a multiscale simulation approach to modelling drug-protein ...study on the hiv-1 protease inhibitors...

12
1 A Multiscale Simulation Approach to Modelling Drug-Protein Bind- ing Kinetics. Susanta Haldar §, Federico Comitani , Giorgio Saladino , Christopher Woods § , Marc W. van der Kamp , Adrian J. Mulholland §* and Francesco Luigi Gervasio * . †Department of Chemistry, and ‡Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom. §Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK. #School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK. KEYWORDS: Binding kinetics, molecular dynamics, computer-aided drug design, enhanced sampling algorithms, multi-scale simu- lations, metadynamics, Monte Carlo, QM/MM. ABSTRACT: Drug-target binding kinetics has recently emerged as a sometimes critical determinant of in vivo efficacy and toxicity. Its rational optimization to improve potency or reduce side effects of drugs is, however, extremely difficult. Molecular simulations can play a crucial role in identifying features and properties of small ligands and their protein targets affecting the binding kinetics, but significant challenges include the long timescales involved in (un)binding events and the limited accuracy of empirical atomistic force-fields (lacking e.g. changes in electronic polarization). In an effort to overcome these hurdles, we propose a method that combines state-of-the-art enhanced sampling simulations and quantum mechanics/mo- lecular mechanics (QM/MM) calculations at the BLYP/VDZ level to compute association free energy profiles and characterize the binding kinetics in terms of structure and dynamics of the transition state ensemble. We test our combined approach on the binding of the anticancer drug Imatinib to Src kinase, a well-characterized target for cancer therapy with a complex bind- ing mechanism involving significant conformational changes. The results indicate significant changes in polarization along the binding pathways, which affect the predicted binding kinetics. This is likely to be of widespread importance in ligand- target binding. Introduction Understanding protein-ligand binding mechanisms and their associated thermodynamics and kinetics is of paramount importance for the rational optimi- zation of lead compounds in drug discovery. 1–3 In computer-aided drug discovery (CADD) the main emphasis has so far been placed on predicting the most likely binding pose (usually by docking and other fast but approximate methods) 4 and deter- mining relative binding affinity 5,6 . In contrast, only recently, it has been possible to predict the path- ways for binding/unbinding events and their asso- ciated free energy profiles through more refined computational methods 1,7–11 . However, it is increas- ingly recognized that protein-ligand binding kinet- ics are crucial for understanding the efficacy and toxicity of lead compounds. Molecular simulations have now been shown to be an important tool for the investigation of molecular properties at the base of kinetic behaviors in a number of cases. 12–14 Ligand efficacy in vivo is influenced by a complex network of short- and long-lived interactions with a plethora of biomolecules in the crowded cellular and tissutal milieu, where the concentration of the ligand itself is variable and dependent on its dy- namics and kinetic properties (absorption, distri- bution, metabolism, excretion). 12 Thus, in addition to the binding affinity to desired (and unwanted) targets (Kd), which has received most attention in rational drug discovery, the association/dissocia- tion rate constants (kon and koff) or the residence time (τ defined as 1/koff, the period of occupancy of the target binding site by the ligand) are relevant in determining the therapeutic efficacy and toxicity of drugs. 13,14 Examples can be found among many ap- proved drugs, some of which have very long resi- dence times, as in the case of finasteride, an inhibi- tor of 5α-reductase used to treat benign prostate

Upload: others

Post on 24-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Multiscale Simulation Approach to Modelling Drug-Protein ...study on the HIV-1 protease inhibitors that indi-cated that polarization contributes to binding.56 On the basis of such

1

A Multiscale Simulation Approach to Modelling Drug-Protein Bind-ing Kinetics. SusantaHaldar§⊥,FedericoComitani†⊥,GiorgioSaladino†,ChristopherWoods§,MarcW.vanderKamp#§,AdrianJ.Mulholland§*andFrancescoLuigiGervasio†‡*.

†DepartmentofChemistry,and‡InstituteofStructuralandMolecularBiology,UniversityCollegeLondon,LondonWC1E6BT,UnitedKingdom.§CentreforComputationalChemistry,SchoolofChemistry,UniversityofBristol,Bristol,BS81TS,UK.#SchoolofBiochemistry,UniversityofBristol,Bristol,BS81TD,UK.KEYWORDS:Bindingkinetics,moleculardynamics,computer-aideddrugdesign,enhancedsamplingalgorithms,multi-scalesimu-lations,metadynamics,MonteCarlo,QM/MM.

ABSTRACT:Drug-targetbindingkineticshasrecentlyemergedasasometimescriticaldeterminantofinvivoefficacyandtoxicity.Itsrationaloptimizationtoimprovepotencyorreducesideeffectsofdrugsis,however,extremelydifficult.Molecularsimulationscanplayacrucialroleinidentifyingfeaturesandpropertiesofsmallligandsandtheirproteintargetsaffectingthebindingkinetics,butsignificantchallenges include the longtimescales involved in(un)bindingeventsandthelimitedaccuracyofempiricalatomisticforce-fields(lackinge.g.changesinelectronicpolarization).Inanefforttoovercomethesehurdles,weproposeamethodthatcombinesstate-of-the-artenhancedsamplingsimulationsandquantummechanics/mo-lecularmechanics(QM/MM)calculationsattheBLYP/VDZleveltocomputeassociationfreeenergyprofilesandcharacterizethebindingkineticsintermsofstructureanddynamicsofthetransitionstateensemble.WetestourcombinedapproachonthebindingoftheanticancerdrugImatinibtoSrckinase,awell-characterizedtargetforcancertherapywithacomplexbind-ingmechanisminvolvingsignificantconformationalchanges.Theresultsindicatesignificantchangesinpolarizationalongthebindingpathways,whichaffectthepredictedbindingkinetics.Thisislikelytobeofwidespreadimportanceinligand-targetbinding.

Introduction

Understandingprotein-ligandbindingmechanismsandtheirassociatedthermodynamicsandkineticsisofparamountimportancefortherationaloptimi-zationof lead compounds indrugdiscovery.1–3 Incomputer-aided drug discovery (CADD) themainemphasishassofarbeenplacedonpredictingthemost likely bindingpose (usually by docking andother fast but approximatemethods)4 and deter-miningrelativebindingaffinity5,6.Incontrast,onlyrecently, it hasbeenpossible topredict thepath-waysforbinding/unbindingeventsandtheirasso-ciated free energy profiles through more refinedcomputationalmethods1,7–11.However,itisincreas-inglyrecognizedthatprotein-ligandbindingkinet-ics are crucial for understanding the efficacy andtoxicityof leadcompounds.Molecularsimulationshavenowbeenshowntobeanimportanttoolforthe investigation of molecular properties at the

baseofkineticbehaviorsinanumberofcases.12–14

Ligandefficacy in vivo is influencedby a complexnetworkofshort-andlong-livedinteractionswithaplethora of biomolecules in the crowded cellularandtissutalmilieu,wheretheconcentrationoftheligand itself is variable and dependent on its dy-namics and kinetic properties (absorption, distri-bution,metabolism,excretion).12Thus, inadditionto thebindingaffinity todesired (andunwanted)targets (Kd),whichhasreceivedmostattentioninrational drug discovery, the association/dissocia-tion rate constants (konand koff) or the residencetime(τdefinedas1/koff,theperiodofoccupancyofthetargetbindingsitebytheligand)arerelevantindeterminingthetherapeuticefficacyandtoxicityofdrugs.13,14Examplescanbefoundamongmanyap-proveddrugs, someofwhichhavevery longresi-dencetimes,asinthecaseoffinasteride,aninhibi-tor of 5α-reductase used to treat benignprostate

Page 2: A Multiscale Simulation Approach to Modelling Drug-Protein ...study on the HIV-1 protease inhibitors that indi-cated that polarization contributes to binding.56 On the basis of such

2

hyperplasia,orevenbindirreversibly,asforaspi-rin.15Moreevidenceofadirectcorrelationbetweenresidence time (oron- or off-rates) and the func-tionalefficacyofdrugs,(asintheexemplarycaseofadenosineA2agonists,16)isemerging.Also,shorterinteraction times with unwanted targets may re-ducesideeffectsandtoxicity.17

Theincreasingrealizationoftheimportanceofres-idencetimeandbindingkineticshasledtonumer-ous efforts to develop and use computational ap-proachesabletopredictandmodelthem.Manyarebasedonatomisticmoleculardynamics(MD)simu-lations,oftencomplementedbyMarkovStateMod-els, e.g. combined by Brownian dynamics simula-tionsand/orapplyingmilestoningapproaches11,18–24.Thepotentialofsuchmethodsinmodelingkinet-ics,isclear,especiallyofligandsbindingtosurfacepockets. However, a significant limiting factor isthatthetimescalesaccessibleinatomisticMDsim-ulations are much shorter than most unbindingevents.19,23Addingtothisisthelimitedaccuracyofmolecular mechanics (MM) force-fields, typicallyused in the forbiochemicalstudies.Thesolvationenvironmentofligandschangessignificantlyduringthebindingandunbindingevents, suggesting thatchanges in electronicpolarization, usuallynot ac-countedforinsuchforce-fields,mayplayaroleindeterminingthekinetics.1,25–27

Enhancedsamplingfreeenergymethodshavebeensuccessfullyusedtoaddressthetimescaleprobleminligandbindinginanumberofcases1,28–30.Byac-celerating rare events and facilitating the estima-tionofbindingfreeenergiesalongphysicallymean-ingfulassociationpathways,suchmethodsallowtoidentifythetransitionstateensembleandcomputeits associated energy.1,31–33 Among these,metady-namics-basedmethodswithoptimalpath-likevari-ables,suchasPathCollectiveVariable(PCV),34com-bined with Parallel Tempering (PTmetaD), haveprovedparticularlyusefulinpredictingthemecha-nismsandfreeenergyprofilesassociatedwithmo-lecularrecognition.8,21,28,30,35–37

Tiwari et al. have recently developed a protocolmakinguseofmetadynamicstoreconstructtheki-neticsofbindingeventsforwhichasinglefreeen-ergy barrier clearly separates the bound and un-bound states.38 In theseparticularly simple cases,thebindingkineticscanbeeffectivelypredictedun-derthestrictconditionthatthetransitionoverthebarrierismuchfasterthanthemetadynamicsbiasdepositiontime.39,40However,when(un)bindingis

characterizedbyacomplex,diffusivebarrier,withintermediatemetastablestates,thisconditionisnotfulfilled,makingitdifficulttoemploythismethod.This scenario ariseswhenmultiple weak bindingsitesarefoundenroutetothefinalbindingmode,orwhenconformationalchangesinthetargetupon,orprior to, the interactionwith the ligandarere-quiredforafullbinding.37,41–45Extracarehastobetakenwhendealingwithsuchsystems,asboththebinding and the conformational transition termscontributetothekinetics.TransitionPathSampling(TPS)46-basedapproaches,suchasTransitionState-Partial Path Transition Interface Sampling (TS-PPTIS)47arebettersuitedforsuchsystems.

TS-PPTIS combinesPCV34withPartial Path Inter-faceSampling.33Itprovidesanaccuratedescriptionofbindingeventsbelongingtoeithertheconforma-tionalselectionortheinduced-fitcategorieswhileallowing for an efficient calculation of rate con-stants. Metadynamics is first used in conjunctionwith the optimal PCV collective variables to dis-placetheligandfromthedeepfreeenergyminimaassociated with long residence times, which areotherwise very difficult to overcome by standardMDorTPSapproaches,whilePPTISisusedtoaccu-ratelysamplethediffusivebarriers,includingthosehaving additional shallow localminima. TS-PPTISbuildsonPPTISbyreformulatingthereactivefluxequation, to allow for the sampling of smallwin-dowsalongthebindingpathwayinsteadoftheen-tire trajectory fromreagentstoproducts, improv-ingtheconvergencetimes.

Thisisanaccuratebutcomputationallyexpensiveapproach.Bothaconvergedmetadynamicsrunanda number of short unbiased MD simulations runfrom the interfaces around the transition state,mustbeperformed.47ItishoweverexpectedtobemorerobustandaccuratethanotherMD-basedap-proaches, especially when the non-trivial confor-mationalrearrangementsoftargetplayaroleinthebinding.21Wehavepreviouslyusedthismethodtomodel the binding mechanism of the anti-cancerdrug imatinib to theprotein tyrosinekinasec-Srcandtocompute itskinetics.TS-PPTISwasable torecovertheexperimentalassociationkineticsasob-tainedbysurfaceplasmonresonanceand,bymod-elingthetargetconformationaldynamics,torecon-cile the contrasting conformational selection andinduced-fitmechanismshypothesizedforthiscom-plex.21

Page 3: A Multiscale Simulation Approach to Modelling Drug-Protein ...study on the HIV-1 protease inhibitors that indi-cated that polarization contributes to binding.56 On the basis of such

3

MM force-fieldshavebeendevelopedand refinedovermanyyears,andcannowprovideanexcellentoveralldescriptionofproteinstructureanddynam-ics,whileroutinedevelopmentofappropriatepa-rameters for ligands requires some effort. 26,48–51The typical invariant atom-centered point chargeMMmodelcannotprovideafulldescriptionofmo-lecular electrostatic properties. Potentially im-portantfeaturessuchaspicloudinteractions52andsigmaholes53cannotberepresentedbymodelsthatincludechargesonlyanatomiccenters.Also,envi-ronmentalchangesdonotaffectthechargesandsochangesinelectronicpolarizationeffectsarenotin-cluded;polarization is included in anaverage, in-variantway(e.g.chargesgivinganenhanceddipolemoment)generallyappropriateforasolvatedmol-ecule.Sucheffects,however,mayplayasignificantrole in drug binding and unbinding: for example,theremaybesignificantchangesinpolarizationbe-causeofthechangeinsolvationastheligandbinds.Electronicpolarizationcanbecapturedbymoreso-phisticatedandphysicallyrealistictreatments,ide-allybasedonaquantummechanical(QM)levelofdescription.54

PioneeringworkbyGaoetal.demonstratedthepo-tential of QM/MM simulations to investigate andquantify electronic polarization effects in solva-tion.55Gaoalsowentontoapplythisapproachtoprotein− ligand binding affinities, e.g., a QM/MMstudy on the HIV-1 protease inhibitors that indi-catedthatpolarizationcontributestobinding.56

Onthebasisofsuchresults,wehavethusdevelopedamethodthatappliestheWarshelcyclewithaMe-tropolis-Hastingsalgorithmtoallowforarigorousandefficientquantificationofthechangeininterac-tionenergiesofaligandwhenchangingfromanMMto a QM description.57 The result of transitioningfromafullyMMforcefieldtoaQM/MMrepresen-tationisquantifiedbymeansoffreeenergysimula-tions driven by a reaction coordinate convertingfromone level of description toanother. Efficientsampling is achieved through replica exchangeacross valuesof the reaction coordinate,with thefreeenergyforchangingfromanMMHamiltoniantoaQMHamiltoniancalculatedbythermodynamicintegration.57,58 We have previously applied thismethodtochecktheeffectsofaQMdescriptionoftheligandonthebindingaffinity57,59.Forexample,polarizationeffectsontheabsolutebindingfreeen-ergyofthecavitywatermoleculesinInfluenzaNeu-raminidasewereinvestigatedinourworkofRef.60

,wherewehaveshownthatthepolarizationcanin-deedcauseanotableincreaseintheabsolutebind-ingfreeenergy,upto~1.0kcal/mol.

To address both the timescale problems and theforce-field inaccuracies, we combine here TS-TPPTIS,tocalculatebindingpathways,samplethetransitionstateandprovide themostaccurateki-neticsinformationattheempirical(MM)level,withtheimprovedaccuracyobtainedfromquantumme-chanicalcalculationswithinaQM/MMframework.Althoughtestedextensivelyonbindingaffinitypre-dictions,ourmethodhasneverbeenusedtocorrectthedrugbindingkineticsbefore.

Theresultingprotocolisefficientwhileallowingforelectronicpolarizationeffectsoftheligandtobein-cluded.57 Furthermore, other factors, such as thedefinitionofπsystems,andsigmaholesarelikelytobetakenintoaccountbythiscorrection,buttheireffectalongthebindingpathislikelytobenegligi-ble.

As a test case, we revisited the binding of theanticancer drug imatinib to Src non-receptortyrosine kinase. Src was the first viral oncogenicproteintobediscovered,61,62andprovidesanidealsystem for mechanistic explorations of complexdrugbindingeventsduetoitshighconformationalflexibility,63 biomedical importance and theavailability of extensive experimental andcomputational data,21,43,64–67 including highresolutioncrystalstructuresinboththeactive(PDBid:1Y57,1YI6)68andinactiveconformations(PDBid: 2SRC).69 Src is often mutated in a variety oftumors, including those of the colon, liver, lung,breast,andpancreas.Srcplaysanimportantroleinmetastasis and has been thus the subject ofnumerous drug design studies over many years.Inhibitors such as dasatinib, saracatinib, andbosutinibaresomeofthecompoundsdevelopedtotargetthisproteinwhichenteredclinicaltests.70

Aprototypicalinhibitorisimatinib,adrugusedtotreatanumberofdifferenttumors:forexample,itdeactivates the tyrosine kinase c-Abl, theautoinhibitionmechanismofwhichmalfunctionsinchronic myelogenous leukemia.71 Imatinib alsobindstoaninactiveconformationofSrc,72inwhichtheaspartate(D404)oftheconservedAsp-Phe-Glymotif(DFG),locatedattheendoftheactivationloop(A-loop),pointsoutwards(DFG-flip)fromtheATPbindingsite(seeFigure1).

Page 4: A Multiscale Simulation Approach to Modelling Drug-Protein ...study on the HIV-1 protease inhibitors that indi-cated that polarization contributes to binding.56 On the basis of such

4

Figure1.a)Structureofthecatalyticdomainofc-Src,whererelevant secondary structures are highlighted with differentcolors.Imatinibisshowninblue.b)Lewisstructureofimatinib.c)The c-Src binding site: residues involved in the conforma-tional rearrangementuponbindingof imatinibare showninmauve.

ImatinibhasbeenproposedtoexertitseffectontheDFG-flip conformational change by either aconformational selection or induced-fitmechanisms.19,21,64,66,73,74 We have shown, bycombining state-of-the-art binding simulationswith NMR and surface plasmon resonanceexperiments, that at room temperature, theconformational selection path is dominant,althoughbothmechanismsarepossible(seeFigure2).21

Methods

TheSrcstructureswereretrievedfromtheProteinData Bank (PDB entries2SRCand2OIQ).Missingresidues in 2OIQ were added using the softwareModeller75, according to the respective UniProtsequenceandusing2SRCasatemplate.Fortheapostructure,weusedtheAmber99SB*-ILDN51,76forcefield, includingbackbonecorrectionswithexplicitsolvationofTIP3Pwatermolecules.TheligandwasparameterizedwithGAFF77withchargescalculatedattheHartreeFocklevelusinga6-31G(d)basissetwithGaussian0978andthedihedralsca-ca-n-candca-ca-c3-n3byDFTtorsionalscanswithastepof10degrees.21 All simulations and free energycalculationswere performed using Gromacs 4.679combinedwiththePLUMEDplug-in80.Thesystemwas minimized with 10000 steps of conjugatedgradient and equilibrated in the isothermal-

isobaric (NPT) ensemble for 10 ns, using aBerendsenbarostattokeepthepressureat1atm.The temperature was kept at 305 K with the V-rescale algorithm.81 A 1 μs production run wascarried out for all the systems in the canonical(NVT)ensemble.TheparticlemeshEwald(PME)-Switch algorithm was used for electrostaticinteractionswithacut-offof1nm.Asinglecut-offof1.2nmwasusedforvanderWaalsinteractions.The binding free energy was computed usingparallel-tempering metadynamics (PT-MetaD)82with 5 replicas using the Well-TemperedEnsemble83with3CollectiveVariables(CVs):the2Path Collective Variables (PCVs) s and z, keepingtrackoftheprogressionandthedistancefromtheunbinding path respectively,34 and a CV countingthe number of water molecules interacting withboththeligandandthecavity.Thebiasfactorwassetto15.0andtheGaussiansheightto1.25kJ/mol,with a deposition rate of 1/2000 steps. TheGaussianwidthwassetto0.1,0.005and0.1forthethree CVs, respectively. As customary for ligandbinding7, we performed a preliminarymetadynamicsrunusingasimplegeometricalCVtoobtainaninitialpathwayforthesetupofthePCVs.Weselected27framesfromthelowestenergypathobtainedinthepreliminaryrunandoptimizedthisinitial guess using themethodology described byBranduardietal.34ThepreliminarymetadynamicsshowedlargerearrangementsoftheA-loop,soweincludedCαatomsoftheloopandoftheaC-helixinthedefinitionofthePCVs.TwoextraCVsdefinedasthe distance between D404 and K295 and thedistance between P405 and L317 were used todescribetheDFG-flip.64Thesamplingconvergencewascheckedbycomparing thereconstructedfreeenergy surfaces at different time intervals duringthelast50nsofthesimulations.

FollowingtheenhancedsamplingMDsimulations,weappliedareactioncoordinate,λtotunetheQMvs MM descriptions, by scaling the HamiltonianfromaQM(λ=0)statetoanMM(λ=1)state.TheλcoordinateisusedinReplicaExchangeThermody-namic Integration (RETI)84 simulations, with theMetropolis-HastingMonteCarlomethod, toaccel-erate the sampling of the systemwith a QM/MMHamiltonian57 (for amore detailed description ofthe QM/MM FEP methodology, see SI). All theQM/MM simulations were performed at theBLYP85,86/VDZ level of theory, using the ‘quan-tomm’ application for QM<->MM transformationsavailable in Sire(www.siremol.org)87, using Sire’sMonte Carlo engine to drive the simulations and

Page 5: A Multiscale Simulation Approach to Modelling Drug-Protein ...study on the HIV-1 protease inhibitors that indi-cated that polarization contributes to binding.56 On the basis of such

5

Molpro88 for QM energy calculations. Previoustests89havedemonstratedthattheBLYPfunctionalshows good consistencywithdifferentMMwatermodels.Shawetal.showedthatthefreeenergycostofperturbingaQMwatermoleculeintoanMMde-scriptioninbulkMMsolventislessthan1kcal/molwithBLYP (0.5kcal/mol forQM→TIP3Pand−0.1kcal/molforQM→TIP4Ptransformation).89

AllMonteCarlosimulationswererunintheNPTen-sembleatroomtemperature(300K).ThesameMMLennard-Jones parameters used for the MD andPTmetaD simulations were maintained in theQM/MM simulations; this has previously beenshowntoprovideareasonabledescriptionofbio-molecular interactions.90,91 The ligand confor-mationswereindeedfoundtobeconsistentlysimi-lar in both the QM/MM and theMM simulations.(seeSI,figureS2).

TheRETIschemewasperformedusing8differentλwidowsand thevalues:0.0,0.142,0.285,0.429,0.571,0.714,0.857and1.0andweranatotalof50blocks of multiscale Monte Carlomoves for eachwindowi.e. foreachlambdavalue.Onlytheinter-molecular component of the QM/MM energywasincludedfortheligand.Thismeansthatthefreeen-ergy correction between the QM/MM and MMmodel captured differences in the intermolecularinteractionsinvolvingtheligandonly.Thisparticu-larchoicewasmadetosimplifythedescriptionandavoid calculations on intramolecular interac-tions.92,93

We performed 2.5 million MC moves in the MMHamiltonianperlambdawindowandatotalof50QMenergyevaluationsperlambdawindow.Into-tal, over 8 lambda windows, 20 million MM MCmoves and 400 QM energies were evaluated.In all the QM/MM perturbation calculations, theproteinbackbonewaskeptfixed,whileaminoacidsidechainsandwatermoleculeswerefreetomove.

Results

Freeenergyandkinetics calculations.The freeenergy profile associated with the binding andunbinding of the ligand (imatinib) from c-Src isshowninupperpanelinFig.2.Inthelowerpanelsarerepresentativesnapshotsoftheunbindingtra-jectory.Thesystempresentstwoseparatebindingposes(AandB),distinctonlybythepositionoftheA-loopcoveringthebindingcavity,whichthroughapartialhingemotionopensanddetachesfromthe

β3-αClinker.Thismovementanticipatesandiscru-cialtotheunbindingofimatinibandwasthusex-plicitlytakenintoaccountduringtheMetaDsimu-lations.Withtheexceptionoflocalrearrangementsintheresidualchainsinthesesecondarystructures,nonoticeabledifferenceisobservedbetweenAandB in the binding conformation, in the level ofsolvationandintheinteractionwiththecavityres-idues. The difference in free energy between thetwominimaislessthan1kcal/molwithAbeingthemost stable of the two conformations. Looking attheensembleofAandBconformations,wecanob-serve that they are close to the reference X-raystructurebindingpose.Themainbodyislockedinposition by the presence of a tight-knitted saltbridges network betweenD404, R409, E310, andK295(showninmauveinFig.2bottom),whiletheterminalpiperazine, theonlysolvatedmoietyout-side of the cavity, hasmore freedom to fluctuate.The ligand interacts transiently with a few back-boneatoms,mainly through itsaromaticringsni-trogens. In particular T338, M341 and D404, theonly residue of the salt bridges network consist-entlyinteractingwiththeligandviaitsbackboneni-trogen. A few aromatic residues, Y340 and F405mayalsohelptopindowntheligandbymeansofπ-stacking.

The transition towardtheunboundstate(TS), re-quiresthebreakingofthesaltbridgesnetworkbymeans of steric hindrance, justifying the high en-ergybarrierseparatingthetwostates.InFig.2top,TS is locatedatSpath~12, and is indeed16±1.5kcal/molhigherthanthemainbindingposeA.TheA-loopopens,asmentionedpreviously,toallowforthe passage of the ligand, causing local defor-mationsintheresiduesbelongingtotheA-loopit-self,theD-loop,β3,αCandtheirlinker.Theconfor-mationsassumedbyimatinibforciblycutD404outofthesaltbridgesnetworkandpreventsitfromin-teractingwithR409andK295.ApartialunfoldingoftheαG-helixisalsoobservedinthisensemble,inagreement with observed folding free energychanges obtained from H/Dexchangeexperiments21.Beforereachingafullysolvatedstate,apre-bindingconformation(Corencountercomplex)isobservedatSpatharound15–16whereimatinibiswedgedun-derαC inwhatisknownas“deeppocket”21.Heretheterminalaminoringsoftheligandstillaffectthesalt bridges network, by transiently breaking thebond between K295 and E310 only. This can beseenasapreliminarysteptothefullbinding,useful

Page 6: A Multiscale Simulation Approach to Modelling Drug-Protein ...study on the HIV-1 protease inhibitors that indi-cated that polarization contributes to binding.56 On the basis of such

6

inhelpingtheligandfinditswaytothebindingsiteand in lowering the energy penalty of the saltbridgesdisruption.Thefreeenergyofthisbasinisapproximatively4kcal/molhigher than themainbasinA.

Figure 2. Top: Binding free energy profile obtained withmetadynamicssimulationusingtheMM-onlyforcefield,alongthe path variable, which defines an optimal association anddissociation coordinate. The most relevant minima and thetransitionstatearelabeledanddiscussedinthetext.Theareaofthetransitionstateisrepresentedasadashedline.Thetwoprofilesintheregionfroms(PCV1)=16tos=27(i.e.fromthesecondary pocket to the unbound state) correspond to theconformationalselectionmechanism(cyanline,‘flip-bind’)andtoaninducedfitmechanism(orangeline,‘bind-flip’).Bottom:exemplesnapshotsofanunfoldingevent.Asbefore,theproteinis shown as a white cartoon, the ligand in blue licorice, theresiduestakingpartofthesaltbridgesnetworkareinmauveandtheremainingresiduesinteractingwiththeligandareincyan.

NMRexperimentshaveconfirmedthepresenceofthis minimum, which is suggestive of a two-stepbinding process, in which a fast binding event isfollowed by a slower conformationalrearrangement.21TS-PPTISwasdevelopedtodeal

withparticularlydifficultcasessuchasthis,wherethe complexity of the unbinding mechanismslowers the transmission coefficient well below1.21,47 In order to evaluate the kinetics, thetransitionpathwaywasfirstdividedintoanumberof non-overlapping interfaces, from which morethan 10000 short unbiasedMD trajectories wereinitiated.Asexpected, thecomputed transmissioncoefficient proved to be much smaller than 1,leadingtoadissociationrateof0.0114s−1,orfrom0.001to0.139s−1,whenthesamplingerroronthefree energy, estimated at 0.593 kcal/mol, isaccounted for. The predicted rate is in fairagreementwiththatmeasuredbysurfaceplasmonresonance(SPR)atpH7.4,0.11±0.08s−1.21

QM/MM corrections.We computed the QM/MMbindingfreeenergycorrectionsonfourrepresenta-tivestructuresextractedfromthePTmetaDsimula-tions: in three of them, imatinib was complexedwith c-Src (A, TS, C, corresponding to the fullybound complex, transition state and encountercomplex,respectively),whileinthefourththelig-andisunboundandfullysolvated(seeFig.3).ThebindingposeinstateBshowninFig.2wasfoundtobesimilarto theboundstateAintermsof ligandorientation and its interactions with watermole-culesandtheproteinandwasthusneglectedinthiscalculation.

TheresultsareshowninTable1.ItisapparentthattheMMtoQM/MMfreeenergycorrectionchangessignificantly in the different environments: it islargestinsolution(4.7±0.4kcal/mol),andsmallestwhenimatinibisfullybound(1.9±0.3kcal/mol).Asexpected,thisseemstosuggestthatMMpredictionsonligandbindingkineticsmayhavesignificantlim-itations as the MM model may not capture im-portanteffectsandchangesalongthebindingpath-way,notablechangesinligandpolarization.

Thecalculateddifferenceinthefreeenergycorrec-tionsbetweenthebound(A)andtheunboundstateis2.8kcal/molandcouldbeexplainedbythediffer-entlevelof ligandburial inthehydrophobicenvi-ronmentofthepocket.Intheboundstate,thelig-andisdeepinthecavityandonlyitspiperazineringisexposedtothesolvent(seeFig.3),allowingonlyafewwatermoleculesaround.Ontheotherhand,thecorrectionvalue(4.7kcal/mol)inthesolvatedstate, much larger than in the bound state (1.9kcal/mol), is consistent with the polar environ-

Page 7: A Multiscale Simulation Approach to Modelling Drug-Protein ...study on the HIV-1 protease inhibitors that indi-cated that polarization contributes to binding.56 On the basis of such

7

ment,surroundingthemolecule.Furthermore,dif-ferent conformation sampledby the ligand in thesolvatedstatemayalsoaffectthecorrection(seeSI,figureS2).

ThefreeenergycorrectionattheTSis2.4kcal/mol,still larger than that of the bound state by 0.5kcal/mol. In this state, imatinib is detached fromthehingeregionofc-SrcandhasmovedtowardtheDFGmotif,allowingalayerofwatermoleculesbe-tweentheligandandtheprotein.Alargeportionoftheligandisthusaccessibletothesolvent,forminga solvation shell. In the TS, the polar groups ofimatinibformnumeroushydrogenbondswithwa-ter,whileonlythepositivelychargedR154residuefromtheproteinformsasaltbridgewiththeligand(seeFig.2and3).Similarly, towhatobserved fortheunboundstate,theligandmovestoalesshydro-phobicregionwhengoingforAtotheTSjustifyingthe increase in free energy correction.Followingthistrend,theQM/MMtoMMcorrectiontothefreeenergyfortheencountercomplex(C)isrelatively large, intermediatebetween theTS andthe fullysolvatedstate.Here thecorrection is3.9kcal/mol,with2kcal/molofdifferencefromstateA. Here, the nitrogen atom of the pyridine headgroupoftheligandfacesoutwardandismoresol-vent accessible than in previous conformationsalongtheunbindingpath,whiletherestofthelig-andbodyisfoundbetweenthepositivelychargedArg154andMet59;an interaction with themethio-ninesulphuratomcouldalsoaffectthepolarizationofthisintermediatestateandhelpincreasethecor-rectionfactor52.

Basin ∆∆GQM/MM→

MM

[kcal/mol]

∆GMM[kcal/mol]

∆G+∆∆G[kcal/mol]

ATS

-1.9±0.3-2.4±0.3

-7.0±1.09.0±1.5

-4.2±0.911.3±1.2

C -3.9±0.3 -3.4±1.0 -2.6±0.9Unbound -4.7±0.4 0.0±0.0 0.0±0.0

Table1:QM/MMtoMMcorrectiontothefreeenergycal-culated for selectedconformationsalong theminimumfree energy pathway.TheQM/MM freeenergy correc-tioniscalculatedwithBLYP/VDZleveloftheory.Theen-ergiesareinkcal/mol.Thestatisticalerrorisestimatedfromthestandarddeviationofthefreeenergyaverage.Inthefinalcolumn,thefinalvaluesof∆Gcorrectedareshownrelativetotheunboundstate(setatzero).

Figure3:Schematic representationof theboundstate(A),thetransitionstate(TS)andtheencountercomplex(C) of the imatinib/c-Src system used to calculateQM/MM to MM free energy corrections. Imatinib isshown in blue licorice. Residues R154 and M59 areshown in magenta licorice. The water molecules areshown as red spheres excluding hydrogen atoms. Thebackboneofc-Srcisshownasawhitecartoon. Inallcases,bothintheboundstates(A,TSandC)aswellasinthesolvated(unbound)state,theMM-QMfreeenergychangeispositive,highlightinghowtheligandismoresolvatedormorestronglyboundat the QM level rather than in the MM one. TheQM/MMfreeenergycorrectionissignificantinallthecomplexes,rangingfrom1.9kcal/mol(bound)to4.7kcal/mol(unbound),increasingasthedegreeofsolvationoftheligandincreases.

ThechangeinQM/MMfreeenergyalongthepathisthemostimportantfactorfromthepointofviewofpredicting the effect of polarization changes onbindingkinetics.Thelargestdifferenceinthecor-rection free energy is 2.8 kcal/mol between thebound(A)andunboundstate,i.e.theunboundstateismorestablerelativelyto theboundstateattheQM/MMlevel.TheTSandtheencountercomplex(C)havesmallerdifferencesinthecorrectionfreeenergiesrelativetotheboundstate(A):0.5and2.0kcal/mol,fortheTSandstateC,respectively.FromthefullyboundstatetotheTS,thedifferenceincor-rectionfreeenergyisquitesmall,0.5kcal/mol.Thisindicates that the structure of the TS ensemblewouldnotbesignificantlydifferentattheQM/MMlevel,meaningthattheMMTSensembleremainsagoodrepresentationoftheTSitself.

The difference in QM/MM correction energy be-tween the TS and the intermediate (C) is larger,~1.5kcal/mol,becauseofthelargerchangeinsolv-ationbetweenthesestates,asoutlinedabove.ThismeansthatthefreeenergyofthestateCisloweredrelativetotheTS,whichinturnwouldhavetheef-fect of slowing the transition from the encountercomplex to the fullybound state.The rateof for-mation of the encounter complex (C) howevershouldbereducedslightlywithrespecttotheMM

Page 8: A Multiscale Simulation Approach to Modelling Drug-Protein ...study on the HIV-1 protease inhibitors that indi-cated that polarization contributes to binding.56 On the basis of such

8

prediction,giventhe0.8kcal/molFEcorrectiondif-ferencebetweenthisbasinandtheunboundstate.

Fromtheseresults,wecanconcludethatthenetef-fect of the QM/MM corrections is to stabilize themore solvated formsof the ligand, relative to themoreboundforms.Asaconsequence,theeffectivefree energy barrier to the binding (both startingfromsolution,andfromtheencountercomplex)isincreasedandthebarriertounbindingisreduced.Whiledynamicaleffectsaresignificantindetermin-ing rates for binding, as our calculations haveshown,toafirstapproximationwecanassumethattheywouldbesimilarattheMMandQM/MMlev-els;withthisassumption,thechangeinratecanbeestimated by simple transition state theory. TheQM/MMresultssuggestthatkonwouldbereduced,whilewouldbekoffincreasedwhencomparedtothepredictionsobtainedfromtheMMforce-field.Fol-lowing this approach, the corrected dissociationrateforimatinibisimprovedto0.0260s-1,closertotheexperimentalvalueof(0.11±0.08s–1,obtainedSPR.21

Conclusions

Theuseofan invariantpointchargemodel(as instandardMMforce-fields)mayhavesignificantlim-itationsinpredictingprotein-ligandbindingkinet-ics(on-andoff-rates).Theresultspresentedinthispaper show that there are significant changes inQM/MMcorrectionenergies,thuschangesinelec-tronicpolarizationoftheimatinibligandduringtheprocessof(un)bindingtoSrcthatshouldnotbene-glected.TheQM/MMcorrectionfreeenergyissig-nificantlydependentonthelevelofsolvationoftheligand, with its minimum being observed inhydrophobic environments (bound state) and itsmaximuminhydrophilicareas(solvatedstate).Themultiscaleapproachpresentedhere,combiningTS-PPTISandourMonteCarlobasedQM/MMcorrec-tionmethodprovidesapracticalroutetoassessingthe contributionof ligandpolarization changes todrug-targetbindingkinetics.

ASSOCIATED CONTENT SupportingInformation.DetailsoftheQM/MMtoMMFreeenergyperturbationsimula-tion, the diagram of the “Multiscale Monte Carlo” approach,Replica Exchange Thermodynamic Integration scheme, theconformationalsamplingoftheligandattheQM/MMandMMlevelintheboundstateandintheunboundstateattheQM/MMlevel.TheSupportingInformationisavailablefreeofchargeontheACSPublicationswebsite.

AUTHOR INFORMATION

Corresponding Authors *[email protected]*[email protected]

Author Contributions ⊥S.HandF.Ccontributedequallytothiswork.F.CandG.Sranand analyzed themetadynamics simulations. S.H ran all theQM/MMtoMMfreeenergyperturbationsimulations(assistedbyM.W.vdK.andC.W.).Themanuscriptwaswrittenthroughcontributionsofallauthors.Allauthorshavegivenapprovaltothefinalversionofthemanuscript.

Funding This work is funded by EPSRC [grants no EP/M013898/1,EP/P022138/1, EP/M015378/1 and EP/P011306/1] for fi-nancialsupport.HECBiosim[EPSRCgrantnoEP/L000253/1],CCPBioSim [grant no EP/M022609/1], PRACE and the Ad-vancedComputingResearchCentreattheUniversityofBristolareacknowledgedforcomputertime.CJWisanEPSRCRSEFel-low(EP/N018591/1).MWvdKisaBBSRCDavidPhillipsFel-low(BB/M026280/1).Notes Theauthorsdeclarenocompetingfinancialinterest

ACKNOWLEDGMENT The Authors would like to thank Dr. Reynier Suardiaz and Dr. Kara Ranaghan for useful discussions.

ABBREVIATIONS CV,collectivevariable;PCV,PathCollectiveVariables;PT,par-allel tempering; TPS, Transition Path Sampling; TS-PPTIS,TransitionState-PartialPathTransitionInterfaceSampling.

REFERENCES (1) Cavalli, A.; Spitaleri, A.; Saladino, G.; Gervasio, F. L.

Investigating Drug-Target Association and DissociationMechanisms Using Metadynamics-Based Algorithms. Acc.Chem.Res.2014,48(2),277–285.

(2) Núñez,S.;Venhorst,J.;Kruse,C.G.Target-DrugInteractions:First Principles and Their Application to Drug Discovery.DrugDiscoveryToday.2012,pp10–22.

(3) Jorgensen, W. L. Efficient Drug Lead Discovery andOptimization.Acc.Chem.Res.2009.

(4) Leach, A. R.; Shoichet, B. K.; Peishoff, C. E. Prediction ofProtein-LigandInteractions.DockingandScoring:SuccessesandGaps.J.Med.Chem.2006,49(20),5851–5855.

(5) Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.;Lupyan,D.;Robinson,S.;Dahlgren,M.K.;Greenwood,J.;etal.AccurateandReliablePredictionofRelativeLigandBindingPotencyinProspectiveDrugDiscoverybyWayofaModernFree-Energy Calculation Protocol and Force Field. J. Am.Chem.Soc.2015,137(7).

(6) Homeyer, N.; Stoll, F.; Hillisch, A.; Gohlke, H. Binding FreeEnergy Calculations for Lead Optimization: Assessment ofTheirAccuracyinanIndustrialDrugDesignContext.J.Chem.TheoryComput.2014,10(8),3331–3344.

(7) Masetti,M.;Cavalli,A.;Recanatini,M.;Gervasio,F.L.ExploringComplex Protein-Ligand Recognition Mechanisms withCoarseMetadynamics.J.Phys.Chem.B2009,113(14),4807–4816.

(8) Saleh,N.;Ibrahim,P.;Saladino,G.;Gervasio,F.L.;Clark,T.AnEfficientMetadynamics-BasedProtocolToModeltheBindingAffinity and the Transition State Ensemble of G-Protein-CoupledReceptorLigands.J.Chem.Inf.Model.2017,57(5),1210–1217.

(9) Fidelak, J.; Juraszek, J.; Branduardi, D.; Bianciotto, M.;

Page 9: A Multiscale Simulation Approach to Modelling Drug-Protein ...study on the HIV-1 protease inhibitors that indi-cated that polarization contributes to binding.56 On the basis of such

9

Gervasio,F.Free-Energy-BasedMethodsforBindingProfileDetermination in aCongeneric SeriesofCDK2 Inhibitors. J.Phys.Chem.B2010,114(29),9516–9524.

(10) Comitani, F.; Limongelli, V.; Molteni, C. The Free EnergyLandscapeofGABABindingtoaPentamericLigand-GatedIonChannel and Its Disruption by Mutations. J. Chem. TheoryComput.2016,12(7),3398–3406.

(11) Votapka, L.W.; Jagger, B. R.; Heyneman, A. L.; Amaro, R. E.SEEKR: Simulation Enabled Estimation of Kinetic Rates, AComputational Tool to Estimate Molecular Kinetics and ItsApplicationtoTrypsin–BenzamidineBinding.J.Phys.Chem.B2017,121(15),3597–3606.

(12) Zhang, R.; Monsma, F. The Importance of Drug-TargetResidenceTime.Curr.Opin.DrugDiscov.Devel.2009,12(4),488–496.

(13) Copeland, R. A.; Pompliano, D. L.; Meek, T. D. Drug–targetResidenceTimeand Its Implications forLeadOptimization.Nat.Rev.DrugDiscov.2006,5(9),730–739.

(14) Swinney,D.C.TheRoleofBindingKineticsinTherapeuticallyUsefulDrugAction.Curr.Opin.DrugDiscov.Devel.2009,12(1),31–39.

(15) Lewandowicz, A.; Tyler, P. C.; Evans, G. B.; Furneaux, R.H.;Schramm,V.L.AchievingtheUltimatePhysiologicalGoalinTransition State Analogue Inhibitors for PurineNucleosidePhosphorylase.J.Biol.Chem.2003,278(34),31465–31468.

(16) Guo, D.; Mulder-Krieger, T.; IJzerman, A. P.; Heitman, L. H.Functional Efficacy of AdenosineA2AReceptor Agonists IsPositivelyCorrelatedtoTheirReceptorResidenceTime.Br.J.Pharmacol.2012,166(6),1846–1859.

(17) Lu, H.; Tonge, P. J. Drug–target Residence Time: CriticalInformation for Lead Optimization. Curr. Opin. Chem. Biol.2010,14(4),467–474.

(18) Buch,I.;Giorgino,T.;DeFabritiis,G.CompleteReconstructionof an Enzyme-Inhibitor Binding Process by MolecularDynamicsSimulations.Proc.Natl.Acad.Sci.U.S.A.2011,108(25),10184–10189.

(19) Shan,Y.;Kim,E.T.;Eastwood,M.P.;Dror,R.O.;Seeliger,M.A.;Shaw,D.E.HowDoesaDrugMoleculeFindItsTargetBindingSite?J.Am.Chem.Soc.2011,133(24),9181–9183.

(20) Schmidtke, P.; Luque, F. J.;Murray, J. B.; Barril, X. ShieldedHydrogen Bonds as Structural Determinants of BindingKinetics:ApplicationinDrugDesign.J.Am.Chem.Soc.2011,133(46),18903–18910.

(21) Morando,M.A.;Saladino,G.;D’Amelio,N.;Pucheta-Martinez,E.; Lovera, S.; Lelli, M.; López-Méndez, B.; Marenchino, M.;Campos-Olivas, R.; Gervasio, F. L. Conformational SelectionandInducedFitMechanismsintheBindingofanAnticancerDrugtotheC-SrcKinase.Sci.Rep.2016,6(1),24439.

(22) Schames,J.R.;Henchman,R.H.;Siegel,J.S.;Sotriffer,C.A.;Ni,H.;McCammon,J.A.DiscoveryofaNovelBindingTrenchinHIVIntegrase.J.Med.Chem.2004,47(8),1879–1881.

(23) Pan,A.C.;Borhani,D.W.;Dror,R.O.;Shaw,D.E.MolecularDeterminants of Drug-Receptor Binding Kinetics. DrugDiscov.Today2013,18(13–14),667–673.

(24) Bisignano,P.;Doerr,S.;Harvey,M.J.;Favia,A.D.;Cavalli,A.;DeFabritiis,G.KineticCharacterizationofFragmentBindingin AmpC β-Lactamase by High-Throughput MolecularSimulations.J.Chem.Inf.Model.2014,140130073847005.

(25) Faver, J. C.; Benson, M. L.; He, X.; Roberts, B. P.; Wang, B.;Marshall, M. S.; Kennedy, M. R.; Sherrill, C. D.; Merz, K. M.Formal Estimation of Errors in Computed AbsoluteInteraction Energies of Protein−Ligand Complexes. J. Chem.TheoryComput.2011,7(3),790–797.

(26) Harder,E.;Damm,W.;Maple,J.;Wu,C.;Reboul,M.;Xiang,J.Y.;Wang,L.;Lupyan,D.;Dahlgren,M.K.;Knight,J.L.;etal.OPLS3:A Force Field ProvidingBroad Coverage ofDrug-like SmallMoleculesandProteins.J.Chem.TheoryComput.2016,12(1),281–296.

(27) Piana,S.;Klepeis,J.L.;Shaw,D.E.AssessingtheAccuracyofPhysical Models Used in Protein-Folding Simulations:Quantitative Evidence from Long Molecular DynamicsSimulations.Curr.Opin.Struct.Biol.2014,24C,98–105.

(28) Fidelak, J.; Juraszek, J.; Branduardi, D.; Bianciotto, M.;Gervasio,F.L.Free-Energy-BasedMethodsforBindingProfile

Determination in aCongeneric SeriesofCDK2 Inhibitors. J.Phys.Chem.B2010,114(29),9516–9524.

(29) Colizzi,F.;Perozzo,R.;Scapozza,L.;Recanatini,M.;Cavalli,A.Single-MoleculePullingSimulationsCanDiscernActivefromInactiveEnzymeInhibitors.J.Am.Chem.Soc.2010,132(21),7361–7371.

(30) Limongelli,V.;Bonomi,M.;Marinelli,L.;Gervasio,F.L.;Cavalli,A.; Novellino, E.; Parrinello, M. Molecular Basis ofCyclooxygenase Enzymes (COXs) Selective Inhibition. Proc.Natl.Acad.Sci.U.S.A.2010,107(12),5411–5416.

(31) Pohorille,A. (Andrew);Chipot,C. (Christophe).FreeEnergyCalculations : Theory and Applications in Chemistry andBiology;Springer,2007.

(32) Laio,A.;Gervasio,F.L.Metadynamics:AMethodtoSimulateRareEventsandReconstructtheFreeEnergyinBiophysics,ChemistryandMaterialScience.ReportsProg.Phys.2008,71(12),126601.

(33) Dellago,C.;Bolhuis,P.G.ActivationEnergiesfromTransitionPath Sampling Simulations.Mol. Simul. 2004, 30 (11–12),795–799.

(34) Branduardi,D.;Gervasio,F.L.;Parrinello,M.FromAtoBinFreeEnergySpace.J.Chem.Phys.2007,126(5).

(35) Gervasio, F. L.; Laio, A.; Parrinello, M. Flexible Docking inSolutionUsingMetadynamics.J.Am.Chem.Soc.2005,127(8),2600–2607.

(36) Saladino, G.; Gauthier, L.; Bianciotto, M.; Gervasio, F. L.Assessing the Performance of Metadynamics and PathVariables in Predicting the Binding Free Energies of P38Inhibitors.J.Chem.TheoryComput.2012,8(4),1165–1170.

(37) Herbert,C.;Schieborr,U.;Saxena,K.;Juraszek,J.;DeSmet,F.;Alcouffe,C.;Bianciotto,M.;Saladino,G.;Sibrac,D.;Kudlinzki,D.; et al. Molecular Mechanism of SSR128129E, anExtracellularlyActing,Small-Molecule,AllostericInhibitorofFGFReceptorSignaling.CancerCell2013,23(4),489–501.

(38) Tiwary,P.;Parrinello,M.FromMetadynamics toDynamics.Phys.Rev.Lett.2013.

(39) Tiwary, P.; Limongelli, V.; Salvalaglio, M.; Parrinello, M.Kinetics of Protein-Ligand Unbinding: Predicting Pathways,Rates,andRate-LimitingSteps.Proc.Natl.Acad.Sci.2015,112(5),E386-91.

(40) Casasnovas, R.; Limongelli, V.; Tiwary, P.; Carloni, P.;Parrinello,M.UnbindingKineticsofaP38MAPKinaseTypeIIInhibitorfromMetadynamicsSimulations.J.Am.Chem.Soc.2017,139(13),4780–4788.

(41) Barducci,A.;Chelli,R.;Procacci,P.;Schettino,V.;Gervasio,F.L.; Parrinello, M. Metadynamics Simulation of PrionProtein: β-Structure Stability and the Early Stages ofMisfolding.J.Am.Chem.Soc.2006,128(8),2705–2710.

(42) Berteotti, A.; Cavalli, A.; Branduardi, D.; Gervasio, F. L.;Recanatini, M.; Parrinello, M. Protein ConformationalTransitions:TheClosureMechanismofaKinaseExploredbyAtomisticSimulations.J.Am.Chem.Soc.2009,131(1),244–250.

(43) Shan, Y.; Seeliger,M. A.; Eastwood,M. P.; Frank, F.; Xu,H.;Jensen,M.Ø.;Dror,R.O.;Kuriyan,J.;Shaw,D.E.AConservedProtonation-DependentSwitchControlsDrugBindingintheAblKinase.Proc.Natl.Acad.Sci.U.S.A.2009,106(1),139–144.

(44) Oleinikovas, V.; Saladino, G.; Cossins, B. P.; Gervasio, F. L.UnderstandingCrypticPocketFormationinProteinTargetsbyEnhancedSampling Simulations. J.Am.Chem.Soc.2016,138(43),14257–14263.

(45) Durrant, J. D.; McCammon, J. A. Molecular DynamicsSimulationsandDrugDiscovery.BMCBiol.2011,9(1),71.

(46) Dellago,C.;Bolhuis,P.G.TransitionPathSamplingandOtherAdvanced Simulation Techniques for Rare Events. Adv.Comput.Simul.ApproachesSoftMatterSci.Iii2009,221,167–233.

(47) Juraszek,J.;Saladino,G.;VanErp,T.S.;Gervasio,F.L.EfficientNumerical Reconstruction of Protein Folding Kinetics withPartialPathSamplingandPathlikeVariables.Phys.Rev.Lett.2013,110(10),1–5.

(48) Robertson,M.J.;Tirado-Rives,J.; Jorgensen,W.L.ImprovedPeptide and Protein Torsional Energeticswith theOPLSAA

Page 10: A Multiscale Simulation Approach to Modelling Drug-Protein ...study on the HIV-1 protease inhibitors that indi-cated that polarization contributes to binding.56 On the basis of such

10

ForceField.J.Chem.TheoryComput.2015,11(7),3499–3509.(49) Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.;

Hauser,K.E.;Simmerling,C.Ff14SB:ImprovingtheAccuracyofProteinSideChainandBackboneParametersfromFf99SB.J.Chem.TheoryComput.2015,11(8),3696–3713.

(50) Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; deGroot,B.L.;Grubmüller,H.;MacKerell,A.D.CHARMM36m:AnImprovedForceFieldforFoldedandIntrinsicallyDisorderedProteins.Nat.Chem.Biol.2017,14(1),71–73.

(51) Lindorff-Larsen,K.;Piana,S.;Palmo,K.;Maragakis,P.;Klepeis,J. L.; Dror, R. O.; Shaw, D. E. Improved Side-Chain TorsionPotentialsfortheAmberFf99SBProteinForceField.ProteinsStruct.Funct.Bioinforma.2010,78(8),1950–1958.

(52) Ranaghan, K. E.; Hung, J. E.; Bartlett, G. J.; Mooibroek, T. J.;Harvey,J.N.;Woolfson,D.N.;vanderDonk,W.A.;Mulholland,A. J. A Catalytic Role for Methionine Revealed by aCombinationofComputationandExperimentsonPhosphiteDehydrogenase.Chem.Sci.2014,5(6),2191–2199.

(53) Politzer, P.; Murray, J.; Clark, T.; Resnati, G. The σ-HoleRevisited.Phys.Chem.Chem.Phys.2017,19,32166–32178.

(54) Amaro, R. E.; Mulholland, A. J. Bridging Biological andChemical Complexity in the Search for Cures: MultiscaleMethodsinDrugDesign.NatRevChem2018,2(4),0148.

(55) Monte,T.;Simulations,C.Q.0REPORTSAPrioriEvaluationofAqueous Polarization Effects. Science (80-. ). 1992, 258(October).

(56) Gao,J.EnergyComponentsofAqueousSolution :InsightfromHybridQMrMMSimulationsUsingaPolarizable.J.Comput.Chem.1997,18(8),1061–1071.

(57) Woods,C.J.;Manby,F.R.;Mulholland,A.J.AnEfficientMethodfor the Calculation of Quantum Mechanics/MolecularMechanics Free Energies. J. Chem. Phys. 2008, 128 (1),014109.

(58) Cave-Ayland,C.;Skylaris,C.K.;Essex,J.W.DirectValidationof the Single Step Classical to Quantum Free EnergyPerturbation.J.Phys.Chem.B2015,119(3),1017–1025.

(59) Genheden,S.;CabedoMartinez,A.I.;Criddle,M.P.;Essex,J.W.Extensive All-Atom Monte Carlo Sampling and QM/MMCorrectionsintheSAMPL4HydrationFreeEnergyChallenge.J.Comput.Aided.Mol.Des.2014,28(3),187–200.

(60) Woods,C.J.;Shaw,K.E.;Mulholland,A.J.CombinedQuantumMechanics/Molecular Mechanics (QM/MM) Simulations forProtein-LigandComplexes:FreeEnergiesofBindingofWaterMoleculesinInfluenzaNeuraminidase.J.Phys.Chem.B2015,119(3),997–1001.

(61) Pawson,T.;Scott,J.D.ProteinPhosphorylationinSignaling--50 Years and Counting. Trends Biochem. Sci.2005, 30 (6),286–290.

(62) Stehelin,D.;Fujita,D.J.;Padgett,T.;Varmus,H.E.;Bishop,J.M.DetectionandEnumerationofTransformation-DefectiveStrainsofAvianSarcomaViruswithMolecularHybridization.Virology1977,76(2),675–684.

(63) Huse,M.;Kuriyan,J.TheConformationalPlasticityofProteinKinases.Cell2002,109(3),275–282.

(64) Lovera, S.; Sutto, L.; Boubeva, R.; Scapozza, L.; Dölker, N.;Gervasio, F. L. The Different Flexibility of C-Src and c-AblKinases Regulates theAccessibility of aDruggable InactiveConformation.J.Am.Chem.Soc.2012,134(5),2496–2499.

(65) Deng, Y.; Roux, B. Computations of Standard Binding FreeEnergieswithMolecularDynamicsSimulations.J.Phys.Chem.B2009,113(8),2234–2246.

(66) Roux,B.;Banavali,N.K.ConformationalEnergyLandscapeofSrc KinaseActivation Processes.Abstr. Pap. Am. Chem. Soc.2006,231.

(67) Lin,Y.-L.;Meng,Y.;Jiang,W.;Roux,B.ExplainingWhyGleevecIs a Specific and Potent Inhibitor of Abl Kinase. Proc. Natl.Acad.Sci.2013,110(5),1664–1669.

(68) Cowan-Jacob,S.W.;Fendrich,G.;Manley,P.W.; Jahnke,W.;Fabbro,D.;Liebetanz,J.;Meyer,T.TheCrystalStructureofaC-SrcComplex inanActiveConformationSuggestsPossibleStepsinc-SrcActivation.Structure2005,13(6),861–871.

(69) Xu,W.; Doshi, A.; Lei, M.; Eck, M. J.; Harrison, S. C. CrystalStructures of C-Src Reveal Features of Its AutoinhibitoryMechanism.Mol.Cell1999,3(5),629–638.

(70) Zhang,S.;Yu,D.TargetingSrcFamilyKinasesinAnti-CancerTherapies:TurningPromiseintoTriumph.TrendsPharmacol.Sci.2012,33(3),122–128.

(71) Nagar,B.C-AblTyrosineKinaseandInhibitionbytheCancerDrugImatinib(Gleevec/STI-571).J.Nutr.2007,137(6Suppl1),1518S–1523S;discussion1548S.

(72) Seeliger,M.A.;Nagar,B.;Frank,F.;Cao,X.;Henderson,M.N.;Kuriyan,J.C-SrcBinds totheCancerDrugImatinibwithanInactive Abl/c-Kit Conformation and a DistributedThermodynamicPenalty.Structure2007,15(3),299–311.

(73) Seeliger,M.A.;Ranjitkar,P.;Kasap,C.; Shan,Y.; Shaw,D.E.;Shah,N.P.;Kuriyan,J.;Maly,D.J.EquallyPotentInhibitionofC-SrcandAblbyCompoundsThatRecognizeInactiveKinaseConformations.CANCERRes.2009,69(6),2384–2392.

(74) Wilson,C.;Agafonov,R.V;Hoemberger,M.;Kutter,S.;Zorba,A.;Halpin,J.;Buosi,V.;Otten,R.;Waterman,D.;Theobald,D.L.;etal.KinaseDynamics.UsingAncientProteinKinasestoUnravelaModernCancerDrug’sMechanism.Sci.(NewYork,NY)2015,347(6224),882–886.

(75) Sali, A.; Blundell, T. L. Comparative Protein Modelling bySatisfactionofSpatialRestraints.J.Mol.Biol.1993,234(3),779–815.

(76) Best,R.B.;Hummer,G.OptimizedMolecularDynamicsForceFieldsAppliedtotheHelix-CoilTransitionofPolypeptides.J.Phys.Chem.B2009,113(26),9004–9015.

(77) Wang,J.M.;Wolf,R.M.;Caldwell,J.W.;KOLLMAN,P.A.;Case,D. A. Development and Testing of a General Amber ForceField.J.Comput.Chem.2004,25(9),1157–1174.

(78) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Scalmani,G.;Barone,V.;Mennucci,B.;Petersson,G.A.; etal. Gaussian 09,RevisionD.01.GaussianInc.Gaussian,Inc.2009,pWallingfordCT.

(79) Hess,B.;Kutzner,C.;vanderSpoel,D.;Lindahl,E.GROMACS4: Algorithms for Highly Efficient, Load-Balanced, andScalableMolecularSimulation.J.Chem.TheoryComput.2008,4(3),435–447.

(80) Bonomi,M.;Branduardi,D.;Bussi,G.;Camilloni,C.;Provasi,D.;Raiterie,P.;Donadio,D.;Marinelli,F.;Pietrucci,F.;Broglia,R. A.; et al. PLUMED: A Portable Plugin for Free-EnergyCalculations with Molecular Dynamics. Comput. Phys.Commun.2009,180(10),1961–1972.

(81) Bussi, G.; Donadio, D.; Parrinello, M. Canonical Samplingthrough Velocity Rescaling. J. Chem. Phys. 2007, 126 (1),14101.

(82) Bussi,G.;Gervasio,F.L.;Laio,A.;Parrinello,M.Free-EnergyLandscapeforBetaHairpinFoldingfromCombinedParallelTempering andMetadynamics. J. Am. Chem. Soc.2006,128(41),13435–13441.

(83) Bonomi, M.; Parrinello,M. Enhanced Sampling in theWell-TemperedEnsemble.Phys.Rev.Lett.2010,104(19),190601.

(84) Woods,C.J.;Essex,J.W.;King,M.A.EnhancedConfigurationalSamplinginBindingFree-EnergyCalculations.JPhysChemB2003,107,13711–13718.

(85) Becke, A. D. Density-Functional Exchange-EnergyApproximationwithCorrectAsymptoticBehavior.Phys.Rev.A1988,38(6),3098–3100.

(86) Lee,C.;Yang,W.;Parr,R.G.DevelopmentoftheColle-SalvettiCorrelation-EnergyFormulaintoaFunctionaloftheElectronDensity.Phys.Rev.B1988,37(2),785–789.

(87) Woods,C.J.siremol.orghttps://siremol.org/(accessedDec6,2017).

(88) Werner,H.J.;Knowles,P.J.;Knizia,G.;Manby,F.R.;Schütz,M.Molpro: A General-Purpose Quantum Chemistry ProgramPackage.WileyInterdiscip.Rev.Comput.Mol.Sci.2012,2(2),242–253.

(89) Shaw, K. E.;Woods, C. J.;Mulholland, A. J. Compatibility ofQuantum Chemical Methods and Empirical (MM) WaterModelsinQuantumMechanics/MolecularMechanicsLiquidWaterSimulations.J.Phys.Chem.Lett.2010,1(1),219–223.

(90) Pentika, U.; Shaw, K. E.; Woods, C. J.; Mulholland, A. J.;Senthilkumar, K. Lennard # Jones Parameters for B3LYP /CHARMM27QM/MMModelingofNucleicAcidBasesQM/MMModelingofNucleicAcidBases.2009,No.Mm,396–410.

(91) Senthilkumar,K.;Mujika, J.I.;Ranaghan,K.E.;Manby,F.R.;

Page 11: A Multiscale Simulation Approach to Modelling Drug-Protein ...study on the HIV-1 protease inhibitors that indi-cated that polarization contributes to binding.56 On the basis of such

11

Mulholland, A. J.; Harvey, J. N. Analysis of Polarization inQM/MMModellingofBiologicallyRelevantHydrogenBonds.J.R.Soc.Interface2008,5(Suppl_3),207–216.

(92) Huang, J.;Mei,Y.;König,G.; Simmonett,A.C.;Pickard,F.C.;Wu,Q.;Wang,L.P.;MacKerell,A.D.;Brooks,B.R.;Shao,Y.AnEstimation of Hybrid Quantum Mechanical MolecularMechanicalPolarizationEnergiesforSmallMoleculesUsingPolarizableForce-FieldApproaches.J.Chem.TheoryComput.2017,13(2),679–695.

(93) Beierlein, F. R.; Michel, J.; Essex, J. W. A Simple QM/MMApproachforCapturingPolarizationEffectsinProtein-LigandBindingFreeEnergyCalculations.J.Phys.Chem.B2011,115(17),4911–4926.

(WordStyle"TF_References_Section").Referencesareplacedat

theendofthemanuscript.Authorsareresponsiblefortheaccuracyandcompletenessofallreferences.Examplesoftherecommendedformats for the various reference types can be found athttp://pubs.acs.org/page/4authors/index.html. Detailed infor-mation on reference style can be found in The ACS Style Guide,availablefromOxfordPress.

Page 12: A Multiscale Simulation Approach to Modelling Drug-Protein ...study on the HIV-1 protease inhibitors that indi-cated that polarization contributes to binding.56 On the basis of such

12

TOC: Title of Content