. SBET9 .. I':PS(13) .. SGAM9 FPSIIQ_" SlEI14 .. EPSIl2) "SETA!4 <I FPS!l3j t STOTU E"S(4) " SALP4 .. FP5(12) .. SBET4.<I EPS(13) .. SGAM4

. _ EP5.13L.;:: _SALf>3 .. EPS (41 .;, SBET3 It EPS II 2) .. SGAM3 EPS(}) :: SALPI I> EPS(9) .. 5BETl <I EPS(7) .. 5GAMI EP5.il1L.::;......sI\~l.Ll' FPS(3) .. SBFTl7 .. FPS(4) t SGAM17 EPS(lI) " SAL"}l I> EP5(13) .. SAETll It EI>SIl2)

. ______ E~lJl.L::;.....S til P 10 I> FPS 17 i EI>S 11 A) '" ..:.tS..ll." .... P-=-S~5-"-::-It-=-=-F:P=-S!::...;:L( ~17.L..L.) - .. -S~Z~F.~. T~5::--.. ---:E~P::-S::-(-:3:-:)-.. ---::S:-::E:-::T::-A-:5:--.. ---::E:-:P:::S-:(-:I;-:-)-.. -

jil SI.aJ5. __ .... ___ . EP':;(5) " SALPIB It EP5(18; .. SElETlA

_E."5..(f31 .. =.......s.jUJ~3_! .. _EI:..JP""5oL(LJ7L1)':___-___==_=__-::_=_::__:___:-__::_..,__,_:_:_---_~ EP5(2) = SALP2 * ~PS(17) .. 5RET2 I> 'PS(lS) .. SGAM2

. .E.P.sH..2.l .....':. . ....5.A.LE.19 I> EPS () A) .. SBETl9 .. EPS Cl71 Wr<ITE (¥nE9Ur;.20) (I. Y"'I.24) .EP5

20 rDR_\1AT (3 It' ..... 6J5..lt!...!..E..e.5...l...!...o..lb .... -'.1..!..t.4....11_I).3 (I' • ,~,..L)..L) __ _ c--------------G--~-----------______________ _ C COMPUTE .S\1/1LL.P£"Iil.llBBAI.lilN PROP~RTY VIlL"'-U .... E-"-S ___________ _

C--------------------------------------------.. DO .. 30 1d . .19. .... ___ _ 25 J=yooXTP(I)

IE(J.EQ.O)GO TO 30 V(J.l)=V(J.?)+fPS(Y)

30 CONTINUE .. ______ . _____ .. __ .. ________ _ AD TO(141.342).TFLG9

341 PI>T= .PPH .... .!I. l~E'L..L..1!£JJi.._~!.......G _____ .. ____ . ___ _ TPT :: ppT I> OOR I RPT .. ~2

GO TO 143 342 TPT:::fCTO

PPT=~PTUR~TPT/~a

341 PCTO PEO TCTO " TEO

123

Page 128: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

SMPEPT OATE" '" 75157 1115A140

REO = PEO II OOR I TEO II a? ____ qrlL"._H.EJL. _______________________________ _

ACTO '" nS~RTIGR II TCTO) . ___ . "1I1CI!t .=_ BCIJL~----.AIT~~

MO = ~~r.HIPD) . ___ .. MN .. "_'-1~CHl ~l._::_--c---~ __ -----------

IF«INSTR(23).NF.2).AND.(1NSTRI24).EQ.0»GO TO 28 __ . __ .-..>illl=-J.l6.d._--'--______________ . ____________ _

CALL' PRTNT .JH=J16-L _. __ WRITE I TOUT.29)

29. FOR\1AJ I '.+Q.!.l ____ . ______ _ 28 IF I (IFI.r-;8.Ft~.0) .ANn. I IDFRUG.EQ.03) ) RETURN

_____ ~RI TI': (IDE3UG' 32) Y 37 FOR'1AT(tOSMALLI PERTUR~ATTON PROPERTIES'.131/' '.8E\l>.B»

--~-"--~"-".~~~.,.-~-."'-"'-".-'".,,.-.,..,..------""-"'-'----------------------C S'1ALL pr::RTIJRBATJO\l RESIDUALS

. c....,.':".-.,..-.,..,..,. . .,. . .,. . .,. . .,..-.-.,..,----"'-"'-=~~..,.,.~.,,--DO 35 1=1.19

35 QII' .. 1.D70 O(l) " CAl II r::pSIll + ef31 II 101'5(9) + eel • FAE. COl. EPSIlO) 0(2) '" CA.2 . ..I:I_.EP..5..1 ... 2.L) ---'--........... c~e"-2_II.c.......JE....,p'-'S"'--'-1 1 .... 71-)<.........+':--'C .... C ..... 2--=--:·,..-Lf .... AuP ...... E.........,+'--'-C .... D .... 2........c: • ......,E"'-P ... Su( .... 1""'9CL) __

0(3) = CA3 II 101'5(3) .. ce3 .. EA!" + CC3 * EpS(l7) .. e03 • F.PS(12) . __ . JHlt..l.. .. =U:.M. _1I_.EP..S..ilu'--'+'-----"Ccr.:A"'4c......cIl-..loE"-P""'S'-'-I.AIJ,7.L) ......:..+ ........ C"'-C;:!,4-'...II-"-.EL..P""-S ... ( ~1 .... 1 L.' _......,... _____ _

QIS) :: CAS II EPS(5) .. CB<; It EpSI2, • CCS .. fPS(3) + cos .. EPS(4) • . __ .1l_.c.E.5 __ . ____ .. --:-__ -~--=-::-:-__ --:------=-=-::-:-~---------

Q(F,) :: CA~ It EpS(6) .. CBF, • EPS(4) .. CC6 • EpS(7) .u __ Q..W_.-",--,=AJ_*EE'.5..t6) .. CB7 • fPS (3) .. CC7 .. EPS (11

Qlfll :: CAB It EpS(7) .. CRR • EPS(8) __ .Q..l9.L..;:: .. J:A 9 ... !. L~_+,--,C""B,,-,9L......C·'-....Lf"...cP~S....,Iu.8u' ________________ _

Q I I 0) '" CillO II EPSll0) + CRIO • EPSIB) ___ .Q.1ll) :CAIL!.. EPSIIlI + CBll • EPSIl3) + cell II EpS!l2)

AilS) " PI"OI • fPSIl?) - POI II EP5(9) . _____ Jll1.2L..:..J:.Jll2....ll . ..EPSI6' .. CBI? • EPSl14' • CCl2 II BIl5' + COl? ..

'il 1'1(15) 11* 2 . ... BUbL.=-.p"OL.tI.EPSI13) - PNl .. EPS(9)

Q(13) '" CA13 II EPS(7) + re13 • EPSIl4) + ce13 • 8(16) • (:013 • . __ .l!...lU.16) .... 2...

Q(J4) " CII14 • fpS(l4) • CBI4 It fPS(9) + cellt It EPSIlO) _. H_ .Q.I171 :: C.~17 _It .Fp2.lW_.L~ EPS (18)

DIU'll '" CIIlA I; EPS(lS) + CR18 .. FPS(5) .. CCIR ___ JUt 9. L~J;Al'~ .. 11"'£ PS...,C .... l..29CL)-...:!+--"C-'-'R""1,L9......::.·-'-.E"'p"'S ..... I."-1 ",BL.) _. c:..+ _C",-Cl<..Ll 9z-.. .::......JE...,p'-S"--'-( 1 .... 7!...'L...... ___ _

W~ITEIHIE=!UGtl3) l''I=1020).Q ·_. __ l.3 ... .E.QB'1AIJ!.Q.~E.SJ..!)JHLS fROM SMI\I L PE~TURBATION EQUATIONS'.

1 21/' ,.1016X.12.5X».21/' •• 10EI3.5» __ C -.~_~.~-.~."'~.- ---~ ---

r EXACT RESlnUA~5 ___ .c. ... _~.--.~~_~..""."'_~~"::"'.-~ ... _. _______________________ _ DO 1110 T"'I.19

140 Q(II=I.o7Q Q(1)=MOF-AlI;PEO*Af/DSQRT(TEor·A2 Q(2) =MM'E.+Al.IIJ~~~..EL.Q..sRU1.I.P.t~, _______________ _ Q(3)=MnF+AFIIOOKF*IPP·poiIlA2

__ . __ ._Qt3J.=.t'!DF.+A.f~~~-PQ.:;.*-!'-~.J..l"_6L.).::.. .. f!.Ah2_. ______________ _ 0(4)=~npT+AWO~W~IPp-PTIIA15)*A2

_____ ~JlD_=R~~_~Tl-(MopE .. MOF+M~D~P_T~J'_II~D~T~O~P~v'--__________________ ___

124

Page 129: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

SMPF.lH DATE .. 15151 11/5A/40 _ ..... _-_ .. _--------------------------

Q(~I=MnO·~DPTmMOCT . __ JULL:;MnQ-:'IDF-"'-"iDI:..E __ _

B(91=1.OO.GMI0Z·MCT .... ___ a(1j)1;::J. ... MH1M.W2.~I~t~ ___ . ___________________ _

Q(Bl=MncT-MC'*MDCTC*A(91*·MGPOGM __ .. aLllL:;BlLOlLB.19J.·~ _____________________ _

Q(Ql=PFO-PC Il 8(111 1lIl GOGMl . _P .. _Q tlDJ",'[£Jl~.c'!!'~Uu)ululL-_______________________ _

IF(IFLG21144.9999.145 ___ .UiLJlilUEP.1-: ~_~.1-L1"'::*.LP-,-,Nc::· ... A-L)-,-7.:.41L:.PJ.LD ___________________ _

GO TO 146 ..... ..145 (H1Ll =PT":"_O_.5DO*.i!"J\I.±.~

14~ R(121=I.DO/PEO _______ .~~T~OyG~~Al~lItlM~~LTS~O~IIII~2~ _____ ~ _____ ~ ____ ~ ______________ _

QI121=MnD*1I2-9(131 1l «PD4IR(1211· II TOG-(PD4IS(1211*41GPI0GI _____ ._----.JliL31~_D_CJ: •• 2-B I 131 II I IPNIIR I 1211 UTOG- IPNIISI 12; I UGplOGI

Q(141=MOTSO-SGOR*PEOIITSA/nSQRT(TF.OI*A2 ____ ... ___ G.O. .I<1ll4L.1!2.LL1f1.-1 u.G9'L..._--,--____________________ _

141 Q(171=PP-PPTl.(RP/RPTl' •• G ___ . GO TO 143

142 Q(17)=PP-~PIIRIITP/A2 m __ ..li.:L Q I) 91 =RP-O. SOo. (RPT.RPT) I

Q(19)=TP-PP*OO~/RP*A2 .. _1:.!!.. '!.! .... II. II 1111* * II 11* 1111 II II II II lIiI II II "*11 II II 11111111 II 1111 It illI *iI II ** ***11 * * * * **1111 * ........ * .... "**111111""1111 1111

C OUTPUT ~1I1I1*iliIll*IIIIIIIIIIIIIIII*****iI***lillI.I •• II*illliI.*iI.iI**iI***"****.iI** ..... ***iI.* •• * ••• ·

C----------------------------------_uL .c_Q.N'L~.H_T-R£5lQUALS TO PERCENTAGES

C----------------------------~-----... 19_ QCLIt9 .. 1.;: 1ll9. J=T~XTP(11

.. __ ------li I J. EO. 0 I GO TO 49 IFIT.EO.6)GO TO 45

____ ._...l1:.Ll.a.E!hll.1i!l TL

O"--'4:r..1L-____________________ _ IF(I.Eo.SIGO TO 42

... __ .lEIl....£11.l211HL.J: . .lJO'--"4 .... 3 _________________ _ IFIJ.EQ.13IGO TO 42

____ . __ .. .GlLIQ._AL-._· __________________ _

41 J=lO GO .TO 4.6

42 J:::12 . _____ . ___ G.(LIQ _4.6 .

43 J=q .... _._ .... _GfLIQ _-"-6. __ _

45 J=ll 4(, IF tV tJ.2) .~LO.DOI.G~LIO....AJ' ___ _

Q I T I =INn 'I' .GO TO 4 eL.

47 Q(TI=QIY)&1.D2/V(J,21 ____ . __ .49._ CO.t-j.Il!:i~_ .. _

W~ITE (FIE~UG.21) (,. I=I.201.() _ 21 f.OR"~T L'llqES1.!l.U.ALS...£FOM EXACT EQUATIONS'.

1 21/' 1,10(6X.I2,5XII,2(~' t,lOE13.511 . __ .u.L1ELU1l.A~lU..G.O....I_(L D."lLO~ ___________ _

IrIJFLG?)220.Q9q9.1~ ... __ lIlLJtRLlE..(TOE9LJG • .3lJ (T. y"t.1 O).At I J. I=1.30) .R

125

Page 130: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

SMPEPT DIITE " 75157 11/58/40

31 FOR~AT('OA ARRAY'I' '.10(~X.r2.sX)/' '.lOE13.s/ I 0.,'R ARRAY'. h 13 U.L. '..tULlE'll(. I 2,5 X! ! .t..llL!._...:.'-"wlLlOblJE:....L.l..!.3~.'"'5.Ll..LI _________________ _

WRJTE(JOE~Ur,.lOI CAl, CRI. reI. COl. CA2. C82. CC2. C~2. 1 CAJ •.. CB3, Cc.3.t-1:.Il.U._C.b..{u_.CB4. CC4. CAS. CR5. ce5. C!)S. 2 C~S. CA6. CR~. CC6. CA7. CR7. CC7. C/l8, CBR. C1I9. C89. 3 CAI0. CBIO~All..o.CBllACLll..o.CII!2.CB!2'CC!2.CO!?CA!3.CBI1. 4 CCI3.r.!)13.CIl14~CA14.CC14.CA17,CBI7.C/l18.CAlA.CClA.C/l19. 5_.c.a 19. •. cc1.9.. ..... ________ _

10 FOR~AT(II5MPERTI/. ,.~(.=.1/'0 •• 7X.·CAl'.13X.'CAl'.13X •• CCl •• 1 13X, 'CDl '1 .. '. ' • .4El..fu..BL!!l..!...L7X. 'CA2' ,13X. 'CB2' .13)(. 'CC2', 13X, 2 'C'2 ' /' 1.4.16.A/'O·,7X,'CA3'.13X"CB3 •• 13x,'CC3,.13X.'CD3' 3 I I I, 4Et!>. 81' 0' .7 X.I' CA4' .• 13llt •. C9.-'>. ... _ •. ux....!...C.CA.!.i'..!_'--. 3E 1 &.8" o •• 4 7X. ' Co5 ' .13X.'CR5,.13X"rC5 •• 13X"COSI.13X.'CE5t/' '.sFI6.8

. .5...1 ' O' .• 1.Ji..t.!...C.Ab.!..1.1lX. 'C86'.1 n'.!J.:C6'1' '.306.8"0' .7X. 'CA71 ,13X. 6 'C~7'.13X"CC71/' '.3EI6.8/'0,.7X.'CAS •• 13X,lce8'1' 1.2E16.8 7 1'0 ' ,7)(. 'CA9

' tl))(u •. !CR2.!.L!_Lt.2f..l...6......lU0' .6x,'ciilO' ,12X. 'CBI0'1' I.

A 2F 16.A/'O'.6x.'r.all'111X.'CBI1'.12X,'CCll'I' '.3.16.8/'0'. q 6)(,' C ~.12 I. IZl\ •• C912 '.12X.!..c.Cl.2..' tl.2X.!..!..C.Q12 'I' • ....L4E.l.6...liL! ..... o-'-, .... "..6"X ..... ___ _ A 'CA13 1 .12X"cgI3 1 .12X"ccI3'.12X,'CDI3'/' '.4.16.8/ I O'.6X,

. __ !L'CU4 •• 12X.!CB.L4 • ....L.12XL!.tEI4.1. '.3E16.BI ·ol.!?X.'CAI1I.1ZX. C IC~17'1' '.2~16.A/.O •• 6X •• CAlS'.12X •• CR18 •• 12XI.CCIA.I. '1 I) 3E 16.91' (l' • 6X. • C A 19' .l.2.X ... !.1:Bl.'l!....t..l21tJ_'.1:.tl q 'I' '. 3£.lb...lll. _______ _ WR!TE(TnE~ur,.II) 5ALPI. SBETI. Sr,/lMl. SALP2. S8ET2. SGAM2. SALP3

1 • SBET3. SG4'13. SEP.S.3L S.JI.Lf>4LSB.E.I4.L.5.GlI.Mit.LSEPS4. SALPS. SBET5 2 • Sr,AM~. S"PS5. SZ.T5. SFTAs. SlOTS. SKAPS. 5ALP6. S8ET6. SGAM6 .3 • SEPS6. SlET"LS£!A6. STQ.I.6_L.s.~. SLAM6. SMU". SNU6. SAlPZ it • SAET7. Sr,A~1. SfP57. SZET7, SETA7. SIOT7. SKAP7. SALPS. SALpq <; • S9ET9. SGA'19, SZEI9.5ALP10.SALP.U,.s.AETll.SAI PI2.SBETI2.SGAMI2 " .SALPI3.SR.TI3.Sr.AM13.5ALPI4.SBFT14.Sr,/lM14.5FP514.SZET14.5ETA14 7 .5IOT14.SALPI7.SRET17,SGIl.'117 •. SEf>S.l1.t...SA.LP.lB...SBEIla.SAI pI9.SBETI9

II FOR~AT('ll.6X"SALPI·.11x.'S8ETl,.llX"SG/lMl'I' '.3Fl~.A/'0'.6X. I • So'lL P? 1,11 x t

' SREI2.~~5G.A'12..!L! ___ ' ,3E I ~. f!I' 0' .6X •• SALP)' .1 ! X.

? 'S~ET".IIX"Sr,AM3'.IIX"SFPS3'1' ,.4EI6.A/'O'.6X.'SI\LP4'.11X. 3 '5'lET4 ' ,IP .• 'SGA M4'.9 _ ... _....l1.!U. • .5EPS4'..L. ',4El6.8/'0 •• 6X. 4 ISdLP~,.11X"5qET5'.11x.'SR/lM5',11X"SEPSS~.I)X"SZETS',11X. ~ • S~T A~' .11 X. 'S I OT~' 'Ill( •• SI(AP,,\'.I" _ '!..6~l1> .JU .. ! .. ~..! !M.i.!'~1UP6' .11 X. 6 'S~ET~ •• ilX"SRA~6'.11X.'SFPS6'.1IX.'SZET6 •• 11X"SfTh6 •• 11)(. 7 l'iTOTf,'.11X"5KAP2,--~f;l.~fil'0'.6X"SLAM" •• 11X,'S'1U6 '.IIX, A 'S~U6'1' '.3~16.Q/'O •• ,,~.'SALP7,.11X"SAET7,.11X.oSGAM7,.11X. 9 'S~PS7' .\1 x. 'S7E T7' • 11 X, • SETA 7' '.11)(. '.5 LOT]'_' 'Lli)(t..!5K.~~L' _.'-'."---___ _ A ~.16.~/'n •• 6X.'SALPA'I' "'16.A/'O'.6X.'5ALP9'.1IX,'SAET9'. E1 llX, '<:;011149' .111<"SZE."(t'I' __ '--1~.E...11l..lL8/'O' .5)(, 'SALPIO'I C ' 't FI6.A/'0'.SX.'SALPll'.10x.'SAETll'I' '.2.16.A/'O·.sX.'SALP12 I) '.10 x. I S3E H2' ,lOX ,t SGAM12.!.!'.'_...'--U.E.L/';>....JU. 0' .5)(. 'SALP 13' t1 OX. E ·S~lTI3'.10X •• SGAMI3'/I '.3EI6.A/'O'.5X.'SALPI4,.lOX,'SRETI4', F" 1 0 ~. I SGA ~ 14' ,lOX, I Sf'PS 14 • ,1 (l x, • S ZE 11.4 ' . .1 0)(, '.SE 111.1.4. ..... d 0 x.. o_S..LO.I.l1t..!.. __ _ G I' '.7"1~.R/'O,,~X.'SALPI7·.10X.'SBETI7',lOX"SGhMI7 •• 10X. H • S~P51 7' /' ',4Ft ~. AI' O •• o;X, • Si'i.LP 18' dJ»(!_'.S.B.Ella!L'._.!...!.i',",E~1,-,61LL • .... 8LI ___ _ I 'O',5x,'5ALPlq·,IOX.'SQFT19'I' '.2E16.8 )

W>lT Tf" (InE311R, J 2) ? .. I\!'-,S8?_ • ...5.tb!'!.02,SF2.SF2.SA3.S93,SC3.523.SE3.SF3 \ .FAE.FAP~.FAI'"

\2 FDR~/lTfll •• 7X,I5A?'.11)("'iA?·.13X"SC?.13X"S02',13X.'5.2', 1 1 1 X • I c; ~ ? , I' I. "'- E I 6 • 'II • 0 , , IX •• SA 3 , • 1 3 ~ .' 5 R3' '~'l 3 X~' 'ISC 39;-11 X-.--'--------? 'C; ')3 I .13 x • • 5,3' • I 3 X, • SF 3' I' '. 6~ 1 "'- •. B.L!.lL'...LVt.L~f ~_u.?J5_'_'-,-'-"A,-,-P-"E,-,'--,.,----__ _ ::I 13X, '"~F' 4 I' •• ~Fl!\.fl) TF(TFLr.A.~Q.I)STnp

RET JR"J qqqq 5TO"

E\Jn

126

Page 131: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

rlS t \.II/L nATE" 75157

SUR~OUTTN~ ~STMUL(.?R2.r?n2.F2.F?A3,R3.C3.n].F3.F3.InERUG.XX.V)

tI4PL.'lCJT ~EAL."8. (A-t:bQ~Z..l .. _._._ ... _._. CO~PLEx"1& X(??..4),Y(4).SIr,MA.UPSLON.PHI.PSI.OMF.GA.l~RO.A1.B1.Cl.

-Vi. y2.Y3. Y4 .o'!!:. ,R (2,2.4. 2.1 .CHlFIIII~.lUU.<U .. _ ... _. ______ _ rOMPLEx"1~ ST3 MA1.uP SLN1.PHT1.PSTl.OMFGAl OIM~NSTON I rI (4) ,JJJ(41. _ ... ___ .. _. __ .--------___ . _____ _ DATA ZFRO/(O.~o.o.nn)/.ONF/(1.no.o.nO)/.cINFIN/(1.n70.1.n70II

C---"'-"'.-_-----,.,._.,.--"',.-"',. . .,._,."''''''' . .,._~ ___ . ____ . __ _ C C~MPUTF QUaRTIC CDFFFTCJFIIITS

C---------------------------.,.-. ALP~I=~2 .. ~3-A3 .. F2 9~TAI=~2 .. )3-A3 .. D2 GAMI4I=A? .. ~3-A3 .. F2

_ ALP-tU=AJ .... B.2..-A?i*.BL __________ _ 8~TAlr=.3 .. C?-A2 .. C1 T)::L Tl I=ALPHI"9ETAl.L .. _ ...... _._ FPSLII=ALoHY*ALPHTY+RFTI'*RFTArl lETAII=~ETAY*ILPHYI+GA~~'''9ETAII EThTI=r,~MI4I"ALPHIJ BU.sQ=SET Al I H2 .. __ . ____ . __ ._. _______ . ARJY=ALPHYI"R~ThIY AIYSQ=/lLP-tIIHC:' SYGI.1A=i'FR1 UPSLON=lE~O P-tY::lERO PSl:o:ZERD .... ___ . ___ ._._ .. ___ . ___ ._ .. _____ ... 0I.1F.3A=7.RD DO 9 1=1.2 no 7 J=l,? DO &. '<=1,4

~ X(I.J,K,=eJNFI~

7 CO"lTI"lUE. R COMTI"l11J:

-_ ... __ ._----_. -----

.. _-_._- ._---_ .. _-----

5 I G 1.11\:: 1\ 2 .. A L"H I .... 2 + C 2 .. OEL TI L.+_ E 2 .. I> _lill.S!L __ ._ ... _. __ ..... UPSLO~ = ~.~o ~ I\? ~ AL P41 ~ ~~T~T + R2 .. DFLTlr • r2 * FPSLtI •

I> 2.)0 .. E2*A~HI + n.? I> 9n<;Q ....... _ .. . P~T = ~? .. ( ~"TAT *~ 2 + ?oo ~ ALPHI ~ GAMMI ) + R2 .. EPSLTT +

.. C? I> ZElII.II •• 2 .. A IlSQ .~.f2.....!._Bll.sQ~Bill.'._~...D..2.....! __ A!H . .LI ____ _ PST = ?OO I> ~rTAT ~ r,AI.1~T 1>11.2 + A2 .. lETArT + C2 .. FTATY +

.. ?OO" F2 .. AH't • 02 .. AIISrl _ OMFGA = 11.2 .. ~AMMT .... 2 • R? .. ETAty • F? .. A1TSQ Srr,I.1A1=S!"MI\ UPSLN 1 =lJPSl(lN PSIl"PSI P-tIl=PI-IY OI4F:;Al=OM~GA Y'(I0EPUG.fQ.03'Gn TO 9

C-------------------r P~TNT CJF.~TCTf~T5 r------------------- _ .... __ . ____ .... __ ._. _ .. __ ... W~ITF(T~E~UA.I)A?P?r?~?F2.F2.ft1.B3,r3.D3.F3.F3,I\LPHY,RrTAY.

- Ghl.1~' .dL"HT T ,~FTI\Tl.I)ELTT t .FPSLT T ,7ElAt I.,ETAH,flI TSQ,AAY I.!A.l15..rl .. __ 1 F~~~II.T(ll~C;IMJL'/' ,.~(.=.)/·OI.7X.'A?14X •• A2'.14X.'C?.'.14X. ) 'f''' I .14 X • , ~? I • \4 X •• F 2' I' '. bE 16. All 0 , .7 x • ' .. 11. l' •. 1.4)( .•• A}' t.l4.ll..!. '.e.3!. L..

2 14X.'~11.14X,'F3'.14X.'F]'I' '.~F16.R/IO'.6X.'ALPHT'.11X. "3 '8,,",1\ T' ,II x. '('.a"''''Y' tl OX,, A[PHU' .lOX, '.AE.T..All.'.!.lM<".!n::I..Ir L'-' ______ _

127

Page 132: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

()SI"1UL DATE = 75157 11/58140

4 1 0 )( • , FP SLII J ' I • ~- , , 7 E 1 6 • 8 I' 0 , • 5)(. ' Z FT A I I ' • 1 1 X • ' f TA J Y , • 1 1 X • . 2 '.[1_1.15(;" !.U.lU~ll.!.ll2l< .. l.!.A.ll.5~2..t2Ell.&L.,.-:-__________ _ WqTTE(TnE~UA.2)SIAMA.UPSlnN.PHl.PSI.OMEAA.ZERO

.2 I'"OR\4A T ( 'O.'~' D~X .... !i IC,MA '~~'.2J_X_L'_~!E?..l.IlN' • 2AX. 'PHI • • (9)(. 'PH 1'1' '. lBfl~.B/'0 •• 14X"OMEGA,.(7)("ZERO'I' '.4EI6.8)

C-~~~-----,:---~~-.~_--:-~~~_.~_ ... __ ~ _________ . r. FI~D qODTS TO OUAqTyr.

. C-:-.~-----':"--':'.~_-:::-_-.~~:::.':" 9 N=4

Y I'" (DREft.L(5JJl~1.."!L.O_~!lQJJ3JLI0~Q.~ _______ _ N:3 IF (')Re:~Le)P5LO_"i) .NE • .lto_D.O_lGn ... TD _lL_. ______ . ___ ~ N:?

____ ._. ___ .1 f. . .l2BE A L (I>H I ~E..'..10u.u.D,-,Qu)..lOG!.'.<QL-LT-"Q,---"2_,,O _____________ _ r. LI~FAq

N = 1 _ . __ . _~_. __ .. __________ . 10 O"1I'"GA=nMEr,A/PSI

PSI=.ONF ____ .. ~_ _ _ . __ . ___ .. __ . ___________ _ CIIL LI flIiNDC·(~. D'11'"611, ZERO, 71'"Rn. lFRO. ZERO. VI, V2. V3. V4)

______ .JiCLnL45_~ ____________ . __ r. OJAn~HTJC

('0 PSl=p~T/P>ir OMFGA=n"1Er,A/P>i1

~-. ~~-- "- --- .. -~--:- -'~---'---'-.. ----

PHI=ONF _~._ .~ ____ . ___________ . __ . CtlLli QANDC(~.PSJ.OMEGt\.ZFRO.ZERO.VloV2,V3.V4) GO }O 45 ____ . ______________ _

r. CUR1C 30 PHI=PHI/UI>SLO~

PSY=PSJ/UI>SLO~

04I'"GA=OMEAA/UPSLON. UPSLON=ONJ;:' Ct\.LLI Q!I"'Oct"l,"'-H.t!.E.S.I..!.l1!1E..Cl.ru~'I'h_'(UY:hYll. __ _ GO TO 45

C QUARTIC 40 UPSLON=UPSLON/5TGMa

PHI "PHT ISH."'. PSJ=PST/SYG'-1A

_ O~'-1F Gi\=O~ll: SA.!.').! G.M~._. _________ _ SI(;'1A=oNE CIILL' Q~NDC (N.UPS\'ON,PHI .P'H_.OMEGA_.'(t .. 'L2.,-Y.1.~Y4)

C----------------------------------__ J: LL~JLt.l, 1.'-!._Y~J..LJfS .!..1'"-'-'O"'R'-'-I'"-'"II"C'cH'--'Y'.....C.qo.:0"-'O'--T'--_________ _ C----------------------------------__ . 4.5...._liU =v L_. ___ _

V(2)=Y? Y())=Y3 V(4)=Y4 DO 100 1=1,4 IF(T.GT.N)GO TO 100

.~ Ill::: -", .... 5..!..iB.2 tl:2.!.llllJ..LA2_---:--:-------::-:-:---__ --­Cl=CDSORT(Bl*~2-(n2~Y(I)+I'"?~V(I)**2+F2)/A2)

)( (1.1. I) =31+CL X(?d.T)=31-Cl 81=-.5* (83+.c3l)V (1) tiA3 ~_~_ . ____ ._. ______ _ Cl=COSORT(RI*l)?-(n~oY(I)+F3~V(T)*~2+F3)/A3)

II. U1.,a'.I) =.:n~c.l __

128

Page 133: A Mathematical Model for the Starting Process of a

AEDC·TR·76·39

I)S T .... IIL DIITE = 7<;10;7 11/0;""40

)( (;>.2. T) =~I·C:l

100 CO~'TPHJf

r----------------------------------c: P~IN' PlOTs Tl ~UAQTlr A~O CONICS

r----------------------------------W~JTE(T~t~U9.2)SIGMA.UPSLON.PHI'pSI.OMEGA'lERO IIR 1 TE ( T r)E ~tI".::I) Y. ( T • T = I.;» ,)(

3 fOR"AT(·Ol,15X.'Yl·t3(l)(,'V2'.]/)(,·V3',30lC,'V4'/' '.8E16 .. 81._!JU-,--__ . __ _ I ?('I •• ;>(,(I.I,.,tQtIIlTJ0'4'.T;>.;>7(.-.)).'-I'I' ";>('1'011(1.1). 2 'P:lSITJV~I.ll(h')"II,ll('-')"NfGATlVf·tl?(I.I) ,'.1 ' ) __ ]/'nx RonTS ~A5En ON'Vl'" '.AFI6.A/'OX ROOTS ~ASEn nN V2'" '.A 4 n<"Il/'OX POOTe; ~ASFn ON v3'/I • .AF.:lb.8/'O)( ROOTS 9ASEn Ofll_ Y.lt'l 6 • '9AF'16.R)

r. - - -- - -- - -------- ~ ~ - --~-- ~~~~.-.-.:-.:----":':- - -- ~------~-~~.:-_-~ ___ _ r. c~.rK ALL X A~O V VaLUES IN ORTr.TNAL sve;TFM OF cnNICS c -- - - -- -- ---.-- .---.--- :---.--":':---------------:-":':--.--~:-:_:-~ ____ . __ . ______ _

no 130 L=lo;> 00 120 1=1.4 no 114 .)=1,;> DO lIS K=I.2 Jr('RFAL(V(T)).r,T.I.n~q)r,o TO Il~ GO TO(loe.l10).L '

lOA R(J.K.T.l)=A?X(J.K.,) •• ?q;>*X(J.~.T)+C:2.X(J.K.J)*V(Y)+n?*v(l). 1 E2 11 V (T) 1II>2+f2

GO TO 115 11 0 R (J ,K, T. 2) =A3*)( (J.I<:, I 1.1111 2.'33*)1. (J,K d) +C3 11 )( lJ.K i..ll.!_'UI) +o3 l1 y (T I.

I F3"Y(T)·";>+F'3 J 1') CONTINI.IE 114 cO~lr I"JII. 120 CO'llTI"JUi'" J 30 COf\JTINlw

WClITE(!DE3UG.4'R _____ ._. 4 f:lP~AT('O~EST'UAL ARPAY'.4(/' ',AfI6.8))

c---~-----------------------C 5:ltlT OIIT EXTRa"J.OiJ5 Rnnrc;

C---------------------------13'" L=I) DO 160 J=1.4 no 180 r=I.? DO 140 0(=1.2 T~(CD.qS(~(T.I.J.K)).LT.I.n-10)Gn Tn 140 GO TO 1[10

14(l CONTI'JIW L=L+l JF(L.Lr.4)GO TO 190 WRITE" (fOUr,14S)

14~ fOR .... AT('O~STM~L: ~ORF T~A'" FOUR ROOTS FOUND') STOP

150ITT(U=T ,)JJ(L'=J'

1'~ 0 CON TI NUF 150 COMTINIIF

LLL =L DO ?'OO [,,=1,4 XX (Ll =rTNC'f~1 I'(L~GT.LLL)GO TO .190 XX (LI)=X (ITT (U .1.J,)J(U) GO TO ?OO

lqO V(U=CPJfTN 200 CONTI NilE

WClTTE(T~E~UG.?;>O)xx.v

220 rORI1AT(llSORTi'"') ROOTS: XXlV',?'(/' .,8E1.6aflU WRITE('nf~UA.240)'TI.JJJ

-------------

;>4(1 FOQ~AT('OJIJ l\"Jn JJJ VALUE.5.J':O'LJHIll.tLJJJtlO .. 'L!.._!. 'IU_",_' t.41.2L-_ 1 ' JJJ= •• 41,",1

RfTJR'l E 'Jrl

129

Page 134: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

OATE = 7510;7 - --- ----- - .. _._-

!,;LJI'l~OUTTN'" CU'JI)f:(hJ,R,C.I).F,Xl.x2.XJ.X4) II.1PL'I C TT ~O"lPLJ;:~ l~ I\~(,-,o~l L COMPLD .. t .. ! nATA I/CO.OO,1.nO)/.CINFIN~(1.n70.1.D70)1 GJ TOI10,20.10.0;),N

C QJI\RTlC

f:

5 ~=CI4.nO"C*~-I~""?"F)-D"*?)/2.00) Al = 1 C* (BII )~4. ?Q*e:Uf> • .Dill ... 112:-(lr·"1)/27.00) /1=1\.41+112 R9=CDSQRTIIA .... ?)+((~"D-4.I)OIlF-(lroll?)/3.DO)I.1I311?7.noI fI=-A CALL' CIIRRT (A,'1R.R) PS TAR=eIlD -4. ()Q.llf ~r.IIC lJ.. nO RI=-PSTAR/(l.,O·RI R=(~.Rl.(C/l.I)O)1

p:r)S1RT«(R·"2/4.I)OI-C·RI P~=~DSQRTIO.?'5I)n"R"O?-E) II"'?=. <;nO.~'O;:!-"l Df'1l2=? DO *P*Pl . _ _ .. ____ ... __ . ___ .. 11'"(~DAJ.1S(AR2-DPQ2) .liT. rnARSIAR2.PP(2)IPQ=-PQ DD: (C'H~S (P» rAt [tIL /I T I 'It; T -IE UROS ~1=(I.O.O.OI RI:(i1/?Dn).p r1 ;: (fV? • [) 0 I • P:~ ..... . __ .. _._ X I = ( -'I 1 • C "lc;()R T (R I 00 ;>-4. f) n"" I 41 C 1 I ) I (2. nOli II 1 ) X?=(-~1-C)5QRT(J.1I00?-4.f)nIAI"f:I)I/(;>.nO"III) J.11=(fl/?[)O)-P r.I = (R/?[)n) _D~ x 1= (-'11 • C "lS(l'l T er1) 0" ?-4. I) n II ~ I "Cl ) II ( 7..00 11 /\ I ) X4=(-Rl-C"lS1RT(Rlo"?-4.nn O/ll ll rl»/(?nO Il /ll) oOT.JR'~ .

f: CJRIC 10 C::>~ITI'JIIr:

P=("-(A .... 7./3.[)CJ) Q=n-(q·r/1.~nl.(C?nnOH·ol)/?1.[)n)

ZI=-CQI?101.ccnSQ~T(U."?/4.f)OI·CP·"3/?7.DO)) 7?=-(J/?"l01-(cnSQATC(Q· .. ?/4.nO)+C DoO l/?7.nOI» !~CCDARSCZl).3~.C~~~~(7?111=71 Fi:::()iiI'lS(Z2).:'E".Cr,~R<;(ll)IZ=Z2 T~C~nAR~(Z) .~Q. O.O)XI=-(A/l.nO) Y>CCDAqS(7) .E"Q. 0.0IX2=-CR/l.nOI T.crDA~<;(Z) .~Q. n,O)X3=-(R/3.nO) Ie' Cr.nA~"I71 .C''}. O.OIAFTllRIIJ RqQ=CO.nO,o.nrll CIII L rllRRT (l,'lRR,ol) R=-O"/L1.10 0 R\» wl=-(.~~01+CC1.nO"o.~II?nn)"y

W?=-C.~~O)-C(1.nO"".SII?~n)OI XI=-C~/3.")O).~\.~

~C"-(~/1.')n) -\II "~1 HJ;>"f< XJ=-C~/1.101'~?"~1.wl·k

X4=::I'I"TN R~T ,Jk'J

C QJA')R~Tlr 211 hl=."''''''

Q=r)S~PTCAIOO?-C)

XI=~I." ~c=III-D

X 3=r.!hJ>TIIJ X4=CI'I>TN kC"TJR'IJ

C LI"JP~ 30 Xl=-H

~"=CI'J"TN X1=C!'lJi'"TN X4=C!"JrTN RC'TJk'IJ I'"\l()

130

II/O:;A/40

Page 135: A Mathematical Model for the Starting Process of a

990

CUB~T

5UR~OUTIN~ CU~QT(AA.RR.QQ)

TI1PLiJCTT e0I1PLEX*16tA-G~Q~Z) Q"AL~AH.HIA.Hl~.HTH

REAL"''''PI.SSSS r.O~1:lLEX*1 ~I

CONT I"IUE' 1=(0.01.)

AEDC-TR-76-39

11/5A/40

II = 1 Zl=aA+~R

... - .... ------.. _ .. - ....... _ ..... _-------------Z?=U-RR ' ..... _ ............ ___ . I"(COAR~(Z?) .GF. COARS(Zl»A=Z2 I"(COM-1~(7ll. .GF. COARSpc»A=zL .... R=DCOIIJ,J(; (a) H1./\ =.tA+~) L.2 ... DL ... . _ ... ____ _ HIB=-I*(A-R)/~.OO

HtH=DAT AN.2 (.1113, H LlI.l ..... . H=(HIA**2tHIR**?')**.'5DO PI=1.14159265358979300 __ . SC;5S=3.DO ijCi;:.(H** U . ...o.n/..3"n.oJ..L~_L Dens ( (HTH+ (IT -11 *2.DQ*PTl/SS5S) t Til (

IHt (Y 1-1) *2.r)O*PI) 15<;<;5») RETi.lRN EIlO

DSTN( (HI

IN TV G L~V~L 21 DREAI. DATE:: 75157 1l/'5A140

FUIIJCTJnllJ ')REAU((~C) COI.1PLEX*l~. C.fCC ................ _._. ______ . ________________ _ R~AL .. A O(?).D~EAL EQUIVALENCE IC,D(l» C=CC ORE aL=n (1) RqJRIIJ E'JD

IN TV G L~V~L 21

FUNeTi~\j 1II1Ar,(Tij COMPLEX*15 y.n REAL"" O(?).DTI1AG FQIITVALENCE (J.o II)) I:: rt OTMAG:n(2) RETJRIIJ EIlD

DATE" 75157 11/SA/40

------------_ .. _-- -------

131

Page 136: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

A

All

E

F

k

M

Moo

m

m

1\ m

n

P

P

NOMENCLATURE

Area

Solution weighting parameter, Eq. (25)

Momentum correction coefficient in wall crossflow model, Eq. (7)

Flap correction coefficient in the flap flow model, Eq. (8)

Weight used in computing test section pressure, Eq. (10)

Arrays of coefficients in the small perturbation equations

Computational error

Function

Flow coefficient, as in kf and kw

Mach number

Steady, asymptotic test section Mach number

Mass flow rate

Convenient quantity with units of mass flow rate defined as

If Peto r;r- Ats

R VT eto

J ~2-1 Nondimensional mass flow rate defined as rn Eq. (B-3) -.-, rno

N ondimensional mass flow rate defined as m/ me, Eq. (B-l)

Convenient quantity with units of mass flow rate defined as

Pi Pc V R 1Tc Aet

Iteration number

Pressure

Nondimensional pressure, P/Po

132

Page 137: A Mathematical Model for the Starting Process of a

R

T

t

t*

tF

v

X,Y

a

p

7

SUBSCRIPTS

c

ct

d

e

AEDC-TR-76-39

Perfect gas constant

Temperature

Time

Midpoint of a time interval

Final time in an area time curve

Volume, as in V p or Vts

Scratch variable used to develop small perturbation expansion, Eq_ (27)

Variables in numerical reversion procedure (Fig. 10)

Constant defined as

Ratio of specific heats

Flap gap

(

_2 );~11 "1+1

"I , Eqs. (4) and (5) R

Array of small perturbations of the variables from the exact solution (Table A-I)

Perturbation in the main valve area

Perturbation in the flap area

Perturbation in the plenum exhaust valve area

Density

Porosity, percent of test section wall area drilled out to allow crossflow

Charge condition

Charge tube (or supply tube)

Diffuser end of test section

Main tunnel exit, main valves

133

Page 138: A Mathematical Model for the Starting Process of a

AEDC-TR-76-39

f

i

max

n

p

pe

pt

t, ts

tsw

w

o

SUPERSCRIPT

*

Flaps

Array index

Maximum value as in Ap e m a x

Nozzle end of test section

Plenum

Plenum exhaust

Plenum - Test Section

Test section, as in Pt or Ats

Test section wall, as in Atsw , the total wall area

Test section wall, as in Aw, the effective flow area

Stagnation condition

Test value in numerical reversion (Fig. lO)

Sonic conditions

134