a new high frequency signal injection method without ......(v) original injected total duty cycle v...

24
1 A New High Frequency Signal Injection Method Without Maximum Fundamental Voltage Magnitude Loss and its Application Dong Wang, Kaiyuan Lu, Peter O. Rasmussen Aalborg University, Denmark 6 April 2017

Upload: others

Post on 31-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    A New High Frequency Signal Injection Method Without Maximum

    Fundamental Voltage Magnitude Loss and its Application

    Dong Wang, Kaiyuan Lu, Peter O. Rasmussen Aalborg University, Denmark

    6 April 2017

  • 2

    Content

    • Background – why new High Frequency Signal Injection (HFSI) method

    • Proposed HFSI method – duty cycle shifting

    • Application example – sensorless FOC

    • Summary

  • 3

    Background

    Why new HFSI method? • Most HFSI based position estimation algorithms are

    machine parameter independent – Do not require machine inductance profile

    05

    1015 0

    510

    15

    40455055

    40

    45

    50

    Id (A) Iq (A)

    05

    1015 0

    510

    15

    10

    20

    30

    10152025

    Id (A) Iq (A)

    Machine inductance variation caused by self- and cross-saturation

    Indu

    ctan

    ce (m

    H)

  • 4

    Background

    Why new HFSI method? • Existing HFSI methods have the drawback of

    – Maximum fundamental voltage magnitude (MFVM) loss – Limited the machine speed and load operation range

    𝑈𝑈�4 100

    𝑈𝑈�6(110) 𝑈𝑈�2(010)

    𝑈𝑈�3(011)

    𝑈𝑈�1(001) 𝑈𝑈�5(101)

    𝑈𝑈�0(000) 𝑈𝑈�7(111)

    Sector I

    Sector II

    Sector III

    Sector IV

    Sector V

    Sector VI

    MFVM Boundary

    𝑉𝑉0

    𝑑𝑑1 𝑑𝑑2 𝛿𝛿

    Time (s)

    Dut

    y C

    ycle

    Without injection With injection

    0 0.02 0.04 0.06 0.08 0.10

    0.5

    1

  • 5

    Proposed HFSI method

    General idea of proposed method – duty cycle shifting: • Shifting between two neighboring switching periods • The average voltage vector is kept to the commanded vector • The total duty cycle within each switching period should be

    limited to one, i.e

    𝑈𝑈�4

    𝑈𝑈�6

    𝑉𝑉0 𝑉𝑉2 𝑉𝑉1

    𝑉𝑉0

    𝑑𝑑1 + ∆𝑑𝑑1 𝑑𝑑2 − ∆𝑑𝑑2

    𝑑𝑑1 − ∆𝑑𝑑1

    𝑑𝑑2 + ∆𝑑𝑑2

    𝛿𝛿 𝑉𝑉1,𝑝𝑝1

    𝑉𝑉2,𝑝𝑝1

    𝑉𝑉1,𝑝𝑝2 𝑉𝑉1,𝑝𝑝3

    𝑉𝑉2,𝑝𝑝3 𝑉𝑉2,𝑝𝑝2

    ∆𝑉𝑉𝑐𝑐

    𝑉𝑉0

    1 1 2 2 1 1 2 21, 1d d d d d d d d+ ∆ + − ∆ ≤ − ∆ + + ∆ ≤

    𝑈𝑈�4 =23𝑈𝑈𝑑𝑑𝑐𝑐

    𝑈𝑈�6

    𝑉𝑉0

    𝑑𝑑1

    𝑑𝑑2 𝛿𝛿

    𝑉𝑉max =𝑈𝑈𝑑𝑑𝑐𝑐

    3

  • 6

    Proposed HFSI method

    The injected voltage vector: • Per-unit value of 𝑈𝑈�4 and 𝑈𝑈�6

    • The injected voltage vector (carrier signal)

    00 64 3

    4, 6,max max

    (2 / 3)/ 3

    2 ,3 3

    2 j jjdc

    dcpu pu

    e UUU e UV VU

    eUπ

    = = = = =

    ( )( )

    , 1, 2,

    1 1 4, 2 2 6,

    1 1 4, 2 2 6,

    0 31 2

    ( ) ( )

    ( ) ( )

    43 3

    4

    c pu pu pu

    pu pu

    pu pu

    jj

    V V V

    d d U d d U

    d d U d d U

    d e d eπ

    ∆ = −

    = + ∆ + − ∆

    − − ∆ + + ∆

    = ∆ ⋅ − ∆ ⋅

    𝑈𝑈�4

    𝑈𝑈�6

    𝑉𝑉0 𝑉𝑉2 𝑉𝑉1

    𝑉𝑉0

    𝑑𝑑1 + ∆𝑑𝑑1 𝑑𝑑2 − ∆𝑑𝑑2

    𝑑𝑑1 − ∆𝑑𝑑1

    𝑑𝑑2 + ∆𝑑𝑑2

    𝛿𝛿

  • 7

    Duty cycle shifting – Type 1

    Duty cycle shifting with fixed Δd1 and Δd2 = 0: • Injected voltage vector:

    • Fixed injection in each switching vector range, ( fs=3kHz)

    Can be used for existing position estimation algorithm [1]

    𝑈𝑈�4

    𝑈𝑈�6 𝑈𝑈�2

    𝑈𝑈�3

    𝑈𝑈�1 𝑈𝑈�5

    [1] D. Paulus, P. Landsmann, and R. Kennel, “Sensorless field- oriented control for permanent magnet synchronous machines with an arbitrary injection scheme and direct angle calculation,” in Proc. SLED, pp. 41–46, Sep. 2011

    0 60 120 180 240 300 360 420 480 540 600 660 720-180-120

    -600

    60120180

    Position of commanded voltage vector (deg)

    Dire

    ctio

    n (d

    eg)

    Injected Pulsating Voltage Envelope

    0, 13

    4 jc puV d e∆ = ∆ ⋅

  • 8

    Duty cycle shifting – Type 1

    Maximum Δd1=1−d1 , i.e. 𝑈𝑈�4 occupies a full period s1 for 0 ≤ δ < 30˚

    • Before shifting

    • After shifting

    𝐷𝐷1

    𝐷𝐷2

    𝐷𝐷3

    𝐷𝐷1

    𝐷𝐷2

    𝐷𝐷3

    𝑑𝑑22

    𝑑𝑑22

    𝑑𝑑12

    𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐

    𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐

    𝑑𝑑22

    𝑈𝑈�4 𝑈𝑈�4 𝑈𝑈�6 𝑈𝑈�6

    𝑈𝑈�4 𝑈𝑈�4 𝑈𝑈�4 𝑈𝑈�6 𝑈𝑈�6

    𝑈𝑈�4 𝑈𝑈�4 𝑈𝑈�6 𝑈𝑈�6

  • 9

    Duty cycle shifting – Type 1

    Maximum Δd1=1−d1 : • Maximum d1 of traditional SVM is • Maximum Δd1 always available • For Udc = 575V and Δd2 = 0 :

    When d1 + d2 + Δd1 > 1, • Δd2 ≠ 0, • e.g. Δd2 = d1 + d2 + Δd1 − 1

    1 3 2d =

    1 1 3 2 0.134d∆ = − =

    0 0, 1

    43 3 3

    102.73j jdc dcc c puU UV V d e e∆ = ∆ = ∆ ⋅ =

    𝑈𝑈�4

    𝑈𝑈�6

    𝑉𝑉0

    𝑑𝑑1

    𝑑𝑑1 + 𝑑𝑑2 = 1

  • 10

    Duty cycle shifting – Type 2

    Duty cycle shifting with Δd1 = Δd2: • Injected voltage vector:

    Can be used for existing position estimation algorithm [1]

    𝑈𝑈�4

    𝑈𝑈�6 𝑈𝑈�2

    𝑈𝑈�3

    𝑈𝑈�1 𝑈𝑈�5

    0 3 3, 1 2 1

    4 4 43 3 3

    j jjc puV d e d e d e

    π π−∆ = ∆ ⋅ − ∆ ⋅ = ∆ ⋅

    0 60 120 180 240 300 360 420 480 540 600 660 720-180-120

    -600

    60120180

    Position of commanded voltage vector (deg)

    Dire

    ctio

    n (d

    eg)

    Injected Pulsating Voltage Envelope

    [1] D. Paulus, P. Landsmann, and R. Kennel, “Sensorless field- oriented control for permanent magnet synchronous machines with an arbitrary injection scheme and direct angle calculation,” in Proc. SLED, pp. 41–46, Sep. 2011

  • 11

    Duty cycle shifting – Type 3 Rotary Pulsating Carrier Signal: • With

    • The injected voltage is which is perpendicular to • fs = 9kHz

    Can be used for existing position estimation algorithm [2]

    1

    2

    cos( 3 )cos

    d dd d

    π δδ

    ∆ = ∆ ⋅ −∆ = ∆ ⋅

    , 2j

    c puV j d eδ∆ = − ∆ ⋅

    0 20 40 60 80 100 120 140 160 180

    -90

    0

    90

    Position of commanded voltage vector (deg)

    Dire

    ctio

    n (d

    eg)

    [2] Y. D. Yoon, S. K. Sul, S. Morimoto, and K. Ide, “High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361–1370, May/Jun. 2011

    0 0jV V e δ= 𝑈𝑈

    �4

    𝑈𝑈�6

    𝑉𝑉0

    𝑑𝑑1

    𝑑𝑑2 𝛿𝛿

    ∆𝑉𝑉𝑐𝑐,𝑝𝑝𝑝𝑝

  • 12

    Proposed position estimation method

    Existing HFSI based position estimation methods: • Requires BPF and/or LPF for:

    – carrier response demodulation – machine saliency information extraction

    • with the cost of: – error caused by phase shift of filters – degraded dynamic performance

  • 13

    Proposed position estimation method Proposed algorithm: • Based on the changing of flux-linkage and current during

    two neighboring switching periods • SynRM flux-linkage in the stator frame: where

    • Define

    • Then • The inductance L2 will only influence the magnitude of �̅�𝐴,

    not the argument (angle). The proposed algorithm is machine inductance independent.

    1 2( ) 2 and ( ) 2d q d qL L L L L L= + = −

    2*1 2

    rjL i L i e θαβ αβ αβλ = +

    2 1 1 2A i iαβ αβ αβ αβλ λ= −

    ˆ2*2 2 1

    ˆIm( ) 2 2 2rj rA L i i je Aθ

    αβ αβ θ π= ⋅ ⇒ = ∠ +

  • 14

    Proposed position estimation method

    Proposed algorithm: • Pros

    – No special requirement to current sampling – No BPF and/or LPF needed – Suitable for proposed HFSI method, till rated speed

    • Cons – Flux-linkage needed, not suitable for very low speed to

    standstill

  • 15

    Proposed position estimation method Cross-saturation effect: • ldq term is introduced and distort the magnetic saliency axes • SynRM flux-linkage in the rotor frame:

    • Then

    • The estimated position by using the indication vector �̅�𝐴

    • Instead of the rotor mechanical saliency ( ), the distorted magnetic saliency ( ) is obtained.

    ˆ2*2 2 1

    ˆ(2 )*2 2 1

    ( ) Im( ) 2

    Im( ) 2

    r

    r

    jdq

    j

    A L l i i je

    L i i je

    θαβ αβ

    θ εαβ αβ

    +

    = + ⋅

    ′= ⋅

    *1 2( ) ( )dq d d dq q q q dq d dq dq dqL i l i j L i l i L i L l iλ = + + + = + +

    ˆ2 4 2est rAθ π θ ε= ∠ + = +

    2where arctan dq

    d q

    lL L

    ε =−

    r̂θ

    estθ

  • 16

    Application example – sensorless FOC Sensorless FOC with high torque per ampere operation:

    • Torque

    and maximum torque is obtained when • Current vector location in the stationary frame

    • The current vector should locate at 45° with respect to θest i.e. 45° in the estimated rotor frame (magnetic saliency) • There is no need to compensate the error (ε) caused by

    cross-saturation effect • Sensorless FOC do not require any inductance information

    223 3( ) sin(2 )

    2 2 cosrm

    q d d q ipL IT p i iλ λ θ ε

    ε= − = −

    2 2riθ ε π− =

    ˆ4 2 4si r estθ π ε θ π θ= + + = +

  • 17

    Verification of proposed HFSI method: • Open-circuit no-load tests • Type 1 with 220V grid input and Δd1 = 0.065

    Experiment results

    -200

    0

    200

    0 0.005 0.01 0.015 0.020.3

    0.4

    0.5

    Time (s)

    Volta

    ge (V

    )

    Original Injected

    Tota

    l dut

    y cy

    cle

    100 V 50 Hz output

    -200

    0

    200

    0 0.005 0.01 0.015 0.020.850.9

    0.951

    Time (s)

    Volta

    ge (V

    )

    Original Injected

    Tota

    l dut

    y cy

    cle

    vβ vα

    220 V 50 Hz output

  • 18

    Verification of proposed HFSI method: • Type 2 with full voltage output and Δd1 = Δd2 = 0.05 • Type 3 with full voltage output and Δd = 0.05

    Experiment results

    -200

    0

    200

    0 0.005 0.01 0.015 0.020.850.9

    0.951

    Time (s)

    Volta

    ge (V

    )

    Original Injected

    Tota

    l dut

    y cy

    cle

    Duty cycle shifting – Type 2

    -200

    0

    200

    0 0.005 0.01 0.015 0.020.850.9

    0.951

    Time (s)

    Volta

    ge (V

    )

    Original Injected

    Tota

    l dut

    y cy

    cle

    Duty cycle shifting – Type 3

  • 19

    Proposed HFSI based position estimation method: • With position encoder • 300rpm, no load • Duty cycle shifting

    with Δd1 = 0.065 • Injected current is 0.6A

    0 0.05 0.1 0.15 0.2 0.25 0.3-5

    0

    5

    -10

    0

    10

    200

    300

    400

    0

    6.4

    Time (s)

    Spee

    d (r

    pm)

    Posi

    tion

    erro

    r (d

    eg)

    Real Estimated

    Cur

    rent

    (A

    )

    iβ iα

    Posi

    tion

    (rad

    ) Real Estimated

    -50

    0

    50

    0.08 0.1 0.12 0.14 0.16-50

    0

    50

    Time (s)

    v α (V

    ) v β

    (V)

    Original Injected

    Original Injected

    Experiment results

  • 20

    Experiment results

    -20

    0

    201400

    1500

    1600

    0 0.01 0.02 0.03 0.04 0.05-20

    0

    20

    -200

    0

    200

    Time (s)

    Spee

    d (r

    pm)

    Posi

    tion

    erro

    r (d

    eg e

    lec)

    Real Estimated

    Volta

    ge (V

    ) C

    urre

    nt (A

    )

    Sensorless FOC at 1500 rpm 13.9 Arms

    2000

    2100

    2200

    -20

    0

    20

    0 0.01 0.02 0.03 0.04 0.05-20

    0

    20

    -300

    0

    300

    Time (s)

    Spee

    d (r

    pm)

    Posi

    tion

    erro

    r (d

    eg e

    lec)

    Real Estimated

    Volta

    ge (V

    ) C

    urre

    nt (A

    )

    Sensorless FOC at 2100 rpm 20 A id

  • 21

    Experiment results

    • Maximum voltage output achieved (vβ 320 Vpk at 0.02 s)

    • Signal injection without influence the fundamental output

    2000

    2100

    2200

    -20

    0

    20

    0 0.01 0.02 0.03 0.04 0.05-20

    0

    20

    -300

    0

    300

    Time (s)

    Spee

    d (r

    pm)

    Posi

    tion

    erro

    r (d

    eg e

    lec)

    Real Estimated

    Volta

    ge (V

    ) C

    urre

    nt (A

    )

    Sensorless FOC at 2100 rpm 20 A id

    0.015 0.016 0.017 0.018 0.019 0.02 0.021 0.022240260280300320340

    Time (s)

    Volta

    ge (V

    )

    vβ vα

  • 22

    High torque per ampere operation: Current vector position 45° • Top: constant load of

    7 Arms motor current (amplitude 9.90 A) 48.9° – 46.5° = 2.4°

    • bottom: constant load of 13.9 Arms motor current (amplitude 19.65 A) 53.3° – 51.0° = 2.3°

    • The position error is consistent at different load

    Experiment results

    30 35 40 45 50 55 60 65 7018

    20

    22

    24

    26

    9

    10

    11

    12

    13

    Current vector position (deg elec)

    Cur

    rent

    vec

    tor

    mag

    nitu

    de (A

    ) C

    urre

    nt v

    ecto

    r m

    agni

    tude

    (A)

    46.5˚ (9.89 A)

    51.0˚ (19.31 A)

    48.9˚ (9.91 A)

    53.3˚ (19.34 A)

    9.90 A

    19.65 A

  • 23

    Summary

    • A new HFSI method is proposed and verified – with the advantage of no output voltage amplitude sacrifice – different types of injection can be achieved by controlling the

    values of Δd1 and Δd2 – open the possibilities to apply HFSI based inductance independent

    position estimation method at full speed and load • New position estimation algorithm is proposed and verified

    – machine inductance independent – with arbitrary voltage injection, including the proposed HFSI – no BPF and/or LPF needed for position information extraction – for middle to high-speed operation range of SynRM drive

  • 24 24

    • Any comment?

    A New High Frequency Signal Injection Method Without Maximum Fundamental Voltage Magnitude Loss and its ApplicationContentBackgroundBackgroundProposed HFSI methodProposed HFSI methodDuty cycle shifting – Type 1Duty cycle shifting – Type 1Duty cycle shifting – Type 1Duty cycle shifting – Type 2Duty cycle shifting – Type 3Proposed position estimation methodProposed position estimation methodProposed position estimation methodProposed position estimation methodApplication example – sensorless FOCExperiment resultsExperiment resultsExperiment resultsExperiment resultsExperiment resultsExperiment resultsSummarySlide Number 24