a model-data fusion approach to integrate national ... · a model-data fusion approach to integrate...

1
The National Ecological Observatory Network is a project sponsored by the National Science Foundation and managed under cooperative agreement by NEON, Inc. This material is based in part upon work supported by the National Science Foundation under the following grants: EF-1029808, EF-1138160, EF-1150319 and DBI-0752017. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Prior to estimating parameters through model-data fusion we are undertaking parameter sensitivity analyses to identify parameters to modify through data assimilation. At first we are assessing parameters contained in the PFT physiology parameter namelist file. Here we show results from perturbing four parameters: (i) leaf carbon to nitrogen ratio (leafcn); (ii) fraction of leaf N in rubisco (flnr); (iii) specific leaf area at top of canopy (slatop); and (iv) allocation ratio between fine root carbon and leaf carbon (froot_leaf). The National Ecological Observatory Network (NEON) is a continental scale facility that will collect biogeochemical and biogeophysical data from 60 sites in the US over 30 years. NEON and other ecological observatories (ICOS, LTER, FLUXNET) provide data that can be utilized for continental-scale ecological forecasting, but new statistical and analytical tools are required that are capable of synthesizing this “data deluge”. NEON data products include gridded datasets of carbon and water fluxes across the continent. We are developing a model-data fusion framework in which NEON data will be combined with the Community Land Model (CLM) to produce optimal solutions for model parameter values, states and fluxes. This framework will enable spatial extrapolation of observations and ecological forecasting. 1. Background The Community Land Model (CLM) is used as the land model in the Community Earth System Model (CESM). It simulates terrestrial ecosystem processes including the cycling of energy, water, carbon and nitrogen. CLM is driven by a limited set of climate variables, while the sensitivity of ecosystem processes to climate is controlled by the initial states and parameter sets of the model. The performance of CLM is being evaluated at a number of existing flux tower sites with long data records, many of which are NEON candidate core sites, including Harvard Forest, and Niwot Ridge. Typically, we find energy fluxes to be more accurately simulated than carbon fluxes (Figure 2). 2. Community Land Model (CLM) A MODEL-DATA FUSION APPROACH TO INTEGRATE NATIONAL ECOLOGICAL OBSERVATORY NETWORK OBSERVATIONS INTO AN EARTH SYSTEM MODEL Andrew M. Fox 1,2 , Timothy J. Hoar 2 , William J. Sacks 2 , David J. P. Moore 3 , Steve Berukoff 1 , David S. Schimel 1 1 National Ecological Observatory Network; 2 National Center for Atmospheric Research; 3 University of Arizona 6. Future Work 5. Parameter sensitivity analysis For details as to how this work fits into the larger picture of model-data fusion facilitated by NEON see B11D-0514 Observatory enabled modeling of the Global Carbon Cycle , Schimel et al, in this session. We will continue undertaking a series of observing system simulation experiments to test the ability of the filter to update a number of CLM states. We will use a suite of synthetic observations of carbon and water fluxes and pools available at different temporal frequencies based on those that will be made at NEON sites in the future. We will then extend the DART state vector to include CLM parameters and test how we can us this ensemble approach in parameter optimization. Will we investigate how this approach works with parameters which control processes operating at very different timescales. We will investigate how to assimilate data into a spun-up model if the true initial state of the system at the time when observations become available is unknown. Figure 2. Observed (blue) and modeled (red) carbon and water fluxes at Harvard Forest FLUXNET site Figure 1. CLM/NEON Model-data fusion framework Community Land Model Scaled observations Eddy Covariance Airborne LIDAR Gridded climate Ground biomass Measurements Airborne Hyperspectral Gridded Carbon and Water Dynamics Forward Operators DART 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 50 0 50 100 150 200 Mean daily LE (W m 2 ) Time (years) 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 10 8 6 4 2 0 2 4 Mean daily NEE (μmol CO 2 m 2 s 1 ) Obs Model Starting from a ‘spun up’ global CLM case for year 2000 we advance a 40- member ensemble of the global model for 120 days. Each instance of CLM is coupled with an individual from an ensemble of data-atmospheres. A single instance of CLM from the ensemble is then assigned to be the ‘truth’ and run forward. Daily ‘observations’ of leaf carbon (leafc) are collected at sites (grid cells) across the globe by adding Gaussian noise to the actual leafc state at these locations. These ‘observations’ are then assimilated by DART as the whole 40-member ensemble is run forward. 4. Observing System Simulation Experiment Figure 5. Prior and posterior probability distributions of leaf carbon in a single grid cell at 60°W, 4°S for nine days of assimilation 3. CLM-DART coupling 0 20 40 60 200 150 100 50 0 50 100 150 NEE (gC m 2 a 1 ) 0 0.05 0.1 0.15 0.2 200 150 100 50 0 50 100 150 0 0.5 1 1.5 2 200 150 100 50 0 50 100 150 0 0.02 0.04 0.06 200 150 100 50 0 50 100 150 Year 1 Year 5 Year 10 Year 20 Year 40 Year 80 0 20 40 60 5400 5600 5800 6000 6200 Soil Carbon (gC m 2 ) Parameter value 0 0.05 0.1 0.15 0.2 5400 5600 5800 6000 6200 Parameter value 0 0.5 1 1.5 2 5400 5600 5800 6000 6200 Parameter value 0 0.02 0.04 0.06 5400 5600 5800 6000 6200 Parameter value 0 50 100 200 150 100 50 0 50 100 150 leafcn NEE (gC m 2 a 1 ) 0 50 100 200 150 100 50 0 50 100 150 flnr 0 50 100 200 150 100 50 0 50 100 150 froot leaf 0 50 100 200 150 100 50 0 50 100 150 slatop Default Perturbation 0 50 100 5400 5600 5800 6000 6200 Soil Carbon (gC m 2 ) Time (years) 0 50 100 5400 5600 5800 6000 6200 Time (years) 0 50 100 5400 5600 5800 6000 6200 Time (years) 0 50 100 5400 5600 5800 6000 6200 Time (years) Figure 3. Multi-Instance CESM Figure 4. DART schematic A multi-instance version of CESM has been developed that more easily facilitates ensemble-based model-data fusion techniques. For example, multiple land models can be driven by multiple data-atmospheres in a single executable. This capability will be available in the next CESM public release. We are applying expertise developed in numerical weather prediction to carbon cycle science by coupling CLM to the Data Assimilation Research Testbed (DART). An important difference is our goal is also to estimate parameter values, which give insight into process-level responses to environmental variation. DART is a community facility for ensemble data assimilation developed and maintained at the National Center for Atmospheric Research (NCAR) that provides a number of enhancements to basic filtering algorithms (Figure 4). 305 310 315 0 0.1 0.2 0.3 5/1/2000 305 310 315 0 0.1 0.2 0.3 5/2/2000 305 310 315 0 0.1 0.2 0.3 5/3/2000 305 310 315 0 0.1 0.2 0.3 5/4/2000 305 310 315 0 0.1 0.2 0.3 5/5/2000 305 310 315 0 0.1 0.2 0.3 Probability 5/6/2000 305 310 315 0 0.1 0.2 0.3 5/7/2000 305 310 315 0 0.1 0.2 0.3 leafc (gC m 2 ) 5/8/2000 305 310 315 0 0.1 0.2 0.3 5/9/2000 5/1/2000 5/2/2000 5/3/2000 5/4/2000 5/5/2000 5/6/2000 5/7/2000 5/8/2000 5/9/2000 308 309 310 311 312 313 314 Date leafc (gC m 2 ) 314 Obs Prior Posterior Prior +1SD Post +1SD Figure 6. Annual NEE and soil carbon calculated using default parameter values (red) and 14 parameter value perturbations (blue) and scatter plots of annual NEE and soil carbon against parameter value at six time intervals Contact Information: [email protected]

Upload: others

Post on 01-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A MODEL-DATA FUSION APPROACH TO INTEGRATE NATIONAL ... · A MODEL-DATA FUSION APPROACH TO INTEGRATE NATIONAL ECOLOGICAL OBSERVATORY NETWORK OBSERVATIONS INTO AN EARTH SYSTEM MODEL

Author: Leslie Goldman

The National Ecological Observatory Network is a project sponsored by the National Science Foundation and managed under cooperative agreement by NEON, Inc. This material is based in part upon work supported by the National Science Foundation under the following grants: EF-1029808, EF-1138160, EF-1150319 and DBI-0752017. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Prior to estimating parameters through model-data fusion we are undertaking parameter sensitivity analyses to identify parameters to modify through data assimilation. At first we are assessing parameters contained in the PFT physiology parameter namelist file. Here we show results from perturbing four parameters: (i) leaf carbon to nitrogen ratio (leafcn); (ii) fraction of leaf N in rubisco (flnr); (iii) specific leaf area at top of canopy (slatop); and (iv) allocation ratio between fine root carbon and leaf carbon (froot_leaf).

The National Ecological Observatory Network (NEON) is a continental scale facility that will collect biogeochemical and biogeophysical data from 60 sites in the US over 30 years. NEON and other ecological observatories (ICOS, LTER, FLUXNET) provide data that can be utilized for continental-scale ecological forecasting, but new statistical and analytical tools are required that are capable of synthesizing this “data deluge”. NEON data products include gridded datasets of carbon and water fluxes across the continent. We are developing a model-data fusion framework in which NEON data will be combined with the Community Land Model (CLM) to produce optimal solutions for model parameter values, states and fluxes. This framework will enable spatial extrapolation of observations and ecological forecasting.

1. Background

The Community Land Model (CLM) is used as the land model in the Community Earth System Model (CESM). It simulates terrestrial ecosystem processes including the cycling of energy, water, carbon and nitrogen. CLM is driven by a limited set of climate variables, while the sensitivity of ecosystem processes to climate is controlled by the initial states and parameter sets of the model. The performance of CLM is being evaluated at a number of existing flux tower sites with long data records, many of which are NEON candidate core sites, including Harvard Forest, and Niwot Ridge. Typically, we find energy fluxes to be more accurately simulated than carbon fluxes (Figure 2).

2. Community Land Model (CLM)

A MODEL-DATA FUSION APPROACH TO INTEGRATE NATIONAL ECOLOGICAL OBSERVATORY NETWORK OBSERVATIONS INTO AN EARTH SYSTEM MODEL Andrew M. Fox1,2, Timothy J. Hoar2, William J. Sacks2, David J. P. Moore3, Steve Berukoff1, David S. Schimel1

1 National Ecological Observatory Network; 2 National Center for Atmospheric Research; 3 University of Arizona

6. Future Work

5. Parameter sensitivity analysis

For details as to how this work fits into the larger picture of model-data fusion facilitated by NEON see B11D-0514 Observatory enabled modeling of the Global Carbon Cycle, Schimel et al, in this session. We will continue undertaking a series of observing system simulation experiments to test the ability of the filter to update a number of CLM states. We will use a suite of synthetic observations of carbon and water fluxes and pools available at different temporal frequencies based on those that will be made at NEON sites in the future. We will then extend the DART state vector to include CLM parameters and test how we can us this ensemble approach in parameter optimization. Will we investigate how this approach works with parameters which control processes operating at very different timescales. We will investigate how to assimilate data into a spun-up model if the true initial state of the system at the time when observations become available is unknown.

Figure 2. Observed (blue) and modeled (red) carbon and water fluxes at Harvard Forest FLUXNET site

Figure 1. CLM/NEON Model-data fusion framework

Community Land Model

Scaled observations

Eddy Covariance

Airborne LIDAR

Gridded climate Ground biomass Measurements

Airborne Hyperspectral

Gridded Carbon and Water Dynamics

Forward

Operators

DART

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005−10

−8

−6

−4

−2

0

2

4

Mea

n da

ily N

EE (µ

mol

CO

2 m−2

s−1

)

ObsModel

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005−50

0

50

100

150

200

Mea

n da

ily L

E (W

m−2

)

Time (years)

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005−10

−8

−6

−4

−2

0

2

4

Mea

n da

ily N

EE (µ

mol

CO

2 m−2

s−1

)

ObsModel

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005−50

0

50

100

150

200

Mea

n da

ily L

E (W

m−2

)

Time (years)

Starting from a ‘spun up’ global CLM case for year 2000 we advance a 40-member ensemble of the global model for 120 days. Each instance of CLM is coupled with an individual from an ensemble of data-atmospheres. A single instance of CLM from the ensemble is then assigned to be the ‘truth’ and run forward. Daily ‘observations’ of leaf carbon (leafc) are collected at sites (grid cells) across the globe by adding Gaussian noise to the actual leafc state at these locations. These ‘observations’ are then assimilated by DART as the whole 40-member ensemble is run forward.

4. Observing System Simulation Experiment

Figure 5. Prior and posterior probability distributions of leaf carbon in a single grid cell at 60°W, 4°S for nine days of assimilation

3. CLM-DART coupling

0 50 100−200

−150

−100

−50

0

50

100

150leafcn

NEE

(gC

m−2

a−1

)

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150flnr

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150froot leaf

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150slatop

Time (years)

0 20 40 60−200

−150

−100

−50

0

50

100

150

NEE

(gC

m−2

a−1

)

Parameter value0 0.05 0.1 0.15 0.2

−200

−150

−100

−50

0

50

100

150

Parameter value0 0.5 1 1.5 2

−200

−150

−100

−50

0

50

100

150

Parameter value0 0.02 0.04 0.06

−200

−150

−100

−50

0

50

100

150

Parameter value

0 50 100−200

−150

−100

−50

0

50

100

150leafcn

NEE

(gC

m−2

a−1

)

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150flnr

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150froot leaf

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150slatop

Time (years)

0 20 40 60−200

−150

−100

−50

0

50

100

150

Parameter value

NEE

(gC

m−2

a−1

)

Year 1Year 5Year 10Year 20Year 40Year 80

0 0.05 0.1 0.15 0.2−200

−150

−100

−50

0

50

100

150

Parameter value0 0.5 1 1.5 2

−200

−150

−100

−50

0

50

100

150

Parameter value0 0.02 0.04 0.06

−200

−150

−100

−50

0

50

100

150

Parameter value

0 50 100−200

−150

−100

−50

0

50

100

150leafcn

NEE

(gC

m−2

a−1

)

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150flnr

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150froot leaf

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150slatop

Time (years)

0 20 40 60−200

−150

−100

−50

0

50

100

150

Parameter value

NEE

(gC

m−2

a−1

)

Year 1Year 5Year 10Year 20Year 40Year 80

0 0.05 0.1 0.15 0.2−200

−150

−100

−50

0

50

100

150

Parameter value0 0.5 1 1.5 2

−200

−150

−100

−50

0

50

100

150

Parameter value0 0.02 0.04 0.06

−200

−150

−100

−50

0

50

100

150

Parameter value

0 50 100

5400

5600

5800

6000

6200

leafcn

Soil

Car

bon

(gC

m−2

)

Time (years)0 50 100

5400

5600

5800

6000

6200

flnr

Time (years)0 50 100

5400

5600

5800

6000

6200

froot leaf

Time (years)0 50 100

5400

5600

5800

6000

6200

slatop

Time (years)

0 20 40 60

5400

5600

5800

6000

6200

Soil

Car

bon

(gC

m−2

)

Parameter value0 0.05 0.1 0.15 0.2

5400

5600

5800

6000

6200

Parameter value0 0.5 1 1.5 2

5400

5600

5800

6000

6200

Parameter value0 0.02 0.04 0.06

5400

5600

5800

6000

6200

Parameter value

0 50 100−200

−150

−100

−50

0

50

100

150leafcn

NEE

(gC

m−2

a−1

)

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150flnr

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150froot leaf

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150slatop

Time (years)

0 20 40 60−200

−150

−100

−50

0

50

100

150

NEE

(gC

m−2

a−1

)

Parameter value0 0.05 0.1 0.15 0.2

−200

−150

−100

−50

0

50

100

150

Parameter value0 0.5 1 1.5 2

−200

−150

−100

−50

0

50

100

150

Parameter value0 0.02 0.04 0.06

−200

−150

−100

−50

0

50

100

150

Parameter value

0 50 100−200

−150

−100

−50

0

50

100

150leafcn

Time (years)

NEE

(gC

m−2

a−1

)

DefaultPerturbation

0 50 100−200

−150

−100

−50

0

50

100

150flnr

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150froot leaf

Time (years)0 50 100

−200

−150

−100

−50

0

50

100

150slatop

Time (years)

0 20 40 60−200

−150

−100

−50

0

50

100

150

Parameter value

NEE

(gC

m−2

a−1

)

Year 1Year 5Year 10Year 20Year 40Year 80

0 0.05 0.1 0.15 0.2−200

−150

−100

−50

0

50

100

150

Parameter value0 0.5 1 1.5 2

−200

−150

−100

−50

0

50

100

150

Parameter value0 0.02 0.04 0.06

−200

−150

−100

−50

0

50

100

150

Parameter value

0 50 100

5400

5600

5800

6000

6200

leafcn

Soil

Car

bon

(gC

m−2

)

Time (years)0 50 100

5400

5600

5800

6000

6200

flnr

Time (years)0 50 100

5400

5600

5800

6000

6200

froot leaf

Time (years)0 50 100

5400

5600

5800

6000

6200

slatop

Time (years)

0 20 40 60

5400

5600

5800

6000

6200

Soil

Car

bon

(gC

m−2

)

Parameter value0 0.05 0.1 0.15 0.2

5400

5600

5800

6000

6200

Parameter value0 0.5 1 1.5 2

5400

5600

5800

6000

6200

Parameter value0 0.02 0.04 0.06

5400

5600

5800

6000

6200

Parameter value

Figure 3. Multi-Instance CESM

Figure 4. DART schematic

A multi-instance version of CESM has been developed that more easily facilitates ensemble-based model-data fusion techniques. For example, multiple land models can be driven by multiple data-atmospheres in a single executable. This capability will be available in the next CESM public release.

We are applying expertise developed in numerical weather prediction to carbon cycle science by coupling CLM to the Data Assimilation Research Testbed (DART). An important difference is our goal is also to estimate parameter values, which give insight into process-level responses to environmental variation. DART is a community facility for ensemble data assimilation developed and maintained at the National Center for Atmospheric Research (NCAR) that provides a number of enhancements to basic filtering algorithms (Figure 4).

305 310 3150

0.1

0.2

0.3

5/1/2000

305 310 3150

0.1

0.2

0.3

5/2/2000

305 310 3150

0.1

0.2

0.3

5/3/2000

305 310 3150

0.1

0.2

0.3

5/4/2000

305 310 3150

0.1

0.2

0.3

5/5/2000

305 310 3150

0.1

0.2

0.3Prob

abili

ty

5/6/2000

305 310 3150

0.1

0.2

0.3

5/7/2000

305 310 3150

0.1

0.2

0.3

leafc (gC m−2)

5/8/2000

305 310 3150

0.1

0.2

0.3

5/9/2000

5/1/2000 5/2/2000 5/3/2000 5/4/2000 5/5/2000 5/6/2000 5/7/2000 5/8/2000 5/9/2000308

309

310

311

312

313

314

Date

leaf

c (g

C m−2

)

5/1/20005/2/20005/3/20005/4/20005/5/20005/6/20005/7/20005/8/20005/9/2000308

309

310

311

312

313

314

Date

leaf

c (g

C m−2

)

ObsPriorPosteriorPrior +−1SDPost +−1SD

5/1/2000 5/2/2000 5/3/2000 5/4/2000 5/5/2000 5/6/2000 5/7/2000 5/8/2000 5/9/2000308

309

310

311

312

313

314

Date

leaf

c (g

C m−2

)

5/1/20005/2/20005/3/20005/4/20005/5/20005/6/20005/7/20005/8/20005/9/2000308

309

310

311

312

313

314

Date

leaf

c (g

C m−2

)

ObsPriorPosteriorPrior +−1SDPost +−1SD

Figure 6. Annual NEE and soil carbon calculated using default parameter values (red) and 14 parameter value perturbations (blue) and scatter plots

of annual NEE and soil carbon against parameter value at six time intervals

Contact Information: [email protected]