spectral stochastic finite elements for two nonlinear problems€¦ · 0.04 0.05 0.06! monte carlo...

35
Spectral stochastic finite elements for two nonlinear problems Bedˇ rich Soused´ ık 1 , Howard C. Elman 2 1 University of Maryland, Baltimore County 2 University of Maryland, College Park supported by Department of Energy (DE-SC0009301) National Science Foundation (DMS1418754 and DMS1521563) SISSA, QUIET workshop, July 19, 2017 Soused´ ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 1 / 35

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Spectral stochastic finite elementsfor two nonlinear problems

    Beďrich Soused́ık1, Howard C. Elman2

    1 University of Maryland, Baltimore County2 University of Maryland, College Park

    supported byDepartment of Energy (DE-SC0009301)

    National Science Foundation (DMS1418754 and DMS1521563)

    SISSA, QUIET workshop, July 19, 2017

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 1 / 35

  • I.) Inverse subspace iteration for the spectral stochastic finite elements

    We are interested in a solution of

    A (x , ξ) us (x , ξ) = λs (ξ) us (x , ξ) ,

    where ξ = {ξi}Ni=1 is a set of i.i.d. random variables, and

    A =M′∑`=0

    A`ψ` (ξ) , (SPD matrix operator).

    We search

    λs =M∑k=0

    λskψk (ξ) , us =

    M∑k=0

    uskψk (ξ) ,

    where {ψ` (ξ)} is a set of orthonormal polynomials, 〈ψjψk〉 = 0 or 1,which is referred to as the gPC basis. We will also use the notation

    c`jk = 〈ψ`ψjψk〉 = E [ψ`ψjψk ] .

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 2 / 35

  • Monte Carlo and stochastic collocation

    Both approaches are based on sampling,

    A(ξ(q))us(ξ(q))

    = λs(ξ(q))us(ξ(q)), s = 1, . . . , ns .

    Monte Carlo uses ensemble average

    λsk =1

    NMC

    NMC∑q=1

    λs(ξ(q))ψk

    (ξ(q)), usk =

    1

    NMC

    NMC∑q=1

    us(ξ(q))ψk

    (ξ(q)).

    Stochastic collocation uses quadrature

    λsk =

    Nq∑q=1

    λs(ξ(q))ψk

    (ξ(q))w (q), usk =

    Nq∑q=1

    us(ξ(q))ψk

    (ξ(q))w (q),

    where ξ(q) are the quadrature points, and w (q) are quadrature weights.

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 3 / 35

  • Stochastic Galerkin method

    The stochastic Galerkin method is based on the projection

    〈Aus , ψk〉 = 〈λsus , ψk〉 , k = 0, . . . ,M, s = 1, . . . , ns .

    which yields a nonlinear algebraic system

    M∑j=0

    M′∑`=0

    c`jkA`usj =

    M∑j=0

    M∑i=0

    cijkλsi u

    sj , k = 0, . . . ,M, s = 1, . . . , ns .

    In order to find interior eigenvalues we use deflation via

    Ã0 = A0 +

    nd∑d=1

    [C − λd0

    ] (ud0

    )(ud0

    )T , Ã` = A`, ` = 1, . . . ,M

    ′,

    where(λd0 , u

    d0

    ), d = 1, . . . , nd , are the zeroth order coefficients, i.e., the

    mean value, of the eigenpairs to be deflated, and C is a constant.

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 4 / 35

  • Algorithm: Stochastic inverse subspace iteration

    Algorithm

    Find ne eigenpairs of the deterministic mean value problem

    A0 U = U Λ, U =[u1, . . . , une

    ], Λ = diag

    1, . . . , λ

    ne),

    1 choose ns eigenvalues of interest with indices e = {e1, . . . , ens}2 set up matrices A`, ` = 0, . . . ,M ′, either as A` = A`,

    or A` = Ã` using deflation3 initialize

    u1,(0)0 = u

    e1 , u2,(0)0 = u

    e2 , . . . une ,(0)0 = u

    ens ,

    us,(0)i = 0, s = 1, . . . , ns , i = 1, . . . ,M.

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 5 / 35

  • Algorithm: Stochastic inverse subspace iteration

    Algorithm (cont’d)

    for it = 0, 1, 2, . . .

    1 Solve the stochastic Galerkin system for vs,(it)j , j = 0, . . . ,M:

    M∑j=0

    M′∑`=0

    c`jkA`vs,(it)j = u

    s,(it)k , k = 0, . . . ,M, s = 1, . . . , ns .

    2 If ns = 1, normalize using the quadrature rule, or else if ns > 1orthogonalize using the stochastic modified Gram-Schmidt process.

    3 Check convergence.

    endUse the stoch. Rayleigh quotient to compute the eigenvalue expansions.

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 6 / 35

  • Matrix-vector multiplication

    Matrix-vector product corresponds to evaluation of the projection

    vk = 〈v , ψk〉 = 〈Au, ψk〉 , k = 0, . . . ,M.

    In more detail,〈M∑i=0

    viψi (ξ) , ψk

    〉=

    〈(M′∑`=0

    A`ψ` (ξ)

    ) M∑j=0

    ujψj (ξ)

    , ψk〉,

    so the coefficients are

    vk =M∑j=0

    M′∑`=0

    c`jkA`uj , k = 0, . . . ,M.

    The use of this computation for the Rayleigh quotient is described next.

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 7 / 35

  • Stochastic Rayleigh Quotient

    The stochastic Rayleigh quotient defines the coefficients of a stochasticexpansion of the eigenvalue defined via a projection

    λk = 〈λ, ψk〉 =〈uT v , ψk

    〉, k = 0, . . . ,M,

    where the coeff’s of v are computed using the matrix-vector multiplication.In more detail,〈

    M∑i=0

    λiψi (ξ) , ψk

    〉=

    〈(M∑i=0

    uiψi (ξ)

    )T M∑j=0

    vjψj (ξ)

    , ψk〉,

    so the coefficients are

    λk =M∑j=0

    M∑i=0

    cijk

    〈uTi vj

    〉R, k = 0, . . . ,M,

    where 〈·, ·〉R is the inner product on Euclidean Ndof -dimensional space.Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 8 / 35

  • Normalization and the Gram-Schmidt process

    The coeff’s of a normalized vector are computed from the coeff’s v1k as

    u1k =

    Nq∑q=1

    v1(ξ(q))∥∥v1 (ξ(q))∥∥

    2

    ψk

    (ξ(q))w (q), k = 0, . . . ,M.

    The orthonormalization is achieved by a stochastic version of the modifiedGram-Schmidt algorithm [Meidani and Ghanem (2014)], which is based on

    us = v s −s−1∑t=1

    〈v s , ut〉R〈ut , ut〉R

    ut , s = 2, . . . , ns ,

    noting that 〈·, ·〉R can be again evaluated at the collocation points.

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 9 / 35

  • Error assessment

    We do not have the coefficients of the expansion of the true residual

    r sk = 〈Aus − λsus , ψk〉 , k = 0, . . . ,M, s = 1, . . . , ns .

    Instead, we can use a residual indicator

    r̃s,(it)k =

    M∑j=0

    M′∑`=0

    c`jkA`us,(it)j −

    M∑j=0

    M∑i=0

    cijkλs,(it)i u

    s,(it)j .

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 10 / 35

  • Error assessment (cont’d)

    In computations, for each pair s = 1, . . . , ns , we can monitor:

    1 the norms of the expected value of the indicator and its variance,

    εs,(it)0 =

    ∥∥∥r̃ s,(it)0 ∥∥∥2, ε

    s,(it)σ2

    =

    ∥∥∥∥∥M∑k=1

    (r̃s,(it)k

    )2∥∥∥∥∥2

    .

    2 the difference of the coefficients in two consecutive iterations.

    us,(it)∆ =

    ∥∥∥∥∥∥∥ u

    s,(it)0...

    us,(it)M

    − u

    s,(it−1)0

    ...

    us,(it−1)M

    ∥∥∥∥∥∥∥

    2

    .

    3 In addition, we can sample the true residual using Monte Carlo,

    r s(ξi)

    = A(ξi)us(ξi)− λs

    (ξi)us(ξi), i = 1, . . .NMC .

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 11 / 35

  • Error assessment (cont’d)

    We also report:

    1 pdf estimates of the normalized `2-norms of the true residual

    εsr(ξi)

    =

    ∥∥r s (ξi)∥∥2

    ‖A (ξi )‖2, i = 1, . . .NMC , s = 1, . . . , ns .

    2 pdf estimates of the `2-norm of the relative eigenvector approx. errors

    εsu

    (ξ(i))

    =

    ∥∥us (ξ(i))− usMC (ξ(i))∥∥2∥∥usMC (ξ(i))∥∥2 , i = 1, . . . ,NMC , s = 1, . . . , ns ,where us

    (ξ(i))

    are samples of eigenvectors obtained from eitherstochastic inverse subspace iteration or stochastic collocation.

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 12 / 35

  • Numerical experiments: Vibration of undamped structures

    We considered Young’s modulus

    E (x , ξ) =M′∑`=0

    E` (x)ψ` (ξ)

    as a truncated lognormal process transformed from Gaussian r. process.Finite element spatial discretization leads to

    K(ξ) u = λMu,

    where K(ξ) =∑M′

    `=0 K`ψ` (ξ) is the stochastic stiffness matrix,and M is the deterministic mass matrix. Using Cholesky M = LLT ,

    L−1K(ξ) L−Tw = λw ,

    A =M′∑`=0

    A`ψ` (ξ) =M′∑`=0

    [L−1K` (ξ) L

    −T]ψ` (ξ) .

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 13 / 35

  • Numerical experiments: Timoshenko beam

    Physical parameters: E0 = 108, ν = 0.30, with 20 finite elements (40 dof).

    Stochastic parameters: N = 3, P = 3, Plog = 6, size of c`jk : 20× 20× 84,NMC = 5× 104, Smolyak sparse grid (Gauss-Hermite) with 69 points.

    pdf of λ1 using only the stochastic Rayleigh quotient:

    70 80 90 100 110 120 130 140 1500

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06λ

    Monte CarloStoch. CollocationStoch. Galerkin

    0 50 100 150 200 2500

    0.005

    0.01

    0.015

    0.02

    0.025λ

    Monte CarloStoch. CollocationStoch. Galerkin

    CoV = 10% CoV = 25%

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 14 / 35

  • Numerical experiments: Timoshenko beam (CoV = 25%)

    The first ten coefficients of the gPC expansion of the smallest eigenvalueusing 0, 1 or 20 steps of stochastic inverse iteration, or stoch. collocation.Here d is the polynomial degree and k is the index of gPC basis function.

    d k RQ(0) SII(1) SII(20) SC

    0 0 103.0823 102.1705 102.1670 102.1713

    11 14.0453 13.9402 13.9402 13.94082 -11.7568 -11.5862 -11.5859 -11.58483 5.1830 5.0654 5.0651 5.0669

    2

    4 1.4284 1.2919 1.2918 1.29095 -1.5368 -1.6766 -1.6767 -1.67646 0.5090 0.9030 0.9032 0.90357 1.1331 0.7533 0.7530 0.75298 -0.8696 -0.2965 -0.2960 -0.29559 0.5812 -0.2215 -0.2220 -0.2222

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 15 / 35

  • Numerical experiments: Timoshenko beam (CoV = 25%)

    0 1 2 3 4 5 6x 104

    0

    1

    2

    3

    4

    5

    6

    7

    x 10−4 λ

    λ2

    λ3

    λ1 Monte CarloStoch. CollocationStoch. Galerkin

    1 2 3 4 5 6 7x 105

    0

    1

    2

    3

    4

    5

    6

    7

    8x 10−5 λ

    λ3

    λ4

    λ5

    Monte CarloStoch. CollocationStoch. Galerkin

    pdf of λ1, λ2, λ3 pdf of λ3, λ4, λ5

    0 5 10 15 20100

    102

    104

    106

    108

    1010

    iteration

    ε0

    Eigenpair:

    12345

    0 5 10 15 20104

    106

    108

    1010

    1012

    1014

    1016

    1018

    iteration

    εσ 2

    Eigenpair:

    12345

    convergence history of ε0 convergence history of εσ2

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 16 / 35

  • Numerical experiments: Timoshenko beam (CoV = 25%)

    0 1 2 3 4 5 6 7x 105

    0

    0.5

    1

    1.5

    2

    x 10−5 λ

    λ4

    λ5

    Monte CarloStoch. CollocationStoch. Galerkin

    0 2 4 6 8 10x 10−4

    0

    2000

    4000

    6000

    8000

    10000

    12000

    εu

    Stoch. CollocationStoch. Galerkin

    pdf of λ4, λ5 pdf of εu for λ5

    0 2 4 6 8 10x 10−10

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5x 1010 εr

    Stoch. CollocationStoch. Galerkin

    0 2 4 6 8 10x 10−10

    0

    2

    4

    6

    8

    10

    12

    14

    16x 109 εr

    Stoch. CollocationStoch. Galerkin

    pdf of εr for λ4 pdf of εr for λ5

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 17 / 35

  • Numerical experiments: Mindlin plate (CoV = 25%)

    0 2 4 6 8 10 12 14x 104

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5 x 10−4 λ

    λ1

    λ4

    λ2,λ3

    Monte CarloStoch. CollocationStoch. Galerkin

    0 0.5 1 1.5 2x 10−3

    0

    2000

    4000

    6000

    8000

    10000

    12000

    εu

    Stoch. CollocationStoch. Galerkin

    pdf of λ1, λ2, λ3, λ4 pdf of εu for λ4

    0 2 4 6 8 10x 10−3

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500εr

    Stoch. CollocationStoch. Galerkin

    0 0.5 1 1.5 2x 10−5

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    x 105 εr

    Stoch. CollocationStoch. Galerkin

    pdf of εr for λ2 pdf of εr for λ4

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 18 / 35

  • II.) Numerical solution of Navier-Stokes equations with stochastic viscosity

    The viscosity is given by a gPC expansion

    ν ≡ ν(x , ξ) =Mν−1∑`=0

    ν` (x)ψ` (ξ)

    where {ν` (x)} is a set of given deterministic spatial functions.

    Possible applications:1 the exact value of viscosity may not be known due to

    measurement errorcontaminants with uncertain concentrationsmultiple phases with uncertain ratios

    2 fluid properties might be influenced by an external field (MHD).

    Equivalently, stochastic Reynolds number Re (ξ) = ULν(ξ) .

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 19 / 35

  • Stochastic Galerkin formulation

    Idea: perform a Galerkin projection on the space TΓ (expectation E),and seek random fields for velocity ~u ∈ VE ⊗ TΓ, and pressure p ∈ QD ⊗ TΓ:

    E[∫

    D

    ν∇~u : ∇~v +∫D

    (~u · ∇~u) ~v −∫D

    p (∇ · ~v)]

    = E[∫

    D

    ~f · ~v]∀~v ∈ VD ⊗ TΓ

    E[∫

    D

    q (∇ · ~u)]

    = 0 ∀q ∈ QD ⊗ TΓ

    The stochastic counterpart of Newton iteration is

    E[∫

    D

    ν∇δ~un : ∇~v + c(~un; δ~un, ~v) + c(δ~un; ~un, ~v)−∫D

    δpn (∇ · ~v)]

    = Rn

    E[∫

    D

    q (∇ · δ~un)]

    = rn

    where

    Rn (~v) = E[∫

    D

    ~f · ~v −∫D

    ν∇~un : ∇~v − c(~un; ~un, ~v) +∫D

    pn (∇ · ~v)]

    rn (q) = −E[∫

    D

    q (∇ · ~un)].

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 20 / 35

  • Stochastic Galerkin FEM: ordering of unknowns

    We seek a discrete approximation of the solution of the form

    ~u (x , ξ) ≈M−1∑k=0

    Nu∑i=1

    uikφi (x)ψk(ξ) =M−1∑k=0

    ~uk(x)ψk(ξ)

    p (x , ξ) ≈M−1∑k=0

    Np∑j=1

    pjkϕj(x)ψk(ξ) =M−1∑k=0

    ~pk(x)ψk(ξ)

    Structure of operators depends on the ordering of the coeffs {uik}, {pjk}.We will group velocity-pressure pairs for each k , the index of stochasticbasis functions, giving the ordered list of coefficients

    u1:Nu ,0, p1:Np ,0, u1:Nu ,1, p1:Np ,1, . . . , u1:Nu ,M−1, p1:Np ,M−1.

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 21 / 35

  • Stochastic Galerkin FEM: structure of Stokes operator

    The discrete stochastic Stokes operator is built using matrices

    A`= [a`,ab] , a`,ab =

    (∫D

    ν` (x) ∇φb : ∇φa), ` = 1, . . . ,Mν − 1

    which are incorporated into the block matrices

    S0 =[

    A0 BT

    B 0

    ], S` =

    [A` 00 0

    ], ` = 1, . . . ,Mν − 1.

    These operators will be coupled with matrices arising from terms in TP ,

    H` = [h`,jk ] , h`,jk ≡ E [ψ`ψjψk ] , ` = 0, . . . ,Mν − 1, j , k = 0, . . . ,M − 1.

    The discrete stochastic (Galerkin) Stokes system is(Mν−1∑`=0

    H` ⊗ S`

    )v = y

    where ⊗ corresponds to the matrix Kronecker product.Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 22 / 35

  • Stochastic Galerkin FEM: block saddle-point structure

    The stochastic (Galerkin) Stokes matrix(Mν−1∑`=0

    H` ⊗ S`

    )

    contains a set of M block 2× 2 matrices of saddle-point structure

    S0 +Mν−1∑`=1

    h`,jjS`, j = 0, . . . ,M − 1.

    along its block diagonal =⇒ enables use of existing deterministicsolvers for the individual diagonal blocks.

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 23 / 35

  • Stochastic Galerkin FEM: linearized N-S operators

    Step n of the stochastic nonlinear iteration entailsM̂−1∑`=0

    H` ⊗Fn`

    δvn = Rn vn+1 = vn + δvnwhere

    Rn = y −

    M̂−1∑`=0

    H` ⊗ Pn`

    vnand vn and δvn are current velocity and pressure coefficients and updates.Here

    Fn0 =[

    Fn0 BT

    B 0

    ]Fn` =

    [F` 00 0

    ]

    Fn` = A` + Nn` + W`

    n for the stochastic Newton method,

    Fn` = A` + Nn` for stochastic Picard iteration.

    Question: How are the matrices A`, Nn` , W`n computed?

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 24 / 35

  • Stochastic Galerkin FEM: components of N-S operators

    At step n of the nonlinear iteration, let

    ~un` (x) the `th term of the velocity iterate, ` = 1, . . . ,M

    and let

    Nn` =[nn`,ab

    ]nn`,ab =

    ∫D

    (~un` · ∇φb) · φa

    Wn` =[wn`,ab

    ]wn`,ab =

    ∫D

    (φb · ∇~un` ) · φa

    and as before

    A`= [a`,ab] , a`,ab =

    (∫Dν` (x) ∇φb : ∇φa

    )` = 1, . . . ,Mν − 1

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 25 / 35

  • Model problem: Flow around an obstacle

    Flow around an obstacle with 12 640 velocity and 1640 pressure dofs.

    0 2 4 6 8 10 12−1

    −0.5

    0

    0.5

    1

    Stochastic Galerkin method implemented using the IFISS 3.3 package.1

    Viscosity with mean ν0 = 1/50 or 1/150 and lognormal distribution,

    CoV =σνν0, Re0 =

    U L

    ν0= 100 or 300.

    1http://www.cs.umd.edu/~elman/ifiss.htmlSoused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 26 / 35

    http://www.cs.umd.edu/~elman/ifiss.html

  • Model problem: Random viscosity

    Viscosity ν: a truncated lognormal process (ν0 = 1/50 or 1/150), itsrepresentation computed from Gaussian random process (Ghanem, 1999)with the covariance function

    C (X1,X2) = σ2g exp

    (−|x2 − x1|

    Lx− |y2 − y1|

    Ly

    )Lx and Ly : correlation lengths of ξi in the x and y directions, respectively,

    (set to be equal to 25% of the domain size, i.e. Lx = 3 and Ly = 0.5σg : the standard deviation of the Gaussian random field.

    N: the stochastic dimension (N = 2)P: the degree for the polynomial expansion of the solution (P = 3),

    the degree for the expansion of the lognormal process was 2PCoV = σν/ν0: coefficient of variation of the lognormal field (10% or 30%).

    =⇒ M = 10, Mν = 28 and 142, 800 dof in the global stochastic matrix.

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 27 / 35

  • Model problem: Nonlinear solvers

    Hybrid scheme: Stokes → Picard → Newton(direct solvers for the linear systems, rel. res. 10−8)

    Re = 100, CoV = 10%: 6 Picard steps 1 Newton step(s)Re = 100, CoV = 30%: 6 3Re = 300, CoV = 10%: 20 1Re = 300, CoV = 30%: 20 2

    Variant with an inexact Picard iteration (block diagonal matrix H0 ⊗Fn0 ):for CoV = 10% at most one extra Newton step (both Re = 100 and 300),for CoV = 30% this inexact method failed to converge.

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 28 / 35

  • Model problem: Mean velocity and pressure (Re = 100 and CoV = 10%)

    Mean of horizontal and vertical velocity:

    0 2 4 6 8 10 12−1

    0

    1

    0

    0.5

    1

    0 2 4 6 8 10 12−1

    0

    1

    −0.5

    0

    0.5

    Mean of pressure:

    0 2 4 6 8 10 12−1

    0

    10

    0.5

    1

    1.5

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 29 / 35

  • Model problem: Variance of velocity and pressure (Re = 100, CoV = 10%)

    Variance of horizontal and vertical velocity:

    0 2 4 6 8 10 12−1

    0

    1

    1234

    x 10−3

    0 2 4 6 8 10 12−1

    0

    1

    5

    10

    15x 10−4

    Variance of pressure:

    0 2 4 6 8 10 12−1

    0

    1

    5

    10

    15

    x 10−3

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 30 / 35

  • Model problem: Mean velocity and pressure (Re = 300 and CoV = 10%)

    Mean of horizontal and vertical velocity:

    0 2 4 6 8 10 12−1

    0

    1

    0

    0.5

    1

    0 2 4 6 8 10 12−1

    0

    1

    −0.5

    0

    0.5

    Mean of pressure:

    0 2 4 6 8 10 12−1

    0

    1−0.5

    0

    0.5

    1

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 31 / 35

  • Model problem: Variance of velocity and pressure (Re = 300, CoV = 10%)

    Variance of horizontal and vertical velocity:

    0 2 4 6 8 10 12−1

    0

    1

    1

    2

    3

    x 10−3

    0 2 4 6 8 10 12−1

    0

    1

    2468101214

    x 10−4

    Variance of pressure:

    0 2 4 6 8 10 12−1

    0

    10.5

    1

    1.5

    2

    x 10−3

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 32 / 35

  • Model problem: Variance of velocity and pressure (Re = 300, CoV = 30%)

    Variance of horizontal and vertical velocity:

    0 2 4 6 8 10 12−1

    0

    1

    0.010.020.030.04

    0 2 4 6 8 10 12−1

    0

    1

    24681012

    x 10−3

    Variance of pressure:

    0 2 4 6 8 10 12−1

    0

    15

    10

    15

    x 10−3

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 33 / 35

  • Model problem: pdf of horizontal velocity and pressure at point (3.6436, 0)

    CoV = 10% CoV = 30%

    ux

    −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.50

    1

    2

    3

    4

    5

    6

    7

    MCSCSG

    −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.80

    0.5

    1

    1.5

    2

    2.5

    MCSCSG

    p

    −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.250

    2

    4

    6

    8

    10

    12

    MCSCSG

    −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.60

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    MCSCSG

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 34 / 35

  • References

    Beďrich Soused́ık, Howard C. Elman:Inverse subspace iteration for spectral stochastic finite element methods,SIAM/ASA Journal on Uncertainty Quantification 4(1), 163–189, 2016.

    Beďrich Soused́ık, Howard C. Elman:Stochastic Galerkin methods for the steady-state Navier-Stokes equations,Journal of Computational Physics 316, 435–452, 2016.

    Soused́ık & Elman (U. of Maryland) SSFEM for two NL problems SISSA, July 2017 35 / 35

    cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: resultado2: hours: minutes: seconds: cronohours: cronominutes: crseconds: day: month: year: button1: button2: separatordate: /separatortime: :cronobox: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: cronobox: hours: separatortime: :minutes: separatortime: :seconds: