a numerical groundwater model for the island of lana’i,...

270
A Numerical GroundWater Model for the Island of Lana’i, Hawaii Commission on Water Resource Management Department of Land and Natural Resources State of Hawaii Report No. CWRM-1 April 19, 1996

Upload: others

Post on 06-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

A Numerical GroundWater Model for the Island of Lana’i, Hawaii

Commission on Water Resource Management

Department of Land and Natural Resources

State of Hawaii

Report No. CWRM-1

April 19, 1996

Page 2: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

EXECUTIVE SUMMARY

This numerical ground-water model for the Island of Lana’i has multiple objectives, purposes, andgoals beyond the standard attempt to simulate historically observed data, create a predictive tool, and ultimately provide a firmer understanding Lana’i’s ground-water hydrology. This study additionally attemptsto provide a common-ground framework of required reporting contents for future modelling efforts inHawaii within which hydrologists can explain and critique each others analyses and findings of numericalground-water models.

The entire record of measured geologic and hydrologic information is presented in this report fromwhich the conceptual model of Lana’i is derived along with the calibration targets of early Maunalei ‘Dinnel flows and the chronological order of initial water-levels in shafts and wells. A major assumption in theconceptual model is geologic homogeneity and isotropy on the regional scale.

Lana’i is a small island (144) miles2)with only one significant stream, Maunalei Gulch, which liesin the rain shadow of the islands of Maui and Molokai yet it has ground-water-levels which range from thea few feet near the coast to over 1500 ft. above mean sea level (msl) near the central portion of the island.This is generally the result of impediments to ground-water flow in the major rift zones of the island underareas of significant recharge. Of all the Hawaiian islands, Lana’i relies the most on high-level groundwater where water-level elevations of wells with utility range between 600 to 1500 ft. above msl. Using ageographic information system (GIS) to model recharge on a monthly basis while recognizing soil-moisture considerations resulted in an annual average recharge of 61.60 million gallons per day (mgd).

The calibration effort on steady-state and transient water-level analysis show that the numericalmodel can reasonably simulate regional water-levels. Also, the effort revealed that the extent of the high-level aquifer could be larger than previously estimated and that recharge appears to be augmented bysomething more than observed rainfall; most likely fog-drip. Although steady-state calibration targetswere simulated adequately, transient simulation of historical water-levels revealed that no one regionallyhomogenous storage coefficient could be identified. This fact undermines the major conceptual modelassumption of regional homogeneity and isotropy but does not invalidate the regional utility of the model.

Six predictive scenarios were investigated and their results are summarized as follows:

Scenario Description Results . —

1 ‘42 to ‘94 Average Punipage Water-level response is between 20% to 95% con-çiete (several decades to sev= 1.79 mgd era! centuries to go). Upper Maunalei tunnel should cease flowing.

2 Fog-drip Removal (8.9 mgd) Water-level response would take several centuries with decreases between 100to 700 ft. depending on well location. Both Maunalei tunnels would cease to flow.

3 Total pumpage = 6 mgd with Shaft 2 may lose its present utility without any modifications to other existingexisting well infrastructure wells and both Maunalei tunnels would cease to flow. Existing wells would need

to be deepened, arid/or additional wells would need to be drilled, and purrçingschedules carefully managed.

4 Combining 1 & 2 Many existing wells will lose their utility as well water-levels decline to sea-level.

S Palawai Caldera Pumpage = Impacts to upgradient potable sources are small and may be immeasurable.0.650 mgd

6 Future Pumpage = 3.52 mgd Aquifer is not harmed under this scenario. Existing wells may need some modification as some wells have no track record for this average pun-cage. No wellwater-level declines to sea level are expected. Lower Maunalei tunnel shouldcontinue to flow at around 0.103 mgd (i.e.total developed water = 3.62 mgd).

Page 3: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

A Numerical Ground-Water Model for the Island of Lana’i, Hawaii

Principal Author: W. Roy Hardy

For their much appreciated help and guidance, special thanks to:

William Meyer, Rae Loui, Patricia Shade, William Souza, Paul Eyre, Deh,n Old, Todd Presley,Lenore Nakama, Neal Fujii, Scot lzuka, Ed Bolke, Glenn Bauer, Tom Nance, Albert McCullough,Vince Bagoyo, Bob Hobdy, Paul Ekern, Leonora Fukuda, Jim Rounds, Twyla Thomas, Ed Sakoda,Eric Hirano, Richard Jinnai, Ingrid Kunimura, and those who provided comments to this report.

Page 4: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

TABLE OF CONTENTS

Table of Contents, i

List of Figures, iii

List of Tables, v

Introduction, 1

Objectives, Purpose, and Goals, 1

General Regional Setting, 2

Previous Studies, 3

Hydrologic Setting and Conceptual Model, 5

General Aquifer Characteristics, 5

Conceptual Hydrologic Boundaries, 6

Ground-Water Hydraulic Properties & Parameters, 14

Water-budget Analysis, 18

Rainfall Precipitation CR9.22

Fog-Drip Precipitation (FD), 26

Irrigation Relum QR), 29

Direct Runoff (DRO), 29

Changes in Soil-Moisture Stoca€c (ASMS & SMSrnax), 35

Evapotranspiracioa (Er, ETp. & Li’s), 39

Recharge (K). 42

Existing Wells, Historical Pumpage, and Water-Levels, 49

Selection of Numerical Code for Model, 67

Numerical Model Construction, 68

Grid, 68

2-D Rational, 68

Mathematical Boundary, Internal, & Source/Sink Conditions, 70

Hydraulic Parameters, 73

Solution Techniques, 75

Numerical Parameters (closure, seed, acceleration, etc.), 75

Calibration Targets (tunnel flow, initial water-levels, transient water-levels), 76

Page 5: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

TABLE OF CONTENTS (continued)

Model Calibration Results, 80

Initial Steady-State Ground-Water-Levejs, 80

Transient Recharge, Pumping. and Water-Levels, 90

Model Sensitivity Analysis, 94

Model Predictive Runs, 96

Predictive Run Results, 97

Scenario 1: ‘42-94 Average Pumpage, 98

Scenario 2: Total Fog Drip (ED) Removal, 102

Scenario 3: 6 mgd Pumping From Selected Existing WeDs, 106

Scenario 4: Combined FD Removal & 6 mgd Pumping Scenarios, 109

Scenario 5: Palawai CalderaPumpage Impacts, 113

Scenario 6: A Potential Plan of Future Pumpage, 115

Summary of Predictiye Sceimrio Results, 118

Prediction Sensitivity Analysis, 120

Model Limitations, 120

Conclusions and Postaudit, 124

References Cited, 127

Appendices, 136

II

Page 6: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

List of Figures

Figure 1. General Regional Setting of Lana’i, 2

Figure 2. Profile of Basal and High-Level Aquifers on Lana’i (Mink, 1983), 5

Figure 3. Electrical Resistivity Study Stations. (Swatrz, (1940) and lILA (1986)), 7

Figure 4. TDEM Study Sounding Sites & Interpretation (based on CEEG-BGD, 1994), 8

Figure 5. Northshore Beachrock of Lana’i (Adams, & others, 1973), 9

Figure 6. Geologic Map of Lana’i (Steams, 1940), 11

Figure 7. Gravity Survey of Lana’i (Krivoy, & others, 1963), 12

Figure 8. Magnetic Survey of Lana’i (Malahoff, & others, 1973), 12

Figure 9. Rain Gage Locations for Lana’i (State of Hawaii, 1972; Giambeijuca & others, 1986), 22

Figure 10. Monthly Rainfall at Lanai City State Key No. 672 (1930- 1994), 23

Figure 11. Monthly Rainfall at Koele State Key No. 693 (1892-1974), 24

Figure 12. Mean Annual Rainfall Isohyets for Lana’i, 25

Figure 13. GIS Soil Map of Lana’i (based on Foote,& others 1972), 30

Figure 14. Soil-Moisture Storage Cell Diagram, 35

Figure 15. Lana’i Ground-Water Recharge Zones, 45

Figure 16. GIS Monthly Variation of Individual Recharge Parameters in FD Area, 47

Figure 17. Well No.4852-02, Well 5 Historical Pumpage and Water-Levels, 51

Figure 18. Well No.4853-02, Well 1 Historical Pumpage and Water-Levels, 52

Figure 19. Well No.4854-01, Well 9 Historical Pumpage and Water-Levels, 53

Figure 20. Well No.4952-02, Well 4 Historical Pumpage and Water-Levels, 54

Figure 21. Well No.4953-01, Well 2 Historical Pumpage and Water-Levels, 55

Figure 22. Well No.4953-02, Shaft 3 Historical Pumpage and Water-Levels, 56

Figure 23. Well No.4954.01, Well 3 Historical Pumpage and Water-Levels, 57

Figure 24. Well No.4954-02, Well 8 Historical Pumpage and Water-Levels, 58

Figure 25. Well No.5053-01, Lower Tunnel Historical Pumpage and Water-Levels, 59

Figure 26. Well No.5053-02, Upper Tunnel Historical Pumpage and Water-Levels, 60

Figure 27. Well No.5054-02, Well 6 Historical Pumpage and Water-Levels, 61

Figure 28. Well No.5154-01, Shaft 2 Historical Pumpage and Water-Levels, 62

Figure 29. Well No.5253-01, Shaft 1 Historical Pumpage and Water-Levels, 63

Figure 30. Total Historical Pumpage on Lana’i, 64

‘U

Page 7: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

List of Figures (continued)

Figure 31. Selected Periods of Drawdown Levels on Lana’i, 65

Figure 32. Single Layer MODFLOW Grid 50 x 36 Mesh with 2000 ft. square cells, 69

Figure 33. Final Boundary Conditions for the Lana’i Numerical Model, 72

Figure 34. Spatial Contour Results of Best Fit Calibration (also see Figure 33, pg. 72), 83

Figure 35. Spatial Distribution of Errors for Best Fit Calibration, 84

Figure 36. Profile Line A-A’ Superimposed on typical Ground-Water-Level Contours Output, 86

Figure 37. Resulting Profile A-A’ (see Figure 36, pg. 86) Differences from Fog vs. No Fog Recharge Calibration, 87

Figure 38. Resulting Profile A-A’ Differences in Long-Term Pumpage Results on FD vs. NO-FDCalibrations, 89

Figure 39. Sensitivity Curves of Calibrated Model, 95

Figure 40. Scenario 1 Predicted Regional Ground-Water-Level Contours, 99

Figure 41. Scenario 1 Predicted Regional Drawdown Contours, 100

Figure 42. Observed vs. Simulated Transient Water-Levels for Shaft 2, 101

Figure 43. Scenario 2 Predicted Regional Ground-Water-Level Contours, 103

Figure 44. Scenario 2 Predicted Regional Drawdown Contours, 104

Figure 45. Scenario 2 Transient Time Response to Fog-Drip Removal, 105

Figure 46. Scenario 3 Predicted Regional Ground-Water-Level Contours, 107

Figure 47. Scenario 3 Predicted Regional Drawdown Contours, 108

Figure 48. Scenario 4 Predicted Regional Ground-Water-Level Contours, 110

Figure 49. Scenario 4 Predicted Regional Drawdown Contours, 111

Figure 50. Scenarios 2,3, & 4 Predicted Profile A-A’ of Ground-Water-Levels (see Figure 36, pg.86), 112

Figure 51. Scenario 5 Predicted Regional Drawdown Contours, 114

Figure 52. Scenario 6 Predicted Regional Ground-Water-Level Contours, 116

Figure 53. Scenario 6 Predicted Regional Drawdown Contours, 117

Iv

Page 8: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

List of Tables

Table 1. Previous Hydrologic Studies on Lana’i, 3

Table 2. Estimate of Monthly FD!RF Ratios, 28

Table 3. Lana’i Soil Characteristics for Runoff Estimation, 31

Table 4. DRO/RF Ratios from Pearl Harbor for Lana’i, 32

Table 5. Final DROIRF Ratios for Lana’i, 34

Table 6. Soil Characteristics for DSMSmax Estimation, 37

Table 7. Final Parameters for Lana’i DSMSmax Estimation, 38

Table 8. Estimate of Monthly ETp /ETannual Ratios based on Pan Data, 40

Table 9. Estimate of Monthly ETp /ETannual Ratios for Areas <2000-ft. Elevation, 41

Table 10. Lana’i Annual Recharge Estimates (inches/yr), 43

Table 11. Lana’i Annual Recharge Estimates (mgd), 44

Table 12. FD vs. No PD Recharge Estimates, 48

Table 13. Existing Lana’i Wells, 50

Table 14. Calibration Targets and Rank of Importance, 77

Table 15. Levels of Calibration for Lana’i Numerical Model, 78

Table 16. Resultant Calibration Parameters for Initial Steady-State Conditions, 81

Table 17. Best Fit Steady-State Calibration Results, 82

Table 18. Resultant Calibration Parameters for No-Fog Steady-State Conditions, 85

Table 19. Stress Period Departures from Mean RF for R Calculations, 91

Table 20. Stress Period Departures from Mean R from GIS Model, 91

Table 21. Stress Period Pumpage Input. 92

Table 22. Best Match for Transient Conditions, 93

Table 23. Individual Well Pumpage for Predictive Model Runs, 96

Table 24. Summary of Predictive Ground-Water System Responses, 118

V

Page 9: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Introduction

Objectives, Purpose, and Goals

The impetus which generated this study for Lana’i was a request by the Land Use Com

mission (LUC), State of Hawaii, for Lanai Co. (LCo.), in conjunction with the Commission on

Water Resource (CWRM), State of Hawaii, and the U.S. Geological Survey (USGS), to produce a

numerical model to further assess the ground-water hydrology of the island and potential impacts

of pumping ground-water from Lanai’s high-level aquifer. No specific objectives were outlined

by the LUC other than to produce a numerical ground-water model.

As such, the objectives, purpose, and goals for this study were kept simple and are as fol

lows:

(1) To provide a firmer understanding of Lanai’s ground-water flow system based on

the more detailed level of analysis required by a numerical model.

(2) To provide a firmer understanding of the limitations of the existing well

configuration as far as developing and utilizing the ground-water flow system.

(3) Produce a two-dimensional (2D) preliminary numerical flow-type model to

investigate ground-water heads and flows only, rather than a transport-type model

which additionally incorporates solute transport phenomena. Solute transport is not

of primary concern at this time. Additionally, the numerical code should have

three-dimensional (3D) capabilities;

(4) The model shall be at least interpretive and possibly predictive. As described by

Anderson & Woessner (1992), a model at the interpretive level of investigation

requires the methodology and framework for organizing existing data and

formulating ideas about the ground-water system dynamics, while predictive

models require a greater level of detail and calibration to reproduce actual observed

data and responses to pumping. This approach may also be classified as the solution

to an identification or “inverse” type problem (Anderson, & others, 1992; Weeks,

1994). Inverse type problems are where stresses, like pumpage, and the resulting

responses, or resulting water-levels, are known, but the aquifer system itself is

unknown;

(6) To provide a framework of model reporting requirements for future studies related

to ground-water numerical modelling efforts in Hawaii.

(5) Lastly, this study provides an opportunity for hydrologists from LCo. and

government agencies to work together to produce a useful and meaningful

numerical ground-water model to further the geohydrologic knowledge of the

island, to provide an additional water management tool for the CWRM, and to give

the community of the Lana’i a greater sense of confidence in the estimates for the

occurrence and availability of ground-water on Lana’i.

1

Page 10: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

General Regional Setting

The Island of Lana’i is a single volcanic shield which has been extinct the longer than any

of the other main Hawaiian islands (Stearns, 1946). Information regarding Lanai’s general

regional setting are shown in Figure 1.

o 2I I

I Io 2 4 KILOMETERS

EXPLANATION

A — A’ LINE OF sEcrioN

4 555-1 WELL LOCATION AND NUMBER

HIGHEST GROUND ELEVATION

Total area = 140.8 mi2

Climate = subtropical

20

Figure 1. General Regional Setting of Lana’i

ISO. 155

I 5V Patahi,u P&nt

2O 55’

A

160I I I

HAWAIIaimi

Niihau

oahfl Motokal

Kahoolawe°

°Q, Hawi

2

Page 11: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Previous Studies

There have been many studies directly concerning the geology, hydrology, land use, and

water resource development of Lana’i which are helpful for producing a ground-water numerical

model for Lana’i. These studies are chronologically ordered and a brief description of each is

found in Table I. Full reference of these studies is located in the reference section of this report

Table 1. Previous Hydrologic StudEes on Lanai

Year Author Investigated - selected major oonclusions

1922 Munro, G.C. Fog-drip observations,

1924 Palmer. H.S. Ground-water conditions - no high-level aquifers.

1925 Wentworth, C.K. Geologic conditions - no high-level aquifers.

1926 Munro, I I Fog-drip observations.

1930 Clark WGround-water development - no high-level aquifer but recommended tunneling in Maunalei

, Gulch.

1938 Steams, H.T. Ancient shorelInes - similar ocean stands experienced as the island of Oahu.

1940 Swath JGeophysical resIstivity survey - profile depth to salt-water! freshwater interface along transect

. -

- from Kaumalapau Harbor to the mouth of Maunalei Gulch interpreted as no high-tevel.

1940 Macdonald, GA. Petrography - island building volcanics ceased at primitive stage; shield building & caldera filing

1940 Steams, H.T. Geology & Ground-Water -est. recharge 646 mgd for high-level aquifer, 21.26 mgd for island.

1946 Steams, H.T. Short synopsis of Lanai’s general geologic history.

Supplement Ground - Water Development on Lana’l - susainabie yields mgd or more.

1953 Steams, HI Ground- water loss is heavy on windward sido between Maunalei and Lope and not recovered

presently.

1954 Munro, J.T. & others unpublished Company intemal hydrological analyses (Mink. 1983).

1957-59 Anderson, KE. Three reports cited by Steams (1959) but not found in research. Defined ‘Safe Yield’ 1.9 mgd.

1959 HI Water Authority Waler Resources in the State - Development of Lanai groundwater and fog-drip importanca

Safe ‘Yield - Safe Yiekf’ described by Anderson (1957-59) is defned by well infrastructure and1959 Steams, HT. yiei may be increased by addng more wells. Believes little lateral leakance between wells.

“Safe Yield” definition letter - concurred with Steams’s defnition of ‘safe yield” and that it can1959 Anderson, ICE. be increased through development of new sources & lateral leakance phenomena

1960 Anderson, ICE. 2 Water 9Jppty reports: Safe yield from sources = 2.2 mgd.

3 Water supply reports - Safe Yield from sources Increased to 2.3 mgd. Ultimate high-level

1961 Anderson, ICE. aquifer supply estimaled at 36 lo 4,8 mgd. Appreciable amounts of Maunafei tunnel water flows

by pass water supply system, are not accounted, and probably flow into the sea.

1964 Ekem, RC. Fog-drip- rainfall precipitation augmented by 30 inches/yr beneath a mature Norfolk pine.

1966 Malahoff, A, & others Geophysical magnetic survey - verified Steam’s Art zones and ac±iitional deep rifts.

1965 Krivoy, H.L. Geophysical gravity survey - verified that main caldera located within Palawai basin.

1967 Sahara, T.S. & others Land classification - various land usa, soil, vegetation, crop productivity, acreage data

3

Page 12: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Table 1. Previous Hydro’ogic Studies on Lanai (Continued)

Year Author Investigated selected major conclusions

1968 Ching,A.Y. & others I,snd productivity rating - various agricultural ratings and irrigated acres,

1971 Bowles, SR unpublished watershed conservation and management program report (Bowles, 1974).

1972 Foote, ft & others Soil Classifications - island-wide identification and dassificabon of soil information.

1973 Adams, W.M. & othersGeophysical reslstMty - optimum drilling sites for high-quality basal water in southeast areabetween Lopa and NaI-ia Lower quality between Karolohia and Lopa

1973 Armstrong & others Regional hydrologic parameter - average annual runoff = 11 in.Jyr rainfal = 21 iniyr.

1974 Gowles, SR High-level aquifer development plan - infiltration (recharge) estimated at 6.5 mgd.

1975 Lloyd, RH. Description of wells1 tunnels, and hydrology - Tunnels began work in 1923.

1979 USWRCRegional hydrologic parameters - Total recoverable ground-water fie. sustainable yield) = Smgd, developed (as of 1975) = 3 mgd, high-level area possibly larger than previously believed.

1982 Schoeder, T.A. Rainfall - median rainfall isohycts.

1983 Anderson KWater supply review: for planning purposes island freshwater supply estimate is 4.1 to 5.5 mgd

. .

- Correction to reported Well S data by-Ill ft from 4fl9 to Xt/83.

1983 Mink, JR HIgh-level potable supply - recharge est 9.3 mgd, sustainable yield est. 6 mgd.

1984 Anderson, K.E. Letter report on Mink’s hydrologic analysis- disagreed with Mink’s approach.

1984 Anderson, ICE. Water supply review - welts and infrastructure capable of supplying 2.7 mi

1985 Giambelluca, 1W. RaInfall - median and mean rainfall isohyets.

1985 Anderson, ICE. Water supply review -wells and infrastructure capable of supplying 2.6 mgd.

1986 Harding Lawson, Ass. Electrical resistivity Investigation - emphasis on locating productive fresh water areas,

1988 Ekem, PC. Evaporation rates - ordy one evaporation pan on Lanai, insufficient to make isogram.

1989 Anderson, K.E. Memo update on hl4evel water supply - recharge 8.89 mgd. S.Y. = 6.22 mgd.

1989 M&E Pacific, Inc. Water resources development plan - Koele and Manele project water demands/development.

1989 JMM. Inc. Lanai Water Use (1948.1988) - Graphs of ground-water use and waterevels.

Waler management rea petition - lanai not designated but determined that reasonable hydro

1990 CWRM logic values are: Recharge 9 mgd, Sustainable Yield = 6 mgd, and identified a CWRM limit onground-water use 4.3 mgI.

1991 Giambelluca, 1W. Drought - Lanai’s most severe occurred in 1931 and lasted 9 months.

1993 Mink, JR Aquifer Identification and Classification for Lana’l - aquifer boundaries for protection strategy.

1993 Hobdy, R. Forest Reduction - Feral herbivores are responsible for most of Forest damage/recharge impact

1994 CEES-BGD ThEM surveys - Area] extent of possible hi-level.

A few other hydrologic investigations are not listed in Table 1 because the results have not

been formerly published and no permission from the author to mention them was obtained. Well

information has been verified by an independent monitor and confirmed by the Lanai Water Com

mittee. Additionally, environmental assessments (EAs) for the Koele and Manele project districts

were made for Lana’i and contain much of the hydrologic information found in M&E Pacific,

Inc.’s (1989) water resources development plan.

4

Page 13: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Hydrologic Setting and Conceptual Model

A conceptual model includes the essential features that represent a physical system. It isbased on the physical framework observed, which in this case is the geohydrologic conditions onLana’i, and attempts to link this observed physical framework to an equivalent digital frameworkin a numerical model. The geohydrologic framework of Lana’i upon which the conceptual modelis based is described in the following subsections

General Aquifer Characteristics

Lana’i has basal and high-level dike confined aquifers. Our knowledge of actual arealextent of these aquifers is limited by the amount of well and borehole infonriation to date, but atypical conceptual profile of the high-level and basal aquifers for Lana’i is shown in Figure 2.Due to the information gathered from Well 10 the high-level aquifer is now believed to covermore than 15 square miles. The high-level aquifer has both potable and brackish water. The potable water is of very good quality which is typical of high-level aquifers. High-level brackish

water (CF>300 mg/I) has only been found in wells located within the Palawai basin area and areaccompanied by geothermal heating. Basal water is only brackish as evidenced by wells foundboth near the coast and over a mile inland at Shaft 1.

PRIMARYHIGH LEVEL

WATER

SECONDARYHIGH LEVEL

PIMP ii,

I’g!jI!

•.1 I I

WEU. BOTTOM III

‘I I I•I I’I’II I I

o ¶0.000 20.000 30.000 40,000 S0.000A

DISTANCE (FT.)

Figure 2. Profile of Basal and High-Level Aquifers on Lana’i (Mink, 1983)

SECONDARYHIGH LEVEL

WATERI- -4

3250’

3000

2750

2500

2250

2000

1750

1500

1250

1000

750

500

250

Ii.

z0

>Lii-JLii

I

LANAI SW—NE

BASAL WATER —‘

BRACKISH

BASAL WATER

‘BRACKISH’

/

SEA LEVEL 0

-250

SEA LEVEL

60.000 70.000 80000A.

5

Page 14: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Conceptual Hydrologic Boundaries

The conceptual hydrologic boundaries consist of physical or hydraulic boundaries which

define the entire ground-water domain and will internally influence ground-water flow patterns.Basically, Lanai’s major hydrologic boundaries consist of the Pacific Ocean which surrounds andpenetrates under the entire island of Lana’i, caprock-like beach rock along the north shore of theisland, three (3) major rift zones which are manifested by observed dike and fault boundaries,

and the unconfined water table.

The salt-water of the Pacific Ocean effectively acts as a physical boundary surrounding,

underlying, and constraining fresh ground-water flow for Lana’i. Freshwater in basal aquifers is

known to float on top of the denser salt-water to form a freshwater lens according to the Gyhben

Herzberg relationship (DuCommon, 1828; Ghyben, 1889; and Herzberg, 1901). The location of

streamlines along the bottom of the lens effectively makes a hydraulic boundary between fresh

and salt water. Through geophysical resistivity analysis of a cross-section of the island consisting

of twenty-one (21) readings between Kaumalapau Harbor to the mouth Maunalei Gulch (near LaeHi Point), Swatrz (1940) recorded a maximum thickness of the freshwater lens to be 973 ft. at Station 11, where the maximum depth below mean sea level (msl) to salt water is 948 ft. with a cor

responding calculated water table elevation of 23.7 feet above msl (see Figure 3, pg. 7).

However, initial water-levels found at three (3) wells located within approximately one mile of

Swartz’s Station 11, Wells 6 & 7 and Shaft 2, encountered water-levels much higher than

expected; 1005, 650, and 735 feet above sea level, respectively. Also, only Wells 1, 9, & 10 have

been drilled below sea level in the high-level aquifer but none of these wells have encountered a

transition zone or confining bottom under the dike confined portion of the aquifer. A later electri

cal resistivity study by Harding Lawson Assoc. (HLA, 1986) consisted of thirty-three (33) sta

tions strung out roughly perpendicular to Swartz’s study along the central part of Lana’i (see

Figure 3, pg. 7) also resulted in shallow fresh water layers. In some instances, the interpretations

by HLA show an absence of high-level freshwater between wells which have encountered and

produced potable high-level ground-water. In fact, the HLA study is careful to point out that their

interpretations may be erroneous due to the presence of the lateral boundaries of dikes and faults.

Other resistivity methodologies can be used to quantify the depth to salt water, the most recent

effort performed by CEEG-BGD (1994) using the Time Domain Electromagnetic (TDEM) sir

veys (not available during the time of model calibration). Approximately ninety-nine (99) sound

ings were taken around the island to estimate the depth to the salt water/fresh water interface and

high-level ground-water occurrence (see Figure 4, pg. 8). This areal extent was postulated as

early as 1979 (USWRC, 1979). The maximum salt water freshwater interface depth below msl

was estimated to be in excess of 1000 ft. and the initial occurrence of the high-level water begins

no more than 3.8 miles inland from the coast anywhere on the island. Like earlier resistivity stud

ies, the presence of dike and fault boundaries may distort results in the high-level area. On the

other hand, it may mean that the Ghyben-Herzberg relationship may not be applicable to the high-

level water on Lana’i. This information combined with the fact that there are few wells within the

basal aquifer lead one to conclude that the actual physical bottom location and profile of the fresh

ground-water/salt water interface island-wide under Lana’i is fairly known in the basal areas but

virtually unknown beyond qualitative description in the high-level areas.

6

Page 15: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

September 13, 1995 PRELIMINARY DRAFT - SUBJECT TO CHANGE

FIG. 1. Map of Lanai showing lines of equal rainfall, rainfall and resistivity

stations, geomorphic divisions, end 500 foot submarine contour line. Insert

null) in upper right corner shows location of Lanai In the Hawaiian group.

Figure 3. Electrical Resistivity Study Stations. (Swatrz, (1940) and HLA (1986))

7

Page 16: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Figure 4. TDEM Study Sounding Sites & Interpretation (CEEG-BGD, 1994)

- T —

I--.

——-I--

8

Page 17: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Ground-water eventually discharges all along the coast of Lana’i through a thin cross-sectional area at the toe of the basal aquifer lens (see Figure 2, pg. 5). There is little or no discerniblecaprock or alluvial deposits around the steep and rocky southernly shores from the western Palahinu Point to the eastern Kamaiki Point. This southern shore topography is probably the result ofthe prehistoric landslide known as the Clark Debris Avalanche (Moore, & others, 1989). However, on the northern coast between of these points there are alluvial deposits along the shorewhich may act like a caprock formation of low permeability Stearns (1940). Stearns attributedthe existence of northeastern slightly-brackish wells near the shore due to this alluvial geology.Otherwise, the area would be contaminated by seawater intrusion. Through resistivity analysis,Swatrz (1940) estimated depth of alluvium at the mouth of Maunalei Gulch at 187 feet below msl.The existence of a low permeability feature was further stipulated by Adams & others (1973).According to the results of Adams’s geophysical resistivity survey consisting of 176 stations andother field observations the typical shoreline profile from Kaiolohia to Naha is shown in Figure 5.Adams noted that the highest seepage outflow observed along this study area was at Lae Hi Pointwhich happened to be a basaltic outcrop directly in contact with the ocean. This led the authors tobelieve a beachrock, or caprock, impediment of low permeability exists along Lanai’s northerncoast’s alluvial sediments.

Figure 5. Northshore Beachrock ot Lana’i (Adams, & others, 1973)

AIR

RECOMMENDEDDRILLING SITE

FRESH WATER

sAu_FRE5flSALINE WATER

SEA

TEtfIATIVE tL FWCR%EO%TCAL FEAThRE OF Th€A5T COAST OF LPflkI.

9

Page 18: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

The principal subterranean boundaries affecting the ground-water flow paths are locatedin the three major rift zones on Lana’i. Steams (1940) identified the rift areas as the northwest,south, and southwest rift iones. Within the rift zones, intrusive dike and fault structures affectand control the path of ground-water flow. Locations of over 375 exposed dikes and 100 exposedfault boundaries are based on Steam’s geologic mapping of the island (see Figure 6) and help todefine the extent of these rift zones on Lana’i. Undoubtedly, many unseen dike and fault boundaries must exist within the rift zones. Dikes may number between 10 to 200 per mile (Macdonald,1956 & 1970) to 1,000 per mile (Takasaki & Mink, 1985). Additionally, a gravity survey by Krivoy & others, (1965) identified that the Palawai basin contains the island’s major caldera and thepossible existence of an ancient northwest rift zone and a northwest lobe (see Figure 7, pg. 12). Amagnetic survey performed by Malahoff (1973) also concurred with the major rift features identified by Steams and Kirvoy and, like Kirvoy, indicated the possible existence of northern rift zonenot identified by Stearns (see Figure 8, pg. 12). Stearns stated that near Lanai City, the northwestrift zone widens and may be up to 4 miles across as a result of early dike formation with later collapsing and faulting which occurred in a more southwesterly area. As mentioned earlier, the mostrecent resistivity survey via TDEM (CEEG-BGD, 1994) found that initial occurrence of the high-level water begins no more than 3.8 miles inland from the coast anywhere on the island whichindicates a wide areal presence of impediments to ground-water flow. It is well known that dikesare intrusions of dense rock which, when they are sufficiently numerous and intersect, form barriers which impede ground-water flow. The intersection of dikes are such that the can affect boththe horizontal and vertical flow of water due to the dip and strike variabilities observed on otherislands (Takasaki & Mink, 1985; Walker, 1987). Faults may also act as barriers but their effectiveness as impeding boundaries it is not as well demonstrated as dikes. However, Stearnsobserved and described fault breccias to which he attributed low permeability and stated that theyshould act like dikes in restricting ground-water flow. It is important to note that these brecciascontained fragments of the intrusive rocks associated with dikes which is evidence that dikes arealso shattered by faulting which may actually increase permeabilities of dike formations in someinstances.

The water table makes up the final hydrologic boundary for Lana’i across which net fluxes

from recharge and pumping occur and vary spatially and temporally. One could consider the

isograms of hydrologic processes affecting the spatial distribution of recharge, namely; rainfall,

fog-drip, runoff, and evapotranspiration, as individual hydraulic boundaries. Normally, however,

these features are not considered individually in a numerical model but are lumped together into a

net recharge flux term. Therefore, recharge flux is more appropriately handled through a separatewater-budget analysis which is covered later in this report.

10

Page 19: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

EXPLANATION

0

I0

2 4 MILESI I

I I I2 4 KILOMETERS

I 1 SEDIMENTARY ROCKS

I IVOLCANIC ROCKS

FAULT

Figure 6. Geology of Lanai (modified from Stearns, 1936).

l57 O0 PaIahinuPdnI

20: 55

Basalt

Crater or Cone

11

Page 20: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

SUBJECT TO CHANGE

Figure 7. Gravity Survey of Lana’i (Krivoy, & others, 1963)

Figure 8. Magnetic Survey of Lanai (Malahoff, & others, 1973)

12

Page 21: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Finally, there is the possibility that hydrostratigraphic boundaries, or multiple alternatingtypes and layers of lava flows, have an effect on the isotropy and vertical flow of the model. Thelayered and alternating flank flow characteristics between a’a clinker zones, pahoehoe lava, andvolcanic ash of the Hawaiian Islands, including Lana’i, produce anisotropic conditions. Forexample, there is evidence of perched conditions on Lana’i from two seeps upstream from the dryWaiapaa Tunnel (Stearns, 1940). These seeps were significant enough for drain basins to be builtto collect and pipe water to cattle. However, such seeps sites are considered very localized features. Given the time and resource constraints of this study, the stratigraphy is assumed to bemore or less uniform when viewed from the larger regional scale. Using this assumption obviously sacrifices any vertical anisotropy but this is a small price to pay for the benefits of creatingan insightful tool which is limited to a single layer. Therefore, for the purposes of this study, theentire island of Lana’i assumed to be isotropic at the regional scale.

13

Page 22: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Ground-Water Hydraulic Properties & Parameters

General ground-water hydraulic properties described herein are specific to the dynamics

of the saturated portion of the aquifer alone. Necessary parameters for solutions in a numerical

ground-water model are hydraulic conductivity, transmissivity, and the storage coefficient while

homogeneity and anisotropy are related issues about the spatial distribution and magnitude of

these parameters. Hydraulic conductivity is a proportionality constant based on both the fluid and

the medium through which it passes and is essentially the capacity of a rock to transmit water. It

is based on Darcy’s Law which is defined in Equation eq.(1).

Q = KA(4j) eq.(1)

where:

Q = quantity of water per unit of time (L3/t)

K = hydraulic conductivity (Lit)

A = cross-sectional area perpendicular to flow (L2)

dhidl = hydraulic gradient (dimensionless)

Hydraulic conductivity, K, differs among different rock types but n’y also differ from

place to place within the same rock. This characteristic refers to the homogeneity of the rock, If

the K is the same throughout the rock then it is said to be homogeneous. JfK values differ from

one area to another it is said to be heterogeneous. In the real world geology, rock is always heter

ogenous. Although one can state that locally, and in absolute terms, that K values are generally

heterogenous, it was assumed that at the regional island scale that flank lava flows are homoge

nous while recognizing that these flows are cut by dikes and faulting of different K values as well.

Dikes are denser rock and it is well established that they have lower K values than flank flows.

Dike widths found in other dike complexes on Oahu range between 1 to 5 ft thick although dike

widths of 10 ft. or more are possible (Walker, 1987). However as stated earlier, they can be very

numerous in a dike complex region. Additionally, extensive faulting on the island in the three

major rift zones, as stated by Stearns (1940), “more than likely act similar to dikes” and should

have low hydraulic conductivities although faulting probably has more variable impact of ground

water flow. Like flank flows, it is assumed that at the regional island scale effective K’s for the

network of dikes and faults in the rift zone are homogeneous although different than flank flows.

K values may also differ in different directions anywhere within a rock or an aquifer. This

characteristic refers to the isotropy of the medium. If it is the same in all directions (x,y,z) it is

said to be isotropic, if not then it is anisotropic. As stated earlier, the layered and alternating flank

flow characteristics of the Hawaiian Islands lean towards anisotropic conditions. However, this is

assumed to be insignificant at the regional island scale for the purposes of this report

14

Page 23: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

As a final note on K, it is understood that the fluid in this study refers specifically toground-water which is assumed to be uniform throughout the aquifer. Generally, ground-water inHawaii is uniform in temperature and dissolved constituents. However, ground-water temperatures in and near the Palawai basin are significantly elevated and since temperature affects thedensity and kinematic viscosity of water it will affect the hydraulic conductivity in that area of theaquifer. Therefore, this phenomena should be kept in mind when reviewing results of the model.Additionally, the ground-water dissolved solids content in Palawai basin and near shore wells areelevated which change the density of the modelled fluid.

The range of K values for basaltic rock covers twelve (12) orders of magnitude (Heath,1982). Thus, one can appreciate the variability involved with estimating effective K values inbasaltic geology such as the Hawaiian Islands. Typical values for K for flank flows in Hawaii,based on pumpage tests, range from several thousands of feet per day in flank flows to a few feetper day (Sooros, 1973). K values for geologic features such as dikes are known to have low K

values which have been reported as low fl)-5 ft/day for massive igneous rocks (Todd, 1980).

Transmissivity, 7’, is the product of hydraulic conductivity and the saturated thickness ofan aquifer and is the capacity of an aquifer to transmit water. Transmissivity is defined in Equation eq.(2).

7’ = Kb eq.(2)

where:

7’ = Transmissivity (L21t)K = Hydraulic Conductivity (Lit)b = Saturated thickness of aquifer (L)

Since 7’ is dependent upon the saturated thickness, b, of the aquifer and the fact that theGyhben-Herzberg relationship (DuCommon, 1828; Ghyben, 1889; and Herzberg, 1901) exists inthe Hawaiian islands, it must be understood that T is not constant but varies within Hawaiianaquifers. However, even without this assumption it is certain that the T on Lana’i is not constant.The fact that the water-levels on Lana’i vary greatly identifies greatly varying values for b. Sincethe bottom of the Lana’i ground-water aquifer has never been firmly established through welldrilling and existing data it can only be assumed that the Gyhben-Herzberg relationship exists. Ifthe Gyhben-Herzberg relationship does indeed exist then values for b, thus 7’, could range overseveral orders of magnitude.

Since T is dependent upon the value of K, 7’ is subject to the same concerns of homogeneity and isotropy as is K. Again, these issues are assumed to have greater impact at the local scalerather than the regional scale of this model.

15

Page 24: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

The storage coefficient, 5, is the capacity of the aquifer to store water. S is defined as thevolume of water that an aquifer releases from or takes into storage per unit surface area per unitchange in head as follows in Equation eq.(3):

V

= A (Alt)eq.(3)

where:

S = Storage Coefficient (dimensionless)

= Volume of water released from aquifer (L3)

A = unit surface area (L2)

Alt = unit change in head level (L)

S is most important in determining the transient response of an aquifer to stresses such aspumping. When steady-state conditions are investigated S is set to zero (0) since transient behavior is not sought and no changes in storage will occur, i.e. water will be released from storageinstantly with no time lag. Once initial steady-state conditions are determined, i.e., initial water-levels encountered are reasonably matched, then the S can be determined through transient water-level responses to pumping.

S varies depending whether the aquifer is confined or unconfined. Ground-water releasedfrom storage in confined aquifers is predominantly from aquifer compression and the expansion

of water under pressure. The reasonable range of S for confined aquifers is 0.00001 to 0.001

(Heath, 1982). Ground-water released from storage in unconfined aquifers is predominantly from

gravity drainage through the aquifer when water-levels decline and is essentially the aquifer’s

specific yield. The reasonable range of S for unconfined aquifers is 0.1 to 0.3 (Heath, 1982).

Additionally, for unconfined basal lens type aquifers water could also be released from bottom

storage as the transition zone rises according to the Gyhben-Herzberg relationship and could

affect S values by 41 times (Eyre, & others, 1986).

The common method of estimating the parameters described above are through aquifer

pumping tests. Ideally, observation wells are used to observe aquifer water-level drawdown

responses to pumping wells. Such multiple-well tests are uncommon in Hawaii due to the addi

tional costs involved. Typically, only the pumped well itself is the available source for aquifer

test drawdown measurements. Such single-well tests introduce additional drawdown due to tur

bulent frictional forces as water leaves the aquifer and enters the well bore. Thus, most single-

well tests have greater drawdown than that which occurs in the aquifer itself. This is a very local

ized source of error. Although this is one major source of error in estimating aquifer K, 7’, and S

values, there are many other localized sources of error associated with single-well aquifer pump

tests. These sources of error are related to the following assumptions:

16

Page 25: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 26: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 27: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Other recent recharge analyses performed in Hawaii used monthly based averages for thewater-budget parameters in conjunction with a transient ASMS parameter to arrive at a moreaccurate estimate of annual R (Giambelluca, 1983, 1986 and Eyre, & others, 1986). For Lana’i,the monthly information for each parameter in Equation eq.(4), except JR. was entered andmanipulated digitally with the Geographic Information System (GIS) ARC-INFO Version 6.0(ESRI, 1992) to estimate the cell-by-cell mean monthly recharge values. This work was perfonried on a Data General AViION 300 Series Workstation (Data General, 1990) in conjunctionwith a PRIME 9955 mini-computer (Prime, 1987). The geographic datum and projection used inthis study was North American Datum of 1927 (NAD27) and the Albers Projection, respectively.

The average month-to-month input values for all the parameters are straightforward historical data substitution except for tXSMS which uses the logical expressions in equations eq.(7) toeq.(10). ASMS at each cell is calculated by using a month-to-month bookkeeping procedure.First, in the GIS water-budget model the difference between a month’s total precipitation (RF +

PD) and direct runoff, DRO, at a given cell location represents the volume of water which infiltrates through the ground surface into the soil at that location for that month. This is shown mathematically in Equation eq.(5) as follows:

RFm+FDm_DROm = 1,,, eq.(5)

where:

RPm = Mean rainfall precipitation for month in

FDm = Mean fog-drip precipitation for month in

DROm = Mean direct runoff for month in

‘in = Mean infiltration, or water which passes into the soil, for month in

This infiltration, ‘, adds to the beginning or initial soil-moisture storage found at that cell

location for that month. If the amount of ‘m plus the beginning soil-moisture storage, (SMS1)m,

exceeds the maximum soil-moisture storage capacity, SMS,,,JJ, the excess drains through the cell

and becomes the ground-water Rm for the cell for that month. SMS,,.ØJ is equal to the available

water in the soil which is the available water capacity (soil field capacity minus the wilting point)

multiplied by the root zone depth of the vegetation. For each month this is represented mathemat

ically in Equation eq.(5) as follows:

+ (SMS1) SMSmax = R eq.(6)

where:

= Mean infiltration for month in

(SMSi)m = Initial soil-moisture storage at the beginning of month in

SMS,,.QJ = Maximum soil-moisture storage capacity = (available water capacity) x(root zone depth)

= Mean recharge 0, for month in 0

19

Page 28: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Following this calculation, evapotranspiration, El’, is then subtracted from the soil-moisture storage at the maximum monthly rate, E7’, which is assumed to be the average amount of

water which would evaporate from a properly operated Class A type pan (Ekern, & others, 1985),

again, for that particular month. The justification for taking out ET after first calculating rechargeis two-fold. First, R occurs mainly during storms, when RF intensity is high and ET is low. Secondly, the Irate through most soils is on the order of feet per day while ET rate is on the order of

feet per year. Therefore, during and immediately after storms water can infiltrate through theground surface and into the soil much faster than it can evaporate.

There are two different situations which affect estimating the ET0 and ending soil-mois

ture storage, (SMSj)m+j, for each month’s iteration. First, if ET is greater than SMS, then the

full ETA, cannot be achieved. This means that El’0 will be less than El’s, since water stops evapo

rating once the soil-moisture reservoir is empty (see Figure 14, pg. 35). Therefore, ET3 is equal

to either SMSma or, if SMSW.., has not been reached, something less. The (SMS1)m+j term

would thus always be reset to zero (0) for the next monthly iteration. This first situation of estimating monthly El’0 and (SMS1)m+i is represented mathematically as follows:

If (ETp)m > SMS,PSX then

(El’)= ‘m+ (SMS1)m_Rm eq.(7)

and

(SMS1)m+i = 0 eq.(8)

where:

(ETp)m = Mean potential evapotranspiration for month m

(ET0)m = Mean actual evapotranspiration for month m

COrn = Mean infiltration for month m

(SMS1)m = Initial soil-moisture storage at the beginning of month m

Rrn = Mean recharge for month m 0, calculated from equation eq.(5), pg. 19

(SMS1)rn+j = Next month’s initial soil-moisture storage

In the second situation, if ET, is less than SMS,,,,, or, if SMS,,.ØJ has not been reached,

then the full El1, is achievable. In this case, El’0 would equal ET,. Also, the next month’s

(SMSi)rn would then be some residual amount left over after ET has been removed from the soil

moisture reservoir. This second situation of estimating (ET0)rn and (SMS1)rn+i is represented

mathematically as follows:

20

Page 29: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

If (ETp)m SMSmax or (ETp)m < ‘in + (SMSi)m - R then

(ET0) = (ETp)m eq.(9)

and

(SMS1)m+i =J,+ (SMS1)_R_ (ETp) eq.(10)

where:

(ETp)m = Mean potential evapotranspiration for month in

(ET4)m = Mean actual evapotranspiration for month in

= Mean infiltration for month m

(SMS) = Initial soil-moisture storage at the beginning of month in

= Mean recharge for month in 0, calculated from equation eq.(5), pg. 19

(SMS1)m+i = Next month’s initial soil-moisture storage

Again, irrigation return, JR. was not considered in this process for four reasons; 1) the irri

gation fields were mostly outside the natural and most significant recharge area; 2) pineapple irri

gation demand quantities, in general, are small; 3) potable wells are generally outside and

upgradient from the irrigated areas of pineapple; and 4) since pineapple production has ceased on

the island the resulting recharge without irrigation would be more indicative of present and near

future recharge conditions. In addition, studies have shown that pineapple reduces evapotranspi

ration to amounts that are only 20% of observed pan evaporation in the same area (Ekem, 1960).

In other words, R should increase in areas where pineapple cultivation occurs based on reduced

ET in addition to increased JR.

In essence, this entire water-budget procedure combined with the GIS constitutes a model

for recharge. Therefore, there are really two (2) separate models in this study; 1) the numerical

ground-water flow model and 2) the recharge model. The results of the recharge model will be

used as a part of the entire input to the numerical ground-water model.

Using equations eq.(4) through eq.(10) while ignoring JR. the long-term mean annual R

can be calculated by summing resulting Rm values for each grid cell. This annual value of R pro

vides cell-by-cell R input for the ground-water flow model. Our approach in calculating R is

more rigorous and precise than any previous recharge work done for Lana’i. However, the true

accuracy of this estimate, as with other water-budget methods, cannot be verified without a com

plete and long-term database of all parameters identified in equation eq.(4), pg. 18. Yet, this

approach does provide a framework for and towards making more accurate future recharge esti

mations. Each parameter from the general Equation eq.(4), is now described in more detail for

Lanai’s specific situation.

21

Page 30: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

-%Ifl — -

0. - 0.-.----

Rainfall Precipitation (RF)

Lana’i lies in the rain shadow of West Maui and East Molokai and, consequently, theisland receives relatively little rainfall, RF. Since 1914, a total of 52 rain gage stations have measured RF and of these 48 were used to calculate monthly averages for the island (Giambelluca,

1986, & Figure 9). There are currently eight (8) rain gage stations still in service which aretracked by the National Weather Service. Of these, only three (3) are read daily or hourly, the restare read weekly. All these stations report total monthly rainfall, RFm. The longest records of

RFm come from rain gages at Lanai City, State Key No. 672, Figure 10, and Koele, State Key No.

693, Figure 11, which have a combined record of RF,,, from 1892 to the present Lanai City has

daily readings since 1930 and hourly readings since 1976 (Hydrosphere, 1992). The greatesthourly intensity on record is 2 injhr on February 4, 1979 at SKN 672.

i/j

.O U7O

-,

0

/

C

I I

2..a

— — -.-—-- 04.l -. .- —

5-- - •0-C. -

-- 0) -

fl4 —I-9 0

p_?

on

0(5’

a.0

0_n

0

o.,i

cc” ,S5’

Figure 9. Rain Gage Locations for Lana’i (State of Hawaii, 1972; Giambelluca, & others, 1986)

22

Page 31: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

LAN

AI

CIT

Y(S

KN

672.

00)

Mon

thly

Rai

nfal

l(1

930

-19

93)

CD CD ‘a m r z 0

91 Co C CD -a p 0 D St D -4 St

St r St D St CD C’,

St CD CD •< z 0 0)

-4 I.’)

CD C.)

CD CD •0-

25-

20-

U) a) -c C) C -J _J

4:

U.

5 0- 3

I

Co 0 0 S

II

iiW

fl

SS 11

3IS

Tt4

srnrtr

YE

AR

(Beg

inni

ngJa

nuar

y)70’

?27

71/1

WL

WW

flW

W02

IJ

MO

NT

HL

YR

AIN

FALL

L12

-MA

y

Page 32: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Rain

fall

at

Ko

ele,

Lanai

SK

N693.00

Mo

nth

ly

Rain

fall

1892-1975

25-

_________________________________________________________________________

20-

11

5

mon

th(latest

data

1975

)

E1

mon

thly

rain

fall

12-m

ay

Fig

ure

11.

Mon

thly

Rai

nfal

lat

Koe

leS

tate

Key

No.

693

(189

2-19

74)

Page 33: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 34: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 35: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 36: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 37: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Irrigation Return (IR)

Although Lana’i pineapple covered up to 16,000 acres since 1923, irrigation return water,IR, effects were ignored in this study for four reasons. First, for the majority of the plantationexistence, irrigation was minimal (<2 mgd). Second, large-scale pineapple irrigation occurredonly over a short period of time from 1983 to 1991 when drip irrigation allowed an increased cropyields. Third, the majority of the pineapple cultivation was located outside the area of primary Rand PD. Lastly, since large-scale pineapple production began to decline in 1992 and has almostceased altogether on the island the resulting R would be more indicative of present and near-future recharge conditions.

While ignoring the JR component of the water-budget increases the conservative nature ofthe model, one cannot ignore that this approach does introduce a certain amount of uncertainty inR calculations. This would most affect water-levels encountered in the proximity and downgradient of irrigation; namely Wells 1, 9, 10, 12, & 1.3, hence a certain amount of uncertainty in water-levels encountered around the Palawai Basin, Wells 1, 9, & 10 and near Manele, Wells 12 & 13.However, most of these wells, with the exception of Well 1, were only drilled within the pastseven (7) years. The pumping of upgradient wells since the 1950’s has more than likely alreadyaffected water-levels in these downgradient areas and probably introduces an equal, if not greater,uncertainty in the initial water-levels encountered in these areas.

Direct Runoff (DRO)

In general, total runoff is a combination of direct runoff, DRO, which is the portion of RFwater that flows immediately after rainfall; stream baseflow, streamfiow sustained by groundwater; or irrigation which flows overland and in stream or gulch channels to the ocean. DROoccurs only after interception, depression storage, and soil-infiltration rates are exceeded. Thisexplains why in light rains there is little DRO. Thus, it is during heavy rains when the majority ofDRO occurs.

There is no streamfiow or other DRO data for Lana’i which can be used to estimate thisparameter accurately. Stearns (1940) stated that streams seldom flow except for kona storms andthat Maunalei Gulch had been the only perennial stream on the island prior to its diversion by thetunnels. This description by Stearns is supplemented by the comments of Gay (1965) that theMaunalei flow in 1902 traveled a mile from its source at an estimated flow of 150,000 to 200,00gallons per day (‘- 100 gpm) and then became dry. This would indicate that Maunalel was a losing stream before any major ground-water development occurred on the island although Gay alsomentioned that ‘old-timers’ had said the stream used to flow to the sea year round. Malo (1898)recorded that there used to be wetland taro cultivation in Maunalei. Currently, any overflow fromthe Maunalei Tunnels into the stream immediately infiltrates back into the ground and does notmake it past Shaft 2 (McCullough, personal communication, 4/22/1995). Other previous estimations for DRO were made by simply assigning percentages of measured. RF. In this study, DROwas estimated by considering soil type characteristics as reported by the Soil Conservation Service (SCS) (Foote, & others, 1972; State of Hawaii, 1972). Drainability, permeability, slope, andrunoff descriptions were the major soil characteristics considered in estimating DRO in relation toRF. Lana’i soil data has been broken down into individual soil series and digitally compiled bythe SCS on their GRASS GIS and imported to the USGS ARC-NFO GIS. The USGS GIS wasused to compute individual cell monthly DRO values based on soil series characteristics in con-

29

Page 38: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

junction with RF trends. The GIS soil series data for Lana’i is shown in Figure 13 and is groupedas Tnodified soil associations (soil series polygons are too small to be shown in the figure but wereused). Soil series parameters important to DRO estimation are shown in Table 3.

EXPLANATION

VERY 5TONEY LAND

L J BEACHES. SANDY ALLUVIUM. )AUCAS. PULEHTJ.

MALA. LUALUALEI. CORAL OUTCROP

MOLOKAI, WAIKAPU. PAMOA, WATHUNA. UWALA

o 2 4MILESI I I I

I Io 2 4 KILOMETERS

157’OO Phi,ur%

20’ 55

ROCK LAND. BLOWN-OUT LAND, ROCK OUTCROP. [!4CJ LAHAINA

STONEY ALLU VIUM. ROUGH MOUNTAIN LAND

L1 KOELE.

KANEPUU, KALAE. KAHANU!

Figure 13. GIS Soil Map of Lana’i (based on Foote,& others 1972)

ROUGH AND BROKEN LAND, NAIWA

30

Page 39: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Table 3. Lana’i Soil Characteristics for Runoff Estimation

Ranges

Soil Associations Permeability Slope Runoff 1

Soil Series Drainabildy (in/br) (%) (description)

Amalu-Olokul Poorly to Well Drained 20 to 6.3 3 to extemely steep Slow to rapidKo&e-Badland Complex well drained 2.0 to 6.3 40 to 70 naKoele Silty Clay Loam well drained 2.0 (ü 6.3 3 to 25 slow to mediumOlokui Silty Clay Loam poorly drained 2.0 to 6.3 3 to 30 slowRough Mountainous2 no Pennsable extremely sleep rapicft

Jaucn-MaJa-Puletw Well DraIned 0.20 to 20.0 0 to 40 V. Slow to rapidBeaches no no no noBlovwi-out Land no no 01040 rapidCoral Outcrop no no no slow3Jaucas Sand excessWely drained 6.3 to 20.0 Oto 15 very slow to slowMob Silty Clay well drained 0.63 to 20.0 0 to 7 slowPamoa Silty Clay well drained 0.20 to 0.63 5 To 20 mediumPulehu Clay Loam well drained 0.63 (020 0 to 3 slowPulehu Sandy Loam well drained 0.63 (020 2*06 slowPulehu Stony Sandy Loam well drained 0.63 (020 0 to 7 slowSandy Alluvial Land no na 0 to 5 slovP

Kahanul-Kalae-Kanepuu Well Drained 0.63 to 6.3 2 to 25 Slow to rapidKahanui Silty Clay well/moderately drained 2010 6.3 3 to 20 naKalae Silty Clay well drained 2.0 to 6.3 2*025 slow to rapidKanepuu Silty Clay well drained 0.63 to 2.0 3 to 15 slow to rapidPooku Silty Clay Loam well drained 2.0 to 6.3 8 Ia 25 slow to medium

Molokal-Lahalna Well Drained 0.06 to 2.0 0 to 40 Slow to rapid

Lahaina Silty Clay well drained 0.63 to 2.00 01040 slow to medium

Lualuaiei Clay well drained 0.06 to 0.20 0102 slowMclokai Silty Clay Loam well drained 0.63 Ic 2.00 3(0 15 medium to rapid

Uwala Silty Clay Loam well drained 0.63 (0200 2k, 15 slow to mediumWaihuna Clay welt/moderately drained 0,20 to 0.63 0 La 25 slow to mediumWaihuna Gravelly Clay welt/moderately drained 0.20 to 0.63 31o7 slowWaikapu Silty Clay Loam well drained 0.63 to 20 0*0 15 slow

Very Stony-Rock Land na na 0 to predpaous M. slow to v. rapidRiverwash no na no naRock Land no no level to very steep very rapio

Rock Outcrop no no gentle to predpiioiss very ropia°

Rough Broken Land no no 40*070 rapidStony Ailcrvial Land no no 0(05 moderately slow

Stony Slovm-Out Land no no 7*030 rapid

Very Stony Land no no 7*030 moderately rapidVery Stony Land Eroded no no 31o40 moderately rapid

(Source: Foote, & others, 1972 & State of Hawai Report R44, 1972.)NOTES:na = Not available1 runoff is based on pe’meabihty and slope of soil.

2 = soil mantle is very thin: 1 tolD inches over saprolite. Saprolite is soft and permeab4e to water& roots.

3 SCS data based on Smith. 10/20/94.

31

Page 40: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

It is important to understand the degree with which the soils characteristics are known.The soil associations shown in Figure 13 and Table 3 are general mapping units of soil in whichthere is considerable uniformity in the pattern and extent of soils associations. However, individual soil series may differ greatly from one to another within the association and may even crossseveral associations. The hierarchy of soil types broken down by the SCS mapping effort is asfollows: Associations, Series, and Phases. High- and medium-intensity surveys were done oncultivated areas, low-intensity surveys were made on grazing and forested land, and aerial reconnaissance-surveys were made in inaccessible areas. Therefore, on Lana’i, the extent of soils inthe Molokai-Lahaina association are better known than the Kahanui-Kalae-Kanepuu, AmaluOlokui, and Rock Land Associations.

In light of the limited DRO information, Table 4 is a summary of the approach used in thisstudy to quantify DRO.

Table 4. DROIAF Ratios from Pearl Harbor for Lana’i

Soil Series (sp.at least 80%

in a mesh element

FL-RH Land, Mixed ma)

ri I—-

- flJIIIeftLSt2

rnaichinpcrttera

Avorngo Annual of Elements

RF(in.)

32.98

DRGP(in.)

4.31

CHOIRFIhitio

0.13

011111111

soil

otist onLanai?

No

PeaflHathotOahu

HLMG- Helemano Silly Clay (30-90%) 2 70.34 8.13 0.12 No

KyA-Kurxia Silty Clay (0-3%) 0 na na na No

LaB - Lahaina Silly Clay (3- 7%) 2 44.02 4.16 0.09 Yes

LeB - Leilehua Silty Clay (2- 6%) 0 na na na No

MuB - Molokal Silty Loam (3 - 7%) 4 3824 2.32 0.06 Yes

MuC - Molokai Silty Loam (7- 15%) 0 na na na Yes

rRK - Rock Land (level to vety steep) - 8 41.66 503 0.12 Yes

rRT-Rough Mountainous Land (very steep) 0 na na na Yes

rTP-Tropohumults-l2ystrandepts(30-90%) 15 41.54 4.73 0.11 No

WaA - Wahiawa silty clay (0- 3%) 0 na na na Yes

WzA - Waipahu silty clay (0 -2%) 0 na na na No

(Sources: Foote, & others, 1972; State of hawaii, Report R44, 1972; & Giambelluca, & others, 1983& 1986.)

NOTES:mx = Not available or applicable.

1 . numltr of clement maictes where 80%.or more, of the same soil type dominates in an finite-element cell for the Pearl Harbor

RA5A model, average annual rainfall lO”’ç and topography approximates conditions on bna’i.

2- RF= Rainfall frctn Giambdlluca (Sc others, 1986).

3 - 1*0 = Direct Runoff from Giambelluca (1983 & 1986).

32

Page 41: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Previous DRO estimation methodology forR analysis by Giambelluca (1983 & 1986) wasconsidered for this study since no other measured DRO data is available for Lana’i. Giambellucaused soil series information in conjunction with SCS runoff curves to arrive at DRO values forspecific soil series in the Pearl Harbor, Oahu region. Results for Pearl Harbor DRO using thismethod can then be compared to corresponding RE’ to estimate direct runoff/rainfall ratios, orDROIRE’. The DRO/RE ratio is simply the percentage of RE’ whIch becomes DRO. Therefore, ifcomparable soil series can be found between the Pearl Harbor study area and Lana’i, then DRO!RE’ ratios can be used estimate DRO as a percentage of the historical RE’ record available onLana’i. DRO computations were done for the USGS’s recently approved RASA model elementmesh for Pearl Harbor. The results were reviewed with the aid of GIS to find similar conditionswhich exist on both islands. Table 4 summarizes the search results for dominant soil series in theRASA model’s element mesh and how they relate to Lana’i.

Table 4 lists the soil series which occupied 80% or more of an element in the Pearl HarborRASA mesh. There were 177 elements in the mesh which met this initial criteria. These elementswere then checked for RF (=. 30”/yr) and topographical (slope) conditions similar to Lanai. Thisresulted in a match for fourteen (14) elements among three (3) similar soil series between the twoislands. Admittedly, this is a small number of soil series matches considering that there are overfifty-eight (58) individual soil series on Lana’i, but this approach considers the most contemporary estimation method for DRO in lieu of any corresponding data for Lana’i.

The three (3) DROIRF ratios highlighted in Table 4 identify what is believed to be reasonable values for slow, medium, and rapid DRO for Lana’i. As can be seen on Table 3, pg. 31, SCSdescribes DRO for individual soil series qualitatively in categories of slow, medium, rapid, andvery rapid according to soil permeability and slope. Slopes of the three similar soils, from Table4, in their corresponding Pearl Harbor mesh element location were determined manually fromUGOS quadrangle maps. The Molokai silty loam (MuB) elements identified in the Pearl Harbormodel had typical slopes of 5% which is in the middle of the slope range described by SCS forthis soil series. Similarly, the Lahaina silty clay (LaB) and rock land (iRK) elements had slopes ofapproximately 8%and 14%, respectively, which put them into the upper slope ranges in their soilseries as described by SCS. Soil series for Lana’i can be grouped according to slope and the qualitative DRO description assigned by SCS. The only exception to the SCS descriptions were forLaB since its slope in Pearl Harbor approximated 8%. Given this arrangement, it is found that thehighlighted DRO/RF ratio results from Table 4 can be used to estimate Lana’i soil DRO characteristics of similar SCS slope and qualitative DRO descriptions. This approach is summarized inTable 5 and constitutes the justification for use of DRO/RF ratios in the GIS analysis.

As a final check, one can compare the greatest hourly intensity of rainfall on record (2 in?Fir) against the permeability rates, slope, and runoff description of soils in Table 3, pg. 31. Fromthis comparison it is evident that the Molokai-Lahaina soil associations and series are the soilswhich probably produce the majority of DRO in conjunction with very steep areas. For the rest ofthe island there are few large events which exceed the permeability rates of the soils listed. Thus,it is reasonable to assume small percentages of DRO occur compared to the total RE’ measured onLana’i. In fact, the topography of the island is indicative of limited DRO. On the leeward side ofLana’i there are no valleys and only a few small gulches. On the windward side of Lana’i thereexists numerous large gulches but no valleys.

33

Page 42: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Table 5. Final DRO/RF Ratios for Lanai

uthPP 0.06 O.U 0.12

Ratio

• Runoff Slow Medium Rapid

s1c)pe@ °1 >:.t >15-25% 25-70%

•: Bs KcB Bw KcD3 LaES

•. CA’ KhB KcC KiD rRO’

JaC KhB2 KhC LaD3 rRR’

• KASD lOB KhC2 MvDS rR’14

• L LaB3 KiD

LuA MmB KAL

MmA MuB LaB WaD

: MuA PoaB LaB3•

: OOE UwS LaC

PoB WaS LaC3

• Soil PsA Wa/iS MuC

SeriEs rSL1 MuC3

* WaA NAC

• WrA PID

: PID2

. rSfl#

• rVS:.

:: rwt

::U3

.

S WoO

LNOTES:

= SCS data (Foote. & others, 1972 & State of Hawaii, R44, 1972)

= SCS data based on Smith. 10120,94)

As as final note, the DRO is the amount of water that leaves the system and is not available for R. In the Palawai area the affect on recharge could be significantly in error. DRO fromthe perimeter of the Paiawai basin does not leave the system but is captured in a later scenario.

34

Page 43: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Changes in Soil-Moisture Storage (ASMS & SMS111ØJ)

With equation eq.(5), pg. 19, and RF, I’D, DRO, and I defined, we can now discuss soil-

moisture in detail. It is helpful to refer to Figure 14, an idealized cell diagram, when discussing

soil-moisture storage and changes in soil-moisture storage. Additionally, Figure 14 is good for

visualizing the computation of monthly mean recharge, Rm.

Roots

where:

Figure 14. Soil-Moisture Storage Cell Diagram

“rn = Mean infiltration for month m

(SMSj)rn = Initial soil-moisture storage at the beginning of month m

SMSFTWX = Maximum soil-moisture storage capacity = (available water capacity) x

(root zone depth)

Rm = Mean recharge for month in 0, calculated from equation eq.(5), pg. 19

(StYISg)÷i = Next month’s initial soil-moisture storage

(ETp)m = Mean potential evapotranspiration for month in

(ETa)rn = Mean actual evapotranspiration for month in

‘in

35

Page 44: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

It is important to understand that Figure 14 is a simplified cell diagram which representshow soil-storage is computed. SMS,X is the maximum volume of water which remains the soil’s

root zone after it is drained and capillary forces between water and the soil cannot be overcome bygravity. Drainage, which is really R, actually takes place at the bottom of the soil layer rather thanoverflowing the top as is shown in the cell diagram. However, the computation is equivalent

The domain of SMSI,.X is defined by the depths of the deepest roots in a soil series and is

equal to the available water capacity (soil field capacity minus the wilting point) multiplied by theroot zone depth of the vegetation. Field capacity is analogous to specific retention or the waterwhich remains in the soil after it is drained. The wilting point is the pore pressure limit whichplants cannot overcome to further transpire, or use, water; hence they wilt The root zone depth isdefined as the deepest roots in the soil series where the SCS descriptions changed from any typeof roots mentioned to “no roots” or if no reference to any roots occurred. This domain of SMSmax

was assumed constant throughout the soil series without any consideration given to actual vegetative cover which probably differed spatially on all soil series. This assumption may or may not beconservative depending on the representativeness of the SCS soil description. Soil depth, maximum root zone depth, and available water capacity were reviewed in estimating SMS,,ØJ for all

soil series. SCS information concerning these parameters for soils on Lana’i are summarized inTable 6 and soil coverages for the water-budget analysis were used from those digitized by SCS.

The monthly change in soil-moisture storage, or ASMSm, is the additional volume of

water necessary to fill the soil up to its SMS,,WJ. Obviously, the magnitude of ASMSm is depen

dent upon the magnitude SMS,.ØJ. Its domain is limited by and coincident with SMS,,,Q but var

ies with time.

With SMSWE,J and ASMSm defined, the process describing the remaining parameters in

Figure 14 is straight forward. For a given month m there is a beginning soil-moisture storagevalue, (SMS1)m. Any average monthly infiltration water, ‘m’ which exceeds ASMS also exceeds

SMS,,,1Jand goes towards that month’s recharge, Rm. The remaining volume of water in the cell

after this initial process is then decreased via and up to that month’s average ET, or (ETp)m. and

the (SMS1)m value for the next month, (SMS1)+j, is the water remaining in the soil, if any. If

(ETp)m is greater SMSma than (SMS1)m+i = 0.

36

Page 45: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Table 6. Soil Characteristics for ASMSmax Estimation

Ranges

Mimum Root Available WalerSoil Associations Soil Depth Zone Depth@ Cpily

Sollsedes Qn.) (in) (irVinofsdl)

Amalu-Olokul Oto6O II to2O 0.12 to 0.15Koele-Badland Complex 0 to 55 18 0. 12 to 0.14Koele Silty ClayLoam 0to55 18 0.i2to 0.15Olokui Silty Clay Loam 0 to 60 11 0.12 to 0.14Rough Mountainous’ 0 to 10 6 to 2O’ na

Jaucas-Mala-Pulehu 0 to 62 0 to> 60 0.05 to 0.13Beaches na 0.03 to 0.05Blown-out Land na 1 0.03 to 0.05Coral Outcrop na 1$ 0.04Jaucas Sand 0 to 60 22 0.05 to 0.07Mala Silty Clay 0 to 40 40 0.06 toO. 13Pamoa Silty Clay 0 to 62 62 0.09 to 0.11Pulehu Clay Loam 0 to 60 60 0.09 to 0.13PulehuSandyLoam Oto6O 60 0.O9to 0.13Pulehu Stony Sandy Loam 0 to 60 60 0.09 to 0.13

SandyAlluvial Land na >60 0.03 to 0.04

Kahanui-Kalae-Kanepuu 0 to 67 53 to 62 0.10 to 0.14Kahanul Silty Clay 0 to 60 60 0.10 to 0.12

Kalae Silty Clay 0 to 67 53 0.12 toO. 14

KanepuuSiltyClay Oto6l 61 0.lito 0.13Pooku Silty Clay Loam 0to62 62 na

Molokal-Lahaina 0to72 15to60 0.O9toO.14Lahaina Silty Clay 0 to 60 46 0.10 toO. 13

Lualualei Clay Oto 60 60 0.11 to 0.13

Molokai Silty Clay Loam Oto 72 15 0.11 to 0.13

Uwala Silty Clay Loam 0 to 60 26 0.10 toO. 12

Wathuna Clay 0 to 65 18 0.09 toO. 11

Waihuna Gravelly Clay 0 to 65 18 0.09 to 0.11

Waikapu Silly Clay Loam 0 to 60 24 0.12 to 0.14

Very Stony-Rock Land na 4 to 80 naRock Land Shallow 55% @ 4 to 100 0.12 to 0.16

Rock Outcrop Exposed bedrock 10% @ 4 to 8” na

RoughBroken Land <20 90% @40 to 80” 0.l4to 0.16

Stony Alluvial Land na >60” 0.05 to 0.07

Stony Blown-Out Land na 20% @ 2 to 1O 0.07 to 0.09

Van,’ Stony Land Little soil 75% @ 4 to 20’ 0.08 to 0.10

Vet’,’ Stony Land Eroded na 80% @ 10 to 20’ 0.08 to 0.10

(Source: Foote, & others, j972 & State ofHawaii, Report R44, 1972.)

NOTES:ET = Potential evapranspirationna Not avaijable

= Depth to top of profile identified as havthg no roc(5.N = SCS data tnsed on Smith, I0/20j94.$ = Assumed

= SCS data bsed on Smith, written personal cwununication, 10/20,94

37

Page 46: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

As can be seen in Table 3. the ranges for the parameters important in estimating SMS,,.,..

are great. Ultimately, maximum root zone depths and average available water capacity were usedfor each soil series in the calculating SMS,,..Ø,. For those available water capacities with no infor

mation reasonable values were assumed. The final GIS input values for individual soil series are

summarized in Table 7 below.

Table 7. Final Parameters for Lanai ASMSmax Estimaflon

. Available AVailabfeMaxtrnum Water Maximum Water Maximum AvailableRoot Zone Capacity RootZone Capacity Soot zone Water

S&I Depth (TWin of Soil Depth (Win 0J Soil tkp1h Capacity

Series (a) soil) Series (in.) soil) *1105 (in.) (inAnof sod)

AS 0 0.04 LaO 46 0.11 iRA A54 b015

8W 1 0.12 LaC3 46 0.11 rAT a12 b012

CR 1 b004 LaD3 46 0.11 rSL a50 b004

JaC 22 0.06 LaE3 46 0.11 rSM a50

KASD 60 0.11 LuA 60 0.12 rSN a1 b008

KRL 18 0.14 MmA 40 0.12 rVS &9 b009

KcB 53 0.13 MmB 40 0.12 rVT2 a12 b009

KcC 53 0.13 Mu/i 15 0.12 rRO a060

KcDS 53 0.13 MuB 15 0.12 UwB 26 0.11

lOIS 61 0.12 MuG 15 0.12 UriC 26 0.11

Kh82 61 0.12 MuGS 15 0.12 UWC3 26 0.11

KhC2 61 0.12 MuDS 15 0.12 WoA 18 0.10

KrS 18 0.14 NAC 52 0.10 WoB 18 0.10

KrC 18 0,14 OQE 11 0.25 WoO 18 0.10

KiD 18 0.14 PlO 62 0.10 WoO 18 0.10

LaA 46 0.11 P102 62 0.08 WohB 18 0.09

LaB 46 0.11 PoB 60 0.12 WrA 24 0.10

LaBS 46 0.11 PoaB 60 0.09 WrC3 24 0.10

Ps/i 60 0.14

iRk a4 b014

a. SCS data based on Smith, 10/20/94

b. based on Simmons, N. (10/11i4) and Nakarnura S. (12/1/94) written pernaI oommunicabon.

(Source: Foote, & others, 1972 & Stale of Hawaii, Report R44, 1972)

38

Page 47: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 48: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 49: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

To compensate for obvious areal differences, estimating monthly ETAY, for Lana’i was done

by dividing the island into two (2) major geographical areas. In the area above the 2000-ft elevation, ETann,,ai = 25.63 inches/year, as shown in Table 2. In the area below the 2000 ft. elevation,

the ET,,1ggt value was estimated by multiplying the mean (average) of the annual average oce

anic rate of 80 inches/year by 1.2. This is based Ekern’s & Chang (1985) conclusion that in dryleeward areas evaporation is up to 40% more than the oceanic rate. With a 0% difference at theshoreline and 40% increases up to the 2000 ft. elevation inland, the mean (average) increasebetween these elevations is assumed to be 20% greater than the oceanic rate. This corresponds toapproximately 95 inches/year. Therefore, it is assumed that = 95 inches/year for areas

below the 2000 ft. elevation contour. Now, although the calculated monthly ETtIET0nn1101 ratios

in Table 2 are based in the Lanai City area which approximates the 2000-ft. elevation area, it wasassumed that these ratios were consistent island-wide. Therefore, ETp/ETannuai ratios below the

2000-ft. elevation are the same below the 2000-ft. elevation as above. From this analysis, theresulting El’1, values for areas below to 2000-ft elevation is shown in Table 9 as follows:

Table 9. Estimate of Monthly ETp IETannuai Ratios for Areas <2000-ft. Elevation

—— :Average. EvapontiortMoth1 (in3

January 0.07 6.65

February 0.09 8.55

March 0.10 9.50

April 0.10 9.50

May 0.09 8.55

June 0.08 7.60

July 0.10 9.50

August 0.09 8.55

September 0.08 7.60

October 0.10 9.50

November 0.04 3.80

December 0.06 5.70

ET6,,nuai 1.00 95.00

With monthly El’,, estimated for the two major areas on Lana’i, ETa can now be calcu

lated using equations eq.(5) or eq.(8). These equations require information regarding changes in

soil-moisture storage which was described in the previous section. Since FT0 is the last parame

ter in equation eq.(4), pg. 18 we can now assess recharge.

41

Page 50: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Recharge (R)

Ultimately, recharge, R, is the water which makes its way to the saturated ground-waterzone and provides the foundation upon which the ground-water flow model’s effective aquiferparameters can be estimated. It is important to remember that R is different than infiltration, I,due to soil-moisture storage considerations (refer to Figure 14, pg. 35). Individual well/aquiferpump test information (see Table 13, pg. 50) provides localized pockets of aquifer information,that is not necessarily indicative of regional aquifer characteristics for many reasons describedlater. However, the parameters from the water-budget calculation, in equations eq.(4) to eq.(l0).are more visible, accessible, and contain a wealth of hydrologic and time series information whencompared to geologic considerations. Therefore, R is derived on a more regional and long-termbasis for Lana’i than existing pump test information and provides the model with a starting flux ofwater which provides firmer confidence in estimating the effective hydraulic parameters duringthe calibration process.

Using equations eq.(4) to eq.(lO), the GIS. and the previous individual parameter discussions, a reasonable long-term value for R on Lana’i can be estimated. As defined by equationseq.(4) to eqjlO), long-term R is the annual average recharge based on monthly variationsamongst all contributing parameters. All available data are considered and factored into the estimate of R. The 015 water-budget model was initialized by starting with the average monthlyvalue for ASMSm after one year of simulated recharge computations.

Obviously, a longer period of record will provide a better estimate of the long-term average for any parameter under scrutiny. Rainfall, RI’, has the longest period of record followed byfog-drip, PD, and pan or potential evapotranspiration, ET. All other water-budget parameters

did not have direct data records or, in the case of irrigation return, JR. were ignored. Direct run

off, DRO, and changes in soil-moisture, ASMS, and actual evapotranspiration, ETa, were esti

mated using the long-term RF record and soil information to create ratios as discussed earlier. I’Destimation was also enhanced using a ratio to RF approach. These considerations resulted in an

estimated average daily island-wide R for the island of Lana’i of approximately 62 mgd which isapproximately 38% of total precipitation available (RI’ + I’D). The PD area of the island contrib

uted 115 mgd of the 62 mgd for island-wide R. Results of the 015 calculation for individualmonthly parameters in equation eq.(4), pg. 18, are found in Appendix B.

It is difficult to make comparisons of this result with previous studies without recognizing

comparable recharge areas or familiar units. Table 10 summarizes and compares previous long-

term recharge analyses with this study’s analysis in units of inches per year which is similar to

previous studies and familiar to local residents on Lana’i. Table 11 is the conversion of Table 10

units to consistent units of million gallons per day (mgd) to facilitate the comparison between

studies. This study’s recharge spatial distribution pattern is also shown graphically in Figure 15,

pg. 45. However, aside from the areal differences, the major difference between recharge resultsfor this study and earlier analyses is that the nature of recharge in general is followed more closely

by the 015 analysis. Recharge occurs in spurts or pulses from major rainfall events, as clearly

shown Figure 14, pg. 35, thus the greater discretization of time will accommodate more spurts or

pulses. Theis (1994) compared recharge and discharge to and from ground-water tables calling

them “episodic” and “more or less constant”, respectively, which supports this recharge concept.

42

Page 51: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Table 10. Lanai Annual Recharge Estimates (Inches/yr)

(Inches/yr) RechargeArea R

Author (mi2) RF FE) DRO 8ET3 (mgd)

STEARNS (1940)

high-level 15.5 35 CNE d26 6.46

remainder of island 12A ha °ILIslandTotal 142.3 b212 bj7g 21.26

ANDERSON (1961) 11.3 48.5 NE 4.1 to 5.5

ADAMS & HUBER (1973) 142.3 2l.2 NE NE lg.7 91.7to 9.8

BOWLES (1974) 15.5 h I, h 65

ANDERSON (1983) NE

MINK (1983)Primary 45 38 22.8 5.7 120 7.5Secqntht 9S .S& 32 MTotal 14.0 b339 b138 b40 b288 ‘99

ANDERSON (1984) NE k282 NE NE NE

ANDERSON (1989)Primary 14 6.89Secondary Q2Total 24 NE NE NE NE m89

nCWRM (1990) 14 28 to 35 13.8 <4.0 26 to 28.8 9

CWRM/USGSILCo. GIS (1995)>2000 ft. elevation 8.36 29.84 22.28 3.29 14.92 13.50remainder of island i34Z ZaJa ..S Lil I3A2 4&I&lslandTotal 140.83 b2412 b132 b218 b1358 61.60

a. Actual evapotranspiration (& annual change in storage = 0)b. Area weighted average estimate.c. Not estimatedd. Steams estimated 25% of rainfall in the high-level recharge area ultimately goes to recharge. This means that Steams

estimated DRO a ETto be about 75% of rainfall in the higMevel recharge area, or approximately 26 inches.e. Steams estimafed 10% to 15% in the non-high-level area ultimately goes to recharge. This means that Steams estimated

DROjj ETLO be about 85% to 90% of rainfall in the non-high-level recharge area, or approximately 17 inches.

I. From Adams (1973) Table 3 based on Caslcey (1968) methods for Waikapu, Maui recharge.

g. Range of actuai pumping to estimated recharge.

h. Agrees with Steams. (High-level rainfall = 26 mgd & recharge is 25% of rainfall)

i. Aiso stated that Rvaries year to year with a range between 2 to 10 mgd.

j. Based on Mink’s original descriptive calculations where rr was 20 inchesi’ear. In his algebraic calculations, primary ETwas(inadverlenUy or conservatively) increased to 22 inchesbjear resulting in his original 9.3 rngd estimation of total recharge.

k. “Effective Precipitation” defining “near-normal’ (average) rainfall empirically derived as follows; 1978 rainfall data used as“near-normal” rainfall year, neglects rainfall <0.02” or >2.50”. 0.02”.c 100% value of data <1.00”, 1 .00”< 50% value ofdata< 2.50.

I. Disputes Mink’s fog-drip estimates of 60% and 30% of rainfall in two areas. However, offers no estimate except acknowledges that fog-drip “unquestionably contributes to recharge”.

m. Based on Anderson’s total of primary (0.492 mgd/sq. mijand secondary (0.20 mgdfsq. mi.) recharge areas. Breakdownof individual parameters not given. Based on new information from Wells 6 & 7 and Ekerns (1964) fog-drip study.

n. Synopsis of reasonable range of values from previous studies. Area is recharge area

ADDITIONAL NOTES: all footnotes also apply to Table 11

43

Page 52: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Table 11. Lanai Annual Recharge Estimates (mgd)

(mgd). Area

Author (mi2) 1W FD PRO ET1 R

STEARNS (1940)high-level 15.5 25.8 CNE d193 6.48remainder of island 12M 1111 21221 142Island Total 142.3 b15 b4222 21.26

ANDERSON (1961) 11.3 26.1 NE 4.1 to 5.5

ADAMS & HUBER (1973) 142.3 l4a.S NE NE tj339 9.8

BOWLES (1974) 15.5 h h h 16.5

ANDERSON (1983) NE

MINK (1983)Primary 4.5 8.1 4.9 1.2 4,3 7.5Secondary 150Total 14.0 b226 b92 b26 b193 199

ANDERSON (1984) NE k282 ‘ NE NE NE

ANDERSON (1989)Primary 14 6.89Secondary 12Total 24 NE NE NE NE FY18 9

CWRM A(1990) 14 18.7 to 23.3 9.2 <2.7 17.3 to 19.2 9

CWRM/USGS/LCo. 015 (1995)>2000 ft. elevation 8.36 11.88 8.87 1.31 5.94 13.50remainder of island 132.47 140.28 ..._...Q 12.44 Z9.74 4&1.2lslandTotal 140.83 b15216 1)887 l37s b85 61.60

NOTES: (see Table 10 lootnotes) roundng occurs in figures to be oonsistent.

44

Page 53: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

EXPLANATION

MEAN ANNUAL GROUND-WATER RECHARGE, IN INCHES

Grealerihan orequai 1025 Gicater than or equal to IC

______

and less than IS

Greater than or equal to 20and less than 25 Greater than or equal to S

______

and lessthan 10

Greater than or equal to ISandlecsthan2O [El Lessthans

Figure 15. LanaI Ground-Water Recharge Zones

157’OO PIW,MuPrAn$

20’ 55

o 2 4MILESI I

I I0 2 4 KILOMETERS

[;tii

45

Page 54: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

There are several points to make concerning Table 10, Table 11, and the comparison withprevious overall island-wide recharge results. Stearns (1940) and Adams (& others, 1973) areprevious studies which specifically addressed the island-wide recharge. Mink (1983), discountedAdam’s estimate stating that he “employed an unrealistic evapotranspiration rate for the highregion of the island”. Adam’s approach is suspect since it is not complete and uses ET estimations derived for the Waikapu area on the island of Maui. Also. Adams’s primary objective was tolocate well sites on the windward side of the island for reforestation purposes and not to estimatesustainable yield for Lana’i. Therefore, Adam’s small estimate for recharge is not considered rigorous enough to be valid nor comparable to other studies. Considering Stearns analysis, volumetrically, there is at least a 6% increase in the estimated average annual rainfall rate, RF, from theGIS analysis. Due to the longer record of rainfall data available for this study such an increase isnot unreasonable and is, in fact, considered a better estimate with greater foundation. EvenStearns noted that the available rainfall data during his survey was limited by stating: “The rainfall records are too short to determine reliable averages”. Fog-drip, PD, was not considered byStearns and cannot be compared directly. Since direct runoff, DRO, and actual evapotranspiration, ETa, were combined in Steams’s analysis it is hard to make a direct comparison between

these hydrologic parameters. Volumetrically, there is approximately a 30% decrease in the estimated average annual ETa from Stearns to the GIS estimate. Since DRO appears to constitute

only a small portion of the water-budget and all other factors except the length of time-series datais common, this decrease can be firmly attributed to the monthly basis of R calculation combinedwith the changes in soil-moisture storage, ASMS, considerations. These two considerations, asdiscussed earlier, should result in a lower estimate of actual evapotranspiration, ET than by using

annual averages based on yearly totals. Other parameters were not comparable at this island-widescale since they were not directly addressed. Therefore, it can be concluded that the two majordifferences between the island-wide GIS analysis and previous studies has been the reduction of

ETa and the addition of PD. The GIS island-wide R estimate is almost three times the island-

wide recharge amount estimated by Steams and is attributable, at least in part, to these two majordifferences.

Several points can be made concerning Table 10, Table 11, and the comparison with previ

ous R results in the PD area. Mink (1983), Anderson (1984 & 1989) and the CWRM (1990) are

previous studies which specifically addressed the impact of PD on Lanai’s ground-waterrecharge. Stearns and Bowles (1974) also concentrated on comparable PD areas but did not

quantify PD. There are only approximate areal comparisons of PD influenced areas ranging from

a low of 8.36 to a high of 115 square miles. The GIS analysis has the lowest area influenced by

PD; 8.36 square miles. Volumetrically, the estimated annual avenge RF in the PD area is lowerfrom the GIS approach than previous studies by a maximum of 47%, when compared to Mink.

This is mostly attributable to the difference in area where the 015 considered 40% less area thanMink. Volumetrically, the estimated average annual PD is about 4% less in the GIS analysis than

the previous studies. However, this total amount of PD estimated by the 015 is concentrated over

40% less area. Volumetrically, the estimated average annual DRO is approximately 50% less in

the GIS than in the previous studies and the majority of this, too, is attributable to the difference in

the PD area. Like the island-wide scope, the ET4 was lower in the 015 approach for the PD area,

but by a greater percentage; 69%. However, unlike the island-wide scope, the difference in PD

area, about 40% less, accounts for about one-half of this percentage difference between studies.

46

Page 55: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

The other half, approximately 30%, is due to the monthly basis of R calculation combined with

ASMS considerations as evidenced by Table 10, pg. 43, which shows the resulting inches/yr rate

for ETa significantly less in the smaller GIS ED area. One would think that in the I’D area the

more concentrated presence of I’D would provide more water in soil-moisture storage available

for potential evapotranspiration, thus ET can be more readily achieved. It follows that in areas

lacking I’D there are definitely more times when there isn’t much soil-moisture storage available

for ET to be achieved. Hence, one would expect that there should be less of a difference in the

ED area’s estimated ET0 between eariier studies and the GIS than the non-ED areas estimated

ETa since there is more opportunity for ETA1, to be achieved and earlier studies assumed that

annual pan evaporation rates were met. However, this is an additional example of the impact that

the monthly basis of calculating and ASMS considerations have on estimating annual averages.

Figure 16 plots the monthly variation of the water-budget parameters. As can be seen in Figure

16, summer months do not have as much water to meet the /s.SMS requirements as do winter

months. For example and from Appendix B, in the month of June there is an average infiltration

of only 1.30 inches while the EI’, is 2.64 inches (see Table 2, pg. 28), of which only an average of

1. 17 inches is calculated to actually evaporate. Therefore, ET is not achieved for this month

even in the ED area. Thus, despite the area differences which affect the volumetric averages it

can be concluded that the two major differences between the GIS ED area and previous studies is

the concentration of ED over a smaller area and the reduction of ETa. The GIS ED area R esti

mate is approximately double Stearns and Bowles estimate and about 50% more than Mink,

Anderson, and the CWRM estimates and is attributable, at least in part, to these two major differ

ences.

Variation of Recharge Parametera-4

400

300

I-

Total Monthly Recharge-4

LZEZ7

,0H Li- H F

°*)r F: ! —

&n FT P,MV

Pb I — Mel fl Ad se — Nc’ 0.c

I’D []RJ DRO AL

Figure 16. GIS Monthly Variation of Individual Recharge Parameters in FD Area

47

Page 56: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Overall, it can be said that the major differences in the results between the GIS methodology and previous studies is due to the lower estimate of ETa and the concentration of PD over asmaller area. Despite the higher level of precision in the GIS method, all previously investigatedparameters, with the exception of island-wide ETa, did not differ greatly when areal differences

are considered. There may be a cumulative effect of these smaller differences but the results indicate that these differences offset rather than amplify one another. For example, in the PD area,though the 015 estimates less DRO than Mink’s there is also less RF and PD due to the differingareal domain. Also, it is interesting to note that ETa due strictly to the month-to-month basis of

calculation and /sSMS considerations are at about the same rate for PD and non-PD areas; about30% of RF.

A recharge scenario devoid of PD was investigated due to the concern over the health ofthe fog forest on Lana’i and the corresponding potential impacts on Lanai’s ground-waterresources. If the forest leaf area is significantly lowered than PD may be affected similarly. Theconservative approach was taken where all PD was removed although its total absence is unlikely.The results of this analysis are summarized in Table 12 below.

Table 12. FD vs. No FD Recharge Estimates

:

FD AreaStatus Author HF DRO : ET

CWRWUSGS GIS (1994)

FO>2000 ft. elevation 8.36 11.88 8.87 1.31 5.94 13.50remainder of island 132.47 140.28 ...._Q 12.4.4 Z1.Z4IslandTotal 140.83 152.16 8.87 13.75 85.68 61.60

CWRMIUSGS GIS (1994)

N FD >2000 ft. elevation 8.36 11.88 0 1.31 5.49 5.08°

remainder of island 132,47 140.26 ..2 12.44 22.24 4.1.2IslandTotal 140.83 152.16 0 13.75 8523 53.18

As can be seen from Table 12, the effect of ignoring PD is an 8.87 mgd loss to R in theareas above the 2000 ft. elevation resulting in a decreased estimate of R for the PD area from13.50 to 5.08 mgd. The reduction to island-wideR is small, 14%, compared to the reduction to Rin the PD influenced area; 62%. This clearly indicates that PD constitutes a major portion of R inthe PD area.

Finally, DRO captured in the Palawai basin topographical depression can increase infiltration above that estimated by the 015 methodology. This was investigated by not allowing DROto occur in grid cells within the Palawai basin. This analysis found that an additional I mgd couldbe added to the total island R for this consideration. Given that this constitutes less than 2% of theisland-wideR with PD and without PD it was assumed that this ignorance of captured DRO is nota significant error on the regional scale. However, such a change in the more localized area of thePalawai basin may be significant, especially since there are important wells within the basin.

48

Page 57: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 58: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 59: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

—.

——

—1

——

Figu

re17

.W

ell

No.

4852

-02,

Wel

l5

His

tori

cal

Pum

page

and

Wat

erL

evel

s

Top

ofW

ell

+229

6

1800

-

__

__

__

__

__

WE

LL

5(S

tate

No.

4852

-02)

I—

1700

-

1600

-

1500

-

1400

a 12

00

-

1100

-

Cu 900-

800

-0

700-

600-

500-

400

300

-

200

-

100

-

0-

-o 2

41

2830

3234

3638

4042

4446

4850

5.

UI

21 Wel

lpr

ofil

e

0 S -V S B

b456

58bO

6254

6668

.0

72

mon

thly

(lat

est

peri

od13

/94

476

1880

82

)

---

-dy

nam

icst

atic

pum

page

j

488

JO9

29

4

•Pu

mp

Inta

ke

Page 60: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

WE

LL

1(S

tate

No.

4853

-02)

Figu

re18

.W

ell

No.

4553

-02,

Wel

l1

His

tori

cal

Pum

page

and

Wat

erL

evel

s—

q

0

U)

C 0 Cu > a) a) a) > I— a) Cu

1800--

1700

1600

—-

1500f

1400

L iwo

-..

1200

11

00-

10

00-

90

0-

600

700

-

600

-

500-

400

300

-

200

-

10

0-

0-

V E

z

_

•P

ump

Inta

keU

’L.

a

22

iUS2

34i0

3d4U

Wel

lpr

ofil

e

0 ED -C ED 3

42

44

440

W2

S0

bOU

t)02

04

00

00

(0(2

141

mon

thly

(lat

est

peri

od13

/94)

----

dyna

mic

stat

icpu

mpa

ge

Page 61: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

••

——

-—

WE

LL

9(S

tate

No.

4854

-01)

1800-

-3

1700-

1600-

1500-

14

00

-

12

00

-2C

0)

—0

1100

tC .2i

—0.

•0>

900

0) 2

o-. 01

>70

0

1—60

0I

ECU

5o

400

-< C30

0

200

ioo- 2

iflf

lrS

436

3W40

4244

464

1r’

5T

54

flf

lt)

6rE

ttC

WV

flT

7fl

678

8082

8486

8890

92m

onth

ly(l

ates

tper

iod

13

/94

)

IWel

lpr

ofil

e

___

I----

dy

nam

icst

atic

___

pu

mpag

eP

ump

Inta

ke

Figu

re19

.W

ell

No.

4854

-01,

Wel

l9

His

toric

alP

umpa

gean

dW

ater

Lev

els

Page 62: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Figu

re20

.W

ell

No.

4952

-02,

Wel

l4

His

tori

cal

Pum

page

and

Wat

erL

evel

s

Top

ofW

ell

=+

2327

WE

LL

4(S

tate

No.

4952

-02)

ii::::

18

00-

1700

1600

-

15

00

-

1400

1300

12

00

-

1100

-

1000

-

a, 90

0-

800-

G)

700-

F00-

300-

200

100— 0

—S

::i::

0 0) S

lzi::z

i

‘I [1 -t ii t1

I

2

U’

a

Wel

lpr

ofil

e

L28

3032

3436

384042

6580b254

bObt

S(U

44

lb

mon

thly

(lat

est

peri

od13

/94)

Co 0 t 0

----

dyna

mic

stat

ic—

pum

page

2i4

vi

j

Pum

pIn

take

Page 63: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

WE

LL

2in

shaf

t3

(Sta

teN

o.49

53-0

1)

Figu

re21

.W

eBN

o.49

53-0

1.W

ell

2H

isto

rica

lP

umpa

gean

dW

ater

Lev

els

1800

1700

1500

1400

1300

1200

-H-

1600

:z:::::

::z::::

::———

-—--—--—--

—--—-—-—

-----—--—--

-1100-

10

00-

90

0- : 60

0

50

0--

400

—4---H

:z::

:10

0

ila

Lu

_I.

Fl!II

0 0) 2

11.

irI

.IL

11

U’

Wel

lpr

ofil

e

ajz

34

36

3U

4W

4T

44

4tA

8W

52

54

bo

SuO

U02

Od

(U2

(4(0

mon

thly

(lat

est

peri

od13

194)

itH

1:.u .1] I iJ

iI.

Cl)

0 t 0 3

aav

2d4

85

SS

90

92

94

--

--

dyna

mic

stat

icpu

mpa

ge•

Pum

pIn

take

Page 64: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

U’

1800

SHA

FT3

BU

LK

HE

AD

(Sta

teN

o.49

53-0

2)

Fig

ure

22.

Wel

lN

o.49

53-0

2,S

haft

3H

isto

rica

lP

umpa

gean

dW

ater

Lev

els

Bot

tom

ofB

ulkh

ead

elev

atio

n=

1510

msl

a.

1700

1600

1500

1400

a1300 12

00

1100

:2io

oo

Cu 900

800

700

‘—60

0a) 50

0 400

300

200

100 0

0 0) 2

I—

-

4JL

-t hiIL

244

4848

5052

5456

5826

2830

3440

mon

thly

(lat

est

peri

od13

/94)

0 a 0 40 B 0 40 -A

6b68

I‘4

7880

284

----

dyna

mic

stat

icpu

mpa

ge

688

3092

94

Page 65: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

I—

——

——

——

._

I_

——

Figu

re23

.W

eNN

o.49

54-C

l,W

elt

3H

isto

rica

lP

umpa

gean

dW

ater

Lev

els

Top

ofW

ell

=+

1850

WE

LL

3(S

tate

No.

4954

-Cl)

1800

-

1700

-

1600

-

1500

1400

-

1300

-

C1100- 10

00

-Cu 90Q

-

0800

C)

700

-

60

50

0-

400

300

200

100 0

—-3

2

-1i—

-C C) S

C)’ -a

Wel

lpr

ofil

e

<0 0 t 0 I

mon

thly

(lat

est

peri

od13

/94)

Liz

_dyn

amic

stat

icpu

mpa

ge•

Pum

pIn

take

Page 66: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Fig

ure

24.

Wel

lN

o.49

54-0

2,W

ell

8H

isto

rica

lP

um

pag

ean

dW

ater

Lev

els

WE

LL

8(S

tate

No.

4954

-02)

Top

ofW

ell

=+1

902

1800

-

1700

-

1600

-

1500-

1400

-

a1300-

200

C11

00- Cu 9

00-

800—

U) 70

0-

F00- 50

0•

400

-

30

0-

200

-

100-

0-

t 0) 2

U,

Wel

lpr

ofile

26

26

3032

343

63

84

042

44

46

4850

5254

5658

6062

6466

6870

7274

7678

80

mon

thly

(lat

est

peri

od13

/94)

Ca

‘p 0 ‘p 3 I!•

--

--

dynam

icst

atic

pum

pag

e

-orE

486

889092

—9

r

•P

ump

Inta

ke

Page 67: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

LO

WE

RM

AU

NA

LEI

TU

N(S

tate

No.

5053

-01)

U) C w C m C, —1 -•1 0 C, x z C) It

1800

1700

1600

1500

1400

1300

1200

4 U) S

-

-C

öhtà

htW

äfi(

FéV

é[è1

eVàt

iäñ1

las

‘E1100

2ioo

o(0 9Q

0

0800

a) 700

600 40

0

300

200

100 0

0 0) E

__________________

II

C,)

CD •0 It

2a

4042

4446

4850

5254

5656

6062

6466

6870

7274

7678

8082

84ac

*am

onth

ly(l

ates

tpe

riod

13/9

4)

‘C

:w

ater

leve

lJ

pu

mp

age

Figu

re25

.W

ell

No.

5053

-01,

Low

erT

unne

lH

isto

rica

lP

umpa

gear

idW

ater

Lev

els

Page 68: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

UP

PE

RM

AU

NA

LEI

TU

N(S

tate

No.

5053

-02)

1400

a 12

00

C1100

£ (U 9o0 ao

oa) 700

F00

500 40

0

300

200

U) B 0 C -V C., I

Figu

re26

,W

ell

No.

5053

-02,

Upp

erT

unne

lH

isto

rica

lP

umpa

gean

dW

ater

Lev

els

1800

1700

1600

1500

Con

stan

twat

erle

vel

elev

atio

n=

1505

msl

-L•0 0

) 2

100 0

kL

uiTi

lb28

30

3234

3638

4042

44

Idlli

ijilir

lilL

i48

5052

5456

5860

6264

6668

70727C

mon

thly

(lat

est

peri

od13

/94)

wat

erle

vel

pum

page

0 C

/b(8

bli

8284

8688

9092

94

C, x z C) rn

Page 69: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Top

ofW

ell

=+

1910

WE

LL

6(S

tate

No.

5054

-02)

180

03

170

0-i

1600

-:

1500

1400

13

00

01200

22

a>11

00---

1E>

700

C) ‘—6

00

1E

C) 4- C500-

4004

-.

C300

-

200- 2

L34

3fl

842

4446

48sofl

•s

mon

tHy

(late

stpe

riod

13/9

4)W

ell

prof

ile

___

I.

static

pum

page

_j•

Pum

pIn

take

Figu

re27

.W

ell

No.

5054

-02,

Wel

l6

His

toric

alP

umpa

gean

dW

ater

Lev

els

Page 70: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

SHA

FT2

(Sta

teN

o.51

54-0

1)

Figu

re28

.W

ell

No.

5154

-01,

Shaf

t2

His

tori

cal

Pum

page

and

Wat

erL

evel

s

1800

1700

1600-

1500

1400

1300

1200

1100

C t1000

(U 900 80

0a) >

700

a) ‘—60

0a)

400

300

200

100 0

EE

-o 2

iiI1tnthr

I

a’ t.J

0 t it 3 C.

it -I -a

lb2

63(

162

34

JO30

40

42

44

40

46

Wl

i4O

d6(

104

04

00

50

10(4

(4(5

(860

648

485

8m

onth

ly(l

ates

tpe

riod

13/9

4)C-

)

Weil

prof

ile

--—

--;

I-

dynam

icst

ati

cp

um

pag

e

-3’92

Page 71: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

0

SHA

FT1

(Sta

teN

o.52

53-0

1)

2

5flf

l62

644fl

707fl

476

7fl

mon

thly

(lat

est

peri

od13

/94)

3

4 U)

-D 0) 2

126

2630

3234

3636

4042

44

0 0 •0 0 3

aa

aa90

SZ94

H --

dyna

mic

stat

icpu

mpa

ge

Fig

ure

29.

Wel

lN

o.52

53-0

1,S

haft

1H

isto

rica

lP

um

pag

ean

dW

ater

Lev

els

Page 72: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

TO

TA

LLA

NA

IF-

HG

H-L

EVEL

PU

MP

AG

E

Fig

ure

30.

Tot

alH

isto

rica

lP

um

pag

eon

Lan

ai

ci) 0 0 0 0 C’)

8-

7-

6 5

-o 0)4 2

_141_Ij

IIi

I

-

II

3-

2 I 0

-I

Pum

ping

Ave

=1.

761

‘I II

0 a

date

(lat

est

peri

od13

/94)

H---

mon

thly

13-M

AV

0 x z C) m

Page 73: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

I,C

UC

-2-J

z

LANAI CITY (SKN 672.00)Monthly Rainfall 1930- 1994

3

2

0

—l

-2

0)

E

a

13-M

Figure 31. Selected Periods of Drawdown Levels on Lana’i 65

Page 74: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

It is important to note that there are gaps in the data for both water-levels and pumpage.

Part of the reason for the Maunalei sources’ data gap in the late ‘60s through the late 70’s were acombination of a flooding event in Shaft 2 and problems with the distribution system going up the

pali (McCullough, personal communication, 4/22/95). Gaps in the data for other sources are sim

ply indicative of the intermittent nature of pumpage and the lack of taking water-levels between

pumping and non-pumping tunes. There are also spikes in the data which do not seem reasonable. Upon checking original recorded data with LCo. and consultant reports (Anderson, 1983)some of these spikes were corrected and such corrections are reflected in Figures 17 through 30.Other spikes could not be rectified. However, despite these problems with the water-level and

pumpage data the overall historical data necessary for model calibration is good.

Water level data on Lana’i were and continue to be measured via pressurized airlines forboth pumping and non-pumping conditions on continuous water-level charts. Pumps are operated

on demand, hence they are turned on and off frequently. Pumping water-levels are reported as thelowest water-levels during a particular month. Pumping water-levels, or dynamic water-levels,

always include some turbulent and frictional losses, which are primarily the function of welldesign, construction, and development and add to the theoretical drawdown in a well. Non-

pumping, or static, water-levels are more representative of an aquifer’s water-level response tostresses and are more important in the model calibration effort than pumping waler-levels. This isbecause MODFLOW does not account for pumping well losses. Static water-levels on Lana’i

were taken at least one-day after pumps were turned off although measurements after longer peri

ods, sometimes several months, of pump shut-off are also common. The static water-level wasand continues to be reported as highest waler-level during a particular month.

There are definite general trends in the water-level data. Specifically, the rising trends in

some of the wells in the absence of any long-term changes in rainfall patterns (Figure 10, pg. 23)

and corresponding fluctuations in total pumpage (Figure 30, pg. 64) during the 1960’s are curious.

Bowles (1974) attributed the steady rising water-level trend in Shaft 2 (Figure 28, pg. 62) during

the 1960’s to reforestation and drainage programs initialed in the 1920’s by Dole Plantation. The

same may be said of Well I (Figure 18, pg. 52). From the early 70’s to the late 80’s a general

decline in water-levels occurs between the ranges of 100 to 275 feet a period of increasing pump-

age. Since the early 90’s, water-levels have recently been recovering due to the cessation of

pumpage for pineapple which significantly lowered island-wide total pumpage.

Historic pumping stresses are to be imposed to the model after initial water-levels have

been calibrated. Ideally, there should be periods where recharge, pumping and water-levels,

show a steady-state like condition. This would allow the calibration of the model based on two

(2) apparent steady-state conditions where effects of storage depletion from an aquifer have com

pleted and can be ignored (i.e. the effective storage coefficient can be set to zero (0) and it is

unnecessary to calibrate this parameter). Assuming the modeled long-term average recharge as

steady-state, one can identify the second situation by comparing pumpage and water-levels alone.

However, no clear steady-state condition can be identified for all wells simultaneously. Thus, the

lack of two (2) definite steady-state situations island-wide makes it necessary to investigate tran

sient situations to further evaluate the model. This entails calibration of the storage coefficient

Therefore, periods where significant trend changes in related rainfall, pumpage, and water-levels,

were identified and resulted in eight distinct periods as shown in Figure 31, pg. 65. These same

periods which define variations in pumping also define variations in recorded rainfall which can

then be applied to the GIS recharge model to arrive at corresponding variations of recharge.

66

Page 75: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Selection of Numerical Code for Model

The numerical model chosen for the flow model is the three-dimensional flow finite-dif

ference model MODFLOW (McDonald, & others, 1988). The code is public domain, well docu

mented, and is referenced herein. An additional package to the original MODFLOW was used to

simulate the barriers to horizontal-flow imposed by dikes and faults (1-isieb, & others. 1993). This

augmentative code is also an open file report with the USGS and well documented. The advan

tage of Hsieh’s work is that the MODFLOW model grid need not be changed to add these barri

ers. Additionally, the MODFLOW code performs mass balance (water-budget within

MODELOW separate from the 015 water-budget) and allows closure criterion for calculated

water-levels.

The experience associated with MODFLOW’s use was a major factor in selecting it for

this preliminary model. MODFLOW has been the most widely used code by the USGS in model

ling ground-water. One-hundred and sixty-five (165) calibrated models have been published by

the USGS (Appel, 1994). There are other numerical models which are available but their use has

been limited. For example, SHARP (Essaid, 1990) is a freshwater and saltwater flow model

which could be used for Lana’i. However, there are limitations in its grid construction when com

pared to MODFLOW and it is usually used for studies where the interface near the shoreline is

important. Since the high-level ground-water source is of primary concern, the shoreline inter

face between fresh and salt water is not of primary concern, and it can be used as a three-dimen

sional model, MODFLOW is considered the more efficient and appropriate model to use.

Additionally, SHARP has only eight (8) documented calibrated models (Appel, 1994) as com

pared to MODFLOW’s 165.

Basically, MODFLOW solves for the fundamental three-dimensional (3D) movement of

ground-water by the partial differential Equation eqjl 1), which is defined as:

=eq.(11)

where:

K, Ky, and K = hydraulic conductivity along the x, y, and z axes (L/t)

h = potentiometric head (L)

P = net volumetric flux per unit volume of aquifer per unit time (lit)

= Specific storage of porous material (liL)

I = time-(t)

Equation eq.(11) is derived by combining Darcy’s law, equation eq.(l), pg. 14, and conti

nuity considerations for a constant density fluid where flow into and out of the system is equal.

Anderson (& others 1992) describes this fundamental equation as the flow system viewpoint

where one is not concerned with identifying individual aquifers and confining beds per se but in

constructing the 3D distribution of heads, hydraulic conductivities, and storage properties every

where in the 3D system. A description of MODFLOW’s finite difference equations and numeri

cal methods used to solve Equation eq.(11) between each cell is too technical for this report but is

well documented (McDonald & Harbaugh, 1988).

67

Page 76: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Numerical Model Construction

The goal of any numerical model construction is to represent the important conceptual

properties of the study area in mathematical terms which can be solved numerically. To do this

one requires the governing mathematical equations, or equation eq.(l1), pg. 67, boundary condi

tions that mathematically describe how water gets into and out of the aquifer, and known initial

conditions. In constructing the Lana’i numerical model one concept was kept in mind at all times;

make the model as simple as possible yet capture the important properties, and no simpler.

Although this limits the flexibility of the model, this approach is thought to produce the most

defensible model. This also limits the “subjectivity” of the model by forcing the modeler to use

one consistent approach.

Grid

The grid is the starting point of the model construction in that it provides the consistent

framework to which all parameters must relate. The simplest grid to construct is one where indi

vidual cells are of uniform size which adequately cover the entire area of interest Since the

model is at a regional scale cells should be on the order of many hundreds, or a few thousands, of

feet square. A cell size of 2000 ft. by 2000 ft. square, which covers an area of 1/7 mi2, was chosen

to discretize the island. This resulted in a total grid size of 1800 cells (50 x 36) which encom

passes the entire island of Lana’i (See Figure 32). For convenience, the grid was oriented along

the relatively straight northeastern coast of Lana’i, which spans from the mouth of Maunalei

Gulch to Halepalaoa Landing, and such that weUs were located in separate cells. The total grid

size and nodal spacing on the order of thousands of feet place the model in the regional scale cat

egory according to Anderson & Woessner, (1992). This is an important feature since many differ

ent local or site characteristics that may reside solely within one cell will not be addressed by this

model.

Grids in MODFLOW are finite difference which can be either block-centered or mesh-

centered. Block-centered grids places the flux boundaries at the edge of the cells and the node of

the cell at the center, whereas the mesh-centered grid places the flux boundary at the nodes and

not the cell edges. To utilize the horizontal-flow barrier (HFB) package of MODFLOW the

block-centered grid was chosen to use cell edges as flux boundaries.

2-D Rational

As shown in Figure 32, pg. 69, the model is only a single layer which effectively makes

this Lana’i numerical model two-dimensional (2D). This is because for any single unconfined

layer, MODFLOW incorporates Dupuit assumptions which ensure horizontal-flow by requiring

no change in head with depth. This effectively removes the K2 term, or any vertical flow, from

equation eq.(l 1), pg. 67 and reduces the problem to one of 2D. MODFLOW can still solve 3D

distribution of heads, but multiple layers are necessary. Since the initial assumption was that at

the regional island scale the aquifer would behave isotropically and the model is preliminary, mul

tiple layers were not made. Again, the purpose is to keep the model simple as possible. Because

of this approach, water-levels would be averaged over 1000’s of feet of depth and the model will

only be a good regional approximation if calibrated.

68

Page 77: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

September 13, 1995 PRELIMINARY DRAFT - SUBJECT TO CHANGE

Lanai MODFLOW 36 x 50 Grid1800 Cells 2000 ft. x 2000 ft.

X- axis (ft.)

square

Note: Y - axis in MODFLOW has origin at the top rather than the normal cartesian display as shown.

>:.

1OO,0(

9OMO0

&00O

70,000

60,000

50,000

40,000

30,000

20,000-

10,000-

1’ -.-—I——.--——..-

10, 20, )0O 30,1500 40j00 50, 60j00 70, 00

Figure 32. Single Layer MODFLOW Grid 50 x 36 Mesh with 2000 ft. square cells. 69

Page 78: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Mathematical Boundary, Internal, & Source/Sink Conditions

The way the conceptual hydrologic boundaries and stresses correspond to the mathematical boundary, internal, and source/sink conditions in the Lana’i numerical model are described inthe following paragraphs. It is important to note that setting boundary conditions is the step innumerical modelling most subject to serious error (Franke, & others, 1987). The boundaries inthis model are physically based; the head around the shoreline is equal to zero; the top is the watertable; and the bottom is estimated but poorly known. The reader should note that references tointernal boundaries in this report are also commonly referred to as special zones.

Normally, when speaking of boundary conditions in a numerical model the modeler isaddressing the mathematical boundary conditions which define the extent or domain of the entiremodelled area. These can be thought of as the perimeter, bottom, and top of the saturatedground-water between which all flow occurs within the grid layer. When these mathematicalboundary conditions are specified then one may solve the partial differential ground-water flowequation eq.(11), pg. 67 through simultaneous algebraic equations in the numerical model(Franke, & others, 1984). The three (3) major types of mathematical boundary conditions are:

(1) Specified head;

(2) Specifiedflow; or

(3) Head-dependentflow (some combination of (1) & (2)).

Such boundaries constrain the problem and make solutions possible. The freshwater flow

at the coast does not extend for any significant distance offshore. Therefore, the perimeter of the

grid is a specified flow type where no flow occurs. Also, the bottom of the freshwater lens isassumed to be an idealized constant which is not physically correct in location but is correct inestablishing streamlines along the bottom of the aquifer. These streamlines go towards the ocean

and provide a datum for the model to estimate aquifer T values based on given K values. This

specifiedflow boundary of no-flow across the bottom of the model was set at -400 ft. msl based ongeophysical resistivity work by Swartz (1940) which identified the depth of salt-water/freshwater

break in a cross-section of the island. As stated earlier, the maximum aquifer bottom elevation

was estimated at -948 ft. msl by one station. Due to the general lack of caprock around the island

and a thick basal lens, lens depth must decrease to approximately zero at the coast. Therefore,

the average depth between the coastline and the maximum aquifer depth was considered to be rea

sonable assumption for constant bottom depth ((948+0)/2 = 424 400 ft.).

It is clear that grid perimeter and bottom of the grid layer for the Lana’i model are no-flow

mathematical boundaries. The top of the model, or the water table, is a different matter. Since theLana’i numerical model uses Dupuit assumptions, where all flow is horizontal in the 2D singlelayer representation, flux across the water table is treated as a source, lumped in the F term inequation eq.(.l I), pg. 67, rather than a boundary condition (Anderson, & others 1992). Thus, the

model’s mathematical boundaries are no-flow on five (5) with recharge occurring as the sixth side

(water table).

70

Page 79: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Internal model conditions are not to be confused with mathematical boundary conditions.The relevant physical or hydraulic hydrologic boundaries for Lana’i are the Pacific Ocean coastline which surrounds the entire island, a northern region of low permeability along the coast, thethree rift zones which are manifested by observed dike and fault boundaries, the water table (computed by MODFLOW), the tunnel sources, and even flank flows. In the Lana’i numerical model,these conceptual hydrologic boundaries are types of internal conditions, or boundaries, which aredifferent than the mathematical boundary conditions described in the previous paragraphs.

The Pacific Ocean coastline is represented by surrounding the island with the equivalentof a leaky streambed which is an internal head-dependent flow condition. The river or drainpackages in MODFLOW calculate aquifer heads necessary to simulate seepage from the aquiferto a surface water body (the ocean) with a constant stage. These packages are identical althoughthe river package allows flow to and from the surface water body whereas the drain packageallows flow only to the surface water body. The river package, RTV was chosen over the drainpackage to allow for ocean intrusion at the coast Normally, the river package is used to representstreams but can be used to represent the equivalent leaky type of boundary where flow through thecoastal toe of the basal lens must occur. The ground-water must pass through a thin region nearthe shore which approximates the toe of a basal aquifer which does not extend past the shorelinefor any great distances. Therefore, a thin band of this leaky internal head-dependentflow condi(ion surrounds the entire island as is shown in Figure 33, pg. 72. A total of one hundred and sixty-four (164) cells were identified to form a single cell wide band around the island. All cells oceanside of this boundary are not part of the island ground-water system and were given the internalspecified flow condition of no-flow. The internal river boundary is divided into the two (2)regimes of a flank flow permeable southern coast and a less permeable alluvial northern coast.The demarcation points for these two regimes are Palahinu Point and Naha, which corresponds toStearns (1940) description of coastal alluvial deposits and is twice the length of Adams (& others,1973) study regime for the alluvial beachrock on the northern coastline. This stretch of northernshoreline is assigned a lower hydraulic conductivity than the southern shore with the exception ofLae Hi Point which happens to be a basaltic outcrop. These internal conditions corresponding toa caprock like condition impact a total of seventy-two (72) cells in the numerical model and arealso shown in Figure 33, pg. 72.

The boundaries associated with three (3) major rift zones for Lana’i are also internalhead-dependent flow conditions. The combination of dikes, faults, and rock contained withinLanai’s rift zones produce a honeycombed effect as these geologic features incise the flank flowsof the island and intersect with each other within the major rift zones. The horizontal-flow barrier(HFB) package in MODFLOW provides and easy way to model these conditions. A total of eighthundred and ninety-five (895) cell walls were made into effective internal HFB conditions. It isimportant to remember that these internal conditions represent the net effects of many unseengeologic features and are not actual individual boundaries.

The Lower and Upper Maunalei Tunnels are modeled as internal head-dependent flowcells through the drain package. Finally, all other pumping wells are sink terms in the model.One important issue with wells is that although they are located in the model’s individual cellsthey are only approximately located at the central node in each cell. In addition to this approximation, interpolation errors between the grid nodes in this regional numerical model may be asmuch as 10 ft. (Anderson, 1988).

71

Page 80: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

September 13, 1995 PRELIMINARY DRAFT - SUBJECT TO CHANGE

Lanai MODFLOW 36 x 50 Grid

I I I I I I I

tnnflasfl6*o**rflflsnfl•flaflarsunstriwoc :oiiiiiwLn.nSn..•wiUri!!r WOOSSSWCS..OGnassnaoes•no - -

•n••o - - -

•sfl••no•nnflo - •$Ifln.I•snnfloI•RRE*O) - -

SIIIBfl3O - - .sna&•oo

0iiEiFi o:ZZ4nI.n.insn o I1

i•isaanaaoi.s•nso.n..n. .m--J_-•••••$OD•...III%o••sSo4....*00•noeo I110,ESO.O$Kk

I-.• ‘:t:: :: Z:L:::tm* Io’ t:: t:::::

0’.II-

.zj::::E ; : : : : : : : EEl.:

$% ::}1T;::i HEEEEiI..n.n.to.•.*swa.tooZflWaflfliøEY :::: : ::-.i••nnni .& . -

-

ns•...nat1t 4±4_SnFaflflafln.ss%SflZ - 1...•+ ••i_flfl•fltfl•jflfl••%M*Oê** • • snarnnnnwsnnmnnn- io,boo 201)00 301)00 40,500 50,500 60,500 70,500

X - axis (ft.)

Note: Y - axis in MODFLOW has origin at the top-left rather than the cartesian display as shown.

Neal Extent of High-Level Aquifer as defined by cells sunounded by irrçedirrents to horizontal flow = 57.4 sq. ni.

72

100,000-

90,000-

Internal Conditions

>..O,OI.

60,000-

50,000.

30,000-

20,000-

10,000-

Specified Flow

• No-flow

• ll

I-Iead-Dependant Row

• Leaky Coastline(no caprock)

• Leaky Caprocic

— lirpedirrents toHorizontal Flow(rift zone flgy)

[]Rank Flow

I.

F’

I—

F’, S

4 I

Figure 33. Final Boundary Conditions for the Lana’i Numerical Model

Page 81: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Source/sink terms are basically the net flux, F applied at each cell node in the model inaccordance with equation eq.(l I), pg. 67. The recharge, R, array portion of this net F term is theresult of the GIS water-budget model discussed earlier and is a source term. The individual cellvalue results were constructed by merging the 015 results with the model grid and inputting theresults into the recharge package of MODFLOW. Recharge values were in inches/day over foreach cell area in the model grid which produce a cell volumetric inflow rate. Once initial water-levels have been calibrated then pumping stresses can be imposed easily for each well by usingthe well package of MODELOW Pumping stresses in the Lana’i numerical model are all sinkterms which mean they take water out of the aquifer system.

Hydraulic Parameters

Previous discussions of the governing hydraulic equations for Darcy’s Law, equationeq.(1), pg. 14, and transmissivity, equation eq.(2), pg. 15, are not repeated here. Before discussing additional and individual hydraulic parameters, it is again necessary to clarify a major conceptregarding their values. As discussed earlier, and in general, the many sources of error associatedwith aquifer pumping tests dictate that values obtained are not absolute nor necessarily accurate.Such values are more appropriate for local conditions and individual weU performance rather thanisland-wide regional hydraulic behavior. Thus, the actual heterogeneity in the real world cannotbe entirely dismissed. However, these hydraulic tests do provide a ‘ballpark’ starting point andreasonable range to begin the parameter estimation process for an assumed or ‘effective’ homogeneous situation which represents the heterogeneous situation. It is important not to label or confuse resulting ‘effective’ homogenous hydraulic parameters estimated by the numerical analysiswith the ‘actual’ hydraulic parameters in the very heterogeneous real world. It should also beunderstood that rules governing the estimation of these ‘effective’ homogeneous parameters arenot well defined (Smith, & others, 1993).

For the Lana’i numerical model there are four basic hydraulic parameters which are variedin the calibration process. These are the global flank flow horizontal hydraulic conductivity, orpermeability, Kb, the coastal streambed conductance term, SC, the horizontal-flow barrier (HFB)

hydraulic characteristic, HYDCHRU., and the tunnel drain conductance term DC.

Global Kn can be described as the average effective hydraulic conductivity in the flank

flow lavas. Although there is ample evidence that hornogenous and isotropic conditions do not

exist at the local scale The average Kb from existing pumping test data is 18.3 ftlday(Table 13, pg.

50). As stated earlier, it is known that pumping tests occurred in the rift zone and actuallyencountered dike, fault, or both boundaries. The intrusive boundaries cause greater drawdownduring a pump test than would otherwise be observed which results in lower computed Kb values

for flank flows. It is difficult to determine to what degree pump test Kb values would increase to

correct for boundary encounters but it would not be imreasonable to assume flank flow Kb values

are within the range of tens (10’) to thousands (10) of feet per day. The Kb value may be lower in

the Palawai Caldera region than other parts of the island as evidenced by pump test results (see

Table 13, pg. 50) but this relative difference is less than an order of one (1) magnitude.

73

Page 82: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Streambed conductance (coastal leakage cells in this model), SC, is defined in MOD-FLOW as:

eq. (12)m

where:

SC = Streambed conductance (L2/t)K = hydraulic conductivity (Lit)I = length of cell (L)w = width of cell (L)in = depth of stream bed layer (L)

In the numerical model, the length, I, and width, w, are constant for all cells, including thecoastal cells, at 2000 ft. which results in an area of 4,000,000 sq.ft. The depth and thickness of thecoastal streambed was defined by setting the bottom of the river bed at -10 ft msl in the modelwhich is estimated to be the thickness of the freshwater lens in these coastal cells. The RW package requires a constant water-level to be maintained in the stream/ocean coastline itself, which issea level, or 0.0 ft. msl. The resulting stream bed hydraulic conductivity, K, must then be estimated. The overall the SC term is inherently empirical (McDonald, & others, 1988) and must becalibrated. Given the lack of a caprock type formation along the southern coast, the streambedhydraulic conductivity, K, in eq.(12), is set equal to flank flow Kh of any particular calibration run.Given the caprock or beachrock coastal geology along the northern shore, the streambed hydraulic conductivity, K, in eq.(.12) for each cell must be calibrated to yield observed water-levels andwill be lower than the flank flow Kk of the same corresponding calibration run. Typical K valuesfor other windward type caprock have been estimated to range between 0.1 to 0.08 ft/day (Eyre &others, 1986, Yuen, 1994).

The horizontal-flow barrier (HFB) boundary package for MODFLOW requires a hydraulic characteristic input which is defined as:

HYDCHRU = — eq.(l3)

where:

HYDCHR= Unconfined aquifer HFB hydraulic characteristic (lit)

= hydraulic conductivity of the horizontal-flow barrier(Lit)

w = width or thickness of horizontal-flow barrier (L)note: the barrier is vertical and impedes flow in the horizontal direction.

Equation eq.(13) is valid for MODFLOW layer types defined as unconfined. It is somewhat empirical since one does not know the actual width or actual ‘effective’ width of a HFB.Therefore, IIYDCHRU was calibrated to simulate water-levers. Since we know that the Kn,, termmust be lower than the global flank flow 11h term, the w term could be a significant portion of thewidth of the cell, or 2,000 ft., and the Khb term could be several orders of magnitudes lower than

Kh, the JJYDCHRU term should be as low as io or less.

74

Page 83: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

There is no general formulation presented in MODLFOW for the drain conductance term,DC, like the other modeled hydraulic parameters. This is due to the difficulty in quantifying allthe parameters which affect flow to a drain. Therefore, it is truly a lumped proportionality parameter. However, three (3) processes affecting drain flow are discussed in MODFLOW and aredescribed through equation eq.(14) as follows:

DC=CF.KD.WL eq.(14)

where:

DC = Drain conductance (dimensionless)CF = head losses from convergent flow to the drain

= hydraulic conductivity or material around drain

WL = head losses from flow through the drain wall openings, length. etc.

Like SC, DC is empirical and perhaps even more so given the fact that turbulent flowlosses are to be accounted for in this term. However, if one knows the flow to the drain then DCcan be calibrated for that flow. Fortunately, sufficient Maunaiei tunnel flow data is available.

As a final note, the storage coefficient, S (see equation eq.(3), pg. 16), is set to zero (0) inall initial tunnel flow and water-level computer runs since we are calibrating to an assumedsteady-state conditions. In transient situations it will be necessary calibrate S to match transientwater-levels.

Solution Techniques

Of the two basic solution techniques available in MODFLOW to solve the large matrices-which are developed in making a model, the Strongly Implicit Procedure Package (SIP) was usedthroughout the computer runs for this study. SIP utilizes backward difference approximation, orimplicit difference formulation (Wang, & others, 1982), to solve the system of linear equationswhich approximate the analytical solution to equation eqjl 1), pg. 67 for each cell. This technique is favored since it always numerically stable, i.e. enors introduced at any time diminishprogressively at succeeding times. The specific technique is not covered here but is well documented in MODFLOW (McDonald, & others, 1988). An alternative solution technique called theslice successive over-relaxation (SSOR) is available but was not used.

Numerical Parameters (closure, seed, acceleration, etc.)

Various numerical parameters were used for error checking and to help speed convergenceof the model. The closure criteria was set at 0.001 ft. maximum absolute value of head changeand was constant throughout all simulations. Seed factors were always calculated by MOD-FLOW. The acceleration factor used was generally one (1) although model estimation sensitivityduring later simulations necessitated smaller positive values (down to 0.1) to smooth solution closure and speed convergence.

75

Page 84: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Calibration Targets (tunnel flow, hiitial water-levels, transient water-levels)

Generally, steady-state, or equilibrium, calibration targets need solid definition for ameaningful calibration effort. The steady-state targets are those conditions where the mean water-

levels of the system during a representative climactic period show no increasing or decreasing

long-term trends. Ideally, many observation wells could be put in and ground-water-levels

recorded many years prior to any pumpage to establish some stead-state distribution of ground

water-levels. In reality, wells are normally pumped immediately after they are drilled since the

expenditure of monies for drilling was justified by the potential utility of supplying water needs inthe first place. Thus, the historic record must be carefully searched to identify appropriate target

values.

Fortunately for Lana’i, there is a period of steady-state pumping and initial water-levels.

Aquifer water-levels for the first ground-water sources, the Lower and Upper Maunalei Tunnels

are difficult to ascertain except that they are higher than the tunnel floors. These tunnels had beenproducing ground-water for at least twelve (12) years prior to the drilling of later sources and mayhave affected the later sources’ water-levels. However, this seemingly unfortunate circumstance

actually provides a steady-state situation. The steady-state calibration target was identified as the

established base flow from the tunnels and the corresponding water-levels for Shafts 1 & 2 which

were not pumped significantly during this period and serve as observation wells. Other than this

scenario, there is no other definite period of constant water-levels with constant recharge, pump

ing, and ground-water-levels in the record.

The establishment of baseflow from both Maunalei tunnels is difficult given the historical

record. Although Stearns stated that the Lower Maunalei Tunnel was ‘driven’ in 1911, data recor

dation for the tunnel flows did not begin until 1926. However, Lloyd (1975) stated that water

development of the gulch began in 1923. Whatever is the actual case, the tunnels had at least

twelve (12) years in which to deplete storage and reach base-flow or steady-state conditions. On

Oahu, the maximum time to establish based flow conditions for the Waiahole Ditch tunnels was

approximately seven (7) years from Takasaki’s & Mink (1985) estimation of monotonic decay

periods. Therefore, it is assumed that the Maunalei tunnels probably had reached steady-state

base flow conditions before other Lana’i wells were drilled and pumped. Using this reasoning,

the average flow for the Maunalei tunnels during 1926 to 1939 was deemed to be an appropriate

value to use. One could argue that perhaps the data from 1933 to 1939 would be an even better

period of flow use since this would filter out the initial decay period of tunnel flow to get a better

base flow average. However, considering the rainfall departure, as shown in Figure 10, pg. 23 &

Figure Il, pg. 24, for the two different periods it can be seen that the 1933 to 1939 period is a

much wetter period than the longer 1926 to 1939 period. Not surprisingly, the average tunnel

flow for 1933 to 1939 is slightly higher than the average flow for 1926 to 1933 for both tunnels.

This indicates that the tunnel flows are sensitive to changes in climactic conditions and recharge.

Therefore, the longer period was considered closer to the average climactic conditions on Lana’i

than the 1933 to 1939 period and is somewhat more conservative. These tunnel flow calibration

targets values are shown in Table 14, pg. 77. These target tunnel flows are primarily achieved by

altering the DC parameter from equation eq.(14), pg. 75 but are also dependent on the inland

ground-water-levels which, in turn, are defined by the various other hydraulic parameters already

defined,

76

Page 85: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

In addition to wnnel base flow calibration, observed ground-water-levels for existing non-pumping wells or initial ground-water-levels observed for wells drilled after the tunnels must alsobe calibrated. This results in a calibration effort which must simultaneously match tunnel baseflows and initial ground-water-levels in selected wells to achieve the calibrated steady-state situation. ground-water-level data from Shafts I & 2 provide the best estimate of initial water-levels

for the steady-state period, at least for the windward side of Lana’i. Although initial water-level

data is limited to these two (2) sources and not gathered on Lana’i under ideal conditions (windward only, and during a higher rainfall period), it is the best situation available for steady-stateconditions. However, this situation can be helped by a ranking, or weighting, of other initialwater-levels encountered. The resulting ranking of initial water-levels is more or less chronological sthce stresses imposed on the aquifer vary through time in concert with the construction of thewells. The calibration targets for initial water-levels are shown in Table 14.

Table 14. Calibration Targets and Rank of Importance

Grid Location. -.

lnitM 1926-1939Year - -: Plot Water- Average

nitlaflj -- * MOD1LOW zy -. I,,wet 4>

Rank Drilled :WellName --WeliNo (rowjcol) (j000ft)-- (ltmsl) -Ungd)

1 1900 eayWellA 5149-01 38,34 67,25 2

2 1911 Lower Tunnel 5053-01 32, 25 49, 37 1103 0261

3 1911 UpperTunnel 5053-02 33,25 49,35 1500 0.064

4 1918 MH Tunnel 4852-01 39,24 47, 23 (dry)’Q700 na

5 1920 Gay Tunnel 4853-01 37,22 43,27 (dry).c1920 na

6 1924 Waiapaa Tunnel 4952-01 88.24 47.29 (dry)c2220 na

7 1936 ShaRi 5253-01 27,30 59,47 2A na

8 1938 Shait2 5154-01 30,26 51,41 735 ‘0.Q14

9 1945 Well 1 4853-02 36,20 39,29 818 0

10 1946 Well 2 4953-01 35,22 43,31 1544 0

11 1950 WellS 4964-01 32,21 41,37 1126 0

12 1950 Well4 4952-02 36,23 45,29 1589 0

13 1950 Well 5 4852-02 39,23 45,23 1570 0

14 1950 USGS T-3 5054-01 30,23 45, 41 1067 0

15 1954 Shaft3BH 4953-02 35,22 43,31 1653 0

16 1986 Wel16 5054-02 29,23 45,43 1005 0

17 1987 Well 7 5055-01 27,22 43,47 650 0

18 1989 WelIlO 4555-01 38,12 23,25 208 0

19 1989 Well 9 4854-01 33,19 37,35 8 0

20 1990 We118 4954-02 31,22 43,39 1014 0

21 1990 We1112 4552.01 4-4,16 31,13 5 0

22 1990 Well 13 4553-01 44,15 29,13 0 0

23 na Manele 4454-01 43,13 25,15 c2

24 1gd USGS T-2 4852-03 b39 23 b45 23 na 0

a- not availableb. based on 9/22/36 to 1/14/37 intermittent pump lest (Stearns,c. measured rI 1993 when ciscovered by Lanai Co.d. estimated.

1940). However, ignored in calibration effort.

77

Page 86: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

It should be clear that no true “initial” ground-water-levels, even in areas with zero (0)pumpage, can be established without an initial comprehensive network of observation wells.Ground-water-levels throughout the island will fluctuate naturally under varying climactic conditions, especially in dike confined regions. However, such variations in water-levels shouldapproach an average equilibrium over time periods where long-term natural conditions can beidentified. Unfortunately, observation well networks are seldom in place prior to pumping conditions and Lanai’s situation is no different. Since pumpage would affect initial regional equilib

rium ground-water-levels, then the earliest drilled wells deserve greater weight in matching than

wells drilled later in time. Additionally, although tunnels do not give an accurate measure of theground-water table other than the fact that they lie below it (or above it if dry!), they do provide

limits which must be met Also, geothermal heating for Wells 1, 9, and 10 affects the water-levels

initially encountered. Such heating could account for water-level differences in the neighborhood

of five (5) feet for these three wells (this can easily be calculated by taking specific the ratio of

water’s approximate specific weight at 60° F and 1000 F, or 6237/62.00 (Roberson, & others,

1980), multiplied by a l’x l’x 900’ water column = 5.4 ft). Therefore, the initial ground-water-

levels should not be affected by geothermal activity significantly in areas with water-levels

exceeding several hundred feet in elevation on Lana’i.

In addition to the steady-state calibration targets, levels or associated error targets must bedefined to provide an additional basis of identifying an acceptably calibrated solution. Given themodel assumptions of regional isotropy, homogeneit9, and other averaged hydrologic parameters,it is unlikely that every observed water-level will match perfectly. Associated error targets provide a means of a qualifying how well the steady-state calibration targets have been achieved relative to one another. For this study, an acceptable steady-state calibration solution is achievedwhen the combination of all model hydraulic parameters resulting in observed tunnel flows and

water-levels minimize the associated errors. This was accomplished most efficiently by definingseveral levels calibration and striving to maximize higher levels of matching while minimizinglower levels of matching. Therefore, such associated error targets are defined for both Maunalei

Tunnel base flows and initial water-levels in which is summarized in Table 15.

Table 15. Levels of Calibration for Lana’i Numerical Model

Assoefated Ermr

: AqtAfer Type MaunaleiTunnelslevel of. Cabbrátioñ.. Basei

Simulated vsObeted Dike-CoclneI BasaL 19244939

: Water-levels (ft.) (ft.)

2 60 2 10

3 90 3 15

4 >90 >3 20

1 30 1 5

78

Page 87: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Admittedly, levels of associated error targets are subjective but are based on relevant criteria. Typical flow meters and totalizers, especially older, are commonly known vary as much as5%. Given the uncertainty of the tunnel base flow data and the completeness of their record variability is arbitrarily set in increments of 5%. For water-levels, properly installed airline measurements are accurate to the nearest 0.1 ft. Also, and as mentioned earlier, nodal interpolation errorsalone may cause errors up 10 ft. in a regional model (Anderson, & others 1992) and well locationsare not exactly coincident with nodal locations in the grid. The ignorance of return irrigationcould also affect water-levels but such effects are probably limited to the Palawai basin area.Also, dike-confined water-levels are generally more sensitive to climactic variations than basalaquifers. Since the majority of wells on Lana’i are located in dike-confined regions their initialwater-levels will be difficult to match due to local climactic differences when initially drilled. Asdescribed earlier, geothermal presence can also affect water-levels by a few feet in the PalawaiCaldera. Considering these factors alone would justify an associated error of several tens of feetBasal wells, on the other hand, typically do not exhibit the same level of sensitivity to climacticand pumping stresses. Therefore, the associated error for basal wells should be much Tower thanthat for dike-confined water-levels; on the order of a few feet. Again, these associated errors aresubjective and based on discussions with hydrologists of the USGS, CWRM, and LCo.

There are two (2) additional calibration targets which must be met before any of the initialwater-level or tunnel base flow results are compared to the calibration targets identified in Table14, pg. 77 and Table 15, pg. 78. These are the water-level closure criteria, where the numericaliteration processes will stop, and the corresponding mass balance for each run. A rule of thumb isthat simulated water-level closure criteria should be one to two orders of magnitude smaller thanthe level of accuracy possible (Anderson, & others, 1992). Since water-levels have been measured to the nearest 0.1 ft. on Lana’i this would correspond to a closure criteria of 0.001 ft. Eachcalibration run had to meet this error criterion, which means that before its results were accepted,water-level changes between progressive iterative solutions for each cell could not exceed thisamount. The mass balance error is calculated by MODFLOW at the end of a calibration run whenthe water-level closure criteria is met A mass balance target error of 1%, or less, is consideredacceptable (Anderson, & others, 1992). When both these error criterions were met the results of acalibration run were considered acceptable to rate against Tables 14 & 15.

A second major effort in this calibration process was to match transient water-levels ineach well with historical data. The target transient ground-water-levels are defined as thoseobserved in each well over the eight periods identified in Figure 31, pg. 65. The effort here is tocalibrate the model’s effective storage coefficient S (see equation eq.(3), pg. 16), and also to givea sense of reliability to the initial steady-state calibration effort. As stated previously, the reasonable range of S is 0.1 to 0.3 for the unconfined aquifers. Other modelling studies in the State, onthe island of Oahu, have shown that storage coefficients between 0.02 to 0.05 appear reasonablefor unconfined basal situations (Eyre, & others, 1986). Whether or not this is the case for high-level unconfined aquifers is subject to conjecture. In any case, it is much more difficult to identifya S calibration or an associated error target with water-levels since they vary with time. Instead,transient water-levels were analyzed in a more spatial context at each well site. This spatial analysis also provided insight for changing boundary conditions. For example, it was found duringearly rounds of the transient simulations that the windward water-levels were too low while theleeward side water-levels were too high. This led to a change in the configuration of dike boundaries on the windward side which led to a better match in transient water-level response.

79

Page 88: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Model Calibration Results

Trial-and-error is the method used to arrive at best fit solutions for initial steady-state andtransient recharge and pumping water-levels. In both situations, the goal is to meet the associatederror and closure criteria conditions which minimize the average difference between the simulated and observed initial heads and pumping drawdowns. MODFLOW does have an automated

calibration module called MODFLOWP. However, MODFLOWP is a recent code which has notbeen used much and it may be 10 to 20 years before the use of such automatic calibration modelsbecome standard practice (Anderson, & others, 1992). Therefore, this study remained with thetrial-and-error method of calibration. It is important to understand that the thai-and-errorapproach does not guarantee the statistically best solution (Anderson, & others, 1992). Therefore,sensitivity analysis will be necessary later to help quantify the effects of uncertainty in the parameter estimation through this trial-and-error approach.

There are many ways to identify and measure the success of the calibration effort forLana’i. The two (2) major categories to evaluate the calibration effort are quantitative and qualitative measures of success. The ultimate calibration objective is to minimize both types of measures of error. The statistical measures used in this study to quantify average differences betweenthe simulated and observed initial heads and transient drawdowns are the mean error (ME). themean absolute error (MAE), and the root mean squared error (RMS), or standard deviation.

However, these quantitative statistical properties do not identify the spatial, or qualitative, disth

bution of the errors. Therefore, spatial relationships between simulated and observed water-levels

must be evaluated as well.

Initial Steady-State Ground-Water-Levels

Over a thousand (1000) ground-water-level simulation runs were performed to calibrate

the model to the initial steady-state water-level conditions. In the effort to verify the final concep

tual model, many of these runs were made to test possible conceptual models which were much

simpler but probably too simple to meet observed conditions. For example, through many com

puter runs it was found impossible to match observed water-levels with a single uniform effective

global permeability, Kh, devoid of other internal boundaries to horizontal-flow, with a calibration

level of 1 (see Table 15, pg. 78) for more than 1 well at any time. Likewise, it was found impos

sible to match observed water-levels by using only field identified dike and fault and boundaries

alone without any inference of unseen barriers to horizontal-flow which must exist in the known

rift zones. Thus, the failure of these simpler conceptual models mean that they are too simple andthat there must be many unseen internal boundaries. Some adjustments to internal boundary conditions were necessary in the rift zones and along the shoreline to calibrate the model but overall

there is little deviation from the initial assumptions of homogeneity, isotropy, and simplicity for

the regional scale of the Lana’i numerical model. Therefore, many of the earlier simulations ruled

out other possible conceptual models.

Following the initial invalidation of oversimplified conceptual models, the final concep

tual model, as shown in Figure 33, pg. 72, was calibrated by varying the various hydraulic param

eters until a best fit match for the in initial steady-state water-levels was obtained. MODFLOW

input data and resulting output data for the best fit calibration are in Appendix C and D.

go

Page 89: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Summaries of calibrated initial steady-state ground-water-levels conditions are shown inTables 16 & 17 and Figures 33 and 35. It is important to understand that this is not a unique solution and that other values of these hydraulic parameters can result in similar results althoughchanges in internal boundary conditions have a much greater effect on the resulting water-leveldistribution. For example, it was found that under the original boundaries to horizontal-flow configuration initial water-levels for Wells I and 12 were several hundred feet too high when otherwells seemed to be reasonably matched. The solution for this was to remove a single makai mostboundary to horizontal-flow rather than altering the hydraulic permeabilities locally. Likewise,using recharge distributions from past studies resulted in Shaft 2, the most important initial water-level, drying up consistently when pumped at its long-term average, which is not consistent withreality. Only after using the GIS recharge determined for this study was the Shaft 2 problemresolved. An important feature of the steady-state calibration effort was that the Upper MaunaleiTunnel needed to cross into the next mauka cell since a single cell did not provide enough flow.This is reasonable since the tunnel source is really horizontal and may indeed cross into anothercell in the conceptual model. Whether or not this is true, such a change is necessary for the modelto achieve the defined steady-state target conditions.

Table 16. Resultant Calibration Parameters for Initial Steady-State Conditions

Parameter Property Value unit

S Storage Coefficient 0 dimensionloss

K (both x & y direclions) Global Horizontal PermeabflityIsland 1000 ft/dayPalawal CaMera 100 ft/day

SC Coastal LeakanceSouthern coast 4 x lO ft2/dayNorthern coast 4 x 1o4 f9lday

HVDCHRU Horizontal Flow Boundary ConductanceDike Complexi 501 x 10 ltday

DC Drain Leakancelower Maunalei 255.84 ft2/dayUpper Maunalci 137000 ft?/day

Extension of upper 137000 tt%ay

A Recharge 61.60 mgd

Area of A Recharge area 140.83 mi2

Bottom Elevation Bottom of model -400 ft

Pumping Pumpage scenario 0 mgd

Accepted Calibration Targets Value unil

Mass Balance values <1.0% are acceptable -0.05

Closure Criteria water-level changes c 0.001 ft slops itera- na ft.lion

81

Page 90: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Table 17. Best Fit Steady-State Calibration Results

initiat Calibrated• Water- 1939 Water- aH Diseharga

Level Level Level of QRank Well Name (It. mat) (ft. msQ A Calibration (mgcf)

1 Gay Well A 2 2.5 0.80 +0.5 1 0

2 Lower Tunnel 1103 1240 0.89 +137 b1 0.261

3 UpperTunnel 1500 1506 0.99 +6 81 0.064

M MH Tunnel (dry).c2700 1841 cnn nn 1 0

5 Gay Tunnel (dry)<1920 1504 nn nn 1 0

*6 Waiapaa Tunnel (dry)<2220 1743 nn nfl 1 0

7 Shaftl 2.4 2.4 1.00 0 1 0

8 Sha$12 735 738 1.00 +3 1 0

9 Well 1 818 850 0.96 +32 2 0

10 Well2 1544 1523 1.01 -21 1 0

11 Wel13 1126 1154 0.98 -28 1 0

12 Well4 1589 1625 0.98 +36 2 0

13 WellS 1570 1723 0.91 +153 4 0

14 USGST-3 1067 1131 0.94 +64 3 0

15 Shaft3BH 1553 1523 1.02 -14 1 0

16 We1l6 1005 991 1.01 -14 1 0

17 Welll 650 755 0.86 +105 4 0

18 WeillO 208 318 0.65 +110 4 0

19 Well 9 808 846 0.96 +38 2 0

20 Well8 1014 1191 0.85 +177 4 0

21 Well 12 5 0.3 16.67 -4.7 4 0

22 We1113 0 0.7 0.00 +0.7 1 0

23 Manele ‘2 2.3 0.87 +0.3 1 0

24 USGS T-2 ena na na na na 0

a. observed water.Ievel. ll,. divided by simulated calibration wajer-levet, ,jmb. related to steady-state flow equal to ‘26-39 average.c. not necessaryd. measured in 1993 when discovered by Lanai Go.e. not available.

ME = !E(initial_ca!ibrated) = -40.4 where n = 18 (wells marked * not counted)

MAE = !E(Iinirial_cahibraledl) = 48.1

RMS = [!zoniria1_caIibrazei 2]05= 72.3

82

Page 91: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

SU)

>-

B°CC

MODFLOW INPUT DATA

Storage Coeffcient. = 0 (i.e. non-transient)Global Kb =l000ft/dCalderaKb=lOOtt/dRiver conductance Kw/mwith lw=4000,000 sq,ftm=100 ft z0 ft. mslwhere South l@1000 ft/day = 400000000 sq.ft./daywhere North K= 0.1 ft/day = 40000 sq.ft/dayand where river bottom = -10 risl.

Horizontal flow boundaries = 895Horizontal flow boundary conductance KM = 0.0000501/day

Bottom elevation = -400 ftArea of recharge = 140.83 sq. rrd.Recharge = 61.60 mgdPurrping = 0 mgdFlow from Lower Maunalel Tunnel = 0.261 mgdFlow from Upper Maunalei Tunnel = 0.064 rwd

MODFLOWOUPLJt ThROUGH SURFER GRAPHICS

Maximum water level = 1868 ft. above rrean sea level.(contour truncated at 1800 ft. above nI)

- kll locations with original water levels.

[]- Nuntrical cstIine of Lanai

CLOSURE CRITERIA

Madniim water level change <0.001ter balance < 1% (Mtual = -0.05%)

83

Simulated Regional Steady-State Ground Water Level Contours for LanaiBest-Fit Calibration with Fog-Drip

90,000-

80000-

70,000-

60,000-

50,000-

40,000-

30,000-

20000-

10,000-

io,boo 20,bOO 30,bOo 40,bOO 50,000 60,bOO 70,bOO

X- axis (ft.)

Figure 34. Spatial Contour Results of Best Fit Calibration (also see Figure aS, pg. 72)

Page 92: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Simulated Regional Steady-State Drawdown Contours for Lanai

0,

>-

Best-Fit Calibration Spatial Error Distzibution

X- axis (ft.)MODFWW OUPUT THROUGH SURFER GRAPHICS

Mininijm error = -20 ftMadrnim error = 160 ftContour interval = loft, Darkest ntour Fine is +100 ft

- lI laions with odginal water levels.

[]- Nurreiical Coastline of Lanai

Figure 35. Spatial Distribution of Errors for Best Fit Calibration 84

Page 93: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

From Table 17, pg. 82, the MAE of the simulated water-levels for all wells is 48 ft., whichimplies that the overall match is fair (Level 2, as defined in Table 15, pg. 78) while the standarddeviation is 72 ft. (Level 3). However, considering the assumptions of homogeneity and isotropyand the transient considerations of wells coming on-line at various times, the match is better thanexpected. Additionally, calibrated hydraulic parameters from Table 16. pg. 81, fall within therange of reasonable values mentioned earlier in this report.

To investigate the reasonableness of the 61.60 mgd rechargeR input, a separate calibrationwas pci-formed where the fog-drip component of R was entirely removed. The total average R forthis situation was 53.18 mgd (see Table 12, pg. 48). The model was then calibrated using thesame technique and closure criteria from the previous calibration effort The best calibration fitparameter values with the no fog-drip R are summarized in Table 18 below.

Table 18. Resultant Calibration Parameters for No-Fog Steady-State Conditions

Parametr - - - - - - Property - - - - - - - - . - - Value unit

S Storage Coefficient 0 dimensionless

Kn (both x & y directions) Global Horizontal PermeabilityIsland 1000 It/dayPalawai Caldera 100 ft/day

SC Coastal LeakancoSouthern coast 4 x io ft2/yNorthern coast 4 x io ft2/day

HYDCHRU Horizontal Row Boundary ConductanceDike Complex 2.40 x 10 1/thy

DC Drain 1.eakanceLower Maunalel 512000 1t2/dayUpper Maunalei 5120.00 f12/day

Extension of upper 5120.00 ft2/day

P Recharge 53.18 mgd

Area of P Recharge area 140.83 mi2

Bottom Elevabon Bottom of model -4 ft

Pumping Pumpage scenario 0 mgd

-.

Accepted Calibration Targei3 VahM unit

Mass Balance values <1 0% are acceptable -0.05

Closure Criteria water-level changes < 0.001 ft stops iteration na ft.

As expected, the HYDCHRM and DC terms were different in the no fog-drip R scenario. Thebest way to compare the impacts of these changes is to view the changes in the profile of theresulting changes in water-levels (see Figures 36 & 37 on the following pages). For statisticalinformation, the standard deviation of simulated water-levels under the no-fog calibration was258 ft. which is three times greater (worse) than the standard deviation calibration with fog.

85

Page 94: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

90,

80,

70,

60,

50,.

40,01

30,

20,

10,.

Simulated Ground Water Level Contours for Lanai

e - Well locations with original water levels.X - axis (ft.) o - Nunwical ctastline of Lanai

86Figure 36. Profile Line A-A’ Superimposed on typical Ground-Water-Level Contours Output

Page 95: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

2,20

0-

2,00

0-

1,80

0—

a1,

600

-

E C) > 0 a1,200

C 0 Cu-

1,00

0C) C) > C) C)

600

400

1,40

0

Ste

ady-S

tate

Wat

erL

evel

Pro

file

s

200 0

40,0

00di

stan

ceal

ong

A-

A’in

ft.10

0,00

012

0,00

0

00 -1

Rec

harg

ew

IFo

g-

-R

echa

rge

wiN

oFo

gv

initi

alw

ater

leve

ls

--

Cal

ibra

ted

Sce

nari

os:

--

-

-1.

Rec

harg

ew

ithFo

g-

2.R

echa

rge

with

out

Fog

--

-

Max

Wat

erL

evel

8p

Shaf

t3IW

ell

2-f

WuL

16

Wel

l4

Upp

erT

unne

lfl

oor

ci.•

1500

ft.

G

p-t

ie

Tun

nel

floo

rel

.a

1103

ft.

Wóll

1

0

Sha

ft2

Wel

l10

020

,000

H--

----

-

60,0

00

Sha

ftI

80,0

00

A’

Fig

ure

37.

Res

ultI

ngPr

ofile

AA

’(s

eeFi

gure

36,

pg.

86

)Dlf

fere

nce

sfr

omFo

gvs

.N

oFo

gR

echa

rge

Cal

ibra

tion

.

Page 96: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

The results of this alternative calibration show that, for the given conceptual model withall its assumptions and identical internal boundary locations, the R with PD is a better estimate ofisland R than without PD, for several reasons. First, it was impossible to get the Upper MaunaleiTunnel to flow at all under the same steady-state model conditions as the previous calibration. Itwas found that additional 2000 ft. mauka extensions to both tunnels was necessary to achieve thecalibration target of historic tunnel flows observed, before any other wells were drilled, for Rwithout ED. These boundary changes are not incorporated into Figure 37, pg. 87 since we arecomparing calibrations without boundary changes which is a more meaningful comparison.Therefore, it was only possible to match the Lower Maunalei Tunnel flow and initial Shaft 2water-levels but not the Upper Maunalei Tunnel flow. This is clearly visible in Figure 37, pg. 87since the Upper Maunalei Tunnel will not flow in the R without PD scenario since the bottom ofthe tunnel floor lies above the ground-water-level. Even if these boundary changes were allowedthe horizontal flow boundary, HYDCHRU had to be decreased such that ground-water-levelscould rise to achieve not only tunnel flow but the observed initial water-level at Shaft 2.

The fact that HYDCHRU must be decreased (tightened) to meet the calibration targets is

expected, since less recharge would require tighter dike and fault formations to increase water-levels to compensate for less R, and is the second reason why R with PD is a better estimate ofisland R than without PD. Removing PD from R affects water-levels on the leeward side morethan the windward side of the island. For R without PD, calibrated water-levels on the leewardside of the island are consistently higher than if R incorporates PD, as is clearly shown in Figure37, pg. 87. All the observed initial high-level water-levels with a calibration level greater than Iare afready lower than water-levels from the calibration with R containing PD (see Table 15, pg.78 and Table 17, pg. 82). Therefore, removing PD from R increases this error rather thandecreasing it.

Lastly, the decrease in HYDCHRU will also affect aquifer response to long-term average

pumpage such that drawdowns for the model calibrated without PD are less reasonable. Figure38, pg. 89 shows that even with long-term pumping the water-levels at Wells 1 and 10 are on theorder of 200 to 300 ft higher than what has been initially observed at these two wells sites. Also,drawdowns in other wells seem much more drastic than what is observed in the field. From Fig-tire 38, pg. 89 it can be seen that the drawdowns at Wells 2 & 4 should be on the order of 300 to600 ft greater than what is currently observed and historical behavior of these sources do not indicate that such drawdowns would be expected. The only exception of ground-water-level responsewithout PD is Well 5, which appears to be a better match than the calibration with PD. However,Well 5 is known to have efficiency problems and, as will be seen later in transient runs, this sourceis one of the more poorly modeled wells in this report. Therefore, it is the opinion of the authorthat this figure is further evidence that the model calibrated with PD is a better calibration thanwithout it. Therefore, calibration parameters made with PD, as described in Table 16, pg. 81 aredeemed the “best-fit” calibration model from here on in this report.

88

Page 97: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Ste

ady-

Sta

teW

ater

Lev

elP

rofi

les

2,20

0-

2,0

00-

[19

2tt

9W

Av

era

ge

Pum

page

isM

axW

ater

Lev

elim

pose

don

resp

ecti

veca

libr

ated

mod

el.

1,80

0

1,6

00-

__

We1

14vY

pW

e1l5

\,U

pper

Tu

nn

ulf

loo

r.L

—1

50

0ft

1,40

0S

haft

aaW

&l2

v/i

//a1,200

-

/C

/.2

Low

.rT

unnelf

loor.

l.1103ft

Co 1,0

00-

0id

’/

I,,lit)

i-it

>/

•80

0---s I

/vW

.111

t’S

haf

t2

200

A1Y

Sh

ftl

A’

0.—

a—

—I

I—

_•

••

p

020

,000

40,0

0060

,000

80,0

0010

0,00

012

0,00

0di

stan

ceal

ong

A-

A’in

ft.

—a-—

Pum

page

WI

Fog

--a

-P

umpa

geW

IoFo

gv

13/9

4W

ater

leve

ls

Fig

ure

38.

Res

ultin

gPr

oflle

A-A

Dif

fere

nces

InL

ong-

Ten

Pum

page

Res

ults

onFD

vs.

NO

-Fl)

Cal

ibra

tions

Page 98: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Transient Recharge, Pumping, and Water-Levels

Following the steady-state initial water-level calibration, transient water-levels are investi

gated to calibrate the effective storage coefficient S and to further provide confidence in the cali

bration of the steady-state conditions. As shown from Figure 31, pg. 65, there are eight (8)

periods of significant changes in static water-level trends from 1942 to 1994. These periods cor

respond to what are called stress periods in the numerical model. Therefore, there are eight (8)

stress periods in the transient model input. Since the high-level water elevations are sensitive to

both climactic and pumping stresses both must be defined for and varied within each stress

period.

Varying recharge, R (with fog-drip, FD), over the specified periods was accomplished

through the GIS by applying the fractional monthly departure from the long-term monthly means

for rainfall, RI!, and running the recharge model with these modified RI! variables for each

period. No other water-budget parameters were altered and it is assumed that the lag-time

between recharge and water-levels is negligible. The results for the periodic RF departure com

putations are shown in Table 19, pg. 91. The resulting effect on the GIS R departure computa

tions for each stress period are shown in Table 20, pg. 91, and it is interesting to note that they

generally exceed RI! departures. The reason for the difference in departures is most likely due to

the differences in ETm which is dependent on changes in soil-moisture storage, ASMSm, which

was discussed earlier in this report. Computations of periodic recharge rates used in deriving the

tables 19& 20 can be found in Appendix E.

Of the twenty-four (24) ground-water sources identified for Lana’i in this report, only

eleven (11) of these were pumped significantly and of these eleven only nine (9) have water-level

responses to pumpage and climactic changes. These production wells and their corresponding

average pumpage for each period are summarized in Table 21, pg. 92. Yearly time-steps were

investigated for each stress period. For example, in stress period one, ‘42 to ‘51, there are ten (10)

years or ten (10) time-steps in the model. In each of these time-steps the model will iterate to a

solution which meets the criteria set forth in Table 16, pg. 81 before moving to the next time-step.

However, since this is a transient simulation the water balance criteria does not have to necessar

ily meet the steady-state condition of 0.05% difference since changes in storage now occur.

For comparison, specific capacities reported by Takasaki & Mink (1982) for wells in the

Waiahole-Waikane dike complex region range between I to 10 gal/mm/ft which means that a well

pumped at a rate of 200 gal/mm would result in a drawdown of between 200 to 20 ft., respec

tively. This is consistent with the current reaction of most individual wells pumpage on Lana’i.

With the transient input variations established, calibration of the storage coefficient, S,

was approached by trial-and-erroL Five (5) S values were investigated; 0.01, 0.05, 0.1, 0.2, 0.4

with the assumption of homogeneity on the island-wide regional scale. No Jag-times were con

sidered. The resulting transient water-level runs and tunnel flows for the final calibration are

found in Appendix F. The best S value is the one which matches the trend or relative changes in

ground-water-levels for each source. This is best accomplished by matching the departures from

the mean for each source for the observed data and each resulting simulated transient run. These

results are graphed in Appendix F.

90

Page 99: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Table 19. Stress Period Departures from Mean RFfor R Calculations

. Deparluwfmm Monthly Mean RaWali. flit hi

Penod 1 Period 2 Period 3 Period 4 Period S Period 6 Period 7 Period 8Month 42-51 ‘52-56 57-8/61? 9/61-64 65-69 ‘70-83 ‘84’90 ‘9?-’94

Jan. 14.77 -13.10 3.13 77.44 29.92 27.36 -37.71 -4-3.66

Feb. -6.23 -13.59 -44.13 -67.36 22.25 9.65 1679 -11.74

Mar. 29.45 -24.45 -1296 95.58 17.22 -28.30 -27.09 -44,72

Apr. 51.41 -53.29 -53.56 48.40 67.50 -4.66 21.17 -82.77

May -13.47 -39.58 42.09 97.79 70.22 -22.72 -5.76 -11.06

Jun. 30.95 -37.45 -18.38 -25.96 -11.88 8.19 -1.25 24.42

Jul. 21.07 11.60 -32.84 67.62 65.03 -17.85 10.92 2.60

Aug. 5.05 -1956 -8.62 -1,57 13.13 2.21 -39.67 -13.87

Sep. -19.58 -11.01 -11.77 -49.95 96.22 -34.25 -6.50 48.99

Oct. -38.50 -27.36 -30.10 43,63 6.83 -23.09 10.06 15.51

Nov. -11.90 31.00 -5.43 15.66 96.02 -19.52 23.71 -21.95

Dec. -10.99 39.12 -14.88 -20.92 38.12 2.61 28.30 -35.42

Year 3.66 -10.84 -14.99 27.62 42.68 -6.29 -0.89 -21.13

Table 20. Stress Period Departures from Mean Rfrom GIS Model

. . .‘

.. ,:, ‘ ... (m Mthae:Ri

.. Pedodi Period2 Periods Penod4 PeriodS Periods Penod7 Period8Morth ‘4251 ‘52-’56 57-8/61 916144 ‘65-69 ‘70-’83 ‘ft419g ‘91-94

Jan. 20.46 -17.90 4.28 112.92 42.34 38.65 -50.71 -58.21

Feb. -9.23 -19.95 -57.88 -74.44 35.10 14.47 25.98 -17.25

Mar. 52.34 40.90 -22.40 178.84 30.20 -46.39 -44.67 -69.27

Apr. 100.92 -76.76 -77.04 94.66 135.11 -818 39.93 -91.73

May -27.12 -60.09 105.47 280.84 191.78 -41.50 -12.35 -24.11

Jun. 51.13 40.38 35.09 -29.06 -15.09 13.40 -2.08 39.81

Jul. 29.69 14.53 -36.48 130.86 124.92 -21.00 1414 4.14

Aug. 7.81 -25.52 -12.85 -2.43 20.14 3.47 -44.44 -18.92

Sep. -32.73 -19.04 -20.30 -67.92 269.25 -49.01 -11.65 112.55

Oct -64.72 -51.25 -54.60 100.38 16.27 -46.16 21.00 34.75

Nov. -19.19 53.83 -9.33 26.68 179.62 -3124 40.79 -34.38

Doe. -15.08 54.91 -20.26 -27.75 54.20 3.20 39.41 -44.62

Year 10.91 -9.71 -20.41 63.41 73.452 -2.71 485 -41.06

91

Page 100: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Table 21. Stress Period Pumpage Input

Average Pumpage mgda

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8

Well 42-’52 ‘52-’56 ‘57-W61 9/61-’64 ‘65-’69 ‘7083 ‘84-’90 91-’94

bUpper Tunnel 0.223 0.103 0.040 0.027 0.042 0.026 0.051 0

bLower Tunnel 0.206 0.112 0.116 0.138 0.198 0,094 0.107 0.072

Shaft 2 0.216 0.140 0.157 0.109 0.058 0.060 0.435 0.513

Shaft 3 BR 0 0 0.596 0.378 0.291 0.409 0.310 0

Well 1 0.029 0.038 0.095 0.073 0.002 0.119 0.286 0.110

Well 2 0.171 0.360 1.000 0.287 0.360 0.374 0.355 0.193

WellS 0.005 0.196 0.194 0.125 0.058 0.319 0.345 0.285

Well 4 0.003 0.105 0.219 0.160 0.023 0.315 0.766 0.506

WellS 0.016 0.232 0.099 0.066 0.077 0.234 0.288 0.105

WeN6 0 0 0 0 0 0 0.019 0.330

Well9 0 0 0 0 0 0 0 0145

Total 0.868 1.287 2.516 1.364 1.110 1.949 2.961 2.260

. •lI Average PumpagecI& (for MODFLOW input)

bupper Tunnel 29808.2 13775.2 5300.6 3605.6 5581.9 2420.3 6850.1 0

bLowerTunnol 27520.9 15015.9 15355.8 18411.2 26490.8 12573.6 14238.1 76172

Shaft 2 28880.0 18701.5 21029.9 14583.7 7742.2 8063.5 58159.0 68582.6

Shaft 3 BH 0 0 79698.8 50545.4 38849.3 54657.8 51392.2 0

Well 1 3874.6 5087.2 12737.3 9812.9 315.7 15842.0 39261.1 14770.1

Well 2 222856.5 48125.5 133743.4 38413.4 48189.4 49993.1 47487.9 25827.2

WeDS 623.3 26223.3 25973.4 16742,8 7784.5 42678.7 46053.6 38084.1

Well 4 340.0 14062.8 29297.0 21412.2 3128.8 42078.8 102414.9 67705.1

WellS 2174.4 31078.2 13239.3 8858.4 10254.2 31291.9 38439.5 14026.3

Well 6 0 0 0 0 0 0 2519.4 44103.6

Well9 0 0 0 0 0 0 0 19423.7

Total 1.16x105 1.72x105 3.36x105 1.82x105 1.48x105 2.61x105 3.96x105 3.02x105

. milhen gallons perdayb. Gravity flowc. ci,bic feet per day

92

Page 101: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Several important observations resulted from the transient analysis. First, in earlier tran

sient simulations it was found that the transient windward water-levels were to low and the lee

ward were too high. This prompted a change in the internal boundary conditions by adding

several additional horizontal flow boundaries in the Puu Kawelo and Puu Mahana area. Addition

ally, a mauka horizontal flow boundary in the Shaft 3 bulkhead was removed since the tunnel here

does extend for some distance. These changes, in turn, necessitated a recalibration effort to meet

the initial steady-state conditions which was then followed again by transient analysis. This cir

cular type of calibration effort resulted in a much better match for all observed water-levels. Sec

ondly, there is no one best S value which can accommodate the entire island on the regional scale.

This should cast some doubt on the validity of the initial assumptions of homogeneity and isot

ropy on the regional scale. From the various figures in Appendix F it can be seen that some simu

lated transient water-levels match observed trends better than others for different S values. Table

22 was constructed to show these differences in matching trends.

Table 22. Best Match for Transient Conditions

.

Storage Cffldent, s

:s0e.< 0.01 005 .. 02: Ô,4:

aUpper Tunnel best

SLower Tunnel best

Shaft 1 best

Shaft 2 best

bShaft3BH best

Well 1 best

Well 2 best

Well 3 best

Well 4 best

Well 5 best

°Well 6

CWell 9

Total 3 1 1 2 3

a. Gravity flowb. Psmiped üi model t*jI actoally gravity flow tunnel

c Noc enough informaiiai to assess.

An additional transient run was made to investigate and provide a estimate of how close

the present situation is to steady-state conditions. The long-term average pumpage for each

source was induced on the best-fit calibrated model and run for 1000 years into the future. A sin

gle S value 0.1 was chosen for this exercise. Results for each well in this exercise is found in

Appendix 0. According to this exercise, water-levels in wells are between lO%-90% of steady-

state water-levels for the long-term pumpage between 1942 to 1994 excluding well 5.

93

Page 102: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Model Sensitivity Analysis

As noted earlier, the trial-and-error approach of parameter estimation does not guaranteethe statistically best fit, and sensitivity analysis is necessary. Sensitivity analysis is simplyobserving the water-level response changing an individual hydraulic parameter on the best fit calibration while holding all other parameters and boundary location conditions constant. This isdone to help quantify the uncertainty of the calibrated Lana’i numerical model. Specifically, theindividual regionally effective model parameters are; the global and caldera horizontal hydraulicconductivity, Kh, the horizontal-flow barrier (HFB) hydraulic characteristic, IIYDCHRU, the

north and south coastal streambed conductance term, SC, the tunnel drain conductance term DC,and the input flux of recharge, R. Each parameter was varied individually by increasing or

decreasing its calibrated value over the range of ± 100% and the model run to steady-state. Thechanges in resulting ground-water-levels between the simulated steady-state best fit calibrationand sensitivity runs is summarized in Figure 39, pg. 95.

It is important to understand that Figure 39, pg. 95 shows the sensitivity of the calibratedmodel based only on the internal boundary geometry, the simplified assumptions of regionalhomogeneity and isotropy for the hydraulic values of these boundaries, and the steady-state conditions discussed earlier. Figure 39, pg. 95, does not include the model’s sensitivity to changingmathematical or internal boundary geometry nor initial seed conditions, such as starting head values for a specific computer run. Changing internal boundary conditions will create an alternativesolution which could be calibrated, graphed similarly, and would also show a trend towards a zero(0) mean absolute error along the x-axis of the figure. What is also missing from Figure 39 is themodels’s sensitivity to changes in internal boundary conditions. Through the calibration effort itwas clear that the Lana’i model is also quite sensitive to small changes in the locations of internalboundary conditions. For example, removing only a few horizontal flow boundaries had dramaticregional and local effects on water-levels. In fact other recent studies (Meyer & Souza, 1995)have shown that water-level responses to pumping in compartmentalized high-level type aquifersare very sensitive in numeric models. Changing the calibrated boundary geometry, in effect, cre

ates a new model.

From the sensitivity analysis it is clear that the model is most sensitive to changes in thehorizontal flow boundary, HYDCHRU and recharge, R. The sensitivity to HYDCHRU and R

should not be surprising since these internal boundaries are known to be a reason for high-levelaquifers and their observed sensitivity to climactic conditions in the real world. Since the modelis sensitive to HYDCIIRU it follows that the model must then be sensitive to the locations of these

internal boundaries. This supports the statement made in the preceding paragraph that the model

is very sensitive to changes in boundary locations but is difficult to show in the graphical manner

as done in Figure 39, pg. 95.

A few other statements can be made from the behavior of the sensitivity curves. Themodel seems to be equally sensitive to equal changes in both HYDCFIR and R. This indicates

that the two are correlated which makes sense since the lack of either one would result in no highlevel water. Changes to other parameters in the model do not induce significant changes untilmuch larger percentage increases than HYDCHRU and R. and even then the MAE is much less.

94

Page 103: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

C In I

Sen

siti

vity

Ana

lysi

sB

est-

Fit

Cal

ibra

ted

Num

eric

alM

odel

from

cali

brat

edva

lue

--a—

DC

cH

FB-—

Kh

-.

-K

hc—

v-

R

i

Figu

re39

.Se

nsiti

vity

Cur

ves

ofC

alib

rate

dM

odel

whi

te-

-

para

met

ergr

aphe

dis

the

only

one

vari

ed.

MA

Eis

base

don

all

exis

ting

wel

lsi

tes.

moresensitive

.—

-.—

--—

—-—

----.—

—-----..-----.--.—

—.-—

,.-—

10,0

00.0

1000

.0

100.

0

10.0 to 0.1

0.0

mor

ese

nsit

ive

less

sens

itive

‘N

S

e

/

‘0 U’

-80

-60

-20 %

chan

ge

-//

-

9-z

x

--x-

SC

Page 104: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Model Predictive Runs

Using the best-fit calibrated model as the base, six (6) predictive scenarios were investigated to assess potential regional ground-water-level responses to various stresses. The first predictive run was made to assess the impacts of pumping at the long-term ‘42-’94 average.Secondly, fog-drip only is removed (i.e. no pumpage). Third, the model is pumped at the currentCWRM estimate of island-wide sustainable yield (6 mgd) through existing wells normally operated. The fourth predictive run combines the impacts of scenarios 2 and 3; removing fog-dripimposing 6 mgd pumpage. Fifth, the Wells 1 & 9 in the caldera were pumped alone with all otherwells turned off. Lastly, a potential pumpage distribution specified by LCo. is investigated.

Pumpage was not constrained by the actual physical limitations of each well. Estimatedfuture withdrawals from existing wells to meet the 6 mgd pumpage for scenarios 3 & 4 are simplya matter of convenience. This approach is probably not an accurate prediction of actual futureoperations but it serves as an objective way of distributing 6 mgd pumpage. Not knowing thefuture distribution of such an increase in pumpage, additional necessary pumpage was distributedevenly amongst the existing recent annual average pumpage for each high-level pumped well.Future pumpage for Scenario 5, concerning the caldera, is evenly distributed between Wells 1 &9. Pumpage in scenario 6 was specified by LCo.’s hydrologic/engineering consultant. The pump-age values used in these predictive scenarios are summarized in Table 23.

Table 23. Individual Well Pumpage for Predictive Model Runs

Upper Tunnel “if if if

a. if - free-flowing, no inthiced pimping.b. Future welj under construction and not online.

-F if if

c. Ignores any contribution of tunnel Uow to total ground-waxer removal via artificial means.

if if if if

• .-- - - SCENARiO WELL PUMPAGES - - - - -- -

- -E:t - - 2 •.3&4 S- 6-

: — ‘4fl4Axierage No Fog 6mgd4ws’i cai&radni,r

Wells md old mgd cfd mgd eM -- mgd cfd mgd -

LowerTunnel if if if if if if ft if if if

Shaft2 0.196 26,190 0 0 1.044 139618 0 0 0.500 66,836

Well 1 0.116 15,479 0 0 0.690 92,229 0.325 43,450 0.270 36,091

Well 2/Shaft 3 0.721 83,021 0 0 0.604 80,786 0 0 0.300 40,102

Well3 0.205 27,398 0 0 0.683 91,291 0 0 0.300 40.102

Well 4 0.273 36,483 0 0 0.918 122,668 0 0 0.400 53,469

Well 5 0155 20,738 0 0 0.531 71,010 0 0 0.400 53,469

Well 6 0.029 3,919 0 0 0.746 99,744 0 0 0.300 40,102

Well7 0 0 0 0 0 0 0 0 0.200 26,734

WellS 0 0 0 0 0 0 0 0 0.300 40,102

Well 9 0.012 1,571 0 0 0.784 104,733 0.325 4-3,450 0.270 36,091

bWelll4 0 0 0 0 0 0 0 0 0.280 37,428

CTotal 1.607 214,800 0 0 6.000 802,079 0.650 86,900 3.520 470,526

96

Page 105: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Predictive Run Results

Before discussing predictive run results, it is an appropriate time to clarify the issue of

sustainable yield and regional water-level response. The reader may recall from Table 1, pg. 3,

the issue regarding the definition of the term ‘safe yield’ between Stearns and Anderson. The

issue is significant since it highlights what other respected hydrologists (Theis, 1994 & Lohman,

1979) have identified as the “Alice-in-Wonderland” syndrome where there is a plethora of defini

tions for aquifers and safe yields which complicate the communication and representation of these

hydrologic concepts. Likewise, the definition of sustainable yield has many different meanings tomany different people both familiar and unfamiliar to ground-water hydrology. Therefore, it isimportant to understand that the results from the six (6) predictive runs do not define a single sole

“number” for the sustainable yield for Lana’i. Instead, the numerical model will only attempt to

predict Lanai’s regional or aquifer ground-water-level response to particular stress scenarios.

Another important issue must be clarified before interpreting predictive results. It is

important to understand that regional or aquifer responses predicted by the model do not predict

localized or discrete water-levels over areas smaller than a single cell grid. In other words,

water-levels predicted by the model represent the average water-level found within an entire cell

grid which covers a 2000’ by 2000’ area. For local or site changes in ground-water-levels (more

discrete locations within grid cells, such as pumping wells), it can only be said that such changes

are only as accurate as the regional water-level prediction for the particular grid cell in which they

reside. The numerical model is predicting the average regional water-level at each cell node

which represents a 2000 ft. by 2000 ft. area and not a typical 12 to 18-inch diameter well. One

would have to increase the discretization of the model grid, i.e. increase the number cells by

reducing cell sizes to the diameter of a typical well (around 2’ x 2’) to have the numerical model

address such a localized question. Not only would such a change dramatically increase the

amount of work and time in constructing a new model grid and boundaries but heterogeneities

and anisotropies would play a more significant role at smaller scales and increase the difficulty in

calibration, If and once this is achieved then an additional difficulty would need to be addressed.

Localized ground-water-level changes in pumping cells are further complicated by well efficien

cies and the effect aquifer dewatering has on calculating such efficiencies (Driscoll, 1986). Such

analysis estimates the increase in actual well drawdown beyond theoretical aquifer or regional

drawdowns due to well inefficiency. MODFLOW does not account for such well efficiencies or

aquifer dewatering effects and assumes that wells are 100% efficient Therefore, one would have

to additionally estimate well efficiencies which depend on many factors, some of which have been

described earlier in this report. Efficiencies of 70% to 80% are usually obtainable if a well is

properly designed, constructed, and developed (Driscoll, 1986) but may be as poor as 50%, where

actual pumping well drawdowns would double. Well efficiencies can also change with time.

Observation well data away from the turbulent effects of a well are necessary. In all, estimating

localized pumping well water-levels requires another level of analysis which is beyond the scope

of this report and would also necessitate redefining the grid used for this regional model.

The results of the six (6) scenarios according to Table 23, pg. 96, are summarized graphi

cally in Figures 40 through 53 on the following pages. One general statement which can be made

is that, except for Scenario 1, in all scenarios the Maunalei tunnel sources will eventually dry up

at steady-state conditions. Other statements are now broken down by scenario.

97

Page 106: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Scenario 1: ‘42-’94 Average Pumpage

This scenario, steady-state ground-water-levels response to the long-term average pump-

age has actually already been covered in the determination of the “best-fit” calibration (see Figure

38, pg. 89). In the plan view, there does not appear to be much difference between the “best-fit”

water-level contours (Figure 33, pg. 72) with the water-level contour map for this scenario, Figure

40, pg. 99, except that the areal extent of some higher-level contours are a bit smaller. Drawdown

contours shown in Figure 41, pg. 100, show that the regional water-levels should decrease

between 50 to 250 ft. with the greatest drawdown near ShaftS/Well 2 and Well 4. The Lower

Maunalei Tunnel should have a steady-state flow around 183,000 gpd while the Upper Maunalei

Tunnel should dry up if the long-term average pumpage is continued or exceeded and long-term

recharge is unchanged. Observed static water-levels and recently reported tunnel flows are

regionally consistent with this prediction with the understanding that steady-state has not yet been

achieved.

Maximum steady-state regional drawdown predicted by the model is 264 feet. Wells 4 &

5 in recent times have approached this drawdown on particular months and have actually

exceeded it during pumping (see Figures 17& 20). Otherwise, no reported static or pumping

drawdown has exceeded this value.

The predicted range of time necessary to reach steady-state is on the order of several

decades to several centuries. Figure 42, pg. 101, compares observed water-levels with simulated

water-levels taken out 1000 years from 1942. This transient figure for other wells is found in

Appendix 0. Like the other transient runs done during calibration on only the past 50 years,

found in Appendix F, there does not appear to be one universal storage coefficient value for all

wells. From Figure 42, it can be seen that through various storage coefficients the time needed to

reach steady-state is on the order of several decades to several centuries. The transient fit for this

source was a storage coefficient of 0.4 which would place this source’s steady-state on the order

of centuries.

Comparing model predicted regional drawdowns with observed static drawdowns in wells

it can be generally said that the range of actual aquifer drawdowns due to long-term pumping is

somewhere between 20% to 95% of steady-state drawdowns. This statement is independent of

the time necessary to reach steady-state conditions but is only a comparison of steady-state draw-

downs predicted. This statement does not apply to Wells 6 & 9 which are relatively new and have

very little data compared to other older sources on the island and Well 1 whose recent pumpage is

much greater than the historical long-term pumpage averaged over 52 years.

98

Page 107: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

SU)xCu

>-

MODFLcYiEV INPUT DATA MODFLC)W O{JPLff ThROUGH SURFER GRAPHICS

Storage Coeffcient. = 0 (i.e. non-transient)GhbalKh =l000ftIdCaldecakh=lOOftIdRiver conductance 1(1w/rnwith Pw=4,000,000 sq.ft,m=100 ft,@z=0 ft. melwtiere South K=1000 ft/day = 400,000,000 sq.ftidaywtiere North K= 0.1 ft/day = 40,000 sq.ftlday

Hcwizontal flow boundaries = 895Ho4izontal flaw boundaiy conductance 1</w = 0.0000501/day

Bottom elevation = -400 ft.Asea of recharge = 140.83 sq. ni.Riiarge = 61.60 mgdPun-çing = 1.790 mgdFlaw from Lower Maunalei Tunnel = 0.183 rngdFlow from Upper Maunalel Tunnel = 0.000 mgd

Mwdrrum water level = 1803 ft. atxNe mean sea level.(contour truncatJ at 1800 ft. above rr&)

- V11 bations with o4iginai water leiels.

- Nurrexical coastline of Lanai

CLOSURE CRITERIA.

Maxirrum water level change <0.001terJance < 1%(Actuai = -0.05%)

99

Simulated Regional Steady-State Ground Water Level Contours for Lanai

Best-Fit Califration with Existing Vlls Pumped to ‘42-’94 Ave mgd

90,000-

8000-

70,000-

60,000-

50,000-

40,000-

30,000-

20,000-

10,000—

io,boo 20,boo ao,boo 4o,boo a,bOO 6o,booX- axis (ft.)

70,boo

Figure 40. Scenario 1 Predictive Regional Ground-Water Level Contours

Page 108: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

SU)

>-

MOOFLOW INPUT DATA

Storage Coeffcient. = 0 (i.e. non-fransient)Global lQ =10001WCalderaKh=lOOftIdRiver conductance KiwIrn

wiU-i Iw=4,000,000 sq.ft,rn=100 ft,@ z=0 ft nsiwhere South K=1000 ftlday = 400,000,000 sq.lt/daywhere North K 0.1 ftlday = 40,000 sq.ft(day

Horizontal flow boundaries = 895Horizontal flcm boundary conductance 1(1w = 0.0000501/day

Bottom elevation = -400 ft.Area of recharge = 140.83 sq. ni.Recharge = 61.60 ndPurrçlng = 1.790 mgdFlow from Lower Maunalel Tunnel = 0.183 rrgdFlow from Upper Maurialei Tunnel = 0.000 rnd

MOOFLOW OUPUT ThROUGH SURFER GRAPHICS

Ma,dniumdraciown=264ft(contour trunted at 200 ft)

- lI Iccations with original water levels.

[]- Nurrerical coastJine of Lanai

CLOSURE CRITERL4

Marnim water level thange <0.001Water balance <1% (Pdual = -0.05%)

li

Simulated Regional Steady-State Drawdown Contours for Lanai

Best-Fit Callbration Mth Existing Wells Purnpod to ‘42-’94 Ave mgd

90,000—

80000—

70,000-

60,000-

50,000-

4000-

30,000-

20,000-

10,000-

10,b00 20,bOO 30,000 40,b00 50,bOO 60,bOO 7OjO

X- axis (ft.)

too

Figure 41. Scenario 1 Predictive Regional Drawdown Contours

Page 109: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

C

800

750

0 2 £1)

> 0 .0 Cu 70o

C ‘I 1) 0) a-. (U

650

600 1:

SHA

FT2

(Sta

teN

o.51

54M

1)O

bser

ved

vs.

Sim

ulat

edT

rans

ient

W.L

.

Bes

t-F

itC

alib

rati

onP

umpe

dat

‘42

-92

Ave

rage

Pum

page

I I,’

Obs

erve

dw

ater

leve

ls

IS

=S

tora

geC

oeff

icie

nt

S=O

.4

year

Fig

ure

42.

Ob

serv

edvs

.S

imul

ated

Tra

nsie

ntW

ater

Lev

els

for

Sha

ft2

Page 110: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Scenario 2: Total Fog Drip (FD) Removal

This scenario attempts to filter the impact FD has on ground-water-levels on Lana’i. To

obtain the maximum domain, or envelope, of PD impacts, all PD contribution to recharge is

removed. This is truly a worst case situation as some PD will occur even on bare soil and rocks.

If PD is completely removed from the “best-fit” calibrated model, regional water-levels

around existing high-level wells are predicted to drop between 100 to 700 ft. (see Figure 44, pg.

104) and impact a much broader area (see Figure 43, pg. 103) than impacted by the existing long-

term pumpage. This greater impact is expected since PD is estimated at about 8.9 mgd whereas

long-term pumpage is around 1.8 mgd. The major impacts are confined within the center most

portion of the high-level aquifer (see Figure 50, pg. 112) while the outer fringes of the high-level

aquifer are not as affected. This is expected since this is the area above the 20001 elevation where

rainfall precipitation is augmented.

Transient analysis of this scenario, as shown in Figure 45, pg. 105, assumes S = 0.1 and

indicates that it would take between 400 to 600 years to achieve complete steady-state. However,

much of the changes should be seen in the first 100 years of such a &astic change. These two

observations indicate that if a significant amount of PD were reduced in the past 50 years then

some of the drawdown seen in the wells may be due to a reduction in PD, but it will also take a

long time before the full effects of such a reduction are complete.

The insight provided by this predictive run shows that PD, or some other form of precipi

tation which augments rainfall, is an important contributor to the ground-water supply on Lana’i.

This should not be surprising given the sensitivity of the calibrated model to recharge. Water lev

els can therefore be greatly affected by this one recharge component alone. In fact, Bowles

(1974) had attributed some of the decline in ground-water-levels due to the reduction of forest

cover on the island which would have an effect on PD although other factors such as changes in

runoff may be involved. Since PD is dependant on forest cover this scenario makes a particularly

strong case for protecting forest cover, particularly in the regions above the 2000’ elevation con

tour where PD is more prevalent.

What is most interesting about this particular scenario is that it can be viewed as a poten

tial optimized well configuration scenario. Assuming long-term recharge, including PD, contin

ues, then placing wells at every cell node (i.e. every 2000 ft.) in the region above the 2000’

elevation and pumping at a rate which matches the effect of PD removal at that cell node would

result in the same aquifer response as removing PD only. Thus, such an optimized well configu

ration could pump 8.9 mgd with similar regional effects as shown in Figures 43 to 45. This does

not mean to say that such a well configuration, which itself is questionable considering econom

ics, power, and other physical constraints, would result in fully operational pumpage scheme

since localized water-levels depend on other criteria such as well efficiencies or water quality.

However, the model suggests that from the aquifer’s point of view such an optimized scheme is

possible.

102

Page 111: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

SCo

>-

MOOFLOW INPUT DATA

Storage Coeffcient = 0 (i.e. non-transiont)GIobaIKh =l000ftfdCaldecakh=lOOft/dRiver condudance 1<1w/rn

with Iw=4,000000 sqft,m=100ft.,z0ft mslwhere South K=1000 ft/day = 400,000,000 sq.ft./daywhere North K= 0.1 ft/day = 40,000 sq.ft/day

Horizontal flow boundaries = 895Horizontal flaw boundary conductance Kfw = 0.0000501/day

Bottom elevation = -400 ftArea of rethage = 140.83 sq. rn.Recharge = 53.10 nd

1?2taunai& Tunnel = 0.000 n-gdFlow from Upper Maunalel Tunnel = 0.000 mgd

MODELOW OUPUT ThROUGH SURFER GRAPHICS

Maxirrtim water level = 1230ff. above mean sea level.(contour tnincated at 1200 ft above risi)

e - \AklI locations with original water levels.

[]- Numerical coastline of Lanai

CLOSURE CRITERIA

Maxirraim water level change <0.001Vterbalance< 1%(Mtual=-0.05%) 103

I I

Simulated Regional Steady-State Ground Water Level Contours for LanaiBest-Fit Calibration iNnus Fog-Drip Only

70,000-

60,000-

50,000-

40000-

30,000-

20,000-

10,000—

io,boo 20,bOO 3CthOO 40,000 so,boo 60,bOO 70,bOO

X- axis (ft.)

Figure 43. Scenario 2 Predictive Regional Ground-Water Level Contours

Page 112: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

S0xCt

>-

MODFLOW INPUT DATA

Storage Coeffcient. = 0 (i.e. non-transient)Gobalkh =l000ftIdCalderaKh=100ft!dRiver conductance KJw!m

with 1W4,000I000 sq.ft,m=100 ft,@ z=0 ft. ntlwfiere South K=1000 fl/day = 400,000,000 sq.ft/daywtiere North K= 0.1 ftlday = 40000 sq.ftJday

Horizontal flow boundaries = 895Horizontal flow boundary condudance KM = 0.00005OlIday

Bottom elevation = -400 ftAsea of recharge = 140.83 sq. rn.Recharge = 53.10 rrgdPumping =0 ndFlow from Lower Maunalel Tunnel = 0.000 rrgdFlow from Upper Maunaiei Tunnel = 0.000 nijd

MOOFLOW OUPUT ThROUGH SURFER GRAPHICS

nmdatowiv679ft(contour truncated at 600 ft)

a - V1I locations with original water levels.

Q - Nurrerical coastline of Lana

I I

Simulated Regional Steady-State Drawdown Contours for Lanai

Best-Fit Minus Fog-Drip Only

90000-

80,000-

70,000-

60,000-

50,000-

40,000-

30,000-

20,000-

10,000-

io,boo 20,00 3o,boo 4o,boo 50,bOO 60,bOO 70,b00

X- axis (It)

CLOSURE CRITERIA

Matum water level change <0.001Water balance <1% (Actual = -0.05%) 104

Figure 44. Scenario 2 Predictive Regional Drawdown Contours

Page 113: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Transient Effects of Fog-Drip Removal1800

Beginning cabrated water leve4s with fog-drip and no pompaga.

1600-

800 wu s

600z

________

400 -j1942 2000 2100 2200 2300 2400 2500 2600 2700 2800 26.42

year

Figure 45. Scenario 2 Transient Time Response to Fog-Drip Removal

105

Page 114: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Scenario 3: 6 mgd Pumping From Selected Existing Wells

This predictive scenario has its origin in the current CWRM estimate for sustainable yield

for the Lana’i. Pumpages for this scenario are defined in Table 23, pg. 96. A plethora of 6 mgd

scenarios are possible as one could distribute such pumpage in an infinite number of ways. For

purposes of this report, the additional pumpage necessary to bring 1994 well pumpages up to a

total island pumpage of 6 mgd was distributed equally as possible amongst such pumping

sources.

On the regional scale, pumping selected existing wells to 6 mgd results in regional draw-

downs between 50 to 950 feet over a larger area than the long-term pumpage effects but a smaller

area than what the model predicts for Scenario 2; total FD removal. Figures 46 & 47 show this

clearly when one compares these with the corresponding Scenario 2 figures. This is expected

since drawdowns due to 6 mgd pumping through a limited number of wells, rather than spreading

a greater flux removal, total FD, over a larger area, should be more concentrated.

In broad areas around the existing wells regional water-levels would decrease on the order

to 300 to 500 feet with the maximum drawdowns occurring at Shaft 2. In fact the model predicts

that aquifer water-levels at Shaft 2 would go below sea level which would probably render this

source unusable. This was the same well problem encountered before GIS recharge was incorpo

rated into the model. The historical behavior of this source does not indicate such a drastic event

would result and probably indicates that there are some unresolved local effects associated with

this source. Additionally, the lower Maunalei Tunnel would cease to flow.

Although regional water-levels remain high at steady-state for this scenario it does not

mean the 6 mgd can be achieved under the current well configuration. Again, localized effects

will increase drawdowns at the specific well sites and would necessitate the deepening of all exist

ing wells which do not reach sea level. Even such a modification may not be enough to develop 6

mgd from the aquifer and additional wells would probably be required.

106

Page 115: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

S0>cCt

>-

MODFLOW INPUT DATA

Storage Coeftient = 0 (i.e. non-transient)Global Kb =l000ft/dCaldera Kb = 100 ftldRiver conductance K)wlmwith lw=4,000,000 sq.ft,n10O ft.,@z=0 ft rrislwhere South K=1000 ft/day = 400,000,000 sq.ft/daywhere North K= 0.1 ft!day = 40,000 sq.ftlday

Horizontal flow boundaries = 895Horizontal flow boundary conductance KM = 0.0000501/day

Bottom elevation = -400 ft.Area of recharge = 140.83 sq. n-iRecharge = 61.60 ndPurrping6mgdFlow from Lower Maunalel Tunnel = 0.000 mgdFlow from Upper Maunalei Tunnel = 0.000 mgd

MODFWNOUPUT ThROUGH SURFER GRAPHICS

Ma)draim water level = 1689 ft above rican sea leveL(contour truncated at 1600 ft. above rrsl)

- VD locations with original water leve&

C -NurrericalcoastiineLanai

CLOSURE CRiTERIA

Madrnim water level change <0.001ter balance < 1% (Mtual = -0.05%)

107

Simulated Regional Steady-State Ground Water Level Contours for LanaiBest-Fit Calibration with Existing Wells Punwed to 6 mgd

90,000-

80,000-

70,000-

60,000-

50,000-

40,000-

30,000-

20,000-

10,000-

1o,005dä 3b00 40,b00 50,000 60,bOO 70,500

X- axis (ft.)

Figure 46. Scenario 3 Predictive Regional Ground-Water Level Contours

Page 116: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Simulated Regional Steady-State Drawdown Contours for Lanai

gU,

>-

Best-Fit Calibration with Existing Wells Pumped to 6 mgd

MOOFLOW INPUT DATA

Storage Coeffcient. = 0 (i.e. non-transient)Global Kb =l000ftIdCaldecalQi=100ft/dRNer conductance 1(1w/rnwith 1w4,000,000 sq.ft,rrFlOO tt,@z=0 ft. n-islwhere South K=1 000 ftfday = 400,000,000 sq.ftJdaywhere Noith K= 0.1 ft!day = 40,000 sq.ftiday

Horizontal flow boundaries = 895Horizontal flaw boundary conductance 1(1w = O.0000SOlIday

Bottom elevation = -400 ft.Area of recharge= 140.83 sq. rid.Recharge = 61.60 ndPuning=6ndFlow from Laker Maunalei Tunnel = 0.000 mgdFlow from tipper Maunalci Tunnel = 0.000 rrigd

MOOFIDW OUPLW ThROUGH SURFER GRAPHICS

Mwdmum&awdown=942ft(contour truncated at 450 ft)

e - ‘tkfl locations with original water levels.

[]- Nuriwical coastline of Lanai

CLOSURE CRITERIA

Maxirrum water level change < 0.001Water balance < 1% (Actual = -0.05%) 108

90,000-

80,000-

70,000-

60,000-

50,000-

40,000-

30,000—

20,000-

10,000-

io,b00 20,500 30,bOO 40,500 so,boo eo,Soo 70500

X - axis (ft.)

Figure 47. Scenario 3 Predictive Regional Orawdown Contours

Page 117: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Scenario 4; Combined FD Removal & 6 mgd Pumping Scenarios

Scenario 4 is the combination of scenarios 2 & 3. Figure 48, pg. 110, shows that regional

water-levels are greatly affected throughout the high-level area with high drawdowns located

around several existing wells. Figure 49, pg. lii, shows the spatial distribution of drawdowns

with maximum regional drawdowns in excess of 1300 ft. Regional water-levels would reduce the

utility of many wells as they reach or go below sea level. This is not unexpected since the total

stress delivered to the aquifer is equivalent to a 14 mgd pumping scenario which is over twice the

next nearest sustainable yield estimate ever made for the island. However, even at this elevated

pumpage scenario the model predicts regional water-levels would remain near 1000 ft above sea

level but on the windward side of the island only.

One technical problem with this scenario is that many cells in the model actually dry up

which induce error into the results. In the particular version of MODFLOW used, once cells dry

up during an iteration solution they become inactive. This, in turn, reduces transmissivities in the

model which may cause error in other parts of the grid. There is a module which allows MOD-

FLOW to re-wet a cell which has dried up during an iteration but experience with this modular

package resulted in a decision to leave this particular feature out of the model. Another way to

address this problem is to reduce the time-step size to avoid large numerical oscillations as the

model attempts to reach a solution. This was approach was not fully investigated but assuming

cells which do go dry should is conservative. Despite the is drawback, the model shows that the

combination of total FD removal combined with a 6 mgd pumping scenario results in a drastic

reduction of regional water-levels on the leeward side of the island.

For a different perspective, Figure 50, pg. 112, was produced to compare water resulting

water-level responses between scenarios 2-4. Using the same A-A’ profile shown earlier in Figure

36, pg. 86, profiles were constructed along this base profile line to compare scenarios 2-4. As can

be seen in Figure 50, greatest changes occur near the center of the island where the majority of

recharge is concentrated. As one moves away from the center of the island water-level responses

become more attenuated, especially when one moves outside the high-level area and into the

basal portions of the island’s ground-water system.

109

Page 118: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

SU,xCu

>-

MODFWN INPUt DATA

Storage Coeffcient. = 0 (i.e. non-transient)Global Kb =l000ft/dCalderaKblOOftIdRiver conductance KJw/mwith 1w4,000,000 sq.ft,m=100 ,© z=O ft ns1where South K=1000 ft/day = 400,000,000 sq.ftJdaywhere North K= 0.1 ft/day = 40,000 sq.ftlday

Horizontal flow boundaries = 895Horizontal flew boundary conductance KM = 0.0000501/day

Bottom elevation = -400 ftArea of recharge = 140.83 sq. iii.Recharge = 53.1 mgdPurrping = 6 rrgd (4.2 - sone wells go dry)Flow from Lower Maunalel Tunnel = 0.000 mgdFlow from Upper Maunalel Tunnel = 0,000 mgd

MOOFLCW OUPUT ThROUGH SURFER GRAPHICS

Ma,dniim water level = 1096 ft above nan sea level.(contour truncated at 1000 ft. above msl)

e - Il lations with original water levels.

- Numerical coastline of Lanai

CLOSURE CRITERIA

Mairrtim water level change < 0.001ter balance <1% (Mtual = EJ5%) 110

I I I

Simulated Regional Steady-State Ground Water Level Contours for LanaiEidsting Vlls Pumped to 6 mgd & Fog Drip Removed

90,000-

80,000-

70,000-

60,000-

50,000-

40,000-

30,000-

20,000-

10,000-

io,boo 20,boo 30,boo 4000 sobooqboo 7o,àoo

X- axis (ft.)

Figure 48. Scenario 4 Predicted Regional Ground-Water-Level Contours

Page 119: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Simulated Regional Steady-State Dravi&Iown Contours for Lanai

gU)

>-

Existing Wells Pumped to 6 mgd & Fog Drip Removed

MODFLOW INPUT DATA

Storage Coeffcient = 0 (i.e. non-transient)GlobaflQ l000ft/dCalderakh=lOOftIdRiver conductance Klw!m

with lw=4,000,000 sq.ft,m=l00 ft.,@z=0 ft rnslwbere South 1@1000 ft/day = 400000000 sq.ftidaywhere North K= 0.1 ftfday = 40,000 sq.ftlday

Hoqizontal flow boundaries = 895Horizontal flaw boundary conductance 1(1w = 0.000050l!day

Bottom elevation = -400 ftArea of recharge= 140.83 sq. atRecharge = 53.1 mgdPurrping = 6 mgd (4.2 as sons wells go dry)Flow from Lower Maunalel Tunnel = 0.000 rrigdFlow from Upper Maunalei Tunnel = 0.000 rrqd

MOOFL OUPUT ThROUGH SURFER GRAPHICS

Maxirr.jm drawtown =1309 ft. abe mean sea level.(contour truncated at 700 ft)

- MI bDations with original water levels.

D - Nunerical coastline of Lanai

CLOSURE CRITERIk

Maxintrn water level change < OMO1Water balance <1% (Aduai = -0.05%) 111

—i

90,000-

80,000-

70,000-

60,000-

50,000-

40,000-

30,000-

20,000-

10,000--

io,boo 20,500 30,1)00 40,500 so,boo 60,1)00 70,1)00

X - axis (It)

Figure 49. Scenario 4 Predictive Regional Drawdown Contours

Page 120: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Ste

ady-S

tate

Wat

erL

evel

Pro

file

s2,

200

2,00

0T

tEff

ects

ofr

emo

vin

g6

mg

dan

dfo

gd

rise

para

tely

and

com

bine

dfr

ombe

st-f

itM

axW

ater

Lev

el

1,80

0jc

aflb

rati

onw

ithf

ogdr

ip.

—“a

1,6

00-

l14

°I

vV

f‘

Upper

Tunnel

floore

l.1500ft

.Sh

aftZ

dWel

l2L

ain

nIv

,

oI,

4vv-

Ia—

-

I.0

1S

I,

200

Cd

.2j

‘,

Low

erT

unnel

floore

t—1103ft

—I

—i

CCu

1,00

0-

-I-/F

-I

—I,.-.

*0

—IT

,K

a,8

00

/---

J-C

i-

/Well

iI

?-

x‘

Sh

aft2

600

H/-p

’,L

’±

-1/t—

————

i1

1’40

0-

--

K,

200

10S

haft

I

0-

——

___L

_I

II

—-

------—

020

,000

40,0

0060

,000

80,0

0010

0,00

012

0,00

0di

stan

ceal

ong

A-

Ain

ft.

Cal

ibra

ted

w/fo

g--.

-P

umpa

geon

lyo

Fog

only

--

-P

umpa

ge&

Fog

v13

/94

wat

erle

vels

-a -a

Fig

ure

50.

Scen

ario

s2,

3,&

4Pr

edic

tive

Prof

ileA

-A’

ofG

roun

d-W

ater

Lev

els

(see

Figu

re3

6,

pg.

86)

Page 121: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Scenario 5: Palawai CaMera Pumpage Impacts

This scenario is based on the concern over the impact of pumping wells 1 & 9 (and thesoon to be completed Well 14). Chlorides in Well I have decreased with increasing pumpagewhich indicates that fresher water is being supplied to the well and raises concern over the impacton upgradient sources.

Figure 51, pg. 114, shows the steady-state drawdown contours associated with pumpingjust wells 1 & 9 to assess their impact on the aquifer. To filter out effects of other well pumpageall other wells are turned off for this scenario. As can be seen, in the caldera region a total pump-age of 0.650 mgd would have a regional drawdown of about 50 ft. with a maximum drawdown ofabout 80 ft. Other wells upgradient would see steady-state regional drawdowns of about 10 to 30ft. due to the caldera pumpage. Given the general sensitivity of the high-level wells to localpumpage and climactic events, it would be reasonable to “miss” or not see the effects of thecaldera pumpage due to the normal variation in water-levels. In other words, the relative effect ofcaldera pumpage is such that pumpage and the climate would have to be very steady over a reasonable long period to measure the effects of caldera pumpage in upgradient sources. Also, sensitivity analysis (see Figure 39, pg. 95) has shown that the model is insensitive to calderapermeability, probably due to the small region it covers compared to the entire island. Generallyspeaking, the model predicts that the effects of caldera pumpage on upgradient well regionalwater-level are relatively small.

113

Page 122: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

90,000-

80000-

70,000-

60,000-

50,000-

40,000-

30,000-

20,000-

Caldera Pumpage Effects Only

X- axis (ft.)

70,bOO

MOOFLOW INPUT DATA

Storage Coeffcient =0 (i.e. non-trans4ent)Gobalt =l000ftfdCalderakQi=lOOWdRiver conductance KJw!m

with lw=4,000,000 sq.ft,rwlOO ft,@z—0 ft mslwhere South K=l000 ftlday = 400000,000 sq.ft.Idaywhere North K= 0.1 ft/day = 40,000 sq.ftJday

Horizontal flow boundaries = 895Horizontal flaw boundary conductance K1w 0.0000SOlIday

Bottom elevation = -400 ft.Area of recharge = 140.83 sq. rn.Recharge = 61.60 mgdPunping = 0.650 nd (caldera only)Flow from Lower Maunalel Tunnel = 0.256 ndflaw from Upper Maunalel Tunnel = 0.036 nd

MODFLOW OUPIJT ThROkJGH SURFER GRAPHICS

Maxinm dradown =82 ft(contour truncated at 80 ft)

e -l locations with original water levels.

- Nurredc coastline of Lanel

CLOSURE CRiTERIA

Ma’dni.im water level change < 0.001ter balance < 1% (Actual = -0.05%)

114

SCo

>-

10,000-

io,boo 20,bOO 30,boo 4o,boo sow 6o,boo

Figure 51. Scenario 5 Predictive Regional Drawdown Contours

Page 123: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Scenario 6: A Potential Plan of Future Pumpage

The pumpage distribution for this scenario has been supplied by LCo. which should provide a more realistic pumping scenario for the future. The pumpage scenario is only one possibledistribution of average pumping at each existing source with the addition of the new Well 14(State well no. 4854-02) which is under construction and will be intergrated with wells 1 & 9.

Results of this predictive run are shown graphically in Figures 52 & 53 on the followingpages.

As expected, the resulting regional water-levels fall between the extremes of long4ermpumping and scenarios 2, 3, and 4. Given the existing infrastructure some wells may or may notneed to be deepened depending on the actual well losses incurred at higher pumpage rates. Noexisting well in this scenario is predicted to have its water-level decline to sea level.

115

Page 124: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

imuiatea rcegionai aeaay-nate twounu vvawr avei i.untours iou t.anai

Sto

>-

MOOFLOW INPUT DATA

Storage Coeffcient. = 0 (i.e. non-transient)GiobalKh =l000ftIdCalderaXh= lOOft!dRiver conductance 1(1w/rnwith Iw=4,000,000 sq.ft.,m=100 ft., z0 ft melwhere South I@1000 ft/day = 400,000,000 sqtldaywhere North K= 0.1 ft/day = 40,000 sql/day

Horizontal flow boundaries = 895Horizontal flow boundary conductance 1(/w = 0.0000501/day

Bottom elevation = -400 ft.Area of moharge = 140.83 sq. rn.Recharge = 61.60 rrigdPumping = 3.520 mgdFlow from Loner Maunalel Tunnel = 0.103 mgdl9ow from Upper Maunalel Tunnel = 0.000 mgd

MOOFLOW OUPUT ThROUGH SURFER GRAPHICS

Maxirnim water level = 1761 ft. above mean sea level.(contour truncated at 1700 ft above nsl)

-l locations with o4iginal water levels.

Q Numerical coastline of Lanai

CLOSURE CRITERIA

Madrnirn water level change <0.001terbalance< 1%(Pctual=-0.05%)

116

Existing Wells Punwed to 3.520 mgd

90,000-

80,000-

70,000-

60,000-

50,000-

40,000-

30,000-

20,000—

10,000-

io,boo 20,bOO so,boo 40,bOO 50,b00 60,000 70,bOO

X- axis (ft.)

Figure 52. Scenario 6 Predictive Regional Ground-Water Level Contours

Page 125: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

CoxCt

>-

MOO FLOW INPUT [1ALTA MOOFLCYN OUPIJT ThROUGH SURFER GRAPHICS

e - lI locations with original water levels.

[] - Nuneical Coastline of Lanai

CLOSURE CRITERIA

Pydnijm water level chan9e < 0.001Water balance <1% (Pduai = -0.05%)

Simulated Regional Steady-State Drawiown Contours for LanaiBestFrt Calibration with Existing lIs Pumped at 3.520 mgd

90,000-

80,000-

70,000-

60,000-

50,000-

40,000-

30,000-

20,000-

10,000-

boo 20boo 3äO eboo 50,boo 6o,boo 7o,booX - axis (ft.)

Maxintm drawdown =360 ft horn long tem steady-state.(contour truncatwi at 350 ft.)

Storage Coeffcient = 0 (i.e. non-transient)Global Kb =l000ft/dCaiderakh=lOOft/dRiver conductance Klw/mwith 1w4,000,000 sq.ft,n100 ftj=0 ft. mslwhere South K=1 000 ft/day = 400,000,000 sq.ft.idaywhere No4111 K= 0.1 ft/day = 40,000 sq.ftiday

Horizontal flow boundaries = 8951-brizontal flaw boundary nductance KM = 0.0000501/day

Bottom elevation = -400 ft.Area of recharge = 140.83 sq. ni.Redarge = 61.60 mgdPurqing = 3.520 rrgd (Lanai Co.)Flow in Loer Maunal& Tunnel = 0.103 ndFlow in Upper Maunalei Tunnel = 0.000 mgd

117

Figure 53. Scenario 6 Predictive Regional Drawdown Contours

Page 126: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Summary of Predictive Scenario Results

Table 24 below summarizes the steady-state results for individual wells for the variouspredictive runs rather than the island profiles shown earlier. The reader is reminded that the best-

fit aquifer parameters found in Tabie 16, pg. 81 are the base upon which the various stress scenarios are imposed. It is important to realize that the water-levels predicted are regional and are morerelevant to the aquifer water-level response rather than the actual pumping water-level response in

each well for reasons explained earlier. Also, the reader is reminded that transient analyses has

shown that there are definitely heterogeneities at the local well scale (see Table 22, pg. 93) whichalso add to the uncertainty water-levels in actual well sites.

Table 24. Summary of Predictive Ground-Water System Responses

a. As dOctober 1994b. As of November 1993c. million galions per dayd. As of )anualy 1991

Shaft 2 681 627 527 -204 < -400 735

Steady-State Water-Level Elevation above mean sea level in ft

ScenadoFllghGst .

..Observed: .> . :4. 5*

. PeHod1 I:.:

2 3 Smgd&n6 Palawal 6Source . 1994 . 42.?M Ave. NoFoq-Ddp FuInp6mgd Fl, . aiaonrr.

Well 1 a729 765 675 449 275 768 662

Well2fShatt3 1426 1259 1050 953 315 1502 1254

We113 1024 974 861 412 <-400 1127 796

We1l4 1503 1390 1096 957 26 1606 1326

Wells ‘15l9 1604 1143 1345 608 1709 1492

Well 6 1026 915 764 190 < -400 983 631

Well 9 721 762 672 447 275 764 658

I SteadywState Tunnel Gray ty Flow In mgd°I P

LowefTunnel 0.005 0.183 0.000 0.000 0.000 0.000 0.103

Upper Tunnel d0000 0.000 0.000 0.000 0.000 0.000 0.000

412

118

Page 127: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

A summary of the results for each scenario which considers transient results of each pre

dictive run is as follows:

1. Water level changes from long-term pumpage are between 20% to 95% complete interms of present water-level changes compared to steady-state water-level changes

predicted by the model. However, the Upper Maunalei Tunnel is predicted to cease

flowing at the continued long-term pumping rate. Although no one regionally homo

geneous storage coefficient can used, it appears that water-level changes due to long-

term historical pumpage of 1.790 mgd should be complete on the order of centuries.

2. Total removal of fog-drip would have a more impact on water-levels in the high-level

aquifer area than the overall long-term pumpage. Fog-drip, or whatever phenomena

accounts for precipitation above observed rainfall, has a major role and impact on

observed water-levels. Assuming a storage coefficient of 0.1, the middle value of bestmatches from transient analysis on all wells with sufficient data, a total fog-drip

removal event would take between 400 to 600 years to fully impact water-levels with

changes between 100 to 700 ft. depending on location of existing well. Both Maunalei

tunnels would cease to flow.

3. Pumping 6 mgd from existing sources will create greater regional drawdowns in some

areas than if fog-drip alone stopped altogether. However, pumpage patterns would

have to be modified as under this scenario’s distribution Shaft 2 may lose its present

utility. Still, it may be possible to develop 6 mgd from the aquifer without harming the

resource although not without major modifications to existing wells, additional well

development, and carefully managed pumping distributions and schedules. Both

Maunalei Tunnels would cease flowing at this island pumpage rate.

4. Pumping 6 mgd from existing sources nil losing all fog-drip would result in several

existing wells losing their potential utility and both tunnels would cease flowing.

5. Pumping caldera wells land 9an average of 0.325 mgd each for a total of 650,00 gpdwould have relatively small impacts on upgradient wells and such impacts would be

difficult to differentiate from natural water-level changes.

6. Pumping 3.520 mgd from existing wells does not harm the aquifer. However, some

changes in the existing well infrastructure may still be necessary as some of the wells

specified for future pumping have no track record of water-level response to such

stresses. The lower Maunalei Tunnel should continue to flow with an average flow of

0.103 mgd. However, the model predicts that the Upper Maunalei Tunnel would cease

flowing at this island pumpage rate.

119

Page 128: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Prediction Sensitivity Analysis

No predictive sensitivity analysis was performed outright due to time constraints. Instead,

it is anticipated and most probable that the model will have the same sensitivity to the horizontalflow boundaries and recharge as found in earlier sensitivity analyses. However, it is evident that

the distribution of pumpage is an important factor in resulting ground-water-level responsesaccording to the numerical model.

Model Limitations

The limitations of the model are based upon the assumptions and uncertainties associated

with the construction and calibration of the model. These assumptions and uncertainties do notinvalidate the model but do provide important caveats which should be kept in mind when inter

preting the results of the model. A synopsis for the assumptions and uncertainties which weredescribed in the body of this report are listed as follows:

SUMMARY OF ASSUMPTIONS AND UNCERTAINTIES

1. The Lana’i ground-water model is classified as an identification or “inverse” type problem.

Inverse type problems are where stresses, like pumpage, and the resulting responses, or

resulting water-levels, are known, but the aquifer system is unknown. Unfortunately,

inverse type problems do not have unique solutions, and especially when the model is a

“simplified” or “effective average” version of the real world. Additionally, the “inverse”

problem must be solved before a prediction problem can be solved (Bear,& others, 1992).

2. Sources of error can originate in the conceptual model, the numerical analysis, and the

input data. Errors in these three general areas are cumulative. Additionally, it is hard to

differentiate errors between the three once they are integrated.

3. Conceptual errors could arise if significant perched conditions exist on Lana’i since the

model does not consider this possibility. Additionally, the model does not consider that

differences in the ground-water fluid from the geothermal activity in the Palawai Basin.

4. Numerical errors arise mainly from the interpolation of nodal values which for Lanai’s case

are water-levels and thus depend on nodal spacing. Ideally, actual data values should

coincide with nodal location. In this model cell areas cover one-seventh of a square mile

and wells are not exactly located at the node of the cell. This type of interpolation error can

be as much as 10 ft. or more (Anderson & others, 1992).

5. Another source of error is the GIS recharge calculation based on geographic information.

There are over ten (10) sources of error associated with the accurate projection of any map.

However, since the island of Lana’i is relatively small this cartographic error is assumed to

be small. Also, the 018 is an improvement over earlier studies which were based on

outdated projections.

120

Page 129: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

6. For any field measured data input (head, rainfall, evaporation, recharge, etc.) sources oferror include transient effects, measurement technique, scaling effects.

7. Must be aware that there are differing structures at different scales. The Lana’i groundwater model is looking at the entire island scale which may differ from the smaller scale ofindividual localized well sites and results from their pump tests. Such “scaling-up” may beerroneous.

8. Regional homogeneity and isotropy is assumed for the regional scale of the island whichmay or may not be invalid.

9. Setting boundary conditions is the area most prone to serious error. Many unknown dikeboundary locations may render uniform distribution of “effective” barriers to horizontal-flow erroneous. Boundary effects of faulting are not accurately known. They couldprovide either an impediment or a more permeable conduit in some local situations.

10. Dike inclinations or dips are assumed to be vertical. This is not usually the case inHawaiian volcanics as evidenced by dike systems examined in Windward Oahu andKilauea, Hawaii.(Walker, 1987). This could invalidate single layer approach of the model.

11. Rates and spatial variations and conditions of leakage between boundaries are unknown.

12. Effects of geothermal activity on water viscosity, density, and water-levels in the PalawaiBasin, or elsewhere, are not directly addressed. Density in MODFLOW is assumedconstant. Realistically, however, effects of this on water-levels are probably less than0.6%.

13. Resistivity analysis is of limited value and the presence of dikes and faults may invalidateinterpretive results. Additionally, thickness and resistivity of interpreted layers are notindependently well determined by resistivity analysis; only the product of the two. On theother hand, i.t may mean that the Ghyben-Herzberg relationship may not be applicable tothe high-level water on [.ana’i.

14. It is important to understand that it is the combination of dikes, faults, and rock containedwithin the dike complex which is most important rather than the individual hydrologiccharacteristics of each compartment This is an argument, of course, for the simplifiedconceptual formulation of the model.

15. Variability of areal distribution (spatial heterogeneity) and annual averages based onmonthly variability (temporal variability) for total rainfall. RF, fog-drip, ED, direct runoff,DRO, changes in soil-storage, ASMS, and evapotranspiration, ET, to calculate recharge, R,introduces more complexity, hence chance for subjective error.

16. Assuming maximum root-zone information is uniform throughout soil areas may inducesignificant error in actual evapotranspiration, E7’, estimates for calculating individual cell

recharge values.

121

Page 130: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

17. Irrigation return, JR. was ignored in calculating cell-by-cell recharge values.

18. Direct surface runoff, DRO, constrained within topographical depressions is notconsidered. Although preliminary GIS analysis indicates that this does not appear toinduce a major significant error (underestimation) of recharge, R, in the Palawai basin area,the cumulative effects of island-wide depressions are unknown.

19. Pineapple reduces evapotranspiration, ET, rates by about 20% (Ekern, 1960) but is ignored.

20. Pan evaporation is assumed to equal potential evapotranspiration, which is technicallyincorrect.

21. Direct measurements for actual evapotranspiration, ETa, and direct runoff, DRO, are

lacking and must be estimated indirectly through soil-storage, ASMS, information whichhas limited actual data sampling.

22. Although the boundaries in this model may be good under steady-state conditions they maynot hold true under trasmient (i.e. pumping) conditions (Anderson. & others, 1992). Undertransient conditions initial hydrologic boundaries may change in response to stressesimposed under transient conditions which will result in errors. This is especially true wherethe bottom of the aquifer on Lana’i is defmed by the water-level dependent OhybenHerzberg relationship.

23. Variability in pumpage from well to well and year to yeas is the norm and predictiveanalysis assumes constant average pumpage.

24. Assumptions made in determining global T, K, S from pumping tests on Lana’i are asfollows:

a. Aquifer is homogenous and isotropic.b. Aquifer is infinite.c. Position and nature of aquifer boundaries.d. Occurrence and nature of confining beds.e. Thickness of aquifer is known.f. Fluid is homogeneous.g. Flow to well is uniform and horizontal only.h. Ideally, wells are fully, not partially, penetrating into the aquifer.

i. Length of aquifer pump test period is adequate.

j. Pumping rate is constant.k. Well losses vs. aquifer losses are known.1. Nominal vs. effective radius of well are known.

25. As stated by others, (El-Kadi, & others, 1985, Anderson & Woessnor, 1992) complete

equivalence in hydraulic behavior between the true heterogeneous or nonuniform medium

in the field and a model’s homogeneous uniform medium is obviously impossible.

Therefore, overall model input values are “averaged” and not necessarily true or accurate

values. This is the attempt to define “effective” parameters which try to preserve observed

hydraulic behaviors.

122

Page 131: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

26. MODFLOW does not simulate a 2 fluid system of freshwater floating on the more dense

salt water which is known to exist in basal aquifers. However, this problem should notsignificantly affect the ground-water flow system in the dike-confined regions of theaquifer.

27. The lack of a single “effective” regional storage coefficient, S, makes the validfty of theinitial assumptions of regional homogeneity and isotropy doubtful.

28. Evaluation of a model is based on 1) The amount, distribution, and quality of information

used; 2) methods and criteria used to calibrate the model; and 3) post-auditing. Obviously,

a post-audit for this model cannot occur for the next several years.

29. Due to all the previous reasons above, resulting regional water-level responses cannot bedirectly related to localized individual wells. Individual well responses will probably beboth more and less than that predicted by the numerical model.

123

Page 132: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Conclusions and Postaudit

Due to the higher level of precision required in developing the Lana’i numerical groundwater modei, it has been shown that there is a weaith of historical information and hydroJogic

studies on the island. There are a minimum of forty-five (45) historical hydrologic and geologicstudies about Lana’i and numerous hydrologic consultant reports by Anderson. Additionally,Lana’i has one of the few fog-drip studies ever done in Hawaii to quantify the augmentation ofrainfall precipitation at higher elevations. Most importantly, there is a long record (over 50 years)of rainfall, pumpage, and both pumping and non-pumping water-level data which is unique in itsthe island-wide completeness in Hawaii. This fact is important since other hydrologists have

argued that numerical models are many times invalid since they are not ‘closed’ systems(Oreskes, & others, 1994). Since the entire island of Lana’i is modelled with much of the historical data known it is as ‘closed’ a system one may find in Hawaii and may be an important contributing factor to the model’s success of matching regional ground-water-level responses.

Despite all the possible sources of error, pitfalls, and lack of data associated with numerical models in general, the Lana’i numerical model does a reasonably good job of reproducing theobserved steady-state ground-water behavior with reasonable flow parameters based on the exist

ing data and similar information from other studies in Hawaii. Other numerical models in Hawaiihave also been able to reproduce the complex hydrologic behavior of aquifers at the regional scale

(Souza & Voss, 1987; Ewe & others, 1986). The assumed steady-state ground-water-levels andtunnel flow data was calibrated with an excellent match and other ground-water-levels for this situation seemed reasonable on a regional scale. Also, the numerical model does a reasonably good

job at simulating the major ground-water4evel trends observed in transient well data. Statisti

cally, the model simulated observed high-level water-levels to within: 48 ft. based on the meanabsolute error;, approximately 50 ft. based on the average mean error; and approximately 70 ft..

based on the standard deviation. However, this error is relatively minor given the high water-lev

els for most wells on Lana’i.

The transient simulations reproduced observed transient water-levels reasonable well

except for a few sites. However, the inability to utilize a single global storage coefficient testifies

that localized water-level responses are difficult to match. Also, inaccurate transient responses in

Shaft 3/Well 2 and Well 5 could be based on inaccurate boundary conditions and do not even con

sider the additional complications of including well inefficiencies. The issue is basically, one of

precision vs. accuracy; the numerical modelling effort has scrutinized Lanai’s ground-water flow

system in high detail and precision but it is not necessarily accurate. The higher level of precision

than previous studies gives one greater confidence in the recharge and conceptual make-up of the

island, but the localized conditions are such that the assumptions of homogeneity and isotropy are

limited to the regional scale of the island. Still, these simple island-wide assumptions and

approach enabled the model to match the observed data reasonable well. The advantage of the

regional assumptions is that it simplifies the model to a point where hydrologists can agree upon a

simplified conceptual model, which can then be ‘effectively’ calibrated, and agree to disagree on

how closely the numerical model represents the actual ‘reality’ at the localized scale. Ignoring

this approach would open the model up to much more subjectivity and lead to a greater multitude

of non-unique solutions which were initially sought to be constrained by the assumptions of

homogeneity and isotropy.

124

Page 133: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

It is believed by many prominent hydrologists that the true value of numerical models are

the insights into how an aquifer flow system works (Anderson, 1994; Bredehoeft, 1994, 1995;Konikow, 1994). This study has provided a few from which several conclusions can be drawn.

Beginning with the source of ground-water, it is clear that the estimated ground-waterrecharge to the entire island is more than previously estimated. Both the GIS and the calibratednumerical model analysis in this study support this conclusion. The long-term average rechargeestimate for Lana’i is approximately sixty (60) mgd which includes fog-drip, or whatever phenomena is augmenting rainfall precipitation, above the 2000’ elevation.

The insight provided through sensitivity analysis clearly shows that under natural conditions both horizontal flow boundary and recharge magnitudes and their spatial distributions arethe most important variables in controlling the ground-water flow system on Lana’i. This conclu

sion has various implications. One is that the combination of these two parameters together is themajor controlling factor which governs the observed water-level responses to induced climacticand man-made stresses on the flow system rather than each of these parameters alone. This wasclearly shown by the problem of Shaft 2 continually drying up until the 015 spatially distributedrecharge was overlaid upon the internal system of horizontal flow boundaries. Likewise, it wasdifficult to match observed water-levels for Well 5 any better than 150 ft. error and would requirechanging assumptions of homogeneity in various parameter values or spatial placement of internal boundaries to reduce such error.

Since the calibrated model is sensitive to recharge then recharge should be protected and

enhanced to guarantee a reliable ground-water resource. The numerical model has shown theimportance of fog-drip and makes a strong case for the maintenance of fog-drip efficient vegeta

tion above the 2000’ elevation. A significant portion of drawdowns observed in the wells may be

attributed to changes in the forest cover in the cloudy regions above 2000’ ft. This has been sug

gested as early as 1974 (Bowles).

Given the insights provided by calibrating the model, additional insights are provided byimposing changes in stresses on the calibrated model. The spatial distribution and magnitude of

pumpage are just as important as the recharge and internal boundary structures. The reader need

only be reminded of the comparative results between predictive scenario 2 (fog-drip removal) & 3

(6 mgd pumping from existing sources) where drawdowns for the latter were greater than the

former despite having approximately 30% less removal of water from the aquifer to see the truth

in this conclusion.

Transient analysis has provided the insight that the time required to reach steady-state con

ditions is on the order of a few to several centuries. Also, in terms of steady-state water-levels

only, the model indicates that if current conditions remain unchanged drawdowns are 20% to 95%

complete although it may take many years to reach 100% average steady-state water-levels.Management decisions regardless of the model’s validity, or ‘closeness’ in representing reality.

Predictive model runs provide additional insights. First, the model predicts that the reduc

tion of forest cover would affect ground-water-levels drastically. The model shows that many

more wells would be necessary to achieve pumpages near the current CWRM sustainable yield

estimate of 6 mgd assuming that long-term recharge conditions in the regions above 2000’ eleva

tion remain stable. Also, modifications are probably necessary to existing well configuration to

125

Page 134: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

realize greater long-term development of ground-water on Lana’i. It appears that more watercould be developed from the windward side of the island. This is consistent with Adams’s (1968)conclusions of developing sources along the northeastern windward shores of the island althoughbetter quality water in the high-level aquifer is likely more inland. However, the model cannotaddress the subject of individual well yields due to the uncertainties of localized heterogeneitiesand well inefficiencies. Other published numerical modelling studies in Hawaii (Underwood. &others, 1995) have stated such information must be gained through field experience or have lim

ited their predictions in water-levels to areas rather than specific well sites (Byre, & others, 1986).

Finally, there is general agreement between hydrologists that post-auditing is a necessaryelement of any worthwhile the modelling effort (Anderson, 1994; Bredehoeft, 1994, 1995; Koni

kow, 1994, Oreskes, & others, 1994). Post-auditing is the continued recalibration of the modelwith new information, thus continued data collection is absolutely necessary (Emery, 1994).

Even with all the available data on Lana’i the continuation of long-term data collection is necessary if improvements to this model are desired. Areas of data collection which could be improvedon Lana’i are pan evaporation and further fog-drip analysis. The continued monthly measurementand reporting of long-term well pumpages and pumping and non-pumping water-levels is alsonecessary to contribute to any post-auditing effort. Additionally, to address 3D concerns and geothermal impacts additional layers and variable density fluid changes could be made to the model.

With the current drilling of Well 14, the need of post-auditing is underscored. The initial

ground-water-level encountered is unofficial but reportedly confined and artesian conditions have

been observed. This confined situation is not considered in the current numerical model since it isonly one layer. If true, this shows the need for post-auditing of model work to further fine tune

this model or and any numerical model. The Lana’i numerical model is one step towards a finer

tuned model but it is not the final model. Additional study could be performed to use multiplelayers for a more fully three-dimensional ground-water flow model and perhaps even transport

modelling of chlorides can be performed in the future to further fine-tune a tool with which to

assess natural and human induced stresses on Lanai’s ground-water resource.

This report has also provided a general guideline in documenting numerical modelling

efforts. There are guidelines available (Anderson & Woessner, 1992; ASTM, 1993, CWRM,

1994) but none has been officially approved or endorsed by the CWRM. Guidelines are necessary

to convey the assumptions, analysis, and results in a simple and consistent format

In closing, Loucks (1995) has defined numerical models useful for management decisions

as Decision Support Systems (DSS). To be useful, numerical models need to be easy to learn and

remember and useful in providing information in a meaningful form (i.e. graphically) and in a

timely manner. The input and output methods used to design and calibrate the Lana’i model prob

ably do not meet this criteria at this time, especially if post-auditing is undertaken. However, new

software is emerging which expedites this process. Information and insights gathered from this

modelling effort can no doubt be used when this newer user friendly software is available.

126

Page 135: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

References Cited

Adams, W.M.; Huber, RD., 1973, Optimum Drilling Sitesfor Ground-Water Development on theEast Coast ofLanai Island, Technical Report no. 68. Water Resources Research Center,University of Hawaii, Honolulu, HI, 43 p.

American Society for Testing and Materials (ASTM), DRAFT January 6, 1993, Standard Guidefor Documenting a Groundwater Flow Model Application, 9 p.

Anderson, K.E., April 1959, Water Supply Analysis - Lanai, consulting report to HawaiianPineapple Co., Ltd., Anderson & Kelity, Inc., Bosie, ID, 17 p.

Anderson, K.E., September 1959, Water Supply Analysis - Lanai, consulting report to HawaiianPineapple Co., Ltd., Anderson & Kellty, Inc., Bosie, ID, 3 p.

Anderson, K.E., October 5, 1959, Letter to Wm. Aldrich, Plantation Manager Hawaiian Pineapple

Co., 3 p.

Anderson, K.E., March 1960, High-Level Water Resources Lanai, Hawaii, consulting report toHawaiian Pineapple Co., Ltd., Anderson & Kelity, Inc., Bosie, ID, 5 p.

Anderson, K.E., April 1961, High-Level Water Resources Lanai, Hawaii. consulting report to Dole

Corp., Lanai Plantation, Anderson & Kelity, Inc., Bosie, ID, 16 p.

Anderson, K.E., July 1961, High-Level Water Resources Lanai, Hawaii, consulting report to Dole

Corp., Lanai Plantation, Anderson & Kelity, Inc., Bosie, ID, 5 p.

Anderson, K.E., October 1961, High-Level Water Resources Lanai, Hawaii, consulting report toDole Corp., Lanai Plantation, Anderson & Keilty, Inc., Bosie. 10, 21 p.

Anderson, K.E., April 1983, Lanai Water-Supply Review, annual consulting report to Dole Corp.,

Lanai Plantation, Anderson & Keilty, Inc., Bosie, ID, 36 p.

Anderson, K.E., 1984, Letter report to J.H. Parker, letter consulting report to Dole Corp., Lanai

Plantation, Anderson & Keilty, Inc., Bosie, ID, 37 p.

Anderson, K.E., 1984, Lanai Water-Supply Review, annual consulting report to Dole Corp., Lanai

Plantation, Anderson & Keilty, Inc., Bosie, ID, 37 p.

Anderson, K.E., 1985, Lanai Water-Supply Review, annual consulting report to Dole Corp., Lanai

Plantation, Anderson & Kellty, Inc., Bosie, ID, 42 p.

Anderson, K.E., 1989, Lanai Water Supplies, consulting memo to Robert Oda, Lanai Co., James

M. Montgomery, Consulting Engineers, Inc., Bosie, ID, 2 p. (also located in appendix in

M&E, 1989 reference).

Anderson, M.P.; Woessner, W.W., 1992, Applied Groundwater Modeling, Academic Press, Inc.,

Harcourt Brace Jovanovich, 381 p.

121

Page 136: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Anon, 1954, Condensation from Clouds on Table Mountains, South Africa Journal of Science,June, 303 p.

Appel, C.A and Reilly, T.E, 1994, Survey ofSelected Computer Program Produced by the U.S.Geological Surveyfor Simulation ofGround-Water Flow and Quality. Circular 1104, U.s.Geological Survey, Department of the Interior, United States of America.

Armstrong. R.W. & others, 1973, Atlas of Hawaii. University of Hawaii, The University Press,Honolulu, HI, p. 43.

Bear, J.; Beijin M.S,; Ross, R.R., 1992, Fundamentals ofGround-Water Modeling, EnvironmentalProtection Agency, Paper EPA/.5401S-92M05, Ada, Oklahoma, 11 p.

Bowles, S.P., 1971, Water Management Plan, unpublished report for Lanai Co., Waimea, HI.

Bowles, S.P., 1974, Water Resources ofLanai Summary, 12/10113 Draft report for Lanai Co.,Waimea, HI, 20 p.

Bredehoeft, S.D., 1994, Modeling Complex Hydrologic Systems for the Purpose ofManagement,Keynote Address at the 1994 Pacific Northwest/Oceania Conference - Assessment ofModels for Groundwater Resources Analysis and Management.

Bredehoeft, J.D., 1995, Ground-Water Models, Editorial in Ground Water, Vol. 33, No. 4, pgs.530-53 1.

Carlson, N.K., 1961, Fog and Lava Rock, Pine and Pineapples, American Forests 67(2): pp. 8-11,58-59.

Caskey, MC.,1968, The Recharge of the Waikapu Aquifer, Maui, Master’s Thesis in Hydrology,Water Resources Research Center, University of Hawaii, 73 p.

Chang, J.H., 1961, Microclimate ofSugar Cane, Hawaiian Planter’s Record. 56: p. 195-223.

Chang, J.H., 1968, Climate and Agriculture, an Ecological Survey, Aldine Publishing Co.,Chicago, 304 p.

Ching, A.Y.; Sahara, T., 1969, Land Use and Productivity Rating, State ofHawaii, 1968, Circular

no. 15, Land Study Bureau, University of Hawaii, Honolulu, HI.

Clark, W.O., 1930, Ground-Water ofLanai, consulting report to Hawaiian Pineapple Co., Ltd., 5 p.

Coleman Energy & Environmental Systems - Blackhawk Geosciences Division (CEES-BGD),1984, Time Domain Electromagnetic Surveysfor Assisting in Determining the GroundWater Resources Phase!! Study Island ofLanai, Hawaii, Prepared for Lanai WaterCompany Inc., Golden, CO., 21 p.

Commission on Water Resource Management, 1990, Lanai Water Resources Findings ofFact,

WMA No. L- 1, Department of Land and Natural Resources, State of Hawaii, Honolulu, HI,

139 p.

128

Page 137: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Commission on Water Resource Management, DRAFT 1994, Ground Water Model Reports, AGuide for Documentation, Department of Land and Natural Resources. State of Hawaii,Honolulu, HI, 2 p.

Data General Corp., 1990, A VUON 300 Series Workstation, Westboro, MA.

DuCommon, J., 1928, On the Use ofFresh Water Springs, Fountains, etc., American JournalScience and Arts, vol. 14, pp. 174-176.

Driscoll, F. G., 1986, Groundwater and Wells, Second Edition, Johnston Filtration Systems, Inc.,St. Paul, Minnesota, 1089 p.

Ekem, P.C., 1960, The Evapotranspiration ofPineapple in Hawaii, Pineapple Research Institute,Honolulu, Hawaii, 233 p. & 1965 PRI, Plant Physiol. 40(4), Pp. 736-739.

Ekem, P.C., 1964, Direct Interception ofCloud Water on Lanaihale, Hawaii, Soil Science Societyof America Proceedings, vol. 28, no. 3, pp. 419-421.

Ekem, P.C.; Chang, J-H, 1985, Pan Evaporation: State ofHawaii, 1849-1983, prepared incooperation with Hawaiian Sugar Plantations Association, State of Hawaii, Department ofLand and Natural Resources, Report R74, Honolulu, HI, 172 p.

El-Kadi, A.I.; Brusaert, W., 1985, Applicability of Effective Parametersfor Unsteady Flow inNonuniform Aquifers, Water Resources Research, vol. 21, no. 2, pp. 183-198.

Emery, P. A., 1994, Reflections on Water ofan Old Geologist, Hydrogeologist, or Geohydrologist,The American Institute of Professional Geologists, The Professional Geologist, vol.31, no.8, pp.1 1-12.

Environmental Systems Research Institute (ESRI), 1992, ARC-INFO Geographic InformationSystem (GIS) Ver 6.0, Redlands CA.

Essaid, H.I., 1990, The computer model SHARP, a Quasi-Three-Dimensional Finite-DifferenceModel to SImulate Freshwater and Saltwater Flow in Layered Coastal Aquifer Systems,WRI Rep 90-4130, U.S. Geological Survey, Department of the Interior, United States ofAmerica, 181 p.

Eyre, P.; Ewart, C.; Shade, P., 1986, Hydrology ofthe LeewardAquifers, Southeast Oahu, Hawaii,WRI Rep 85-4270, U.S. Geological Survey, Department of the Interior, United States ofAmerica, 75 p.

Foote, D.E.; Hill, EL.; Nakamura, S.; and Stephens, F.; 1972, Soil Survey ofIslands ofKauai,Oahu, Maui. Molokai, and Lanai, State ofHawaii, Soil Conservation Service, Departmentof Agriculture, United States, prepared in cooperation with the University of HawaiiAgricultural Experiment Station, 232 p.

Fosberg, F. R., 1936, Plant Collecting on Lanai, Mid-Pacific Magazine 49(2): pp. 119-123.

129

Page 138: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Franke, O.L. and T.E. Reilly 1987, The Effects of boundaty Conditions on the Steady-StateResponse of Three Hypothetical Ground-Water Systems; Results and Implications ofNumerical Experhnents, Water Supply Paper 2315, United States Geological Survey,Department of the Interior, Washington, D.C., 19 p.

Franke, O.L.; T.E. Reilly; and F.D. Bennet, 1984,Dejinition ofBoundaty and Initial Conditionsin the Analysis ofSaturated Ground-water Flow Systems; an Introduction, Open-FileReport 84-458, United States Geological Survey, Department of the Interior, Washington,

D.C., 26 p.

Gay, L.K.; 1965, True Stories of the Island ofLanai, Rodger’s Printing Inc., Honolulu, HI, 85 p.

Geraghty & Miller, Inc., 1989, AQTESOLVE Ver 1.1, Aquifer Test Design and Analysis Computer

Software, IBM-PC DOS Program, Reston, VA, Manual 135 p.

Ghyben, B., 1889,Notain verbandrnerde voorgenomen put boring nabijAnisrerdarn: K. Inst. ing.Tijdschr.,The Hague, 21 p.

Giambelluca, T.W., 1983, Water Balance of the Pearl Harbor Basin, Hawai’i, 1946-1975,Technical Report No. 151, Water Resources Research Center, University of Hawaii, 151 p.

Giambelluca, T.W., 1986, Land-use Effects on the Water Balance ofa Tropical Island, National

Geographic Research 2(2), pp. 125-151.

Giambelluca, T.W.; Nullet, M.A., Schroeder; T.A, 1986, RainfallArlas ofHawaii, prepared in

cooperation with the Water Resources Research Center and the Department ofMeteorology at the University of Hawaii, State of Hawaii, Department of Land and Natural

Resources, Report R76, Honolulu, HI, 267 p.

Giambelluca, T.W.; Nullet, M.A.; Ridgley, M.A.; Eyre, P.R., Moncur, J.E.T.; Price, S., 1991,

Drought in Hawai’i, State of Hawaii, Department of Land and Natural Resources, Report

R88, Hono!ulu, HI, 232 p.

Harding Lawson Associates, 1986, Electrical Resistivity Investigationfor Ground-Water

Resources Lanai City Area, Island ofLanai, Hawaii, consulting report to Dole Co., Castle

& Cooke Foods, Novato, CA, 21 p.

Hawaii Water Authority, 1959, Water Resources in Hawaii, Territory of Hawaii, 148 p.

Heath, R.C., 1982, Basic Ground-Water Hydrology, Water Supply Paper 2220, Department of the

Interior, USGS, Prepared in cooperation with the North Carolina Department of Natural

Resources and Community Development, Denver, CO. 84 p.

Herzberg, B., 1901, Die Wasserversrgung einigerNordseebader: Journal Gasbeleuchtung und

Wasserversrorgung, Jahrg 44, Munich.

Hobdy, R., 1993, Lana’i - A Case Study: The Loss of Biodiversity on a Small Hawaiian Island,

University of Hawaii Press, Pacific Science vol. 47, no. 3, pp. 201-210.

130

Page 139: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Hsieh, P.A.; Freckleton, J.R., 1993, Documentation of a Computer Program to SimulateHorizontal-Flow Barriers Using the U.S. Geological Survey’s Modular Three-Dimensional Finite Difference Ground- Water Flow Model, Open-File Report 92-477, u.s.Geological Survey prepared in cooperation with the City of Santa Barbara, Sacramento,CA, 32 p.

Hydrosphere, Inc., 1992, National Climatic Data Center, Hourly Precipitation, CD-ROM Vol 3.0,Boulder, Colorado.

Jones, C.A., 1980, A Review of Evapotranspiration Studies in Irrigated Sugarcane in Hawaii,Hawaii Sugar Plantation Association, Hawaii Planters Record vol. 59, no. 9, pp. 195-2 14.

JMM Consulting Engineers, Inc. 1989, Lanai Water Use (1948-1988), Boise, Idaho, 10 p.

Juvik, LO.; Ekern, P.C., 1978, A Climatological ofMountain Fog on Mauna Loa, Hawaii Island,Technical Report No. 118, Water Resources Research Center, University of Hawaii,Honolulu, HI, 62 p.

Kerfoot, 0., 1962, The interception and Condensation ofAtmospheric Moisture by ForestCanopies, East African Agriculture and Forestry Research Organization, Maguga, Kenya,7 p.

Konikow, L.F., 1994, The Value of Postaudirs in Ground-Water Model Applications, oralpresentation of paper at the 1994 Pacific Northwest/Oceania Conference - Assessment ofModels for Groundwater Resources Analysis and Management.

Krivoy, H.C.; Lane, M.P., 1965, A Preliminary Gravity Survey of the Island ofLanai, Hawaii,Pacific Science, vol. 19, no. 3, pp. 346-348.

Lloyd, R.H., 1975, Lanai Water Development, Unusual Wells and Tunnels, Lanai Co. Report, l’7p.

Lohman, S.W., 1979, Ground-Water Hydraulics, Professional Paper 708, Geological Survey,Department of the Interior, United States, Washington, 70 p.

Loucks, D.P., 1995, Developing and Implementing Decision Support Systems: A Critique and aChallenge, Water Resources Bulletin, Vol. 31, No.4, American Water ResourcesAssociation, pp.571-582.

M & E Pacific, Inc., 1989, Water Resources Development Plait for the Island of Lanai, Lanai,Hawaii, consulting report to Lanai Co., Honolulu, HI, 18 p.

M & E Pacific, Inc. 1991, Preliminary Engineering Reportfor New Potable Water Source, Well 8,Lanai Water System, Lanai City, Hawaii, consulting report to Lanai Co., HI, 35 p.

Malahoff, A.; Wollard, G.P. 1965,Magnetic Surveys over the Hawaiian Ridge, Report HIG-65-1 1,Hawaii Institute of Geophysics, University of Hawaii, 64 p.

Macdonald, G.A., 1940, The Petrography ofLanai and Kahoolawe, Part 1, Bulletin 6, Division ofHydrography, Territory of Hawaii in cooperation with the U.S. Geological Survey,Department of the Interior, United States of America, pp. 61-63.

131

Page 140: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Macdonald, G.A., 1956, The Structure of Hawaiian Volcanoes, Koninklijk NederlandschGeologisch-Mijnbouwkundig Genootschap. Verhandelingen, v. 16, pp.274-295.

Macdonald, GA., Abbott, A.T., 1970, Volcanoes in the Sea, University of Hawaii Press, Honolulu,Hawaii, 429 p.

Marloth, 1905, Trans. 5. Africa Phil. Soc., 14 Part 2, p. 97.

Malo, D., 1898, Hawaiian Antiquities (Moolelo Hawaii) 1839, translated by Dr. NathanielEmerson in 1898, Bernice Bishop Museum, special publication 2, Honolulu, HI 278 pp.

McCullough. Albert, P.R 4/22/95 personal communication during field visit to Shaft 1 and Shaft 2.

McDonald, M. and Harbaugh, A., 1988, A Modular Three-Dimensional Finite Difference GroundWater Flow Model, MODFLOW Fortran Program Manual, Book 6, Chapter Al, ModelingTechniques, United States Geological Survey, Department of the Interior, Washington,D.C., 512 p.

McKnight, J.H.; Juvik, J.O., 1975, Methodological Approaches in Hawaiian Fog Research, Tech.Report no. 85, Water Resources Research Center, University of Hawaii, Honolulu, HI, 34

p.

Merriam, R,A, 1960, A Note on the Interception Loss Equation, Journal of Geophysical Research65 (11), pp. 3850-3851.

Merriam, R.A, 1961, Suiface Water Storage on Annual Rye Grass, Journal of GeophysicalResearch 66(6), pp. 1833-1838.

Merriam, R.A, 1973, Fog Drip from Artificial Leaves in a Fog-Wind Tunnel, Water ResourcesResearch. Vol 9., no.6, pp. 1591-1598.

Meyer, W. and Souza, W.R., 1995, Factors that Control the Amount ofWater that can be Divertedto Wells in a High-Level Aquifer, Proceedings of the American Water ResourcesAssociation Annual Summer Symposium, edited by Herrmann, R.; Back, W.; Sidle, R.C.;and Johnson, A.1., AWRA, Herdon, VA, pp. 207-216.

Mink, J.F., 1983, Lanai Water Supply, consulting report to Lanai Co., Honolulu, HI, 57 p.

Mink, J.F., Lau, L.S. 1993, Aquifer Identification and Classification for Lana’i: GroundwaterProtection Strategyfor Hawaii, Technical Report No. 190, Water Resource ResearchCenter, University of Hawaii, State of Hawaii, 20 p.

Molchanov, A. A., 1960, The Hydrological Role of Forests, U.S. Department of Agriculture andNational Science Foundation, Washington, D.C, translated from Russian by Gourevitch, A.Israel Program fro Scientific Translations, Jerusalem., 407 p.

Montgomery, J.M. (1MM, Inc.), 1989, Lanai Water Use, (1948-1988), consulting report to Lanai

Co., 10 p.

132

Page 141: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Moore, J.G.; Clague, D.A.; Holcomb. T.Y.; Lipman, P.w.; Normark, W.R.; and Torresan, M.E.,1989, Prodigious Submarine Landslides on the Hawaiian Ridge, Journal of GeophysicalResearch, Vol. 94, No. B12, pp. 17465 - 17484.

Munro, G. C. 1922, Letter to the Editor, Hawaiian Forester and Agriculturist 19(2), pp. 45-46.

Munro, G. C. 1929, Noifollc-Island-Pine for the Wet Forest, Hawaiian Forester and Agriculturist26(3), pp. 126-127.

Oreskes, N.; Shrader-Frecchette, K.; Belitz, K., 1994, Verification, Validation, and ConfirmationofNumerical Models in the Earth Sciences, Science, vol. 263, pp. 641-646.

Palmer, H.S., 1924, Groundwater Conditions on the Island ofLanai, University of Hawaii,Honolulu, HI

Penman, H.L., 1948, Natural Evaporationfrom Open Water, Bare Soil, and Grass, Proceedings,Royal Society, Series A, 193: pp. 120-145.

Penman, H.L., 1963, Vegetation and Hydrology, Commonwealth Bureau of Soils TechnicalCommunication, no. 53, Commonwealth Agricultural Bureau, Farnham Royal, Bucks,England, 124 p.

Prime Computer, Inc. PRIME 9955 Mini-computer, Prime Park, Natick, MA.

Roberson, J.A.; Crowe, C.T., 1980, Engineering ofFluid Mechanics, Second Edition, WashingtonState University, Pullman, WA, 661 p.

Sahara, S.T.; Murabayashi; E.T., Ching, A.Y.; Kuwahara, I.; Fujimura, F.N.; Awai, E.L.; Baker,H.L., 1967, Detailed Land Class ification - Island ofLanai, Bulletin no. 8, Land StudyBureau, University of Hawaii, Honolulu, HI, 54 p.

Schroeder, T.A., Meisner, B.N., 1982, Median Rainfall, State ofHawaii, Circular C88, State ofHawaii, Department of Land and Natural Resources, Honolulu, HI, 44p.

Shade, P.3., 1995, Water Budgetfor the Island ofKauai, Hawaii, Water Resources InvestigationsReport 954128, U.S. Geological Survey, 25 p.

Shuttleworth, J.W., 1993, Chapter 4, Evaporation, Handbook of Hydrology (editor-in-chief:Maidment, D.R.), McGraw-Hill, Inc., USA, pp. 4.1 to 4.53.

Smith, C., Soil Conservation Scientists, 10/20/94, written & faxed personal communication to PatShade on soil on various characteristics for Lanai, Soil Conservation Service, U.S.Department of Agriculture, United States of America.

Smith, L. & Wheatcraft, S.W, 1993, Chapter 6, Groundwater Flow, Handbook of Hydrology(editor-in-chief: Maidment, D.R.), McGraw-Hill, Inc., USA, pp. 6.1 to 6.58.

Soroos, R.L., 1973, Determination ofHydraulic Conductivity of Some Oahu Aquifers with StepDrawdown Test Data, Thesis for M.S. in Geology and Geophysics, University of Hawaii,Honolulu, HI, 239 p.

133

Page 142: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Souza, W, Voss, C., 1987, Analysis of an Anisotropic Coastal Aqu(fer System Using Variable-Density Flow and Solute Transport Simulation, Journal of Hydrology, Vol. 92, pp. 17-41.

Stearns, H.T., 1938, Ancient Shore Lines on the Island ofLanai, Hawaii, Geologic Society ofAmerica, Bulletin vol. 49, pp. 615-628.

Stearns, H.T; Macdonald, G.A.; Swartz, J.H., 1940, Geology and Ground-Water Resources ofLanai and Kahoolawe, Hawaii, Part 1, Bulletin 6, Division of Hydrography, Territory ofHawaii in cooperation with the U.S. Geological Survey, Department of the Interior, UnitedStates of America, 115 p.

Stearns, H.T; Macdonald, G.A.; Swartz, J.H., 1942 Geology andGround-Water Resources of theIsland ofMaui, Hawaii, Bulletin 7, Division of Hydrography, Territory of Hawaii incooperation with the U.S. Geological Survey, Department of the Interior, United States ofAmerica, 344 p.

Stearns, H.T., 1946 with supplement 1967, Geology of the Hawaiian Islands, Bulletin 8, Territoryof Hawaii in cooperation with the U.S. Geological Survey, Honolulu, HI, 112 p.

Stearns, l-I.T., 1953, Supplement Ground-Water Development on Lanai, consultant report to LanaiCo. concerning proposed Shaft 3, 7 p.

Stearns, H.T., 1959, Methodsfor Developing Additional Water on Lanai, Hawaii, consultant reportto Hawaiian Pineapple Co., 3 p.

State of Hawaii, 1972, Soil Survey Interpretations Lanai, Report R44, Division of Water and LandDevelopment, Department of Land and Natural Resources, State of Hawaii, 36 p.

State of Hawaii, 1973, Climatological Stations in Hawaii, Report R42, Division of Water and LandDevelopment, Department of Land and Natural Resources, State of Hawaii, 187 p.

State of Hawaii (draft), 1992, Water Resources Protection Plan, Hawaii Water Plan, Commissionon Water Resource Management, Department of Land and Natural Resources, State ofHawaii, 555 p.

Swartz, J.H., 1940, Geophysical Investigation on Lanai, Part 1, Bulletin 6, Division ofHydrography, Territory of Hawaii in cooperation with the U.S. Geological Survey,Department of the Interior, United States of America, pp. 97-115.

Takasaki, K.J.; Mink, J.F., 1982, Water Resources ofSoutheastern Oahu, Hawaii, Water-Resources Investigations 82-628, prepared in cooperation with the Honolulu Board ofWater Supply, U.S. Geological Survey, Department of the Interior, United States ofAmerica, 89 p.

Takasaki, K.J.; Mink, J.F., 1985, Evaluation ofMajor Dike-Impounded Ground-Water Reservoirs,Island of Oahu, Water-Supply Paper 2217, U.S. Geological Survey, Department of theInterior, United States of America, 77 p.

Takasaki, K.J.; Bauer, G., 1 1/9/93 field verification of well and ground-water elevations.

134

Page 143: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Theis, C.V., edited by Clebsch, A., 1994, Selected Contributions to Ground-Water Hydrology byC.V. Theis, anda Review ofHis Life and Work, Water-Supply Paper 2415, U.S. GeologicalSurvey, Department of the Interior, United States of America, 70 p.

Theis, C.V., 1957, The Source of Water Derived Fivm Wells, Essential Factors Controlling theResponse of an Aquifer to Development, Ground Water Notes, Hydraulics, no. 34, WaterResources Division, U.S. Geological Survey, Department of the Interior, United States ofAmerica, 16 p.

Thornthwaite, C.W., Mather, J.R., 1955, The Water Balance, Publications in Climatology, vol. 8,no. 1, lO4p.

Todd, D.K, 1980, Groundwater Hydrology, 2nd Edition, University of California, Berkley andDavid Keith Todd Consulting Engineers, Inc., John Wiley & Sons, 535 p.

Twomey, S. 1957, Precipitation by Direct Interception ofCloud-Water, Division of Radiophysics,Commonwealth Scientific and Industrial Research Organization, Australia, reprinted fromWeather, vol. XII, no. 4 pp. 120-22.

Underwood, M.R.; Meyer, W.; Souza, W.R, Ground-WaterAvailability from the HawiAquifer inthe Kohala Area, Hawaii, Water Resources Investigations Report 95-4 113, U.S.Geological Survey, 57 p.

United States Geological Survey, 1972, Ground-Water Hydraulics, Professional Paper 708,Department of the Interior, Washington, D.C., 70 p.

U.S. Water Resources Council & State of Hawaii, 1979, Hawaii Water Resources Plan, RegionalWater Resources Study, Honolulu, HI, 207 p.

Walker, G.P.L., 1987, The Dike Complex ofKoolau Volcano, Oahu: Internal Structure ofaHawaiianRift Zone, Chapter 41, U.S. Geological Survey Professional Paper 1350, pp. 961-993.

Weeks, E,P. (instructor), 1994, Analytical Methods to DetermineAquiferProperties and to PredictAqu(ferResponses, Course Instruction, Water Resource Division, U.S. Geological Survey,Department of the Interior, USA Feb 14-18, 1994.

Went, F.W., 1955, Fog, Mist, Dew, and other Sources of Water, Water, the Yearbook ofAgriculture 1955, Washington, D.C., pp. 103-109.

Wentworth, C.K., 1925, The Geology ofLanai, Bulletin No. 24, Bishop Museum, Honolulu, Hi.

Yuen, George A.L. & Associates, 1994, Groundwater Development Opportunities, Late Region,Koolauloa Aquifer System, OaThs, prepared for the Honolulu Board of Water Supply, Cityand County of Honolulu, 39 p.

135

Page 144: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Appendices

Appendix A: Rainfall, Pan Evaporation, & Fog-Drip Data

Appendix B: GIS Monthly Recharge Results

Appendix C: Best Fit Calibration MODFLOW input files

Appendix D: Best Fit Output File from Appendix C input

Appendix E: Transient Stress Period Recharge Calculations

Appendix F: Individual Well Simulated vs. Actual Transient Water-Levels

Appendix 0: Individual Well Long-Term Simulated Transient Water-Levels

Appendix H: Individual Well Monthly Water-Levels

136

Page 145: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

APPENDIX A

Page 146: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

LANAI CITY RAIN GAGE (SKN 67200)YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN

1930 7.64 1.59 4.58 0.04 0.04 0.13 1.61 2.70 6.27 5.13 4.83 0.44 35.001931 0.47 0.36 3.25 2.98 3.92 0.71 285 4.45 4.49 4.22 0.84 1.46 30.001932 1.63 11.91 2.50 1.71 0.50 2.23 1.03 1.14 3,24 1.02 1.20 5.36 33.471933 0.50 6.26 3.21 1.15 0.32 0.60 0.54 1.05 0.08 0.60 1.09 7.39 22.791934 2.98 4.87 1.95 2.34 3.18 3.07 0.75 2.90 6.49 3.26 2.17 1.51 35.471935 4.42 0.92 5.63 0.30 1.56 2.02 1.34 2.69 3.90 6.25 2.01 0.61 31.651936 2.85 3.44 2.31 4.53 0.99 1.25 0.59 0.38 2.19 9.73 3.11 1.20 32.571937 7.08 10.97 13.63 1.37 3.26 0.60 1.64 2.15 1.00 3.52 1.32 5.96 52.501938 2.12 5.81 4.92 5.23 5.70 0.65 1.71 3.50 0.32 3.38 0.35 2.09 35.781939 2.68 2.39 5.36 7.87 1.68 1.88 0.20 1.13 3.42 7.03 1.56 3.01 38.211940 8.35 1.96 3.79 2.92 6.80 2.56 2.32 1.52 4.34 7.00 7.80 4.92 54.281941 1.63 1.42 0.69 0.61 1.92 0.41 1.29 2.22 0.77 5.44 0.84 0.31 17.551942 0.67 1.95 4.85 1.61 1.01 2.86 5.59 4.05 1.41 3.37 2.90 5.40 35.671943 17.42 2.26 2.31 1.63 10.90 0.69 0.92 1.42 0.72 216 0.10 2.94 44.071944 0.33 5.42 12.34 0.71 0.75 2.74 0.73 0.20 0.45 1.59 1.47 1.84 28.571945 0.44 1.76 2.65 19.18 2.03 0.78 4.24 0.98 0.89 0.87 1.38 3.06 38.261946 10.93 1.95 0.07 0.43 1.05 0.72 2.24 1.54 1.48 3.89 3.47 7.86 35.631947 0.65 2.11 3.56 1.58 2.09 0.34 3.35 1.23 7.74 0.60 3.71 1.73 28.691948 6.30 8.89 2.39 4.85 1.80 5.91 2.71 2.69 3.38 0.07 2.48 0.40 41.871949 11.61 3.09 0.83 0.78 0.76 2.20 1.03 0.55 0.18 0.17 1.51 1.46 24.151950 10.46 1.17 0.54 12.45 1.31 0.91 0.60 2.53 1.35 0.35 11.48 7.94 51.101951 1.44 7.45 21.59 2.03 1.99 0.98 0.98 2.10 1.38 4.49 0.82 3.24 48.491952 7.16 0.66 2.34 0.09 1.77 0.85 1.95 0.35 0.68 4.15 1.86 1.69 23.551953 1.47 1.36 3.00 0.90 2.90 0.52 0.52 0.26 0.07 0.87 0.73 3.44 16.041954 0.90 5.56 4.94 1.86 1.24 1.81 2.54 1.15 0.11 2.09 3.30 6.79 32.291955 4.69 5.69 3.87 1.09 0.95 0.51 1.24 2.31 5.69 0.48 13.33 12.33 52.181956 8.59 3.34 0.77 3.04 1.41 0.64 4.07 2.55 3.94 3.14 2.58 3.78 37.851957 6.60 1.75 0.73 2.48 4.11 0.19 0.66 2.24 0.97 0.47 7.43 4.17 31.801958 0.49 2.01 10.90 0.50 1.69 1.18 2.38 2.45 1.94 4.74 0.34 4.82 33.441959 12.75 3.99 0.31 0.96 1.49 0.35 0.49 0.43 3.26 0.88 4.11 0.86 29.881960 0.87 0.99 4.61 0.39 10.87 2.36 1.16 1.41 2.15 2.17 0.71 3.87 31.561961 6.36 2.00 0.64 2.61 1.29 1.57 1.52 0.99 1.74 7.04 10.41 1.29 37.461962 7.69 4.11 12.77 2.84 5.12 0.19 0.74 1.00 0.41 1.84 0.20 3.96 40.871963 16.75 1.95 10.04 7.52 10.07 1.61 2.43 2.00 1.39 3.85 0.94 4.31 62.861964 1.88 0.56 5.41 1.35 0.76 0.44 3.77 1.24 1.11 1.56 4.62 8.17 30.871965 5.71 5.44 1.53 5.09 7.04 0.85 2.58 3.63 5.21 5.62 16.53 1.11 60.341966 2.00 4.83 2.57 1.59 3.29 0.29 0.58 0.80 3.06 2.39 6.88 3.86 32.141967 7.94 2.98 10.09 4.41 8.74 2.36 7.45 2.72 4.05 .1.96 4.31 9.45 66.471968 7.29 8.34 5.62 13.01 2.22 0.93 1.45 1.63 8.85 4.48 4.38 8.67 66.871969 11.16 1.91 334 0.93 2.01 1.67 3.20 0.53 1.96 1.33 0.52 4.73 33.291970 6.06 1.52 0.16 2.11 0.69 1.47 1.84 2.09 0.37 1.78 10.73 0.33 29.151971 16.90 1.50 4.30 0.82 2.51 0.13 0.39 0.79 1.50 1.28 0.42 1.40 31.941972 4.93 9.68 5.40 1.84 0.73 1.36 0.24 0.62 1.29 2.12 0.30 3.21 31.721973 1.43 0.87 0.67 1.34 2.44 0.42 0.22 2.32 1.44 1.23 8.59 6.90 27.871974 11.28 2.87 5.00 1.65 2.26 6.44 3.60 0.23 8.71 3.82 2.35 0.94 49.151975 10.52 6.21 1.87 2.19 0.37 0.44 1.47 0.17 0.97 0.34 2.11 1.09 27.751976 1.06 5.08 6.85 1.82 0.30 0.48 3.42 0.63 1.85 2.08 1.63 0.19 25.391977 1.43 0.76 2.70 11.51 3.38 0.39 0.66 0.95 0.28 1.37 0.71 1.16 25.301978 1.75 0.70 3.38 2.41 4.83 2.33 0.58 4.15 0.33 6.62 4.08 1.65 32.811979 7.86 13.66 1.40 2.30 1.28 0.40 0.92 2.64 0.57 2.33 0.58 7.21 41.151980 14.35 6.49 2.09 2.15 4.83 0.50 4.44 1.63 1.94 0.07 0.16 7.66 46.311981 1.15 2.34 0.55 4.30 2.64 0.69 1.10 3.51 1.10 0.60 2.87 9.70 30.551982 13.70 6.39 4.86 4.84 1.21 4.58 1.58 2.20 0.24 6.90 2.00 8.92 57.421983 1.18 0.95 0.42 0.61 2.15 1.34 0.81 1.62 1.11 1.27 0.97 7.53 19.961984 2.62 0.95 1.85 1.57 1.60 0.13 1.45 1.07 0.96 0.25 2.05 2.56 17.061985 4.60 2.94 0.67 0.27 1.03 2.30 1.17 0.99 4.10 5.64 6.10 1.20 31.011986 0.67 4.45 5.22 1.56 2.40 1.65 4.66 0.58 2.63 2.02 1.99 3.44 31.271987 1.57 2.99 1.26 2.56 8.26 0.70 3.36 1.05 4.07 0.79 5.28 10.40 42.291988 8.24 1.01 2.86 0.49 0.49 1.17 0.44 1.78 2.32 2.07 5.42 7.94 34.231989 0.43 6.90 3.95 14.31 1.98 3.57 2.27 1.16 0.41 11.44 1.49 4.22 52.131990 4.76 12.19 4.35 4.59 2.30 0.05 1.01 0.32 0.94 0.55 6.49 6.43 43.981991 3.65 -9.99 -9.99 0.00 4.30 0.29 1.02 0.99 0.00 6.69 0.38 2.74 20.061992 2.37 2.43 0.75 0.35 3.04 1.98 2.35 0.86 4.98 1.93 4.12 6.69 31.851993 4.43 1.42 2.55 0.83 2.02 1.42 1.75 1.36 4.63 3.53 5.25 0.06 29.25

A-I

Page 147: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

KOELE RAIN GAGE (SKN 69300)

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN

1892 8.60 2.30 1.50 4.62 6.72 2.76 0.12 1.02 0.00 3.79 2.41 3.51 0.00

1893 1.35 12.81 1.79 1.57 0.86 1.46 0.45 3.22 0.18 2.09 6.85 2.58 35.21

1894 2.21 6.88 1.09 3.07 0.81 1.34 1.17 2.25 1.69 1.28 3.58 3.57 29.14

1895 6.86 2.56 1.41 0.56 1.59 0.65 2.79 6.10 3.39 1.88 1.93 5.85 35.57

1896 3.53 2.34 4.73 0.76 0.00 0.00 3.07 3.45 1.63 0,61 3.14 6.85 30.11

1897 1.89 0.83 1.75 0.93 3.01 2.56 0.71 1.49 5.87 4.96 2.81 3.65 30.46

1898 0.23 7.92 9.22 0.39 0.32 5.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1905 0.00 0.00 2.00 2.05 2.20 0.60 1.30 0.00 0.00 0.00 0.51 8.50 0.00

1906 4.75 0.60 1.99 2.83 0.50 0.05 0.00 0.11 1.16 0.00 3.50 8.60 0.00

1911 0.00 0.00 0.00 0.00 0.00 0.88 1.43 0.99 3.61 1.22 0.41 1.32 0.00

1912 0.78 3.09 1.24 2.68 0.45 1.15 1.84 1.03 0.74 0.81 0.39 0.64 14.84

1913 0.88 1.72 5.34 0.16 6.98 2.45 0.42 4.11 0.61 4.34 2.03 2.39 31.43

1914 5.17 3.36 7.92 4.16 5.94 1.04 1.85 4.32 5.40 0.74 0.00 6.80 46.70

1915 0.54 1.54 3.60 3.11 3.07 5.06 1.23 0.70 2.23 1.61 4.95 7.42 35.06

1916 22.28 2.81 5.70 3.61 4.62 0.43 1.82 0.81 0.65 3.04 2.47 4.04 52.28

1917 6.31 2.42 2.83 7.97 6.99 1.36 1.88 2.30 4.62 4.13 2.76 4.13 47.70

1918 4.77 5.96 541 10.80 1.83 1.41 0.68 2.74 1.40 0.43 4.03 1.84 41.30

1919 0.34 0.20 3.00 2.54 3.47 3.57 0.75 1.33 0.99 1.50 2.75 1.76 22.20

1920 6.32 0.68 0.89 2.32 2.43 0.92 1.88 1.43 0.67 2.94 0.94 9.94 31.36

1921 5.78 1.91 1.57 2.60 4.65 0.78 1.10 0.63 1.81 4.20 3.86 7.49 36.38

1922 1.88 2.00 2.02 1.66 0.49 1.61 1.69 3.08 3.75 5.14 1.69 0.21 25.22

1923 11.02 5.34 4.69 9.41 0.99 2.89 1.36 1.62 1.99 0.95 0.99 6.65 47.90

1924 0.90 1.75 2.47 8.20 4.55 1.93 0.44 1.65 2.33 1.16 9.75 0.00

1925 2.35 2.28 2.15 1.75 0.45 0.68 3.16 0.80 1.33 4.45 0.75 8.21 28.36

1926 2.50 1.11 2.81 1.53 1.24 6.30 2.69 3.85 4.44 4.99 0.79 0.88 33.13

1927 5.19 4.53 4.09 13.79 4.75 2.41 0.19 1.10 2.30 0.75 2.03 14.79 55.92

1928 1.13 2.50 1.51 3.48 1.87 0.48 1.20 0.72 1.41 147 0.99 0.25 17.01

1929 6.23 4.87 2.74 2.37 1.83 0.06 1.34 2.15 2.08 3.43 10.80 7.97 45.87

1930 7.72 1.39 3.88 0.81 0.48 0.30 1.34 2.20 4.87 5.12 4.28 0.70 33.09

1931 0.51 0.25 3.06 2.92 4.04 0.95 0.99 4.16 4.93 4.57 1.58 1.12 29.08

1932 1.48 11.82 2.60 1.12 0.21 1.91 0.98 0.76 3.13 0.73 1.14 4.54 30.42

1933 1.25 740 3.15 1.30 0.79 0.87 0.45 1.10 0.28 0.25 1.26 7.83 25.93

1934 2.75 4.77 1.98 2.36 2.47 2.58 0.48 4.72 5.42 3.75 2.20 1.80 35.28

1935 4.24 1.15 7.60 0.22 2.15 2.01 1.08 3.79 4.82 5.06 3.62 0.76 36.50

1936 2.56 4.88 3.20 6.42 1.25 1.70 0.72 0.45 3.97 10.15 3.08 0.55 36.93

1937 6.77 11.42 13.85 1.02 2.97 0.45 1.50 2.39 0.77 4.98 0.17 6.18 52.47

1938 2.08 6.03 6.19 6.01 7.63 1.44 0.98 4.05 0.27 2.87 0.27 1.73 39.551939 4.13 2.01 548 7.37 1.58 1.69 0.20 0.98 2.14 8.59 1.28 3.21 38.66

1940 8.08 2.10 4.12 2.39 7.08 1.49 0.72 0.91 4.45 7.81 7.84 6.61 53.60

1941 1.66 1.50 0.85 0.65 2.17 041 1.12 1.17 0.60 7.22 1.20 0.40 18.95

1942 0.81 1.77 4.08 1.34 1.49 1.96 5.43 3.40 1.90 3.57 2.74 5.98 34.47

1943 18.37 2.66 2.43 1.96 10.82 0.92 0.99 1.13 0.76 3.86 0.11 2.91 46.92

1944 0.21 4.72 13.50 0.73 0.81 2.21 0.65 0.20 0.57 1.87 1.10 2.05 28.62

1945 0.27 0.92 1.42 20.00 1.93 0.43 2.76 0.43 1.08 1.08 1.69 4.92 36.931946 14.59 1.38 0.00 0.50 0.76 0.75 2.35 1.51 1.12 3.58 3.39 7.40 37.33

1947 1.25 1.90 4.43 1.37 2.08 0.24 1.02 2.64 4.77 0.74 2.96 1.17 24.57

1948 6.45 8.43 1.21 6.56 1.43 7.68 1.21 2.95 4.62 0.00 3.14 0.32 44.20

1949 11.53 3.77 0.85 0.53 0.94 2.60 0.59 0.47 0.10 0.31 1.43 1.87 24.99

1950 10.62 1.31 0.55 10.77 1.34 0.75 0.52 2.53 1.93 0.73 12.18 8.46 51.69

1951 1.67 7.70 22.12 2.48 2.42 1.02 1.30 1.51 1.87 4.98 0.61 3.60 51.28

1952 7.24 0.89 2.16 0.08 1.52 1.12 1.76 0.20 0.94 4.38 2.62 1.67 24.58

1953 2.27 1.29 2.41 1.05 2.67 0.33 0.30 0.27 0.05 0.85 0.42 3.42 15.33

1954 0.97 5.17 5.34 2.08 0.97 0.87 4.87 0.76 0.26 2.44 3.30 7.22 34.25

1955 4.72 6.38 3.81 0.66 0.73 0.47 0.90 2.48 4.16 0.37 13.18 12.38 50.24

1956 8.93 3.28 0.64 3.81 1.49 0.42 2.41 3.73 4.74 2.94 3.20 4.20 39.79

1957 6.00 1.66 0.61 2.85 3.60 0.14 0.59 2.92 1.03 GAS 8.51 4.27 32.63

1958 0.63 1.92 11.19 0.40 1.82 1.05 2.10 2.53 1.25 4.39 0.31 5.64 33.23

1959 12.39 4.06 0.17 1.33 1.69 0.51 0.69 0.57 3.42 0.77 5.32 1.05 31.97

1960 0.91 0.84 5.00 043 11.68 2.39 1.18 1.19 2.34 1.99 0.61 3.89 32.45

1961 6.72 1.98 0.63 2.78 1.07 1.14 1.54 0.62 0.97 7.12 9.93 1.31 35.81

1962 7.57 4.17 13.24 3.51 4.95 0.10 0.63 0.74 0.33 1.93 0.16 4.07 41.40

1963 16.32 2.11 9.98 7.23 7.46 1.23 1.45 1.39 1.50 4.00 0.70 4.91 58.281964 1.98 0.29 6.34 1.35 0.55 0.22 1.73. 1.35 1.18 2,27 4.56 7.39 29.21

1965 5.28 5.87 1.85 5.33 7.79 0.51 1.30 4.17 4.59 5.93 17.76 1.17 61.55

1966 2.35 5.24 2.44 0.94 3.72 0.41 0.67 1.79 2.91 2.11 6.01 3.51 32.10

1967 7.04 2.33 10.22 3.96 9.02 2.35 7.34 2.58 2.99 2.34 5.31 9.80 65.281968 6.99 8.15 6.58 12.73 2.59 0.71 1.26 2.34 9.17 4.18 4.36 8.08 67.14

1969 10.22 1.86 3.84 0.80 0.48 1.07 1.38 0.26 2.26 1.03 0.81 5.85 29.86

1970 5.58 1.77 0.38 2.79 0.78 1.85 1.30 2.28 0.24 1.56 11.58 0.56 30.67

1971 16.12 1.69 4.18 1.13 1.29 0.16 0.34 0.31 049 0.65 048 0.71 27.55

1972 4.97 8.28 5.13 1.81 0.47 1.82 0.26 0.56 1.81 1.76 0.29 3.02 30.18

1973 2.46 0.39 0.47 0.71 2.73 0.23 0.13 2.13 1.27 1.61 8.60 7.26 27.99

1974 10.22 2.76 5.93 1.97 1.58 3.64 3.61 0.49 8.59 2.67 3.07 0.52 45.05

1975 8.94 6.51 1.84 1.47 0.03 0.09 0.70 0.13 0.98 0.32 2.15 0.95 24.11

A-2

Page 148: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

PANEND_DATE EVAPORATION (inches)31-Jan-57 1.7328-Feb-57 2.3531-Mar-57 2.4530-Apr-57 2.5831-May-57 2.1830-Jun-57 2.0731-Jul-57 2.6431-Aug-57 2.3530-Sep-57 2.1131-Oct-57 2.6730-Nov-57 1.0031-Dec-57 1.5031-Jan-58 2.6028-Feb-58 1.3131-Mar-58 2.6530-Apr-58 2.7031-May-58 1.9530-Jun-58 2.0731-Jul-58 5.19

A-S

Page 149: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

LAN

AI

PAN

EV

APO

RA

TIO

ND

ATA

-ST

A.

NO

68

—M

onth

lyav

erag

e=

2.3

dat

e(p

erio

d1/

57to

6/58

)

mon

thly

6 5 4-

U) a) .c

-

C)

C

2-

1— 0

Page 150: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

FDEND_DATE inches31-Jul-55 1.0531-Aug-55 1.8330-Sep-55 0.0031-Oct-55 1.0230-Nov-55 3.5131-Dec-55 3.2831-Jan-56 2.8429-Feb-56 4.5431-Mar-56 1.9430-Apr-56 1.2831-May-56 2.4430-Jun-56 3.9331-Jul-56 1.2431-Aug-56 4.0730-Sep-56 0.4231-Oct-56 1.4930-Nov-56 0.8231-Dec-56 3.4531-Jan-57 3.9228-Feb-57 1.3831-Mar-57 0.4230-Apr-57 1.4031-May-57 1.8930-Jun-57 0.0631-Jul-57 2.7331-Aug-57 6.4730-Sep-57 2.5931-Oct-57 1.3030-Nov-57 5.5531-Dec-57 6.1431-Jan-58 2.0728-Feb-58 1.7331-Mar-58 3.5830-Apr-58 1.1031-May-58 5.0930-Jun-58 2.7631-Jul-58 1.39

A-S

Page 151: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

--r

LAN

AI

FOG

DR

IPST

UD

Y

10-

9 8--

7-

6

0 a) c C.)

C

4 3

——

Mon

thly

Ave

rage

=2.

52

-4-

-

1— 0hU

llII

!’R

lU

___

date

(per

iod

7/55

to7/

58)

___

mon

thly

Page 152: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

APPENDIX B

Page 153: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Recharge Parameters for Steady-State GIS, in mgd

LJlHr1iHtf

FD RF DRO AF R GISRJan 14.75 325.14 -29.32 -121.66 188.91 189.29Feb 19.31 202.36 -18.36 -111.92 91.39 92.1Mar 3.31 219.73 -19.88 -109.52 93.64 93.94Apr 6.91 175.88 -15.96 -101.BB 65.15 65.16May 3.88 108.05 -9.75 -78.92 23.26 23.23Jun 2.46 49.53 -4.46 -42.89 4.64 5.3Jul 4.72 57.84 -5.19 48.15 9.22 9.43Aug 3.21 49.33 -4.43 42.96 5.15 5.76Sep 3.45 92.20 -8.29 -70.41 16.95 16.65Oct 3.92 138.15 -12.49 -90.05 39.53 39.34Nov 13.54 187.33 -16.97 -101.98 81.92 78.21Dec 27.00 220,40 -19.88 -107.96 119.56 120.81

Average 8.87 152.16 -13.75 -85.68 61.61 61.60

Variation of Recharge Parwnet.rs

I ‘eQ

a,

- —

— El —V

.% Fib - — — lay .A. — A4 t Ni,

EFO LJ OAO.AE

Total Monthly R.charg.-4

00

ISO

I

Fib — AlAn... . — N’ tic

P

B-i

Page 154: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

APPENDIX C

Page 155: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

C-,

oo

00

0

o0

00

oo

0

o0

00

0

w00

°

0.

0

0

&0

o0

000

00

00

00

00

0’O

.0

00

00

00

0

00

00

00

00000000.0,

00

00

00

00

00

00

00

0

00

00

00

00

00

00

00

00

00

00

00

00

0000000000

0000000000000000000000000O

0000000

000O

0000000000000000000000000

S°—

°°°°°°°°°°°°°°°°°°°°°°°°°°

w0

00

00

00

00

00

00

00

00

00

00

00

00

41)0000

0000

0000

00

00

00

00

00

0

Z°”

00

00

00

00

00

00

00

00

00

0

—0

00

00

00

00

00

00

00

00

30000000000000

0—

0

Page 156: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

—0

—0

—0

—0

—0

—0

—0

0

—0

00

—0

00

—0

00

—0

00

—0

00

0

C.

C)

0—

0—

0-0

—000

00

—0—

0—

0-

0

—00

0—

0

—a0

0—

0

—0

—0

--

0—

0

—0

—0—

0—

0

—0

--a—

a—

0

—0

00

—0

00

0—

00

00

00

0

000000000

—00000000

—0

—0

00

00

0

—0

—0

—0000

—0

—0

—0

000

‘0

0-0--

00

—0

0—

0‘-00

0’0’0.00

—0

0-

000

—0

0—

0—

00

0000

00

00

00

00

00

00

00c

Page 157: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

c-3

W+IWW.W0X0LWW+Wfl

WCIW+QtOtSOQ3IW4IW.°t3I£&tX£O+0000W+toCL£OtI

£Q+tOCII£C.IW+00G3IW.OII£oIoIWCItG+OItO+

EO+°CCWW+°COIWtOWDOVOCOEO.°£O44tO+00003I£O+OCO+°OI£O+°CItO+£O+°GOI£O+°CCWIW+°tW4QICOC

£O+°I£O+00000iW+Ito°OOICCCI£CCL£CCI£o+OOXOICCCIECC

to.°ootW+00000Ito+W+OOEC+OOXOICCCLzo.0XcICCCICCCIW+°CCCO4

W+OCICCC£O+cCC4YIEQ.OCCCICCCCCCLCCCICCCCCCLCCCICCCICUC4CCCICCCI

to.XO3IW+OCCCCICCCICo.XOOICCCCCCICCCICCCCCC

£G4OIEOtICC*IW+tICCSLtOtItC+ICC+SLCCtICC+I

CCCICCCItotCCCICCCICCtXCOLCCCICCCICCCICCCI

CUtCO+OICCCLCCCICCCICCCt

CCCICCCCOtCCCICCCLCC+SCCCCCICCCICCCICCCI

CC+OOCCCLCCCICC+°ZCCCCC.VOCC+aCCCO.°COLCCC

CCCLCC+°CCCOLCCCICCCICCCICC+Q0000ICC+OOOIW+°CCOOLCC40C00ICCCI£O+0000ICCCICCCIflICCCICOt

CC+00000IEC+00000ICCCICC+WYICCCICO+°ODCOILC+°CCCCICC+OOCCCICCCICCCI

CO+OCCIWtOCThCCCICC+SOOICOCOCI£O+aOCCCLCC+SCXCtCC+OCCICC+CXOICO+°tI

CC+000cDCICC+°OICCCLCCCICCCICOflOOC*DICCCICCCICCCICCCICCCI£C.OCCCCLCCCLCCCCCC

CCCLCCCLCCCCCCLCCCLW+SOCCOCCCICCCICCCICCC

CCC3ICCOCCOICCCCCCLCCCLCCCICCCCCCLCCCICC+I

CCCICCCICCCICC+°CCOLCCCICCCLCCCICC+CCWICCCICCCICCCI£CCICCCCC.wrICCCICCC

CCCICC+XCOICCCCCCICCCCC..CCCCICCCCCCICCC

CCCICCCCOttotCCCICCCCCCICCCICCCCC+S3XYI

LOnCODOL£0°0000I£O+LCC+0000ICC.’OICC+OLCCt4ICC+CICCtICC+°CCODI

CC+°0000L£C+QOXO1CCCICC+OCOICCCLCCCI

CC+0000DtW+000COICC+4ZOnCCCICCCICC+’CCCOLCC+e000YICC+OCThCCCLCCCL

CC+0000ZL£C+°COICCCICCCICCCICC+OC000IW+°CCCO1CC+°CCWICCCLCC+°I

CC+e0000LCC+OtxDOOtCC+aX*0CC+0C’JOLCC+OICO+00000IECt9CCCLCO+°GCCCitC4OOLtO+°OXOICC+°OOICC+sCICC+aLCC+000DCILC+OcCCOICC+°I

CC4QICC+G0000ICOl-LCOlICCIOGCcOICC’ICC+°ICC+LCC4OcI£C+I

CCCLCCCICCCLCCCICCCLCCCLCC+GDOOICCCICCCICCCL

£CCLCCCICCCICCCLCC+°CXOLCCCCWLCCCLW.flCCCICCCICCCICC+CLCCCICCCICOCYICCCI

CC+OICC+°CICCICC+SLCOL£CiCCOOICC’°CCItCiICC*OLCC+°L

CC+?LCCLW4DOICCLW+°ICC+SICC”CCGZICC+ICCL£C4I

CCCICC+CCODLCCCICCCICCCLCOCCCCICCCLCCCICCCLCCCICCCLCo.oICCCICCCLCCCICCCI

CCCLCC+OCCCICCCICC+°CCCOtCCCICC+OCCOOICC+000CCLCCCICC+#CO

CC+°COLCC+00000I£C’4YICCn0000ICCCICCCCC+°CCCCItC+°OXOtCC.O0ICCCI

£O+00000LCC+°CCCOItotCC+000WLCC+OCCOOLCC+000CClCC+°QDGYICC+SODOIt000CCICCCCC+OICCICC+°ICC°0ICC.°0ItC+°OI

CC4OICC+’CWXOICC+ICU°OICC.e0ICC+ICCttCCCCICCICC.-0000ICC+°I

CC+GCLCCCICCCICCCICCCICCCICCCLCC.0000YICCCICCCI

CCCLCC+OLCCCLCCCICCCLCCCICCCLCC+)LCCCICCCL

CCCICCCICCC•ICCCICC.CUCCICCCI

tC+tICCCICC.4C0)3ICCCLCC+OCCCCICCttICCICCSICCnOXCICO+°CCCCI

CC+CLCC+0000ICC.LCC+0ICC+LCOVCCOLCCflXOIEC+00vLCC+ICCt#I

CCCICCCICCCICCCLCCCLCCn0000LCCCICCCLCCCICC+°ICCCICC.UC000ICCCICCICCCICCCI

CC+OLtC+QICOICC+0003IC04Q0000ICCI£C+0300LCCI9CLOICC+I

tC+CCLCC+00000LteflICC4CICC49CCCCICC’°I£C+OOICC+S0000ICC.°OXOICC+I

CC-°0CICC+OCCCCICC.ICOtt0ICQ+°ODCCICC+°CICC+00000ICC+00000ICCtCICC+LCI

CCCItOCThCCCICCCICCCICCCI

CC+00000ICCCICCCICCCICCCLCCCICCCICCCICCCICCCI

CC4°CCOCICC+00000ICC+ICCnCC0OICO+°ICCnCCCOICC+OICO+°CICC’°OOCOICC+°CCCCI

CCCICC+0000ICCCICCCICCCICCCICCCICCCICCCICCCIWtOICC+L€CnOLCCiCICCflICCI

CC+QLCCtSOICC’-ICCLCC-OICC.9LCC+0IC0-*ICC+0LCClL

CC.’CICCWOOICCLCCnCCCCLCCtOOICC+CIXCLCC+’ICCCICC+4CODOICCtL

CCI4CDCCLCCLCCCICC400CCICC’(O1COICCItCICCCICCCICO+°OI

CCCICCCLCCCICCCICCCICCCI

CCCLCCCLCCCLCCCLCCCICCCLCCCICCCICO.0LCCCI

CC+OLCC+ICCtICC+°LCC+QICOtICC.4CCCCLCC+°ICC+CICC+I

CCCLCCCICCCLCCCICCCLCCCICCCLCCCLCCCICCCICCCICCCICCCICCCLCCCICCCI

CC°CCWICU00000ICC+0X0ICCtOODCCICC+oOICC+ICCtOCCCLCC+OICC1OCCOOICC+°CI

CC+°ICC.ICC’CCOCICC+°CCCCLCC+°ICC+°CICCt°ICC4QII

CCCICCCICCCICCCICCCICCCICCCICCCLCCCICCCICCtSCGcOLCC+LCCt5ICC+LcOttCICC+000CI

CC+°CLCCO00CCL£C+aGCC+LCC’ItC+ICC+cICCICC*LCCt0I

CCCCCCICOtQCCCCLCCCICC.1LCC+’O(ICC’LCC3000CICCICCC000IW.’COI

CCCLCCCLCCCICCCLCCCICCCICCCICCCICCCLCCCI

CC4ICC.LtOt’ICC+’ICC.eCICOt’I

EC+ICC+ICOICC*CCcCIECsCLCOeQItCi4VcICC4Itt.ICCtII

ICC”L£C’ODDICCCCCCLCC•LtO.ocoLCC+QOCCCICCOXCICCICC”aXOI

CC°ICC’ICC+XICC*IIC0tLCCICC.°ICC+°ICC’OCGDICC.°I(.11301)0CCLLI

IUOIIOVC000tC

La&s.lMCJV(I3OI)C_CAdo9ow.AxL(Lfr3&)I0

VI3SCOVd)0ULNCQC323IN3)43O1flS‘WV]

Page 158: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

‘-3

CCCLCCCICCCLW°0000LCCCLCC+CC+00000LCCCLW+’0iCCCI

CCCLCCO00DLCCCLWt00034CCCLCCCLW+0LCCCICC+8OLCCCI

CCCLCCCICCCLCCC1CCCICCCICC+00000CCCLCCCLCCCICCCLCCCIt0+°aCCCLCCCLCCCI

CCCCCCCCCLC0.0000OCCCCCCW+*OCCCW+8OCWICCC

CC80000ICC+0LCC4L£04000001CC+LCC.SL£04000001CC’IW+ICC+sL

CCCICCCLCCCLCCCICCCLCCCLCCCICC+°0CLCCCICCCL

CCCLCCCICC+00000ICCCLCC+80X0CC+G0

CCCICC+°ODOYLCCCLC000J0LCCCICCCLCCCICCCLWC1CCCL

£Ct4I00+000001CCCI00.000001CC+4ICC+ICC+0VICC+°LCC+ICC+0I

CCi4ICC+°0000IICOi00000L£0+0LCC+ 0ICC-’OOCCOL£C-’OLCC+IC0+00I

CC+8cLCC+80IE0+00000,I£C-+0OIEO-e4IC0+0

CC00D00l£04000001C040IC0+°LC0+1CC+°0I£0+00000ICC+0LCC+00ICC+00I

00.000001.00+OO00I00403001.004000001CC+OOXOICC+0I£0+00000lCC+°0CC0000LCC+0C’DCeI

CC-’cocoICC-°0000LCC*°0CC+0000OW+8CG+O£0400000CC+°ICC+000Y1C0+

CC+’ICC+40000LCC+00000ICC+00LCC1-0QL£0-+°L

£0400030ICC+00ICC-+CC+000C0ICC+°LCC+°0300LCC+°0000LCC+0OICC+°OLE0+0

00+000001OQ+00000L30+0000L03+00000100+00300100+00000100+00003100+000CCLCC+0LCC+000DOL

£0+00000ICC+00LCC+0LCC+°0ICC+00LE0+0cVOOL£C+000WLCC+°0LW+0LCC+°L

CO+°L£0+LCC+00000L£Q+00I004000001C0+00000L

CC+80000lCC+000)YLCCCLCC+OOXOtCCCL£04003001CCCICCCLW4OICCCL

00*003OOL00+00000100+80000100+000003100t003003L00+00000100+000001.00+00000100+30tCC+°0L

CCC4CC+00000I£C+40000L£04000001COCLCCCICCCLCC+00ThCCCICC+00000L

CCCLCC+40030I£04000001CC+4L£04000031CC+000YL

CC+01CCCLCCCICCCICCCICCCIC0+00000LCCCICCCICCCL

00+00000100+00300100440000L0040000100+4W00100+03L00+800O3L00+400flDLW+8C030LCC+°OXOL

£04000001CC0000ICCCLCCCICCCICCCLC00C03ICCCLCCCIC0+OCCCOL

CCCLCC+0LCC+°0000LCCCLCCCICCCI

CCCLCCCICCCLCCCICCCLCCCLCCCICCCLCCCLCCCI00+00000L00+0Y00L00+80000100400000100+80000100+03CCL%+00OJI00+00000100.000001CCCI

£01000001CC+0ICC+40003LCC+00000LCCLCC+8ICC+0ICC+ICC1C0+0I

£0400030ICCCICCCICCCLCC40CWXLCCCI

£04000001CCCLCCCLCCCLCCCLCCCLCCCLCCCLCCCLCCCI

0000300I00+00000103+00000L00+00000100+00000L00.00000100+00000100+000001.00+00001CC+°iL

CC.40000LW+00000ICC+4OICC+00I£0.LCC.I£C+00000L£0”ICC+ICC+°0L

£C+°LC0+0CLCC+00000ICC40CICC+°ICC+0L

Wi00000I£04000001CC+403003ICC+00LCC+0ICC+4ICC+00000LCC-l03ICC+0I£C+00L

£0100000100+00000100+00300100+00000100+00000L00+°0000L00+00000100+00000100+000001CC+0CL

£0*00000ICC00000ICC+L£C+00IC0+0LCC+00LCC+00000ICC+0I£C00ICC+00I

CC+°IW+OOXJOLC0+00000lCO+00ICC+°0ICC+0L

CC+00000LCC+°3LCCCLCCCLCCCLCC+00D00LCC+00000ICCCICCCICC+00000I

CC+00ICC+00000LCC+°LQ0+000QQL00+00000100+000001£0+0ICC+°C000I00+000001CC+ 0L

£01000001C0+00000LCC+°LCC+°0LCC+0CLCC+°0000LC0+00000ICC+°0100+00LCC+ 00000I

CCCLCCCLCC+00ICC+OOCCTICC+00CLCCCI

£04000001£04000001CC4-0LCC+00000ICC+°L00+0003001£04003001CC+°ICC+0LCC+000WI

CC+00000I£04000001£04000001£C+0YICC+°L£040003001C0+00LC0+00ICC+0I£0+00L

CC+00LCC,0LCC+ 0ICC+’CICC40ICC+0OICO+0IC0+OICC+OOX)0IC0+°0l

CCCLCCCICCCI£0+0030LCCCLCCCI

CC+°0ILt+’0300ICC+0IC0+0I£0ICC+0ICC+0IC0+0LWLCC-+4I

CCCICCCICCCICCCLCCCICC+80000LCCCICC+0000YLCCCLCCCL

CC0000ICC+80000ICC.0LCC.0IC0+’ICC+ICC+°0300ICC-+0LCC400IC0+OI

CCCICCCICCCLCCCLCC+00000LCC+00000I

CCCLCCCICCCLCCCICCCICCCICCCICCCLCCCLCCCI

CCt00000LCC4°CCCOICC+0LCC+°0000LC0+00L£04000001£04000001CCCL£04000001CCCICCCLCCCICCCLCCCICCCL£04000001CCCLCC+0CrYLCCCLCCCI

CCCLCCCICCCICCCLCCCICCCI

CCCICCCICCCLCCCICCCLCCCICCCICCCICCCICCCICo+00ICC+ 00000LCC+LCC+00LCC+’LCC+QLCC+’0000I£C+°LCC+0LCC+OV00I

CCCICCCLCCCLCC+00000LCCCLCCCLCCCLCCCLCCCLCCCL

CCCLCCCLCCCLCC+000XLCCt0QX0LCCCI

CC+80000ICC+00000LCC+00003LCC4-00000LCC+000COLCC+’LCC+000®LCC+000%LCC+00000LE040I

£0400IW00000IC0+ICC+0L£C+°LCC+°0000ICC+°0LCC+00LCC+000D0ICC+003003I

CCCI£04000001CCCICC+ 00000LCCCLCCCLCCCLCCCLCCCLCCCI

CC+LCC’°CODOLCC-+00000L£C+0LCC+00LCC+00000I

CC+00300ICC+°0ICC+00003IC0+00000ICC+40000LCC+0L£04003001CC+00LCC+0ICC+0CI

£04000001£04000001C0.0ICC+ 00003LCC+°ICC+ 00LCC+00000LCC+00LCC400003LCC400030L

CC0003L£0.00ICC.°IC0+00000LCC+0LCC+0LCC4 00000LCC+0LCC+40LEC+000WL£C+0lCC+°CCWLCC+00LCC-i0LCC.fl00030LCC+00000L

CC.00ICC+00000ICC+°ICCt°LCC+0IC0+0ICC+00000LCC+’IW+00IC0+0L

£04003001CC+00000ICC+ICC+OIE04ICC+LCCICC+0LW+0LCC+°I

CC+003007LW+°0030LCCCICC+0ICC. 00LCC+0LCC+80000ICC+00I00+000001C0+0CICCCLCCCICCCLCCCICCCICCCL

CC+00ICC0ICC.0ICC+00LCC+0LCCI0ICC-+8ICC+00300IW°I£04000301

CC+00000ICC+0ICC00030IC0+800030LCC+OVICCt00ICC+01C0+0IW’00000ICC+00000

CC+00000L£0+O0LCCt0ICC+00I£C+0LCC-’ICC+0IC0+’ICC’IC0+0I

CC+0IC0t00ICC00000ICC+8L£C+003031CC+0I

£000ICC+0LCCi0IC0+00300L£04000001£04000001£0+0ICC+’ICC’0LC0+°I

£0CI£0+00LCC4000003ICC+O0LCC.0ICC00ICC+00000ICC+’CC00ICC°0000ICC•’0003

£04000001CC+0C000LCCflICC+’ODOYLCCCLC0+ICC+00ICC+ 00000LCC400LCOOOCCO

CCCLCCCICCCICCCLCCCLCCCI

£0400000IWLW+0IC0+0ICC.00000LCC+8ICC400ICC+’ICC0ICC+’I

£0+00ICC+0®00LCCt°IC0•0ICC+0LCC+00300LCC+’I£C,00ICC+IC0+0030I

CCi0000IC0+’0300IC0+0ICC+°LCO+0ICC+00IC0+’ICC+0ICC• 0ICC+°0I

CC+OOCCOLCCt0CLCCCICC+00C00LCC.03ICCCL

CC.40X0I£04000001C0.ICC,0L£O+00000I£0+IC0+00000ICQ’ICC+0ICC+°It0+’0LCC+’LCC4-0I£C+0LCCtL£04000031C0t’OXOICC+°LW+00LI

£0.00000ICC+0I£O8ICC.GLtDC+0ICC+0300ICC+00000IWt0IC0t0ICC-+’0I

Page 159: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

freTh-aItO+.LtO.sIItO+0000DI

ICO+00000IItG+OOItOtf0000IW+OOICO+’OItO+’OI£O+SCOICO+OI

w.OGxoIco.ooooai£Q-+QItO+oOaIW+°ItO+COIW+.Q,I£OVOID43I£O+°I

£OflCCOOLWflccOZLtt.-OI£O..VcOOI£C+.tOOIEC+IL£O+’GtW+aI£O+°IW+°I

WWLtO+WI£U+I£D+OOI£O+*CGCOIW+°CVI

WGO3OIEOOIWItICIW+QGLWI£O+0X0LWCILOCIWCL

I£O.SIW.Iw.cocItO+SIW’IW’II£GtIIco.°oI

W+GOIW-’OXOIW+OItO.4IW’ODWI£OCCOI£o+.ocoaiD+QI£OIwnVOccI

wcictcIwcIW+OIco.acccoI£c4aoI

W+’COQOI£O+’QCOYItOtOXaIco..ccI£+tOI£O+QOXItO.O3IW+OX1

tO+OOcWICO4CIOIW.IOXOI£OtOI£Q+°ItO+S0000ItO+’OOItO+IODOOIW+OO1.

w..ocvoi£O+co3oIW.oIcoalW+GI£O.4OXOIco+oxoLtoaiconocyjo£O.Oco

CI£O#OCWILOCIW.’coICOCItO4OOI

conaco.oocccito.Icc..occoLco..iw..ccooIIttOItO.OI£Ot°I

ct’DI+°OLWCILOCICIWCI£O+IOILOC4£O+bOLca4ScI

co.aO3ItO’GOL£O.OIW+ItOtXCI£O+OI£OtOICOflOQI£Ot

CCCIWCLCCCIWtCOICCCICCCI

tD+ICO*cILoamILOICO.°LLUCICO.SCICO+OICC+OQII

CCCCCOICO+SILoICOiUOICC.OILO.9OICC’CILOtICO+OICOOI

LOt00000ICC,?cCcOItICOic0000lLO.OCccOILOtOcOODICG+0Cc0ItOttcICO*9CI£COI

LO’BOIW+ICO.QOICO+9ILOiG0000lCO+#I

LoiOCOICO+°ILo.4ICOtOC000lCOtILO.C000ICO’OICOflOXCICO40OICO+C0C0I

CC.evOILO+OLCC.ILO4GOICC.’ItOILO’CICO+LCO.QCILC”OI

W+’ILO*QICC.4ILO.°GDICC+IWILOt9XCLO+QOXQCO+’LOtSc

CO•’NflLO’I£OflOXCL0+XOIcG.aOXCItOXI

W.*OXOIL0GXCIWtLtO+C000ItO+3£00XCICC.CCcoIW+COIWC0O3ICO”OI

ItGt’VILOiItO’ILO*IWILt.ItO+IILOt’ICOiI

W+0W)iCGe’G)XILoCICOiCOXOICO.ICO.’GXCICC.CQ)3ICOflG)ZICOCOILOQI

CCCICCCICCCICCCIEO*OCICCt°CI

CQ+’OXOICO.SCCIW.XCICC.OICOI4C0WIW+CIC000Ci3ICO+’CILOtt0000ICCOXCI

CCCICCCICCCICCCICCCICCCICCCICCCICCCICCCI

tO.Ito+vc£WttICOflOICC*IWICOttWOOICOttLODOlCCCICC”CCCI

CCCICCttCGXICCCOOCflCCCLCCCICODL

Page 160: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

LANALRCH RECHARGE PACK&GE1 01 0

16 D.n83410EI2 4) 0

0.00006+000.0E.00000006+030.91706+010.00006+00O.€i-O00.0E+000.82906+01o.oE+cO0.c+0D0.c.000.72206.010. +030o6+030 0000€ .030. 7670€ +010.11806+01

0.c.c.D O.+00 0.0D 0 C+030.71406+01 0.77106+01 0+01 067706+010.00006+00 0..00 0.+03 O.C0

O.XtXjC+6O 0+OO O.t03 O.+030.72206+01 073906+01 0.72+01 0.71006+01

o..cC 0.-c0 0.C+00 O..03

0.C’00 0.E403 0.C-.-03 0.E+000.76606+01 O.75906.0I 0.73406401 0.72206+01

o.c+o o.+oo o..oo

0.O6+00 0.E+03 0.E+0O 0.06+030.65306+01 0.73406+01 0.1E+02 0.64106+010.10406+01 0.0€+03 0.+00 o.co

0.€+00 0.C+03 0.+00 0.C+0D0.40206+01 0.95406+01 0.15266+02 0.10096+020.33706+01 0C+-00 0.4-00 0 6+03

0.00006.03 0 00006.00 0 6+03 0 C.03 0.0E+C0 0 €.W 0.D)3X.03 0 6.03 O.C.CO OC0+CC

000306.00 000006+03 0 E+03 000006.00 0.EO0 0 C.w 000006.03 0E+00 0.C +00 0 +03

0 C+03 000306.02 O.E .00 0.QE+03 0.E+00 O.0E +03 0 €+03 0 .00 0 +03 0 +03

0.00036+00 000006+03 0.OOXE+00 0E+03 0.00+03 0.E.03000006+02 0.00006+03 0.00006+00 0E+03 0.E+00 O.E+00 0.0200€+00 0 +03 0.6.03 0.€+03

003036+93 0 OE+00 000006+00 0.E+03 o.1€.0i 0€+03 000036.03 0 .03 0.0t03 000036+00

0.E.00 0 E+C0 003006+00 0.E+03 0.0+O0 0 E+Cl3 O.C+03 0 .0) 0 +0G 0 +00

0E.00 0E.00 003006+03 0C.03 0.E+00 0.00306+000 03006 *00 0 0€00 0 C+C0 0 E€0 0.00036.03 0.C+00 0 E.00 0 +C0 0..00 000006+03

0.0020E-00 0E+G3 000006+00 0.14606.01 0.62036,01 011506+01 0.43706.01 0.25006+01 0.1990(401 O2cXrjE-01

0.00006.00 0.E+03 0.€+00 aoE+03 0.00006,00 0.00006+00 0.00006.00 0.E+03 0.+03 0 0t+00

0.00006+03 êOO00E+C0 0.0006+00 06.03 0.00006+03 0.E+030.00006+03 0 €+C0 0.0006+03 00006+00 0.00036+0 0.0E+00 0.03006+00 0.E+C0 0.C+C0 0.03006+00

0.00006+00 0.18006+03 0.22306+01 0.76406.01 0.8750E+0l 0.67006+01 0.67506+01 080406+01 0.79706+01 0.75606+01

0.16906+01 0.00006+00 0.€+00 0.€.O0 0.0006+00 0.00006+00 0.€+t0 0.+03 0.00306+00

0.00006+00 0.03006+00 0.00006+00 0.00006+03 0.00006+000.00006+00 0.00006+00 0.00036+03 o.cxc,€a.o 0.OCtXjC+C0 0.0000(400 0.E+03 0.03(06+00 0.C+03

0.00006+03 0.21906+01 0.62906+01 0.85006+01 0.68306+01 0.64206+01 0.77706+01 0.7+01 0.73206+01

07520(4-0* 0.3270(401 0.0006+00 &03+C0 0,013006+00 0.03006+00 0.E+00 0.E+03 0.+03

0.0006+03 0.00006.-CO 0.0006+0 0.00006+03 0.0+C00.E+00 0.E+03 0.E+03 000036+00 0.C+000.00036+0 0.48406.01 0.83806+01 067406+01 0.87406+010.77406+01 0.67306+01 0.36906+01 0.40306-01 0.03006.03

0.C+CO 0.000(403 0.E+W 0..03 0.0+000(0006.00 0.00006+00 0.C+00 0 €+00 0.’00003006+00 0.59606+01 0.8590(401 0.8C+0l 0.79506+010.7660E+01 0.83506+01 0.89406+01 0.519(6.01 0703(6+0000006+00 0.00006+03 0.C+C0 0.-.V0 0.00006+000.0006.03 0.00306+00 0.00006+03 0.+CO 0.00006+000.1206+01 06130(401 0.67206.01 08160(401 07630(4010,8380€+0l 07560(4-01 0.87206+01 0 77406+01 0,51706+010.00036+03 0.02006+03 0.00006+03 0.0002E+03 0.00006+000.00006400 000006+03 0,00006+00 0.CXX€+C0 0.0006+000.31006+03 07250(401 0.91606+01 0.92206+01 0.77406+0105020(401 07220(401 0.7790(4-01 0.75+01 0.66306+010.00006+05 0.000(6.00 0.000(403 0 E+00 0,0006+000.00006+00 0.0006+00 Q.6+00 0.(.03 0,00036+000.0006*00 0.51306+01 0.9390(401 09920(401 0,74-406+010,77706+01 0.79206+01 0.8040(401 0.75706401 0.6770(4010.0006+00 0.00006+00 0.0006+03 0.0(1306+03 0.0+000.00(06+00 0.E+03 0.0006+00 0.C+03 0.i-030.E+00 04530(401 0.9630(401 0.9940(401 0.80506+010.71306+01 0.6006+01 0.70606+0* 0,737(6401 0.7510(4010.C’+X 0 E+00 0.00(6+0 0.E+00 0.00006+00.E+03 0.00006+03 0.00006+0 0.+03 0.E+000.€+03 0.2006-01 0.7740(401 010166+02 0.9550(4010. 1083E.’02 0.69106+01 083906+01 0.54806.01 06970(4010.00(136+00 0.E+0 0.00006.0 0..03 0,0006+000.00006.03 0.0006+03 0.03006+03 0 X+03 0.00306+030.00006+00 0.03036+03 0.49106+01 0.10346+02 0.9760(4-010.12266+02 0,54506+01 0.87906+01 0.83906.01 0.63106+010.00006+00 0.03006+00 0.00006+00 0.E+(m 0.00006+000.00006+03 0.00006+00 0.E+00 0.(+03 00000(4-000.00006+00 0.00006+00 0.13306+01 0.10366.02 0,97706+010.13966.02 0.70(06+01 0.2680(401 0.53506+01 0.80506+010.12006+00 0.0006+03 0.0006+00 0.E+03 0.0006+000.0006+00 0.00006+03 0.C.03 0.0006+03 0.flE€O0.03006.03 0.E+0O 0.30036-01 0.94606.01 0.10126+020.15926+02 062306+01 0.75+03 0.377(6+01 0.6870(4010.54506+01 0.31006+00 0.09006.03 0.(+00 0.3E+000.E+00 0.E’t00 0.+00 0.+CO 0.C+000.0006+00 0.OCOOE.00 0.E+00 0.81906.01 0.11056+020.4240(401 023506+01 016406+01 024206+01 0.76206-4010.7900(401 0.41406.01 0.E+03 0 +00 0.E+00.0006.03 0.6+0 0.(+03 0.+00 0.+CO0C+00 0.0006+00 0.00006+00 081706+01 0.10516+020,35606+01 0.15936+02 0.13656402 0.20706+01 016506+010.82506+01 0.7650(401 0.14206+01 0.+00 0.6+030,E+05 0.00306.00 0.00006+00 0.C+00 0.013(06+030.00006+03 0.6+03 0.59006+03 0.90606+01 0.88006+010.38706+01 0.58206+01 0.82006+01 0.5800(401 0.61106+010.86506+01 0.79406+01 0.66506+01 05706+03 0.00006+000.0006+03 0.0006+03 0.00006+00 0.00006+00 0.00036+030.00006+00 0.6+00 0.23206+01 0.10196+02 0.92006+010.41206+01 0.17966+02 0.63406+01 0.80006+01 0.17806+010.90506+01 0.85506+01 0.79406+01 046706.01 0.0+000.+00 0E+03 0.00006.00 0.0(006.00 0.E+00

0.€+00 0.0006+03 0.52306.01 091806+01 0.66606+010.15706+01 0.1414E+02 0.33806+01 0.6l+01 081206+010.91906+01 0.84606.01 0.79106+01 0.76506+01 0.11606+010.00006+00 0.0006.03 0.E+03 0+03 0.6+000.E+03 0.E+03 0.6320(401 0.10726+02 0.61506+010.35406+01 0.5080(401 0.16606+01 0.10016+02 0.7310(401

0.+00 0.E+09 O,+00 0.E+030230(6+01 0.10256.02 0.16596.02 0.13616.020.4006+01 0.25036+09 0.C+00 0 E.4Y3

0.0006+03 0 +03 0.+t0 0.C+’000.13956+02 0.17096+02 0.91836+01 0.1E+020.0670(401 045306+01 0.1+03 O.€+W

0.00306+0 0.E+00 0.C+00 0.6+000,13946+01 0.18556+02 0.10136+02 0.35806+010.80706+01 0.85806+01 0.35306+01 0.32936+03

0.0006+03 0.00036+03 0.+C0 0.E+000.15586+02 021886+02 0.12586+02 0.06036+010.81106+01 0.94206+01 0.8C+01 0.41106+01

0.E+000.0006+000.65406+010.58006+010.006+000.00306+000.62506+01

0.66006+010006.00

0,68306+010.6006+010.006+000.0006+030.97006+010.72506+010.03006+000.C6+000.11076+020.78106+01003006+000.0006+000.10706+020.67206+010.0006+000.0006.000.10936+020.65106+010.0006+00003006+000.1138E+020.78606+010006.030.006+000.12136+020.60206+010 0006+000.0006+000.1131E+020.19206+010.00006+000.0006+000.1214E+020.60506+010.00006+030.006+030.61006+010.7090(4010.006+000.006+000.47506+010.49106+01

0.00006+03 0.+C00.15496+02 021256.020.82306+01 0.11736.02

0.+C0 0.006+000.5+01 0.71506+010.11256+02 0.6306+01

0.€+00 0.X+0 0.l03 0.006+00

0.17626+02 0.22706+02 0.1006+02 0.17206.010.92806+01 0.11026+02 0.86406+01 0.80+01

0,006.03 0.C+00 0.+C0 0006+000.19936+02 022586+02 0.17186+02 0.11606+010,82806+01 0.95+01 0.61506+01 0.87506+01

0,0006+00 0.E+00 0.006+00 0.0006+03

0.21396+02 0.22816.02 0.16056+02 0.45006+030.10156+02 0.52606+01 0.67506+01 0.87506.01

0.00006+00 0.€+03 0.006+03 0.006+000.19546+02 02272E+02 0.13826+02 0.29006+000.66*6+01 0.17506+01 0.3206.01 0.72506+01

0.000600 0 (13(06.00 0.006*00 0.006+030.60206+01 0.16676+02 0.1561E+02 0.30506+010.58106401 0.40206+01 0.36406+01 0.7.01

0,+00 0006+03 0.006+00 0.+03

0.35406+01 018546+02 0.18736+02 0.1441 E+020.67406+01 0.72806.01 0.42+01 0 56+01

04

Page 161: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

061936.01 080906.01 074406+01 07510(401 025206+01 0.6+00oc .03 00)306 ‘00 0 E+03 0 ‘03 0 00006.03 000306+00 0 C00 0 06.03 0.€ ‘03 0 C+0O

000306+00 0.11506.01 0.10116+02 096706+01 069606+01 062606+01 053906+01 012896.02 0.11966.02 029706.01

011606+01 0S.01 092206+01 07.01 0.14176+02 054206.01 041106+01 0.24206+01 0.17306+01 033006.01

061606+01 0.75936.01 066906+01 0.71606.01 0.46606+01 006+000 6+00 0.€O 0 OCOO€.00 0 000 0.00306+00 0.O6+% 0.G+00 0 6+00 0.+00 0+00

0 I6.03 063606.01 0 1OSSE’02 0.10466.02 0.63306+01 0.14706.01 020106.01 0.43036+00 0.C.00 0E+00

013506.01 0.3306.01 0.73036+01 075866.01 0.48206+01 0.14906.01 032106+01 011206+01 0.51006.00013606+01

012106+01 073706.01 074706.01 0 74606+01 0.58106+01 0.1E+CC

00C.00 00)306+00 00)306+00 000 0.C.00 0.E.03 06.00 0+03 003006.03 0.8+00

058406+01 0.10056.02 097906+01 081836+01 0.71506.01 058506+01 095026+00 0.12036+00 000036’03 0.0+03

0,14906+01 031906.01 05570E+01 014606.01 022806,01 0.5106.00 0120)6.00 027006+03 0.220X03 013+01

069706.01 08106.01 0 76906+01 0.78166.01 028606.01 012006+600C+00 0C.00 060006+00 0C.03 0E+00 00(6.00 0.6+00 0+00 0.19006.01 075706.01

092306+01 087506+01 068406+01 081706+01 067106.01 0.71506.01 049106.01 0.14306+01 0.2E-01 07106+00

063036+00 0.35036.01 0.57506+01 0,l.03 0.76006+60 0.12036+01 0.67106+01 0.52+01 0.11596.02 074406+01

072506+01 0.79706+01 0.72806+01 0.7l40l 0.59306+01 05E.00

0.C+00 0.0C+00 00)306+00 0.+00 Q.0-E+00 0C+0O 09066-01 0 27106+01 0.79306.01 065106.01

0.94406+01 0,96936.01 0.76106+01 0,36406+01 0.48506,01 0.74906.01 0.62366+01 0.71606.01 0.26006+01 0,29606.03

0.I330E+01 0.60606+01 0.4l00E01 017606401 0.20506+01 0,14006.03 0,12706+01 0.37506+01 0.11116+02 0.99406+01

0.11296+02 0.66+01 0.70806+01 0.69936+01 0.66606+01 0.28036+000E.00 0.0306+60 0.06061-00 0..06 0.0606+00 0.E.00 0.35406+01 0,75206+01 0,65106+01 0.50506.01

0.72306+01 0.67366+01 0.58706+01 0.56706+01 0.58506.01 0.65506+01 0.68506+01 0,77366+01 0.56006+01 0.19306+01

0.75906+01 006+01 0.33506+01 030106.0? 0.31306+01 0.11156+02 0.11166+02 0.14426.02 0.16506+02 012646.02

0.96106+01 06406+01 0.10156.02 0.11766.02 0.14486+02 0,10606+01o.(.W o.+60 0.000)6+60 0.C+00 0.0666+60 0.58036+00 0.71106+01 0,&3+01 0.60506401 0,19106.01

0,24106.01 0.45106+01 0.43306401 0.5706.01 0,63606+01 0.71826+01 0.75806+01 0.75&€+01 0.30606+01 0,83606+01

0,97106+01 046206+01 0,31706+01 027106.-Cl 0.06+01 0,14606402 0.2262E+02 0.17006+02 0,14896+02 0.45406+01

0.44506+01 0.74106+01 0.78006+01 094036+01 0,11046+02 0.37026+0)0(03 0..0) 0.E0) 0.(’03 0.+00 0.46936+01 0.86866+01 0,88406+01 0.74806+01 0.61106401

0.40406.01 0,37406.01 0,45506+01 0,51706+01 0.58206.01 0.74606401 0,77806+01 0.58966.01 0.28806.01 0.83606.01

0.92026+01 0,49406+01 0.55606+01 0,24906.-Cl 0.40806+01 0.45406+01 0.21036+02 0.10346+02 0.74906+01 0.62206+01

0.49926401 0.65306+01 0.10156+02 0.13676+02 0.1173E+02 0.31006+030.00006+00 0.0+t0 0.E+00 0.+00 0.12706+01 0.87306+01 0.88406+01 0.56926+01 0.5470(401 0.44106401

0.42106+01 0.34306+01 0,44206+01 0.60106401 0,65506+01 0.71206+01 0.77706+01 0,66906+01 0.50906+01 OM2CE+01

0.14106+01 0.7+0) 0.84306+01 0.13626+02 0,11436+02 0.20526+02 0,17586+02 0.12606+02 0,56706+01 0.94606+01

0.62606+01 0.93906+01 0.10686+02 0.10966.02 0.43906+01 0,40306+000.0606400 0.+03 0.6+00 0..C0 0.65406+01 0,57406.01 0,75206+01 0.38306+01 0.31606.01 0.49306.01

0.44506.01 0.40206+01 0.49606+01 0.06.01 0,64806+01 0.71906+01 0.643(6+01 0.70706+01 0,61606.01 0.3C+00

0.+03 0.58706+01 0,14686.02 0.32956.02 0.33466+02 0,35386+02 0.176616+02 0.12206+02 0.10696+02 0,10686.02

0.97206.01 0.10946+02 0.91506401 0.88906+01 0.42806+01 0.3806+000.6+00 0.+00 0.03006+03 0.i-00 0.82806.01 0,73306.01 0.46+0l 0.29666+01 0.35506+01 0.48306.01

0.37506+01 0.49366+01 0,46906+01 047506+01 0,61106401 0.63036+01 0.59206+01 071606401 0.74706+01 0.15706+01

0.25036+01 077406+01 023016.02 0.36756+02 0.3814E.02 0.33416+02 0.30246+02 025136+02 0.15096+02 0,12756+02

0.10906+02 0I 1946+02 0.92806401 0,78+01 0.48+01 0.4106+030.0066.00 0.0t00 0.C.03 0.9206.00 0.10366+02 0.81806+01 0.42106+01 0.26506+01 0.32806.01 0.44206+01

0,29806.01 0.45&I6.0l 0,27506+01 0.44+0l 0.40906+01 0.2706+01 0,35406+01 0.74+01 0.8506+05 0.70406+01

0.11606.01 0.34106+01 0,23286+02 0.36506+02 0,38306+02 0.40916+02 0.39996+02 0.34296+02 0.21766+02 0.17586402

0,14256+02 0.10446+02 093906+01 0.9710(401 0.74036+01 0.59006+000.00036+00 0.6+00 0.03006+60 0.E-0l 0,65606+01 0.88706+01 0.73406+01 0,31506+01 0.97006+00 0.42506+01

0.32306+01 0.4806+01 0.36506+01 0.34036+01 0.27906+01 0,37806+01 0,39606+01 0.7310(401 0,55706+01 0.37406+01

0.30306+01 0.10506+01 0.21066+02 0.33816.02 0.3667E+02 0,39266+02 0.38376+02 0.27356+02 0.21546+02 0.16416+02

0.13706+02 0.10206+02 0.99206401 0.85506.01 0.64906+01 0.3803E+030.C6+C0 0.C+00 0.00006+00 0.12306401 0.58806+01 095406401 0.92306+01 0.68706+01 0.15036.01 0.23306+01

0.33406.01 0,49206+01 0,37406+01 0.4206.01 0.41406+01 0.4806+01 0.73306+01 0.77106+01 0.83406401 0.9206+01

0.36106+01 0,11426.02 0.91906.01 0.34236.02 036556+020.37146+02 0,34816+02 0.33696+02 0.2524E+02 0l+02

0,14186+02 0,642(6+01 0.54906+01 0.6706.01 0.70906+01 0.2106+000,+00 0,+6O 0,t+00 040906401 0.59026+01 0.90306+01 0,89606.01 0.70506401 0,53106.01 0.35606+01

0.25+01 0,44566+01 0.49026+01 0.3510(401 0.32606.01 0.56906.01 0.72706+01 0.77506+01 079206.01 0.91706+01

0.90406+01 0,7.01 0.11496+020.33516.02 036176+02 0.36196.02 0.31466+02 0.33336+02 0.28096.02 0.18816+02

0.13296+02 0.96+01 0.99206+0? 0,885(6+01 0.76+01 0.28026+000.+03 0.+00 0,6+C0 0,24606.01 0.5660€+0l 0.85826+01 0.89306.01 0.93706+01 0.85506.01 0.78406+01

0.73806+01 0.4+01 0,40506401 029206+01 0.40206+01 0.53806+01 0.66906+01 0.75206+01 0.75906+01 0.78606401

0.65606+01 0.57406+01 0.12476+02 0.35916+02 0.3624E+02 0.3-4036+02 0.31896+02 0.30586+02 0,22756+02 0.12436402

0.16686+02 0.15736+02 0,11316+02 0.0C.01 0.5860E+01 0,60006.000.E+00 0.+00 0.00006+03 0.C+0) 0.46006+00 0.51306+01 0.84906+01 0.8E+01 0.88006+01 0.80806+01

0,75706+01 0.65206+01 0.31106+01 0233664-01 0,29006+01 0.24606+01 0.37906+01 0.45806+01 0.4306+01 0,77606+01

0.7066+01 0,40166+01 0.23806+02 0,33146402 0.34426+02 0.34026+02 0.36496+02 0,30676+02 0.19346.02 0,14426+02

0 1667E+02 0,507(6.01 0.69006+01 0.74906.01 0.50806+01 0.3(006.000..00 0..03 0.0066.0) 0.+03 0.00006+03 0(83306+00 0.34336+01 0,83026+01 0.87906.01 0.88306+01

0.82106401 0.81206+01 0.803(6+05 041506.01 0.26706+01 0.22406+01 0,26506+01 0.3806+01 0.47906.01 0.53506+01

0.37506+01 0.2+01 024566+02 0.30256.02 0.3041E+02 0.39146+02 0.3447E+02 025376+02 013706+02 0.10666+02

0.81206+01 0.11066+02 011326+02 0.10176+02 028906+01 0,28036+000.6+C0 0.+06 0 €+60 0.€+O) 0.0060E.00 0.C+00 0,C+00 0.33706401 0.83906+01 0,8806+01

0.90606+01 0.90506+01 0.54406+01 076106+01 0.44&’C+Ol 0.59206+01 0,34006+01 020206+05 0.17306+01 0.324(6+01

0.32506+01 0.45706+01 010406+02 024586.02 0.28896+02 0.39976+02 0.32546+02 0,20076.02 0,87206+01 0.65306+01

079606+01 0.943(6.01 0.72306+01 0,76506.01 0.52806+01 0.5E-010.E+00 0.E+00 0.0066+00 0.+03 0.00306+00 0.00006+00 0.6+00 0.E+00 0.27206+01 0,79036+01

0.93206+01 0.89306+01 0,87506401 0.67606+01 0,69606+01 0.0E+01 0.89506+01 0.46936+01 0.13806.01 0.9706+03

0.55806+01 0.5740E+0l 0,12506+02 0,19936+02 0.22216+02 0.36106+02 0.26496+02 0.66506+01 0.99206.01 0,46906+01

0.22806+01 0.4506+01 0.76606+01 0.81806+01 0,28006+01 0.00006+0001*3(06+00 0.6+00 0.00006+00 0.6030(403 0.00006+00 0.€+00 0.C+0) 0.C+00 0.C.{*) 0,33006+00

0.71106+05 0.83706+01 0.55806+01 0.90306.01 0.92106.01 0.10756+02 0.1504E+02 0,11576+02 0.39006.01 0,70606+01

0.65106+01 0.41606+01 023616+02 0.34426+02 0.30096+02 0.25756+02 0,16636+02 0.7E+0l 0.1066.02 0.93306+01

0.55706+0? 0.78206+0t 081206+01 0.76706.01 0.13106+01 0.E.000 C+00 0 +00 0 E.00 0.+6C 0..00 000306+00 0.+00 0.+03 0.0066.00 00006+00

0,12606+01 0.62fl.01 0,8066+01 088506.01 0.95506+01 0,10196+02 0,10396.02 097366+01 0.62206+01 0,83206+01

0-7

Page 162: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

o 70936+01 066806*01 012346,02 016926102 0 1255+02 0.13436+02 011626*02 0 10976.02 096706+01 0.10586+02

089406401 0,84006+01 0.79206+01 059806401 0 1303€ +01 O.C.030.c+naE.Cfl 0(0006.00 o.E+oo 0E+00 0.0€+00 O.0E+&3 0 +03 0 OC+0Q 0.E+03 0 +00

0,E+O0 O.E+C0 032206+01 075706+01 0.91106+01 0.94806.01 054705+01 0.77036+01 0.82306+01 0.79506+01

0.92706+01 064206.01 066706.01 010666*02 0 65506+01 099106.01 091906+01 073106+01 0.14E+02 0 8l+01

058306+01 061706*01 075406+01 046506*01 0.29006+00 06.00000006+00 0 €‘C0 0 E+C0 000006.00 0 6+00 O.6.00 0 .00 000)36+03 00(605*00 0.E.00

0.0030C00 0 .03 0 25906.01 035706+01 033106*01 090206.01 0 87+01 0 92306.01 090306.01 0.91706+01

0 1282E•02 085106.01 092706+01 0.10116+02 0.87206+01 00C+0l 010216+02 077006*01 0.10475.02 0.52806+01

069806+01 0,76306.01 057906.01 012606+01 0C+00 0.E.00

0 0C.00 0 C*00 0.€.% 0.3C’00 0 0E+03 0.C+00 0 .00 C) E+00 0.0E+00 0.C.CO

0 O6.-03 000006+00 0 6.00 0 C0O 0 60l 017106.01 026206+01 037206+01 0.77606+01 093906+01

0 12026+02 093506+0! 0.83606+01 0,9(606+01 0.74206.0! 081406.01 0 90106+01 054306.01 078606.0! 062936+01

0.70506+01 0.35706.01 0.15006.00 0.00006+00 0.E+00 0.C+00

0.00006+00 0.0E+00 0.0E*00 0.00006+00 000)35+00 0.C.00 0 E+00 000006+00 0.06.o3 0.C.00

0.00006+00 0.E+00 0.6+00 0.00006+00 0.0)306+00 0.€+00 0.C+00 0.00)36+00 0.11006+00 0.17106+01

0.53606+01 0.87606.01 0.62206+01 0.57206*01 0.66706+01 0.63806.01 0.56406+01 0.13806+01 0.15706+01 0.75006+00

0.66006.00 0.0000E.00 0.0003E•00 0.€+00 0.0(036+00 0.E.0O

0.00006+00 0.E.00 0.0000E+00 0.00006+00 000005,00 D.C+00 0.OOXE.<O 0.00006+00 0(0006+00 0.€+00

0.0E+03 0.0E+00 0.00006+00 0(0006+00 0.00006+00 0.6.00 0.6+00 0.0€+00 0.0(006.00 0.E+00

0.24006+00 0.42206+01 0.64706.01 0.48106*01 0.39706+01 0.8+00 0.6+00 0.00(06+00 0.0(036+00 0.0(flJ€.00

0.00306+00 0.0E+00 0.E.00 0.0i-00 0.00006+00 0C*00

Q.C.00 0.06+60 O.0EI.00 0.00006.00 0(0(06+00 0.C+CV 0.Ct00 0 E+00 0(0006+00 0.0C+C0

0.0000E+00 0.5+O3 O6.00 0.OC+0O 0 06+03 OC€+W 0C+00 0.6+00 0.+00 0.0C+00

0.€+00 0.CC+03 0.0)306.00 0.00)36+00 0.6+00 0.06.00 0.C.00 0..00 0.00)36+03 0.6+00

0.00006+00 0.C+00 0.06+02 0C400 0.6+00 0.6+00

0.00006+00 0 E+00 0.E+00 0E+00 0.0E+00 0.6+03 0.6+00 0 E+00 0.E+03 0.€+00

0.0E+00 0.00)36+00 0.0C+0Q 0(0006.03 0.00006+00 0.C+00 0L6+00 000036+00 0.C0E+00 0.€+00

00E+00 000006+00 0.0000E00 000006+00 000006+00 0.0)306+00 0.6400 0.00006+00 0.00006+00 0.00066+00

0.00006+00 0.00006+00 0.0(606+00 0.03006.03 0.00005+00 0.E.(0

0-8

Page 163: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

LANAI BND HOIIZONTAL FLOW BOUNDARY PACKAGE59589533 30 33 3100l033 29 33 300 50lD38 29 38 300SO1D33 29 34 2S0501D37 29 38 290 501D33 25 34 280501028 27 28 2SO50IO28 27 29 27O01O29 26 29 270 50lO34 26 34 270 S0lD29 26 30 260D501D34 26 35 2C0050ID30 25 30 2W0ID31 25 31 2€001032 25 32 260fllO35 25 35 260.501D41 25 41 26D0501D42 25 42 260.501047 25 47 26050l032 24 32 250050ID33 24 33 250501037 23 37 24050I040 23 40 2400000501037 23 38 2fl601040 23 41 230.0(03601045 21 45 220.601048 21 48 220.501046 15 46 I90.0lD48 17 46 180,501045 16 45 170.501045 15 45 160.501D40 17 41 I70.50ID41 16 41 170.501041 16 42 160.50l042 15 42 160.S0I042 15 43 l50.0501043 14 43 150.01D43 14 44 l40.60ID44 13 44 I40.601014 13 15 130.C6010ID 12 11 120.D501011 12 12 120.000050109 II 10 1ID.501D

41 10 42 100,501042 9 42 100.0I040 9 41 90.(0501041 8 41 90.0501039 B 40 80.50ID40 7 40 50.501041 13 42 130.01D42 12 42 130.501D42 12 43 1200000501039 II 40 ll0.501040 10 40 11D.0lD40 10 41 193.501040 25 41 250,501042 26 43 260.060I038 22 38 230.50l035 4 36 40.01D34 4 35 40.01033 4 34 40,0l032 4 33 40.01031 4 32 40(0)3601031 5 32 50.601D31 6 32 60.001D31 7 32 70.501031 8 32 80.0501031 9 32 90.601D31 ID 32 I00.501D31 11 32 110.501031 12 32 l2O.501031 13 32 130.5C1D31 14 32 140.501031 15 32 150.S01031 16 32 160.I501031 17 32 l70.601D32 4 32 50.01D32 5 32 60.01D32 6 32 70.01032 7 32 80.50l032 8 32 90.60lD32 9 32 100.01032 10 32 11D.01O32 II 32 12O5010

(-9

Page 164: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

32 12 32 1365O1032 13 32 I400l032 14 32 l5OO1032 ¶5 32 1605O1032 ¶6 32 l7050IO32 17 32 I8050l032 $ 33 50O1032 6 33 60601032 7 33 70.5Ol032 6 33 &z5o1032 9 33 90501032 10 33 100501032 11 33 1I001032 12 33 120O1033 4 33 50Ol033 5 33 60501033 6 33 700lO33 7 33 0l033 8 33 501033 9 33 101033 10 33 110Ol033 11 33 120501033 5 34 50501033 6 34 6O50l033 7 34 705O1033 8 34 501033 9 34 9O1033 10 34 lCo501033 11 34 1l0501034 4 34 50o)tSClO34 5 34 6O.01034 6 34 7001034 7 34 W.501034 6 34 90.60l034 9 34 100.50I034 10 34 ll0.0501034 II 34 12O.5Cl034 5 35 50501034 6 35 60501034 7 35 700l034 8 35 60501034 9 35 90501034 10 35 1%5C1034 11 35 11001035 4 35 50501035 5 35 60601O35 6 35 70.01035 7 35 3.O1035 6 35 90501035 9 35 1CQ01035 10 35 I1D05O1035 11 35 120CC(0501035 5 35 500Q01035 6 36 s0Q501035 7 36 7O.t501035 5 36 501035 9 36 9O.5010

35 10 36 ICO.501035 11 36 l10Cl035 12 36 12001O35 13 36 1W501036 12 36 13001036 12 37 1205Ol036 13 37 13o6Cl037 11 37 120501037 12 37 136501037 11 38 l10.501037 12 38 120501037 13 38 I%01038 10 38 1I06G1038 11 38 12001038 12 38 130501038 9 39 9D5C1038 10 39 101038 11 39 l10.fllO38 12 39 1200)30501038 13 39 13O501038 14 39 l4001038 15 39 15O.50l036 16 39 160.01039 8 39 9i501039 9 39 11039 10 39 11001039 11 39 12O50l039 12 39 130.01039 13 39 140 501039 14 39 150O10

c-ID

Page 165: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

39 16 39 I7060l039 9 40 90.50l039 10 40 ICC 501039 12 40 l2V50lO39 13 40 I3cS0l040 9 40 100c50l040 II 40 l20501040 12 40 13050l040 II 41 l1050l040 ¶2 41 l2005Ol041 9 41 1000300501041 10 41 I 100300501041 II 41 l200501041 11 42 lI0501042 10 42 110.0030501039 17 40 I7o.so1O43 11 43 120.0300501041 13 41 140.50l040 14 41 140.0501040 14 40 l50.601044 12 44 13050l043 13 44 130.0300601043 13 43 l40.60l042 14 43 140.0300601042 14 42 150601041 15 42 I50.501041 15 41 l60.50l040 16 41 1600300501040 16 40 I70.0501045 14 45 150.0501044 15 45 150.0300501044 15 44 160.501043 16 44 160.501043 16 43 l70.501042 16 43 160.501042 16 42 l70,50l041 17 42 170.501041 17 41 1B0501040 17 40 180.0501040 18 41 180.0300601040 18 40 190.0000601040 19 40 2lXL01040 20 40 2100030501040 21 40 220.501040 22 40 230.0300501040 24 40 250,501040 25 40 260.0300501040 26 40 270.0000501040 19 41 1900300501040 20 41 2010000501040 21 41 210.01040 22 41 220,0300501040 24 41 240,06Ol040 26 41 260.01041 18 41 1900300501041 19 41 2C0.0501041 20 41 210.501041 21 41 220.5O1O41 22 41 230.50l041 23 41 240,501041 24 41 250.0200501041 26 41 270.601041 18 42 l80.0601041 19 42 190.501041 20 42 200.00l041 21 42 210.0000501041 22 42 220,0501041 23 42 230.COOXOIO41 25 42 250.501041 26 42 2&I.50l042 17 42 180.501042 18 42 190.501042 19 42 200,0501042 20 42 210.501042 21 42 220.501042 22 42 230.0000501042 23 42 240501042 24 42 250501042 26 42 270.0501042 18 43 18O.S01042 19 43 190.501042 20 43 2Ct.601O42 21 43 2100200501042 22 43 220601042 25 43 250.501042 27 43 270.0601043 17 43 18005010

C-Il

Page 166: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

43 18 43 i90501043 19 43 203 5O1O43 20 43 210.5O1O43 21 43 220.0000501043 22 43 2300000501043 23 43 24O5OlO43 24 43 250 05Ol043 25 43 26O,S0l043 26 43 270.0000501043 27 43 260.CFJOOSOIO43 17 44 170.501043 10 44 180.0000501043 19 44 i90.050l043 20 44 200.50l043 21 44 210.0000501043 22 44 220.0501043 24 44 240.0000501043 25 44 250.0000501043 26 44 260.00l044 16 44 170.0000501044 17 44 180.000050I044 18 44 190.SO1O44 19 44 200.501O44 20 44 210.0000501044 21 44 220.0501044 22 44 230.0000501044 24 44 250.501044 25 44 260.0501044 26 44 270.0501044 27 44 280.0300501044 19 45 190.0000601044 20 45 200.0000601044 21 45 2l0,0001044 22 45 220.0501044 25 45 250.0000501044 26 45 260.0000501044 27 45 270.0000501044 28 45 2s0.0501045 17 45 180.0000501045 18 45 190.50l0

45 19 45 200.50I045 20 45 210.0000501045 22 45 230.50l045 24 45 250.501045 25 45 260.050l045 26 45 270.050l045 29 45 300.501045 21 46 210.501045 22 46 220.0000501045 25 46 250.0501045 26 46 260.01046 19 46 200.501046 20 46 210.0003601046 21 46 220.0501046 22 46 230.0000501046 24 46 250.0501046 25 46 250.0000501046 26 46 270.050l046 29 46 300.501048 21 47 210.501048 22 47 220.S01046 25 47 250.0)33501046 26 47 260.0030501047 20 47 210.0000501047 21 47 220.0l047 22 47 230.0501047 24 47 250.0000501047 26 47 270.501047 21 48 210.0501O47 22 48 220.501047 25 48 250.0000501048 22 48 230.0501039 20 40 200.501039 21 40 210.0501039 22 40 220.0003601039 23 40 230.0000501039 24 40 240.0501039 25 40 250.0501039 26 40 260.0000501039 20 39 210.0300501039 21 39 fl0.0501039 22 39 230.0000601039 23 39 240.0003501039 24 39 250.501039 25 39 260.0303501039 26 39 270.0501039 29 39 300.5010

C-12

Page 167: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

39 30 40 301040 30 40 3l0501041 30 41 310)60l041 31 42 31050I042 31 42 320 60l043 31 43 320 0l043 32 44 320 50I044 32 44 330 01045 32 45 330 01038 21 39 210CO601038 22 39 220.0050I038 23 39 230501038 24 39 240.0501038 25 39 2500601038 26 39 260 501038 20 38 2I0501038 21 38 220.01042 17 43 1700501038 23 38 240.0l038 24 38 25060l038 25 38 26050l038 26 38 27050l037 21 38 210501037 22 38 fl001037 24 38 2400I037 25 38 250CU)X01037 26 38 2W.501037 20 37 210.501037 21 37 220501037 22 37 230O601037 24 37 250O601037 25 37 260.50l037 26 37 270501037 26 37 2S050l036 20 37 20S01036 21 37 210501036 22 37 220601036 23 37 230501036 24 37 24001O36 25 37 250.501O36 26 37 260501036 28 37 280050l036 20 36 2I0501036 21 36 fl0501036 22 36 23001036 23 36 240 01036 24 36 25050l036 25 36 260501036 26 36 270.501036 27 36 280.501035 20 36 2G3501035 21 36 21o01035 22 36 220C01035 23 36 230.0501035 24 36 240.50l035 25 36 250.601035 26 36 260501035 27 36 27O.501035 20 35 21050l035 2* 35 220S01035 23 35 240.S01035 24 35 250.501035 26 35 27001035 27 35 20lQ34 20 35 2C0.50l034 21 35 2l0501034 22 35 220.501034 23 35 230.0i034 24 35 24050l034 25 35 250.501034 27 35 270.501034 28 35 2600501034 20 34 210.501034 21 34 220CC0501034 22 34 23000501034 23 34 240S01034 24 34 250501034 25 34 260 601O44 17 45 l70.601034 27 34 2aD.01034 28 34 290.501033 20 34 200 5O1033 21 34 210501033 22 34 220601033 23 34 23001033 24 34 240501033 25 34 250.5010

C-i 3

Page 168: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

33 26 34 260.05Ol033 27 34 2700601O33 20 33 2l0060l033 21 33 220.0000501033 22 33 2300000501033 23 33 240.501033 25 33 260.1)300501033 26 33 270 O5O1033 27 33 2800S01032 20 33 200 1)300501032 21 33 210S01O32 22 33 220 0SOIO32 23 33 230.0000501032 24 33 2400000501032 25 33 250.S0l032 26 33 260.0601032 28 33 280.0000501032 29 33 2900300501032 30 33 3000000501032 18 32 190.0501032 19 32 200.0300501032 20 32 210.0501032 21 32 220.0000501032 22 32 230.0000501032 23 32 240.0000501032 26 32 2700000501032 28 32 290.0000501032 29 32 300.0000501032 30 32 310.0000501031 18 32 180.0501031 19 32 190.0000501031 20 32 200.0000501031 21 32 210.0501031 22 32 220.0000501031 23 32 230.0000501031 24 32 240.0000501031 25 32 250.0501031 26 32 260.0000501031 29 32 290.0000501031 30 32 300.0000501032 14 33 140.0000501031 17 31 180.501031 18 31 190.0000501031 19 31 200.0501031 20 31 210.0000501031 21 31 220.0000501031 22 31 230.0000501031 23 31 240.0000501031 24 31 250.0000501031 26 31 270.0000501030 18 31 180.0501030 19 31 190.0000601030 20 31 200.0000501030 21 31 210.0000601030 22 31 220.0000501030 23 31 230.0000501030 24 31 240.0000601030 25 31 250.0000501030 26 31 260.0000501030 17 30 180.501030 18 30 190.0000501030 19 30 200.0000501030 20 30 210,0000501030 21 30 220.0000501030 22 30 230.0501030 23 30 240.0501030 24 30 250.0000501030 26 30 270.0000501029 18 30 180.0000501029 19 30 190.0000501029 20 30 2C0.0501029 21 30 210.0000501029 22 30 220.0S0l029 23 30 230.0000501029 24 30 240.0501029 25 30 250.0000601029 27 30 270.0000501029 17 29 180.0000501029 18 29 190.0000501029 19 29 203.0501029 20 29 210.0000501029 21 29 220.0000501029 22 29 230.501029 23 29 240.0501029 24 29 250.0000501029 25 29 260.501029 27 29 280.03005010

0.14

Page 169: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

28 18 29 180.0000501026 19 29 190501028 20 29 200000501028 21 29 2lO.501O28 22 29 220000501028 23 29 230000501028 24 29 240.0000501028 25 29 2500000501028 26 29 260.0000501028 17 28 180,000501028 18 28 190.0000501028 19 28 200.0000501028 20 28 210.0000501028 21 28 220,501028 22 28 230.000501028 23 28 240.000501028 24 28 250.000501028 25 28 260.000501028 26 28 270.0000501027 18 28 180.000501027 19 26 190.01027 20 28 200.0000501027 21 28 210.0000501027 22 28 220.000501027 23 28 230.0000501027 24 28 240.000501027 25 28 250.0000501027 26 28 260.0000501027 27 28 210.0000501027 17 27 100,501O27 18 27 ¶90.0000501027 19 27 200.0000501027 20 27 210.0000501027 21 27 220,0000501027 22 27 230.50l026 18 27 180.0000501026 19 27 190.0000501026 20 27 200.501026 21 27 210.0000501026 22 27 220,0000501026 17 26 180,0000501026 18 26 190.0000501026 19 26 200.0000501026 20 26 210.0000501026 21 26 220.501026 22 26 230501025 18 26 180CVOOSOIO25 19 26 ¶90.000501025 20 26 200,0000501025 21 26 210,000501025 22 26 220.501025 17 25 180.&)D0501025 18 25 190.0000501025 19 25 200.0000501025 20 25 210.0000501025 21 25 220.0000501025 22 25 230.000501024 18 25 180501024 19 25 19000501024 20 25 2000000501024 21 25 210.000501024 22 25 220.000501024 11 24 160.000501024 18 24 190.0000501024 19 24 200.0000501024 20 24 210.0000501024 21 24 220,000501024 22 24 230.0000501023 18 24 160.000501023 19 24 ¶90.000501023 20 24 200.0000501023 21 24 210.000501023 22 24 220.0000501023 17 23 180,000501023 18 23 190.000501023 19 23 20.0000501023 20 23 210.000501023 21 23 220.000501023 22 23 230.0000501022 18 23 160.0000501022 19 23 190.000501022 20 23 200.00501022 21 23 210.0000501022 22 23 220.0000501022 ¶7 22 180,000501022 18 22 190.0000501022 19 22 200.0005010

0-15

Page 170: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

22 20 22 2lO501022 21 22 220.CX0501022 22 22 230 501021 18 22 ISO 0501021 19 22 l%501021 20 22 200 0501021 21 22 2I0050I021 22 22 220 050l021 17 21 1800000501021 18 21 190501021 19 21 200 501021 20 21 2100501O21 21 21 220.0501021 22 21 2300000501020 18 21 180.0000501020 19 21 19O.S01020 20 21 200.0000501020 21 21 2100000501020 22 21 2200501020 17 20 180.0501020 18 20 1900000501020 19 20 200.0501020 20 20 2100000501020 21 20 2200000501020 22 20 2300000501019 18 20 1800000501019 19 20 190.0501019 20 20 2000000501019 21 20 2l0.0501019 22 20 2200000501019 17 19 180.0000501019 18 19 190.0000501019 19 19 200.0000501019 20 19 210.0000501019 21 19 220.0000501019 22 19 230.0501018 18 19 180.0000501018 19 19 190.0000501018 20 19 200.0501018 21 19 210.0000501018 22 19 220.0000501018 17 18 100.0000501018 18 15 190.0000501018 19 18 200,501018 20 18 210.0000501018 21 18 220.0000501017 18 18 180.501017 19 18 190,0501017 20 18 200.0501017 21 18 210.0000501017 17 17 1800000501017 18 17 190.0000501017 19 17 2000000501017 20 17 210.0501017 21 17 220.0501016 18 17 180.0000501016 19 17 190.0000501016 20 17 200.0000501016 21 17 210,0000501016 17 16 180.0000501016 18 16 190.0000501016 19 16 200.0000501016 20 16 210.0030501015 18 16 180.0000501015 19 16 190.0000501015 20 16 2000000501015 17 15 180.501015 18 15 190.501015 19 15 200.501014 17 IS 1700000501014 18 15 180.O501014 19 15 190.501014 16 14 170.0000501014 17 14 180.0501014 18 14 190.0000501014 19 14 200.0000501013 16 14 l600501013 17 14 170.501013 18 14 180.0000501013 19 14 190.0030501013 15 13 160.0000501013 16 13 170.0000501013 17 13 180.0000501013 18 13 190.0000501012 15 13 150.0000501012 16 13 160.0000501012 17 13 170.00005010

0-16

Page 171: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

12 18 13 l8050l0¶2 ¶4 12 l5050l012 15 12 160050IO12 16 12 17O50I012 17 12 1800000501011 13 12 130501011 14 12 I4050l011 15 ¶2 l50.501O11 16 12 I60.05010II 17 12 l705OlOII 11 11 12000005010II 12 II 13050l011 13 11 l40.50lO11 14 II 150.0000501011 15 ii 160501OII 16 11 170.05OIO10 13 II 130.501O10 14 11 140.06O1010 15 11 150.0501010 16 11 160.501010 11 10 120.501010 12 ¶0 130.501010 13 10 l40.601010 14 10 150.0000501010 15 10 l60,50109 12 10 120.050109 13 10 130.050109 14 10 140.50109 15 10 150.000050109 II 9 120.60l09 12 9 130.50109 13 9 140.50109 14 9 150.501O8 11 9 110.050108 12 9 120.000050108 13 9 130.000050108 II 8 l20.60l08 12 8 130.50108 13 8 l40.50107 12 8 120.050107 13 8 130.50l0

44 18 46 180,501045 17 46 l70.501045 18 46 180.0000501045 19 46 l90.501045 20 46 200.501046 20 47 2OD.501036 27 37 27O.601037 27 38 270.0(00501037 28 38 280.0000501038 27 39 270.0501038 28 39 280.0501038 29 39 290,0501039 27 40 270.501039 28 40 280.0501039 29 40 290.0000501040 27 41 270.0501040 28 41 280.0000601040 29 41 290.501040 30 41 .501041 24 42 240.01041 27 42 270.S0l041 28 42 280.0000501041 29 42 290,501041 30 42 XC.0000501042 23 43 230.01042 24 43 240.501042 28 43 260.0501042 29 43 290.0000501042 30 43 .0000501042 31 43 310.0501043 23 44 230,6O1043 27 44 270.0000501043 28 44 280.501043 29 44 290.0000601043 30 44 300.0000501043 31 44 310.0000501044 23 46 230.0501044 24 45 240.0000501044 29 45 290.0000501044 30 45 300.0501044 31 45 310.0501044 32 45 32v.01045 23 46 230.50lO45 24 46 240.0501045 27 46 270.0501045 28 46 28D.5010

0-17

Page 172: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

45 29 46 250l0‘5 30 46 300 01045 31 46 3I0501O45 32 46 320 01046 23 47 230xJ01O46 24 47 240 50I046 27 47 770 501046 28 47 260 CO50I046 29 47 290 50l047 23 48 23o01047 24 48 240501037 27 37 280501038 27 38 280 501038 28 38 2935O1039 27 39 260501039 28 39 2S0.50l040 27 40 260 COY35OIO40 28 40 293 G350l040 29 40 300o501041 27 41 280 501041 28 41 290.501041 29 41 300.50lO42 27 42 280.0X0501042 28 42 293.5O1042 29 42 3005O1042 30 42 310.O501043 28 43 293fllO43 29 43 3O0501043 30 43 310.501O44 23 44 2405010

44 28 44 29050lO44 29 44 3501044 30 4-4 310.501044 31 44 320501O45 23 45 24050lO45 27 45 2e0.050l045 28 45 293.501045 30 45 310.501045 31 45 320 5010

46 23 46 240.501046 27 46 260.501046 28 46 290 01046 30 46 310060i046 31 46 320501047 23 47 240.501047 27 47 280501047 28 47 290501048 24 48 250.501033 30 34 300.501033 13 33 1405010

34 13 34 1400501035 13 35 140X50l037 13 37 140501038 13 38 1405010

36 14 36 150350l035 14 35 150C0S01034 14 34 l50501033 15 34 l50501033 16 34 160G501033 17 34 17001O34 17 34 l8O501034 18 35 160010

34 Ia 34 190.5010

35 18 35 190010

36 18 36 193501037 18 37 190501037 18 38 160.501038 17 38 16005010

38 17 39 l7o501032 15 33 l5050lO32 16 33 160501032 17 33 170501D32 18 33 160501032 19 33 I.501033 19 33 2W501034 19 34 2C00501035 19 35 2Cf)XJ0501039 18 40 ¶60350I0

37 19 37 2900X05010

37 20 38 25010

36 19 37 I905010

37 14 38 140.5010

38 14 38 150.050108 14 9 140.501O7 II 8 1l0.010

33 14 34 140.5010

36 14 37 140 010

c—Is

Page 173: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

45 14 45 l50X0lO18 13 17 130O1O16 14 17 1400lO31 4 31 5O.O501O30 4 30 5O.501O

28 5 28 60COD6010

23 II 23 l2O01O

23 23 24 220 O1O flew SddItOn

24 23 24 24001O

24 23 25 23O0lO

24 24 25 24OOO601O

25 23 25 240501O25 24 25 250 5OlQ25 23 26 230so1o25 24 26 24O501O25 25 26 250.50IO26 23 26 240.Q)O5QiO26 24 26 250iOO501O26 25 26 260501O26 23 27 230501O26 24 27 240501O26 25 27 250.01O26 26 27 201O27 23 27 24O01O27 24 27 250O1O27 25 27 26001O27 26 27 27O.0lO33 26 33 29O.S01O

C-IS

Page 174: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

LANAI RN’ RNER PACKAGE

164 -1

1641 2 13 Q4000e+06lt+O1

I 2 14 ê0004.+-1.000e+0I1 2 15 04.000s406-1.000e+01

1 2 ¶6 0 000 4.000. .08-I 000. +01

1 2 17 0.4000e.08-l..,01

1 3 ¶7 0 4..+08-l .+01

1 3 18 0.4...04.1.000o+01

1 3 ¶9 04.000..04-1.000e+01

1 3 20 0 4.o,04-1 e+01

I 4 20 0. 4 et04-l .000e.01

1 4 21 0X04.0+04-1.0000+0I

1 4 22 00004.0000.04-1.000o+01

1 5 22 0.000 4.0000404-I .000e+O1

1 5 23 0.000 4.0000+04-1.000o+01

1 6 23 0.0004.0e.04-1.000o+01

¶ 6 24 0 0004.000e+04-1 0000+01

I 7 24 0.000 4,000o +04-I e.01

I 7 25 0. 4.6.-04-l.000e+0I

I 8 25 0 4iQ4_l .000.+VI

1 8 26 0.000 4,CC0e+04-l .OD0.t01

1 9 26 0.4.e04-1..+01

1 9 27 0 4.000+04-1.000o+0lI 10 27 0000 4.000+04-1.000etOI

I II 27 0.000 4.000ci-04-1.0000+01I ¶1 26 0.X04,000.-04-1.000.+01

1 12 28 0.0004.o.O4-1.000e+01

1 12 29 0.000 4.o-.-G4-1.000e+01

1 13 29 0.000 4.o.04-1.000.+011 13 30 0.000 4.000e.04-1.000+01

1 14 30 00004.o.04-1.ei-01I ¶4 31 0. 4.000e.’04.-1 000e+011 15 31 0. 4.000e+04-1.o+01

I IS 32 0.0004.s.o4-l.000o.0l

1 16 32 0. 4.000e+V4-1.000+0l¶ 17 32 0.4..04-1.o+01

1 17 33 0.4.000e+04-1.e+0l1 18 33 0.000 4...’04-l.000e+011 16 34 0.000 4.o+04-1.o+011 19 34 0.000 4.0000t04-1.0000i’Ol

1 20 34 0.0004.0000.04-1.0000+011 20 35 0.000 4.000o.04-1 .0000+011 21 35 0.000 4.000o.04-1.o+01

1 22 35 0.0Z4L.4-l.C?Cflo.+01

1 23 35 00)3 .Cfj3o 04-1 .0)3e.01I 24 35 00)D4.D)e,04-IOYDo.01¶ 25 35 0.004.0tc,+O4-1fl)3+01

1 26 35 0.000 4.o.04-.1 .e,01• fl 30 IXGOO.4 000a 00- .o-.n’01

1 28 35 0.4.000e.04.-1.000e+01

I 29 35 0.000 4.0000+04-1 .000e+011 30 35 0. 4.000e+04-1 .000o+011 31 35 0.0004.000..04-1.000e+011 32 35 0,000 4.o+04-1.000o+01

1 33 35 0.000 4.000e.04-l .0000+01¶ 34 35 0.000 4.0.04-I .e+011 35 35 0,0004.O00ei04-.1.0+0I

1 36 35 0.000 4...G4-1.e+0l1 37 35 0. 4.e+04-1..+011 38 35 0.DX 4.s+O4-1 .e+011 39 35 0. 4.0W..04-1.000e+011 40 35 0.0004.000.404-1 .e.01¶ 41 35 0.0004.000e+04.-1.G+0l¶ 42 35 0.000 4.e.04-1.000e+011 42 34 0.0004.000e+04-1.000e011 43 34 0.000 4.000a.04-1 .000o+011 44 34 0.000 4,000o.04-1 .0000.01I 45 34 0.0004,0000+04-1.0000+01¶ 45 33 0, 4 000+04-1 .0000+011 46 33 0.0004.e+04-1,X0o+0I1 46 32 0.0004 000e+04-I,e+01

1 47 32 0. 4,t.04-1.000.+011 47 30 0.000 4,+04-1 .0000+011 47 31 0. 4.ss04-1 ,000e+011 48 25 0.4,CC0e.04-1.000e+011 48 26 0. 4.c+04-l o+0I1 48 27 0.0004.e.04-1..+0l1 48 28 0.000 4.000o.04-1.000e+011 48 29 0. 4.000a.04-l,000.+011 48 30 0. 4.OCO.+04-1 ,e+011 49 20 0.000 4.000o.08-1 .0000+011 49 21 0.4.e+08-1.000o+0l1 49 22 0,0004.e+-1.000o+011 49 23 0.000 4.e.08-l.o+011 49 24 0. 4.0.08-l..t01

0-20

Page 175: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

I 49 25 OOX4XC4<S.1m.0,

¶ 48 ¶9 0O)34XCe4-1XCtt01

1 48 20 OXC4XCe.ce-l—o1I 47 15 0.XC 4XCe.%-1 O1

I 47 18 0XC4.OXrD6-l +01

1 47 17 0XC400D.+cs-I.o1

1 47 18 DXC 4OXs.0O-l OXe-Ol

1 47 19 DXV4CCO.0e.IOX-01

I 48 II DXC 4.000e06-1O00t.01

1 46 12 0X04.OX..e-I OXe.Ol

1 46 ¶3 CXC 4.X0e+08-1XC4C1

1 46 14 OZ 4 XCe08-1XCeCl

1 46 IS 0 XC 4.XC..oe-IXCe.ol

1 44 11 0 XC 4X0..08I .OOC*.0l

1 45 II DXC4XC.+0S-1.O11 44 10 0.000 4.X0s.08-1.XCrOI

1 43 10 0.XC4.000o+C8-1.XCeOl

I 43 9 0.XC 4.XCt00-1.XCtDI

¶ 42 9 0 XC 4.000.-D6-1 .XCe.O1

1 42 7 0OX 4.XCe-+-I.-+01

1 42 8 0.000 4.XCe.-1.XCe.Gl

1 41 7 0.XC 4.408l.XCe’011 41 5 C.XC 4.000408-1,XCe-.O1

1 40 5 0.XC 4.XOe+O6-I.XCe*01

1 40 6 0.XC 4.XCe+00-1.000e01

1 39 4 0.XC 4.000e+08-1.XCe.01

1 39 5 0.XC 4.XC.+C-1 t011 36 3 0.XC 4.XC..te-I.XCeOl1 36 4 O.CO4.(iXetCe-l.Co11 37 2 O.XC 4.000e*05-l.XOe’ol

1 37 3 0,XC 4.000e+06-1.*011 35 2 0.XC 4.000.+08-1.XCe.01

1 36 2 0.XC 4.O00a*08-1 .tO1

I 35 3 CXC 4.XCe+08-l..01

1 30 3 0XC4.XCe+-lXCe.01

1 31 3 (lOX 4.XCe4C41.XC.o11 32 3 (lOX 4.XC.+0e-1.XC..Q1

1 33 3 0.XC 4.O00e+08-I.401

1 34 3 0.XC 4.0008+081.eo1

1 30 4 0.XC 4.X0eet6-1..O1I 28 4 0 000 4.OXe+05-I..01

¶ 29 4 0XC4.X0.-+05-1.XC01

1 26 5 0.000 4.XCC+05-1.tO1

I 27 5 CXC 4.XCt.C-1.011 28 5 0.XC 4.000e+O8-1.XCe.o1

1 26 6 0000 4.CoDe+t8-1..O1

¶ 26 7 0.XC 4,XCe.0c-1 ,.O1

1 25 7 0XC4.0Xe’05-l.+Q1

1 25 8 (lOX 4.000e+05-1.XCe.Q1

1 24 B 0.XC 4.XCe.06-1 ..0l

1 24 9 0.XC 4.000e08-1.-.O1

1 23 9 0.003 4.O0D.tC*.1.-.O1

1 23 10 0.000 4.000e+D8-1.0.O1

1 22 ¶0 0.000 4.000e+06-1..OI

1 22 11 0.0004.CXt+C6-1.XCt’01

1 ¶9 II 0,XC 4.0Ze+-1..C11 20 II 0.XC 4.XCetOB-1.DX*O1

I 21 ¶1 0.XC4.OXe4-1..OI

1 ¶4 12 0.XC 4,XCe+-1..1

1 15 12 0.000 4.CCOo’Cel.XC..OI

1 16 ¶2 CXC 4MC0e+V6-1.O1

1 17 ¶2 0.OX 4.XCe+05-I.OX.O1

1 18 12 0.XC 4.OXt+-I.OXt.O1

1 19 ¶2 D.XC 4.003e*-1.+01

1 12 II 0.XC 4.OX.*C6-1..O1

I 13 11 0.XC 4.O0Oe+X-1..01

¶ 14 11 DXC 4.OXe+06-I.OXe.OI

1 5 10 0.XC 4.030e.08-1..o1

1 6 10 DXC 4.CV0t+08-l.O1

¶ 7 10 CXC 4OXei-QS-1.Q1

1 8 10 D.XC 4.XCe+C8-I.OXt.O1

1 9 10 DXC 4.X0.,C8-1..01

I 10 ¶0 0.XC4.XC..08.1.XCetO1

¶ 11 10 0,XC 4.000e.08.-1.XCetOl

1 ¶2 10 0.000 4.XCe40S-I..0I

1 4 II 0.XC 4.XCe+CS-l..OI

1 5 II 0.XC 4.XD..o8-l..D1

¶ 3 12 CXC 4.000e.{8-1..v1

1 4 12 DXC4.XCe*0S-1...01

I 3 13 0.000 4.000e406-1.XCt.CI

C-21

Page 176: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

LANAI. DRN3 -131 32 25 1103 25584 Iowerlwy,el1 33 25 15CC 1370CC tippet ltnel

I 33 24 15CC 1370CC •XIntCnO(Uçpe

lJ.NAI.WEL CALIORATED INrrw STEADY-STATE22 022

1 44 16 0,1 44 15 0.0CC1 43 13 0,1 38 12 0.1 39 23 0.1 39 24 0.0CCI 38 34 0.0CC1 37 22 0-1 36 23 01 36 24 0.030I 35 22 0.0301 36 20 0.1 33 19 0.1 33 25 D1 32 25 D.1 30 26 0,0301 30 23 0.1 29 23 0.1 27 22 0.1 27 31 0.1 31 22 0.1 32 21 O.

LA.NAI.WEL L0NGTERM PUMPAGE22 022

1 44 16 0- well 131 44 15 0. well 121 43 13 0. manel

1 38 12 0. well 101 39 23-207375 Well 51 39 24 O.C% dry

I 38 34 0. 9Y1 37 22 0.0CC dry

1 36 23-36483.9 well 41 36 24 0. dry

1 35 22-83020.8 well 2 cli 31 36 20-15479.0 well I1 33 19 -1570.8 well 91 33 25 0.030 upper

1 32 25 0. lower1 30 26-26190.1 1421 30 23 0. T4I 29 23-3919.3 wellSI 27 22 0.030 well 71 27 30 0. thtI1 31 22 0. well 81 32 21-27396.1 well 3

LANAI.SIP STRONGLY IMPLICIT PROCEDURE PACKAGE25030 51.0303 0.031 I 1 I

[ANAlOG OUTPUT CONTROL PACKAGE0 0 30 400 1 0 11 0 1 1

C-fl

Page 177: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

APPENDIX 0

Page 178: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

LANAI OUTPUT RESULTS (BINARY FILES ARE EXCLUDED AND USED IN CREATING REPORT FIGURES)

US. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUND-WATER MODELXrwj: Kh.1Q. HB895. R616. P.O. Ira..&O1E4. SC it SOc,4E8 Not4E4), IO,.100.Dc,ns Qcww DC.2558 tp.c DC.1370.

I LAYERS 50 ROWS 36 COLUMNS1 STRESS PERIOD(S) IN SIMULATION

MOOEL ThAE UNIT 5 DAYS04.0 UNITS:ELEMENT OF UNIT: 1 2 3 4 5 6 7 8 9101112131415161716192021222324

I/O UNIT: 11121314 0 0 01819 0 022 0 0 D 26 0 0 0 0 0 0 0 0OGASI — BASIC MODEL PACKAGE. VERSION I. 9/1/87 INPUT READ FROM UNIT 5ARRAYS RHS AND BUFF WiLL SHARE MEMORY.START HEAD Wilt BE SAVED

15290 ELEMENTS IN X ARRAY ARE USED BY BAS¶6290 ELEMENTS OF X ARRAY USED OUT OF 35

OBCF3 — BLOCK-CENTERED FLOW PACKAGE. VERSION 3. 7/9/92 INPUT READ FROM UNIT IISTEADY-STATE SIMULATiONCONSTANT HEAD CELL-BY-CELL FLOwS WiLL BE PRINTEDHEAD AT CELLS ThAT COINERT TD DRY OD4.WTIING CAPABILITY IS NOT ACTTQE

-

LAYER AQUIFER TYPE INTERBLDCK T

I I 0-HARMONIC3601 ELEMENTS IN X ARRAY ARE USED BY BCF

19891 ELEMENTS OF XARRAY USED OUT OF 3500D0DWELl - WELL PACKAGL VERSION 4. WI/aZ INPUT READ FROM 12MAXIMUM OF 22WELLS

68 ELEMENTS IN X ARRAY ARE USED FOR WELLS19979 ELEMENTS OF XARRAY USED OUT OF 35

CORNI — DRAiN PACKAGE. VERSION I WI/B? INPUT READ FROM UNIT 13MAXIMUM OF 3 DRAINSCELL-BY-CEll FLOWS W3. BE PRINTED WI-lEN ICBCFL NOT 0

15 ELEMENTS IN X ARRAY ARE USED FOR DRALNS19994 ELEMENTS OF XARMY USED OUT OF 35

ORCH1 - RECHARGE PACKAGE, VERSION 1.9/1187 INPUT READ FROM UNIT 18OPTION I - RECHARGE TO TOP LAYER

16CC ELEMENTS OF XARRAY USED FOR RECHARGE21794 ELEMENTS OF XARRAY USED OUT OF 3500CC

ORIVI — RIVER PACKAGE. VERSION 1. 9/1157 INPUT READ FROM UNIT 14MAXIMUM CF 164 RIVER NODESCELL-BY-CEU. ROWS WILL BE PRINTED

964 ELEMENTS IN X ARRAY ARE USED FOR RIVERS22778 ELEMENTS OF XARRAY USED OUT OF 350000

DSIP1 —STRONGLY IMPLICIT PROCEDURE SOLUTiON PACKAGE. VERSION 1,9/1/07 INPUT READ FROM UNIT 19

MAXIMUM OF ITERATIONS AJ.LOWED FOR CLOSURE$ ITERATION PARAMETERS107206 ELEMENTS IN X ARRAY ARE USED BY SIP129963 ELEMENTS OF X ARRAY USED 0431 OF 350300

Cl-IFB1 — HORIZONTAL FLOW BARRIER PACKAGE. VERSION 1. CttlZ/06 INPUT READ FROM UNIT 26A TOTAL OF 895 HORIZONTAL FLOW BARRIERS

4475 ELEMENTS IN XARRAY ARE USED FOR HORIZONTAL ROW BARRIERS134458 ELEMENTS OF X ARRAY USED OUT OF 35&a)

ILa-lal: Ith10t, HB=895, R=616. P.0, IOW5O1E-5, SC It Sotth=-4E6 Nocth=4E4), IO-.c=100Drsns (Io.Aw DC255B LpOC DC137D, ix0

BOUNDARY ARRAY FOR LAYER I WILL BE READ ON UNIT S USING FORMAT: (2513)

1 2 3 4 5 6 7 8 9 10II 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 2931 32 33 3-4 35 36

Dl 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0O D 0 0 0 0 0 0 0 0O D 0 0 0 0

02 0 0 0 0 0 0 0 0 0 00 0 I I I I I 0 0 0O 0 0 0 0 0 0 0 0 0o 0 0 0 0 0

03 0 0 D 0 0 0 0 0 0 0O 1 1 1 I I I I I IO 0 0 0 0 0 0 0 0 0O 0 0 0 0 0

04 0 0 0 0 0 0 0 0 0 0I I 1 1 1 1 1 1 1 1I I 0 0 0 0 0 0 0 00 0 0 0 D 0

05 0 0 0 0 0 0 0 0 0I I I I ¶ 1 1 1 1 ¶

1 I 1 0 0 0 0 0 o a0 0 D 0 0 0

06 0 0 0 0 0 0 0 0 0¶ I I I I I I I I I

1 1 1 1 0 0 0 0 0 0

Page 179: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

—a

0N

W40

t.C

a4-

——

4-

—4-

oo

00

00

00

00

00

00

00

00

CN

N0

00

0

——

4-

—4-

00

—a

—o

-o

—o

.-o

,-o

——

00

00

00

00

—o

‘0

-o

—c

—o

‘-—

——

0—a0

c_

04

-0

00

00

0•_

00

°.-—

°.-.-

°.-‘-

0

00

00

00

o_oo__o__0__o__0_4-0—

—0

00

00

00

00

0_._o__0__04-_0_.-o__o_-_

0

00

00

00

00

—0

00

00

00

00

—0

00

00

00

00

4-

0

00

00

0—

—c—

—c’-’-

0

o0

oo

.0

0

o0

o0

0

oo

4-

0

00

—0

o0

—‘-0—

—c’-—

0

00

00

00

00

—0’-—

0—

00

0

00

0

o0

0

00

0

00

04

-

00

0

00

04

-

00

0

00

0

00

0

o0

o0

o0

00

00

0—

’-

04-4-

0

o0

00

00

00

00

0’-

4-

0—

00

00

0

00

0—

—0—

—c—

’-

0

00

0

00

0

00

0

o0

0

00

0

0—

——

0—

——

00

0—

00

00

00

00

00

0

Page 180: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

——

——

——

——

——

——

——

—0

00

00

0

——

.-

——

.-—

—.-

——

——

——

——

——

——

——

——

——

.--

——

——

——

‘-—

——

——

—o

00

00

00

00

00

00

00

00

00

00

00

—0

0—

00—

0

S0

00

00

00

00

00

00

00

00

S0

00

00

——

——

——

——

——

——

00

00

00

0

——

-—

——

——

——

——

——

,-—

——

——

‘-—

——

——

—.-—

——

——

,-—

——

.-—

——

00

-—

——

——

——

——

—0

00

00

00

0

——

——

—,-—

——

——

——

——

——

——

—,-

——

——

‘-—

——

——

——

‘-—

——

——

000

-—

——

——

——

——

—0

00

00

00

0

——

—‘-—

—‘-

——

‘-—

——

——

——

——

——

——

,-—

—-

.-—

‘-—

——

——

——

——

000

——

——

——

——

——

00

00

00

00

0

000

00

0

——

——

——

——

——

——

00

00

00

00

00

—0

0’0

0—

0

——

——

——

——

—0

00

00

00

00

00

—0

00

00

00

0—

——

——

——

——

00

00

00

00

00

00

—0

—0

0—

00

0

00

00

00

——

—0

00

00

00

00

00

00

—0

0—

00—

0

Page 181: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

o 0 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0 0

o o 0 0 0 0OAQUIFER HEAD Wilt 8€ SET TO 00000 AT ALL NO-FLOW NOOES (IBOUNDInD),

U

INITIAL HEAD, LAYER I WiLL SE READ UNFORMATTED ON UN[T 35

I 2 3 4 5 5 7 8 9 10

II 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36

O 1 0.0000 O. 0.00% 0.000 0.0000 O. O. 0.000 0.0000 0.0000

0.0000 O. 0.0000 0.000 O. 0.000 0. 0. 0.00CC 0,

00000 0.0000 0.0000 0.00% 0.0000 0. 0 • 0.0000 0.0000 0.0%

0.000 0.0% 00% 0.000 0.0000 0.00%

0 2 0.000 0.0% 0.0% 0.000 0.0% 0.0% 0.0% 0.0% 0.0% 00%

0.000 0.0% 2.3181E-07 70106€-OS 1.0295E-04 96275€-OS 74483€-cl 0.0% 0.0% 00%

0.0000 0.0% 0.0% 0 00CC 0.0000 0.Q’3Y3 0.C000 00% 000% 0.0%

0.0000 0.0000 0.0% 0.0% 0.0000 0.0%

0 3 0.00)0 0.0% 0.0% 0.0% 00000 00% 0.00% 0.0% 0.0% 0.0000

0.0000 3.4317E.07 l.6217E-04 7.02996.02 0.1031 964485-02 6.5004E.04 0.2544 0.3812 0.4357

0.0000 0.000 0.0000 0.0000 0.0000 0.0% 0.0% 0.0% 0.0% 0.00CC

0.00(0 0.0000 0.0% 0.0000 0.0000 0.00000 4 0.0000 01000 0.0000 0.0000 0.0000 0.0% 0.0000 0.0000 0.0000 0.00%

3.3271E-07 1.8169E-04 9.25885.02 0.1742 0.2313 0.2656 0.2916 0.4010 0.4871 0.5337

0.5896 0.6046 0.00)0 0.000 0.0% 0.0000 0.0000 0.0000 0.DZ 0(000

0.0000 0.000 0.0000 0.0% 0.00% 0.0%

0 5 0.000 0.0% 0.0000 0.0000 0.0000 0.000 0.0000 0(0)0 0.000 21403€-C?

1.51685-04 6.94(06.02 0.1907 0.2652 0.3623 0.4232 04789 0.5512 0.6142 0.6586

0.6864 0.6796 0.6910 0.0% 0.0% 0.0000 01000 0000 0.0% 0.0%

0.0000 0.0% 0.0% 0.000 0.000 0.0%

0 S 0.000 0.0% 0.000 0.000 0.0000 0.0% 0.0% 0.0% 0.0000 6.27806-05

6.2674E-02 0.1615 0.2766 0.3942 0.4892 0.5651 0.6304 0.6926 0.7445 0.7610

0.6000 0.7969 0.7714 0.7732 0.00% 0.0% 0.0% 0.0% 0.000 0.0%

0.0% 0.0000 0,00(0 0.0000 0.000 0.0%

0 7 0.0% 0.0% 0.0000 0.000 0.0000 0.0% 0.0% 0.0% 0.0% 8.95395-C6

8.9719E-02 0.2052 0.3409 0.5068 0.6151 0.6967 0.7662 0.6276 0,8743 0,9056

0,9204 0.9161 0,8930 0.6522 0.6435 0,000 0.0000 0.0% 0.000 0.0%

0.000 0.0% 0.0% 0.0000 0.0000 0.00000 8 0.0000 0.0% 0.000 0.00(0 0.0000 0.000 0.0% 0.0% 0.00CC 15585€-OS

1.5523E02 111.8 124.8 0.5525 0.7485 0.8300 0.8996 0.9583 1.003 1.031

1.042 1.035 1.012 0.9720 0.9175 0.8997 OCWYY.) 0.0% 00% 0.0%

0100 0.0% 0.0% 0.000 0.0% 0.0%0 9 0.0000 0.0% 0.0% 0.0% 00000 00% 0.0% 0.0% 0.0% l.8702E-

1.8729E-02 1512 200.1 154.6 0.8785 0.9555 1.025 1.086 1.132 1.155

1.162 1,152 1.128 I. 1.035 0.9690 0.9430 0.0% 0.0000 0.0%

0.000 00% 00% 0.0000 0.000 0.0%010 0.0000 0.000 0,000 0.000 0,0000 0.0% 0.0% 0.0% 0.000 13096€-OS

1.3107E-02 148.5 221,9 217.1 144.6 1.074 1.144 1210 1.258 1.278

1.280 1.268 1.243 1.202 1.14 1.062 1.009 0.00% 0.0% 0.0%

0.0% 0.0000 0.0000 0.00% 0.000 0,0000 11 0.0000 0.0% 0.0% 0.00% 0.00(0 0.0% 0.0% 0.0% 0.0% 8.54630.05

8,5566E03 109,4 ¶78.1 192.7 190.4 137.0 1.260 1.331 1.37? 1.396

1.394 1.379 1.353 1.313 1.258 1.187 1.094 1.058 0.0% 0.000

O0)00 0.0% 0.0)00 0.0% 0.0000 0,0%0 12 000% 0.0% 0.0% 0.0% 0.0000 0.0% 0.0% 0.0% 0,0% 1.15465-07

1.07155-04 9.89296-02 0.2101 02952 1481 198.8 184.0 1.458 1.486 1.505

1.505 1.47 1.460 1.420 1.366 1. 1219 1.128 1.065 0.0%

0.00CC 0.0% 0.0% 0.0% 0.0000 0.0%013 0.0% 0.0% 0.0% 0.0000 0.0% 0.0% 0.000 0.0% 0.000 0-0%

7.39220-05 7.4C306-.02 0.1968 0.3156 0.4178 172.3 255.0 235.3 1.587 1.607

1.609 1.589 1.561 1.522 1.471 1.410 1.336 1.250 1.150 1.102

0.000 0.0% 0.0000 0.000 0.00% 0.0000 14 0.000 0.000 0.0% 0.0% 0.0% 0.0000 0.0% 0.0% 0.000 0.00%

3.2287E.07 2.4€.c4 0.1763 0.3289 0.4593 0.5778 224.3 324.6 217.3 1.718

1.708 1.684 1.653 1.617 1.573 1.515 1.446 1.366 1270 1.163

1.110 0.0% 0.0000 0.000 0.0000 0.0%015 0.0% 00% 0.0% 0.00)0 00000 0.0% 0.0% 0.0% 0.00CC 0.0%

0.0000 l.7151E-04 0.1716 0.3405 0.4903 06224 0.7455 325.7 268.6 1.793

1.790 1.771 1.742 1310 1.669 1.515 1.550 1.474 1.362 1278

1.167 1.111 00% 0.0% 0.000 0.00000 16 0.0000 00% 0.000 0.0% 0.000 0.0% 0.0% 0.0% 00% 0.00%

0.0% 1.73745-04 0.1738 0.3497 0.5160 065(0 0.7588 365.8 383.3 205.6

1.850 1.854 1834 1,801 1.762 1.710 1.647 1.571 1.481 1.380

1.272 1.166 0.000 0.0% 0.0000 0.0000 17 0,0000 0.0% 0.0% 0.0% 0.0000 0.000 010% 0.0% 0.000 0.00%

0.0000 2.04586.04 0.2047 0.3957 0.5479 0.6804 0.7863 394.5 440.1 309.9

‘173.8 1.957 1.933 1.894 1.852 1.798 1.735 1,659 1.569 1.470

1.356 1. 1.151 0.0% 00000 0.000

0 18 0.0% 0.0% 0.0% 0.0% 0.0% 0.00CC 0.0% 0.0% 0.00CC 00%

0.0% 2.1822E.04 0.2162 0.4157 0.5755 D.7 0.6153 472.5 472.5 369.3

252.1 2.026 2.017 1. 1.937 1.880 1.818 1.738 1.650 1.553

1.442 1.319 1.191 1121 0.000 0.000

0-4

Page 182: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

019 0. 0. 0 OOXjO 0 00 000% O O O

5.1760607 3.84276.04 0.2507 0.4513 06095 07354 0.8396 419$ 4915 417.7

3399 246.4 2.108 2.071 2.020 1 963 1. 1.813 1725 ¶629

1.522 1.402 1.278 1.162 0. 0020 0 0. 0 0 0 0 00000 0.0 0. 0

1.34576.04 0.1347 03278 05060 06511 0.7681 0.8566 410.9 5066 457.8

3766 287.7 2191 2.152 2.104 2.044 1.973 1.890 I 799 I 702

1.592 1.470 1.335 1.122 1.111 0.022 0. 0. 0. O 0 0 000CC 0. 0 0.

2.10586-04 0.2107 0.4069 0.5123 07 06070 08864 3946 509.2 4880

392.4 271.6 2.266 2235 2.160 2.119 2.050 1 966 1.871 1.759

1.654 1.529 1.393 1.257 1.132 0.022 0.0000 0.0000 O. 0.0000 0. 0. 0. 0 0. 6.7892647

4.09276-04 0.3008 0.4980 0.6490 0.7669 0.8595 0.9288 336.9 448.4 437.6

376.0 270.7 2337 2.297 2.253 2.190 2.120 2.037 1.941 1.834

1.714 1.579 1.433 1288 1.155 0.023 0. 0.0%0 0 0. 0. 00)30 0.00% 0. 588456.07 2.71016-04

0.1097 0.4914 0.6120 0.7366 0.6403 09210 09804 251.9 357.9 401.1

3W1 290.2 2.391 2.354 2.311 2.257 2.196 2.116 2.019 1.905

1.774 1.622 1.456 1.291 1.143 0.024 O. 0. O. 0. 0. 0. O. 6.29316.07 3.18626-04 0,1623

0.3281 0.5469 0.6979 0.8214 0.W3 1.0% 1054 231.4 356.3 416.9

4302 389.6 270,7 2.396 2.368 2.329 2279 2.209 2.113 1,989

1,640 1,661 1.463 1.261 1.094 0.025 0. 0.00CC 0.00% 0. 0. 0,C 5.64516.07 3.11956.04 0.1575 0.3184

0.4802 0,6471 0.7888 0.9101 1.011 1.091 1.148 259.2 395.2 475.3

5112 506.6 434.1 267,1 2.429 2.412 2383 2.327 2.235 2.095

1.918 1.703 1.454 1.187 0,9489 0.02$ 0. 0.0000 0.00CC 0. 2.20196-07 1.10406-04 3.4367E-04 0.1556 0.3 0.4561

0.6069 0.7524 0.8845 1.CC1 1.104 1.190 1.255 321.1 469.7 5602

611.0 632.3 581.3 470.7 304.9 2.504 25CC 2.468 2.377 2.223

2.017 1.759 1.447 1.068 0.6567 0.027 0.00% 0.0000 0. 0.00CC 1,10226.04 0.1104 0.1692 0.3089 0.4390 0.5739

0.7133 0.6501 0.9788 1.097 1.202 1.293 1.356 373.1 550.7 661.0

738.0 755.3 721.4 646.7 531.6 364.8 2.6.44 2.658 2.558 2.378

2.144 1.855 1.491 0.0 2.49446.03 0.028 0.0)30 0.0000 Q. 3.22356-07 1.61576-04 02520 0.3291 0.4346 05518 08755

0.6069 0.9406 1.070 1.192 1.303 1.400 1481 415.4 616.5 760.5

643.8 869.1 855.5 601.7 712.3 571.5 354.9 2.931 2.760 2.560

2.302 2.011 1.673 1.273 0.8436029 0. 0.0%0 0.00% 1.61436.04 0.1619 0.3151 0.4244 0.5301 0.6442 0.7650

0.6927 1.025 ‘.158 1.285 1.402 1.506 1.595 454.1 677.9 836.4

932.9 978.5 991.0 9482 843.8 656.9 374,0 3.265 3.039 2.767

2,464 2.196 1.897 1,589 1.312 0.030 0. 0.00% 2.53536-10 2.16026-07 0.3319 0.4116 0,5033 0.5018 0.7126 0.8339

0.9543 1.101 1.241 1.376 1.500 1.612 1710 506.9 741.7 896.0

1001. 1079. 1131. 1116. 993.5 738.2 4255 3.748 3.326 2.971

2.658 2.378 2.106 1.843 1.608 0.031 0. 0.00% 3.80216-08 2.19806-05 0.4196 0.4760 0.5552 0.6481 0.7560 0.8835

1.020 1.166 1.320 1.464 1.596 1.714 1.824 586.6 .1 953.6

1078. 1191. 1273. 1287. 1155. 8592 4528 4.114 3.533 3.111

2.786 2.531 2.283 2.042 1.820 0.00%

032 0. 0.0%0 1.6175646 1.61976-02 137.8 177.9 173.7 170.0 184.6 217.6

262.8 346.1 476.5 522.1 549.5 566.2 606.3 749.4 871.6 1014.

1154. 1267. 1392. 1406. 1240. 949.2 5.0% 4.520 183.5 158,8

2.821 2.652 2.431 2.201 1.989 0.033 0.0%0 0. 26065€-OS 7.61226.02 1930 250.7 250.3 243.7 259.7 304.3

368.1 476.6 476.7 639.1 832.6 840.9 842.2 843.9 845.6 1048.

1206. 1356. 1476. 1508 1404. 1095. 5.578 334.8 269.4 192.9

2.982 2.796 2.567 2.333 2.1CC 0.0)30

034 0.0%0 0.0000 2.40676.06 2.40616.02 192.0 250.3 269.4 252.8 254,8 304.9

375.1 476.6 476.8 628.5 758.9 759.1 759.2 843.7 847.0 1068.

1251. 1421. 1531. 1801. 1539. 1319. 821.1 470.7 4.039 3.722

3.273 2.960 2.587 2.434 2.198 0.035 0. 823146-06 51268€-OS 2.01846.02 146.1 2(0.4 211.0 198.7 182.3 219.1

302.7 476.5 475.8 628.2 758.8 759.0 759.2 759.4 5482 1035,

1280. 1523. 1523. 1867. 1641. 1453. 1047. 4.654 4.197 3.794

3.398 3.059 2.766 2.500 2.257 0.036 0.00% 3.11886.05 3.l2”02 0.1249 0.2515 0.3926 0.5440 0.7040 0.8730 1.049

1244 1.478 627.3 627.9 758.6 758.8 759,1 759.3 6492 650.1

1256. 1492. 1625. 1743. 1729. 1562. 1172. 4.722 4.244 3.815

3.433 3.096 2.796 2528 2281 0.0030

037 0. 1,4.4316.07 1.13416-04 8.25756-02 0.1994 03365 0.4882 0.6544 0.8315 0.9941

1.157 273.9 551.0 757.7 758.2 758.6 759.0 759.4 927.7 1020.

1284. 1504. 1630. 1805. 1034. 1674. 1398. 888.9 4.179 3.745

3.392 3.073 2.780 2.512 2.266 0.00CC038 0.00% 0. 3.05446.07 1.93646-04 0.1118 0.2463 0.3974 0.5724 0.7850 0.9207

169.5 318.0 433.1 545.8 757.9 758.3 7588 921.3 927.8 928.4

1273. 1514. 1718. 1839. 1853. 1761. 1550. 1199. 705.8 3.566

3.260 2.986 2712 2.456 2.216 0.039 0. 0. 0. 4.31206-07 2.38436-04 0.1275 0.2633 04325 91.47 170.0

242.9 273.0 235.6 1.882 6.649 6.831 926.1 927.1 927.8 928.4

1276. 1515. 1723. 1841. 1858. 1607, 1529. 1328. 666.6 3.510

3.151 2.868 2.609 2.366 2.136 0,040 0. 0. 0.0)30 0.00% 4.52136.07 214616-04 8.79056-02 6.6237602 0.1359 1682

215.2 1742 1.501 1.751 6.317 6.667 683.8 654.7 928.0 1090.

1311. 1514. 16%. 1810. 1845. l. 1643. 1374. 1015. 550.5

0-5

Page 183: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

2928 2701 2465 2241 2.032 0.041 0 0. O 0. 000% 3.30206-07 I 1625644 2.6796642 1.96966.02 117.2

131.9 1.140 1361 4.846 5.625 342.5 6668 849.6 981.6 1139.1320. 1491. 1647. 1751. 1781. 1744. 1595 1352. 1093. 6&5.82621 2.523 2.291 2.062 1.910 O

042 0 0.0300 0 0.0000 0.00% 0. 14469607 2.87306.05 196666-05 1.44486-0205255 0.6427 3.201 4.046 155.9 361.4 6498 640.6 984.1 1139,1292 1438. ¶586. 1678. 1689. 1633. 1497. 1298. 1095. T74.9404.9 2.268 2.076 1.867 1 XC 0.

043 00000 0.00% 0.0300 0. 0. 0. 0 0.00CC 2.0954647 1.90296-040 1766 1.444 2.335 49.31 0.6888 1.054 5365 768.6 932.2 1083.1222. ¶349. 1458. 1524. 1523, 1471. 1361 1204. 1012. 77904864 2.127 1.659 1.677 OLXDD 0.

044 0. 0.0000 0. 0 CC_D 0.00% 0. 0.C3 0.0000 0. 9.0%2E.077 11536.04 0.5372 0.1318 0.4470 0.6763 0.3055 430.6 646.9 811.6 967.81107. 1216. 1298. 1341. 1331. 1280. 1187 1055. 696.7 699.2483.2 234.1 1.539 1.458 0.0003 0.

045 0.0%0 000% 0.0%0 0.0000 00000 0 0- 0.00% 0. 0.00CC1 6574E04 0.1655 0.1241 0.1932 7.73166-03 0.2175 287.1 448.1 590.3 783.1942.6 1043. 1109. 1133. 1106. 1047. 964.0 850.1 706.8 510.0350.4 197.1 1.252 1.292 0. 0.fl

046 0. 0.0000 0.0000 Q. 0.C030 0.0009 0. 0. 0. 0.00CC3.3023E-07 1.6515644 1.2414E44 1.92886-04 7.76146.05 6.90106-02 5.7685602 7.flE-02 0.1980 481.8709.6 616.8 869.9 677.2 825.6 716.6 641.0 550.0 405.7 0.9490

0.6482 0.8729 1.012 0.0000 0. 0.00%047 0.0000 0.0000 0.0%0 0.0000 0.0000 0. 0. 0.0000 0. 0.0%0

0 0%0 0.0000 0.0003 0.0000 1.46986.07 6.9665606 5.7665605 7.8703605 Z6685E44 6.9527E.02386.7 512.7 555.5 546.5 448.6 0.7995 0.7964 0.7960 0.7782 07857

0.7818 0.7680 0. 0.0000 0.00% 0.048 0.0000 0.0000 0.00% 0.0030 0. 0.0000 0. 0,00% O. 0.

00300 0.0000 00000 0.0000 0.0000 0. 0. 0.0003 3.6433647 9.621364529072E-02 9.3966602 0.1072 0.1052 0.3116 0.5746 0.6682 0.7002 0.7051 0.71050.00% 0.0000 0.0 0. 0. 0.

049 0.0009 00000 00000 0.0300 0. 0.00% 0. 0.0000 0. 0.0. 0.0000 0.0000 0.0000 0.0000 0.0%0 0. 0.0000 0. 1.27046.07290606.06 9.3852E-05 1.0709604 1.05326.04 3.1116604 0. 0.0000 0. 0.0000 0,00000.00% 0.0000 0. 0.0%0 0.00% 0.

050 0,0000 0.0000 0.00% 0.0000 0.00% 0. 0. 0.0000 0,DXC 0.0. 0. 0.0000 0.0000 Q. 0. 0. 0.0000 0.00% 0.0.0%0 0.0%0 0. 0. 0.00% 0. 0. 0.0000 0.00% 0.0%00. 0.0000 0.0000 0.0000 0. 0.

%EAD PRINT FORMAT IS FORMAT NUMBER 0 DRAWOOWN PRINT FORMAT IS FORMAT NUMBER 0CHEAtS WiLL BE SAVED ON UNIT 30 DRAWDOWNS WIll BE SAVED ON UNIT 40OOUTPLJT CONTROL IS SPECIFIED EVERY TIME STEP0 COWMN TO ROW fl4ISOTROPY = 1.O0 OELR 20%.0%0 DELC 20%.0%0

IWO. COND. ALONG ROWS FOP LAYER I WiLL BE REAO ON UNFI 11 USING FORMAT: (10512.4)

1 2 3 4 5 6 7 6 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36

0 1 10%. 1000. 1000. 10%. 10%. 10%. 10%. 10%. 1000. 10%.1030. 1 1000. 10%. 10%. 1000. 1000. 1 1 11003. lO0 1 10%. 1(03. 1 1 1 10 110%. 1000 10%. 10%. 1000. 10%:

0 2 1000. 1000. 1000. 10%. 10%. 10%. 10%. 1000. 10%. 10%.1 l 1 1000. 10%. 10%. 10%. 1030. 1 11000. 1O 1 10%. 10%. 10 10%. 10%. l 110%. 10%. 1 1000. 10%. 10%.

0 3 10%. 1000. 10%. 1003. 10%. 10%. 10%. 10%. 10%. 10%.10%. 1000. 1000. 1003. 10%. 10%. 10%. 1000. l 10%.1 1003. 1 1003. 1000. 10%. 10%. 1 1 tl 1000. 10%. 1000. 1000. 10%.

0 4 10%. 1000. 1000, 1000. 10%. 10%. 10%. 10%. 10%, 1000.l 1000. 1000, 1000. 10%. 10%. 10%. 1 1000 11 l00 10%. 10%. 10%. 10%. ITO, 1 1000. 1000.1000 1000. 10%. 10%. 10%. 10%.

0 5 1000. 1000. 1000. 1000. 1000. 10%. 10%. 1000. 1000. 10%.1000 1000. 1 1000. 10%. 10%. 10%. 10%, 1 110%. 1009. 1 1 10%. 10%. 1000. 1 10%. t1 1000. 1000. 1000. 10%. 10%.

0 6 10%. 1000. 1000. 1000. 10%. 10%. 10%. 1000. 1000. 10%.1 10%, 1000 10%. 10%. 1000. 1000, 1 1 1000.1003. 1000. 1000. 1000. 1000. 1000. 10%, l 1000. 10%.1000. 1000. 1000. 1000. 1000. 10%.

0 7 1000, 1000. 10%. 10%. 1000. 10%. 10%. 10%. 10%. 10%.10%. 1000. 1 10%. 10%. 10%. 1030 10%. 10%. 10001030 1003. 1 10%. 1(03. 1 10%. 10%. 1000. 10CC.1000, 10%, l 10%. 1000. 1

0 8 1000. 1000. 1030. 10%. 10%. 1000 1000 10%. 10%. 10%.

0-6

Page 184: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

tO

DXDXL

DXLDXLDXLDXLDXLDXLDXLDXL

DXLDXLDXIDXLDXLDXLDXLODOL

DXLDXIDXLDXDXLMODX

DXIDXLDXLDXLDXIDXLDXLDXIDXLDXLDXLDXLDXLDXIDXLDXL

DXLDXLDXLDXLDXIDXLODJLDXLDXLDXLSt0DXLDXLDXLDXLDXL

DXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXL

DXLDXLDXLDXLDXL0001DXL000LDXLDXIItODXLDXLDXLDXLDXLDXL

DXLDXLDXLDXIDXLDXIDXLDXIDXLDXLDXLDXLDXLDXLDXLDXLDXLDXL

DXLCCL0001DXLDXLCLCIDXLCCOLDXL9t0

DXLDXLDXLDXLDXIDXL

DXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXL

DXLDXLDXLDXLDXLDXLDXLDXLDXLDXLSt0DXLDXLDXLDXLDXIDXI

DXLDXLDXLDXIDXLDXLDXLtCCLDXLDXL

DXLDXLDXLDXIDXLDXLDXIOLDXLDXL

DXLDXLDXIDXLDXLDXLDXLDXLDXLDXLPt0DXLDXLDXLDXLDXL0001

DXLDXLDXLDXLDXLDXLDXLDXLDXIDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXL

DXIDXLDXLDXLDXLDXIDXLDXLtOOLtOOLCZ0DXLDXLDXLDXLDXLDXI

DXIDXLDXLDXLDXLDXLDXLDXIDXIDXL

DXIDXLDXLDXIDXLDXLDXIDXIDXLDXL

DXLDXLDXLDXLDXLDXLDXLDXLDXLDXLaoDXIDXIDXLDXLtOOLDXL

DXIDXLDXLDXIDXLDXIDXIDXLDXLDXLDXLDXLDXLDXLDXLDXLDXIDXIDXLDXL

DXLDXL•DXLDXLDXLDXIDXIDXLDXLDXILt0DXLDXLDXLDXLDXLDXL

DXLDXLDXLDXLDXLDXIDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXL

DXLDXIDXLDXLDXLDXLDXLDXLDXLDXLOtODXLDXLDXLDXLDXLDXL

DXLDXLDXLDXLDXLDXIDXLDXL.DXLDXLDXLDXLDXLDXIDXLDXIDXLDXLDXLDXL

DXIDXLDXLDXLDXLDXLDXLDXLDXLDXLCL0DXLDXLDXLDXLDXLDXL

DXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXIDXLDXLDXLDXLDXLDXLDXLDXLDXL

DXLDXLDXLDXLDXLDXLDXLDXLDXLDXLSLODXLDXLDXLDXLDXLDXL

DXLDXLDXLDXLDXIDXLLDXIDXLDXL

DXIDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXIDXLDXLDXLDXLIL0

DXLDXIDXLDXLDXLDXL

DXIDXIDXLDXIDXLDXLDXIDXLDXLDXLDXIDXLDXLDXLDXLDXLDXLDXLDXLDXI

DXLDXLDXLDXLDXLDXLDXLDXLDXL0001OL0DXLDXLDXLDXLDXLDXL

DXIDXLDXLDXLDXLDXIDXLDXLDXLDXL

DXLDXLDXLDXLDXLDXLDXLDXLDXLDXL

DXLDXLDXLDXLDXLDXLDXLDXLDXLDXLSL0DXLDXLDXIDXLDXLDXL

DXLDXIDXIDXIDXIDXLDXLDXLDXLDXIDXLDXLDXLDXLDXIDXLDXLDXLDXLDXL

DXIDXIDXLDXLDXLDXLDXLDXLDXLDXLPLODXIDXIDXLDXLDXLDXL

DXLDXLDXLDXLDXLDXLDXLDXLDXIDXL

DXLDXIDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLDXLCL0

DXLDXLDXIDXLDXLDXL

DXLDXLDXLDXIDXLDXIDXIDXIDXLDXLDXLDXLDXLDXLDXLDXIDXIDXLDXIDXI

DXLDXLDXLDXIDXLDXLDXIDXLDXIDXLtL0DXIDXIDXLDXIDXLDXL

DXIDXLDXLDXIDXLDXLDXLDXLDXLDXI

DXIDXLDXLDXLDXLDXLDXLDXLDXLDXL

DXLDXLDXIDXIDXLDXLDXLDXLDXLDXILI0DXLDXLDXLDXLDXLDXL

DXLDXLDXIDXLDXLDXIDXLDXLDXLDXL

DXLDXLDXIDXIDXLDXLDXLDXLDXLDXL

DXIDXLDXLDXLDXLDXLDXLDXLDXLDXI010DXLDXIDXIDXIDXLDXI

DXLDXLDXLDXLDXLDXLDXLDXIDXIDXL

DXLDXIDXLDXIDXIDXLDXLDXLDXLDXL

DXIDXLDXLDXIDXLDXLDXLDXLDXIDXL60DXIDXIDXIDXIDXLDXL

DXLDXLDXIDXIDXIDXIDXIDXLDXLDXIDXLDXLDXLDXLDXLDXIDXIDXLDXLDXL

Page 185: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

9-0

0IN3A’WlNOJXtCP=MOHOS0

OOI.tCOIXCIXCI.XCI-XCIXCIXCI.XCIXCIXCIXCI

003IXCI0031XCI.XCIXCI.XCI0I.XCI.XCI-OS01XCIXCI.XCI

I.XCIXCIXCI.XCIXCIXCIXCI.XCIXCIXCIXCIXCI.

XCI0100010001010001XCI.003100010001GPOXCI.XCIXCIXCIXCI.XCI

XCIXCI.XCI.XCIXCIXCI.XCI.XCIXCXCI.XCI.XCIXCIDXIXCI.XCI

COOXCI.SPa-XCI.

XCXCI.XCIXCIXCIXCIXCIXCI.XCIXCIXCI

XCI001XCI.XCIXCICI.XCIXCIXCI(CCItWOXCIXCIXCIXCI.XCI.

XCXCIXCIXCIXCIXCIXCI.XCI.XCIXCI

XCICOOLXCIXCICI0001XCIXCICOOL(CCI9P0XCXCI

XCIXCIXCIXCIXCIXCIXCIXCIXCI.XCIXCIIXCI.XCIXCI.XCI

XCIXCI01XCI001XCIXCIXCICOOlXCI.5*0XCI.XCIXCI0001XCI.

XCIXCIXCIXCIXCI.XCIXCIXCIXCXCI.

OWI.XCI0001XCI.0001003I.XCI.XCI.XCIXCIflOXCIXCIXCI.XCIXCIXCI

XCIXCI.XCI0001XCIXCIXCI.XCI.XCIXCI.XCIXCIXCI.XCI.XCI

XCI.00OI.I.OI001XCIXCI.XCI.XCIXCIEPOXCXC

XCI.XCI.XCIXCI.XCIXCI.XCI.XCI.XCIXCIXCI0OI.XCI.DXI

XCI.0010001COOl001XCI.XCI.XCIXCI.XCI*0XCIXCI.XCI.XCI.XCI.

XCIXCIXCI.XCI.XCIXCI.XCI.XCI.XCIXCIXCI.XCIXCIXCIXCIXCIXCIXCI.

XCI.XCIXCI0OOI.001XCIXCI.XCI.OOI.000I.I.P0XCI.XCIXCI.XCIXCI.XCI

XCIXCI.XCI.XCIXCI.XCI.XCI.XCIXCI.XCI.000I.XCI.XCI000I.XCICXI.CCCI.001XCI

XCI0001XCIXCI.XCI.XCIXCI.0031XCIXCI.OP0XCI.XCIXCI0001XCIXCI.

XCI.XCI.XCIXCI0001XCIXCI.XCIXCIXCI.0001003100010001XCIXCI.00010001DXIXCI.

XCI.01XCI0001XCIXCI.XCIXCIXCI.XCI.600XCIXCIXCIXCIXCIXCI.

XCIXCIXCI.XCI.XCI.XCIXCI.0001000100010001DCCIOWLDXI.CCCI.XCIXCI

0031XCI.0001XCIXCIXCIXCI.XCIXCIXCIStOXCI.XCIXCIXCI.XCI

XCI.I.XCIXCIXCIXCIXCIXCIXCIXCI000100131000I.0031000100010031CCCI0001XCI

00OI.001XCIXCI030I.XCIXCI.XCI.XCI.XCIItOXCIXCIXCIXCIXCIXCI

XCI.XCI.XCIXCIXCIXCIXCIXCIXCIXCI003I.DCCI000100310031OCCI.00310001XCI.XCI

XCI.XCI.XCIXCIXCIXCIXCI.XCIXCI.XCISCOI.XCIXCI.XCIXCI.XCI

XCI.XCIXCIXCI.XCI.XCIXCI.XCI.XCIXCI.OWl00OI.0001003100310031000100310001XCI

XCI0001XCIXCI0001XCIXCI.XCIXCIXCISt0XCI.XCI.XCIXCI.XCIXCI

XCIXCIXCIXCI.XCI.XCI.XCIXCIXCIXCI

DCCI.0001000100010001CCCI.0001CCCICCCIXCIXCI.XCIXCIXCIXCI.XCIXCI.XCIXCIXCIPt0

XCI.XCIXCIXCI.XCIXCIXCIXCIXCI.XCI.XCI.XCIXCIXCIXCI.XCI.XCI0001COOL00010001CCCIOWLCOOL0001•XCI

XCIXCI.XCI.XCI.XCIXCIXCIXCI.XCIXCIff0XCIXCI.XCIXCIXCI.XCI

XCI.XCI.XCI.XCIXCIXCIXCIXCIXCI.XCIXCI.XCI.XCI.00010001CCCIXCIXCIXCI.XCI

XCIXCI.XCI0301XCIXCIXCIXCIXCICOOlt0XCI.XCIXCIXCIXCI.XCI

0001XCIXCI.XCI.XCIXCI.XCI.XCIXCI.IXCIXCIXCI.XCI.XCIXCI.XCIXCIXCI.I

XCI.XCIXCI.XCIXCIXCI.XCI.XCI.XCIXCIIt0XCIXCI.XCI.XCI.XCI•XCI

XCIXCI.XCIXCIXCIXCIXCIXCI.XCI.•XCIXCIXCIXCI.XCI.XCI.XCIXCI.XCI.XCI.XCI

XCIXCI.XCIXCI•XCIXCIXCIXCI.XCI.XCI0€0

Page 186: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

SOLUTION BY ThE STRONGLY a4PLICIT PROCEDURE

o MAXIMUM ITEMT)ONS ALLOWED FOR CLOSURE a 25ACCELEMTION PM{MAETER I O

HEAD CHANGE CRITERION FOR CLOSURE • 0 1ESIP HEAD CHANGE PRINTOUT INTERVAL •

o CALCULATE rTERATION PARAMETERS FROM MOOEL CALCI.LATED WS€E0

HORIZONTAL FLOW BARRIERS — LISTED BY LAYERS WIThIN EACH LAYER. ThE LOCATION OF A B*ER IS IDENTWIED BY

ThE 2 CELLS ON BOTh SIDES OF ThE BARRIER. TilE ROW AND COLUMN NUMBER OF THE iWO CZU.S AJ RESPECTWELY

IROWI. 001.1. AND ROW?. 001.2.o 695 HORIZONTAL FLOW BARRIERS IN LAYER I

IROWI CCLI ROW? 001.2 KYD, COND.MIDTH BARRIER NO

33 30 33 31 0.5010644 133 29 33 30 0,50106-04 238 29 38 30 0.50106.04 333 29 34 29 0.5010604 437 29 38 29 0.50106-04 533 28 34 28 0.5010644 628 27 28 26 0.50106-04 728 27 29 27 0.50106-04 829 26 29 2? 0.5010644 934 26 34 27 0.5010644 1029 26 30 25 050106-04 1134 26 35 25 0.5010644 1230 25 30 26 0.50106.04 1331 25 31 26 0.5010644 1432 25 32 26 0.5040644 1535 25 35 26 0.5010644 1641 25 41 26 0.50106-04 1742 25 42 26 0.50106-04 1347 25 47 25 0.5010604 1932 24 32 25 050106-04 2033 24 33 25 0.50106-04 213? 23 37 24 0.SOIOE04 2240 23 40 24 0.50106-04 2337 23 38 23 0.5010644 2440 23 41 23 0.50106-04 2545 21 45 22 0.50106-04 2648 21 48 22 0.50106-04 2746 46 46 19 0.50106-04 2846 17 46 18 0.50106-04 2945 16 45 17 0.50106-04 3045 15 45 16 0.50706-04 3140 17 41 17 0.50106-04 3241 16 41 17 0.50106-04 3341 16 42 16 0.5010604 3442 15 42 16 0.50106.0-4 3542 15 43 15 0.50106.04 3643 14 43 15 05010644 3743 14 44 14 0.50106-04 384-4 13 44 14 0.50106-04 3914 13 IS 13 0.50106-04 4010 12 11 12 0.50106-04 4111 12 12 ¶2 050106-04 429 11 10 11 0.5010604 43

41 10 42 10 0.50106.04 4442 9 42 10 0.50106-04 4540 9 41 9 0.50106-04 441 8 41 9 0.5010644 4739 8 40 8 05010644 4840 7 40 8 0.50106-04 4941 13 42 13 0.50106-04 5042 12 42 13 0.50106-04 5142 12 43 12 0.5010644 5239 II 40 II 05010644 5340 10 40 11 0.50106-04 5440 10 41 ¶0 0.5010604 5540 25 41 25 0.50106-04 5642 26 43 26 0,50406-04 5738 22 38 23 0.5010644 5835 4 36 4 0.5010644 5934 4 35 4 0.5010644 6033 4 34 4 0.50106.04 6132 4 33 4 0.5010644 6231 4 32 4 0.50106-04 6331 5 32 5 0.50106-04 6-431 6 32 5 0,5010644 6531 7 32 7 0.5010644 5531 8 32 8 0.5010644 6731 9 32 9 0.50106-04 6831 10 32 10 0.50106-04 6931 II 32 11 0.50106-04 70

31 12 32 12 0.5010644 71

0-9

Page 187: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

31 13 32 13 0.5010644 7231 14 32 14 0.50106-04 7331 IS 32 15 0.50106-04 7431 16 32 16 0.50106-04 7531 17 32 17 0.50106-04 7632 4 32 5 050106-04 7732 S 32 6 0.50106-04 7832 6 32 7 0.50106-04 7932 7 32 8 050106-04 8032 8 32 9 0.50106-04 6132 9 32 10 050106-04 8232 10 32 II 0.50106-04 8332 11 32 12 0.50106-04 8432 12 32 13 0.50106-04 8532 13 32 14 0.50106-0432 14 32 15 0.50106-04 8732 15 32 16 0.50106-04 8832 16 32 17 0.50106-04 8932 17 32 18 0.50106-04 332 5 33 5 0.50106-04 9132 6 33 6 0.50106-04 9232 7 33 7 0.5010644 9332 8 33 8 0.50106-04 9432 9 33 9 0.50106-04 9532 10 33 10 0.50106-04 9632 11 33 11 0.5010644 9732 12 33 12 0.5010644 9633 4 33 5 0.50106-04 9933 5 33 6 0.50106-04 133 6 33 7 0.5010644 10133 7 33 8 0.50106-04 ‘10233 8 33 9 0.5010644 ‘10333 9 33 10 0.50106-04 10433 10 33 11 0.50106-04 10533 11 33 12 0,5010644 10633 5 34 5 0.5010644 10733 6 34 6 0.50106-04 10833 7 34 7 0.5010644 lOS33 8 34 8 0.5010644 11033 9 34 9 0.5010644 11133 10 34 10 0,5010644 11233 11 34 11 0,5010644 11334 4 34 5 0.50106-04 11434 5 34 6 0.50106-04 11534 6 34 7 0.5010644 11634 7 34 8 0.5010644 II?34 8 34 9 0.5010644 11834 9 34 10 0,5010644 11934 10 34 11 0,5010644 12034 11 34 12 0.50106.04 12134 5 35 5 0.50106-04 12234 5 35 6 0.50106-04 12334 7 35 7 0,5010604 12434 8 35 8 0.50106-04 12534 9 35 9 0.50106-04 12634 10 35 10 0.5010644 12734 11 35 11 0.5010644 12835 4 35 5 0.50106-04 12935 5 35 6 0.50106.04 13035 6 35 7 0.50106-04 13135 7 35 8 0.50106-04 13235 8 35 9 0.50106-04 13335 9 35 10 0.5010644 13435 10 35 11 0.5010644 13535 11 35 12 0.50106-04 13635 5 36 5 0.50106-04 13735 6 36 6 0.5010644 13835 7 36 7 0,5010644 13935 8 36 8 0.5010644 14035 9 36 9 0.5010644 14135 10 36 10 0,50106-04 14235 II 36 11 0.50106-04 14335 12 36 12 0.5010644 14435 13 36 13 0.50106-04 14536 12 36 13 0.5010644 14636 12 37 12 0,5010644 14736 13 37 13 0.5010644 14837 11 37 12 0.5010644 14937 12 37 13 0.5010644 15037 11 38 11 0,5010644 15137 12 38 12 0.5010644 15237 13 38 13 0.5010644 15338 10 38 II 0.50106-04 15438 II 38 12 0.50106-04 15538 12 38 13 0.50106-04 15638 9 39 9 0.5010644 15738 10 39 10 0.5010644 158

0.40

Page 188: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

3$ II 39 II 05010644 15938 12 39 12 0.5010644 15038 13 39 13 0.5010644 16138 14 39 14 0.5010644 16238 IS 39 IS 0.50106-04 16338 16 39 16 0.50106.04 16439 8 39 9 05010644 16539 9 39 10 050106-04 16639 *0 39 II 050106-04 16739 II 39 12 0.5010604 16$39 12 39 13 050106.04 16939 13 39 14 0,5010644 ¶7039 14 39 15 0.5010604 17139 16 39 17 0.5010644 17239 9 40 9 0.5010644 ¶7339 ¶0 40 10 0.5010644 17439 12 40 12 0.5010644 17539 13 40 13 0.50106.04 17640 9 40 10 0.5010644 17740 II 40 12 0.5010644 17840 12 40 13 0.50106-04 ¶7940 11 41 II 0.50106-04 140 12 41 ¶2 0.5010644 ¶8141 9 41 10 0.5010644 18241 10 41 11 0.5010644 18341 II 41 12 0.5010644 18441 11 42 11 0.5010644 ¶8542 10 42 11 0,5010644 139 17 40 17 0.5010644 ¶6743 11 43 12 0.5010644 18841 13 41 14 0.5010644 18940 14 41 14 0.50106.04 19340 14 40 15 0.5010644 19144 12 44 13 0.5010644 19243 13 44 13 0.50106-04 19343 13 43 14 0.50106-04 19442 14 43 14 0,5010644 19542 14 42 ‘15 0.50106-04 19541 15 42 15 0.50106.04 19741 15 41 16 0,50106-04 19540 16 41 16 0,5010644 19940 ¶6 40 17 0.5010644 20045 14 45 15 0.5010644 20144 15 45 15 0.5010644 20244 15 44 16 0.5010644 20343 16 44 16 0,5010644 20443 16 43 17 0,5010644 20542 16 43 16 0.5010644 2(642 16 42 17 0.5010644 20741 17 42 17 0.50106-04 2(641 17 41 18 0.5010644 20940 17 40 18 0.5010644 21040 18 41 18 0.5010644 21140 18 40 19 0.5010644 21240 19 40 20 0.50106-04 21340 20 40 21 0.50106-04 21440 21 40 22 0.50106-04 21540 22 40 23 0,50106-04 21640 24 40 25 0,5010644 21740 25 40 26 0,50106-04 21840 26 40 27 0.5010644 21940 19 41 19 0.50106-04 22040 20 41 20 0.5010644 22140 21 41 21 0.5010644 m40 22 41 22 0,5010644 22340 24 41 24 0.5010644 22440 26 41 26 0.50106.04 22541 18 41 19 0.50106-04 22641 19 41 20 0.5010644 22741 20 41 21 0.50106-04 22841 21 41 22 0.5010644 22941 22 41 23 0,5010644 23041 23 41 24 0,50106-04 23141 24 41 25 0.50106-04 23241 26 41 27 0,5010644 23341 18 42 18 0,5010644 23441 19 42 19 0.50106.04 23541 20 42 20 0.50106-04 23641 21 42 21 0,50106-04 23741 22 42 22 0.50106-04 23841 23 42 23 0,50106-04 23941 25 42 25 0,50106-04 24041 26 42 25 0.5010644 24142 17 42 18 0,5010644 24242 18 42 19 0.5010644 24342 19 42 20 0,5010644 24442 20 42 21 0.50106-04 245

0-Il

Page 189: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

42 21 42 22 05010644 24642 22 42 23 0.50106-04 24742 23 42 24 05010644 24842 24 42 25 05010644 24942 26 42 27 0.5010644 25042 16 43 18 0.5010644 25142 ‘19 43 19 0.5010644 25242 20 43 20 050106-04 25342 21 43 21 0.50106.04 25442 22 43 22 0.50106.04 25542 25 43 25 0.50106.04 25642 27 43 27 0.5010644 25743 17 43 16 0.50106.04 25843 18 43 19 0.5010644 25943 19 43 20 0.50106.04 26043 20 43 21 0.50106.04 26143 21 43 22 0.5010644 26243 22 43 23 0.50106.04 26343 23 43 24 0.5010644 26443 24 43 25 0.50106-04 26543 25 43 26 0.50106-04 26643 26 43 27 0.50106-04 26743 27 43 28 0.50106-04 26843 17 44 17 0.50106-04 26943 18 44 18 0.50106.04 27043 19 44 19 0.5010604 27143 20 44 20 0.50106.04 27243 21 44 21 0,50106-04 27343 22 44 22 0.5010644 27443 24 44 24 0.5010604 27543 25 44 25 0.5010644 27643 26 44 26 0.5010604 27744 16 44 17 0.50106-04 27644 17 44 18 0,50106-04 27944 16 44 19 0.50106-04 28044 19 44 20 0.50106-04 28144 20 44 21 0.50106-04 28244 21 44 22 0.5010644 28344 22 44 23 0,50106.04 28444 24 44 25 0.50106-04 26544 25 44 26 0.5010644 26644 26 44 27 0.50106-04 26744 27 44 26 0.5010644 28844 19 45 19 0.50106.04 28944 20 45 20 0.50106-04 29044 21 45 21 0.5010644 29144 22 45 22 0.50106-04 29244 25 45 25 0.50106-04 29344 26 45 26 0.5010E-04 29444 27 45 27 0.50106-04 29544 26 45 28 0,50106-04 29645 17 45 16 0.5010644 29745 18 45 19 0.50106-04 29645 19 45 20 O.5010E.04 29945 20 45 21 0.50106-04 30045 22 45 23 0,50106-04 30145 24 45 25 0.5010604 30245 25 45 26 0.5010644 30345 26 45 27 0.50106.04 30445 29 45 30 0.50106.04 30545 21 46 21 0.5010644 30645 22 46 22 0.5010644 30745 25 46 25 0.50106.04 30645 26 46 26 0.5010644 30946 19 46 20 0.50106-04 31046 20 46 21 0.5010644 31146 21 46 22 0.5010644 31246 22 46 23 0.5010644 31346 24 46 25 0.50106-04 31446 25 46 26 0.5010644 31546 26 46 27 0.50106.04 31646 29 46 30 0.5010644 31746 21 47 21 0.5010644 31646 22 47 22 0.5010644 31946 25 47 25 0.5010644 32046 26 47 26 0.50106-04 32147 20 47 21 0.5010644 32247 21 47 22 0.50106-04 32347 22 47 23 0.5010644 32447 24 47 25 0.5010644 32547 26 47 27 0.50106.04 32647 21 48 21 0.5010644 32747 22 48 22 0.5010644 32847 25 48 25 0.50106-04 32948 22 48 23 0.50106-04 33039 20 40 20 0.50106-04 33139 21 40 21 0.5010644 332

0-12

Page 190: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

39 22 40 22 05010(44 33339 23 40 23 05010604 33439 24 40 24 0.5010€.04 33$39 2$ 40 25 0 5010(04 33639 26 40 26 05010(4)4 33739 20 39 21 0.5010604 33839 21 39 22 0.5010(44 33939 22 39 23 0.5010(44 34039 23 39 24 0.5010(04 34139 24 39 25 0.5010(44 34239 25 39 26 0.5010(44 34339 25 39 27 0.5010(44 34439 29 39 30 0.5010(44 34539 30 40 30 0.5010(44 34640 30 40 31 0.5010(44 34741 30 41 31 0.5010(44 34841 31 42 31 0.5010604 34942 31 42 32 0.5010(44 35043 31 43 32 0.5010(4)4 35143 32 44 32 0.5010(44 35244 32 44 33 0.5010(44 35345 32 45 33 0.5010(44 35438 21 39 21 0.5010604 35538 22 39 22 0.5010(04 35638 23 39 23 0.5010(44 35738 24 39 24 0.5010(44 35838 25 39 25 0.501C€-04 35938 28 39 28 0.5010(44 36038 20 38 21 0.5010(44 36138 21 38 22 0.5010(44 36242 11 43 17 0,5010(44 36338 23 38 24 0,5010(04 36438 24 38 25 0.5010E-04 36538 25 38 25 0.5010(44 36638 26 38 21 0.5010(44 36737 21 38 21 0.5010(44 36837 22 38 22 0.5010(44 36937 24 38 24 0.5010(44 37037 25 38 25 0.5010604 37137 26 38 26 0.5010(44 37237 20 37 21 0.5010(44 37337 21 37 22 0.5010(44 37437 22 37 23 0,5010(44 37537 24 37 25 0.5010(44 37637 25 37 28 0.5010(44 37737 26 37 27 0.5010(44 37837 28 37 29 0.5010(44 37936 20 37 20 0.5010(44 38036 21 37 21 0.5010(44 38136 22 37 22 0.5010(44 38236 23 37 23 0.5010(44 38336 24 37 24 0,5010(44 38436 25 37 25 0,5010(44 38536 26 37 26 0.5010604 3%38 28 37 28 0.5010(44 38736 20 36 21 0.5010(44 38836 21 36 22 0.5010(44 38936 22 36 23 0.5010(44 39)36 23 36 24 0.5010(44 39136 24 36 25 0.5010(44 39236 25 36 26 0.5010(44 39336 26 36 27 0.5010(44 39438 27 36 28 0.5010(44 39535 20 36 20 0,5010(44 39635 21 36 21 0.5010(44 39735 22 36 22 0,5010(04 39835 23 36 23 0,5010(44 39935 24 36 24 0.5010(44 4<35 25 36 25 0.5010(44 40135 28 36 25 0,5010(44 40235 27 38 27 0,5010(44 40335 20 35 21 0.5010(44 40435 21 35 22 0.50106-04 40535 23 35 24 0.5010(44 40535 24 35 25 0.5010(44 40735 26 35 27 0.5010(44 40835 27 35 28 0.5010(44 40934 20 35 20 0.5010644 41034 21 35 21 0.5010(44 41134 22 35 22 0.5010604 41234 23 35 23 0.5010(44 41334 24 35 24 0.5010(44 41434 25 35 25 0.5010(44 41534 27 35 27 0.5010(44 41634 28 35 28 0.5010(44 41734 20 34 21 0.5010(44 41834 21 34 22 0.5010(44 419

0-13

Page 191: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

34 22 34 23 0.5010644 42034 23 34 24 0.50106-04 42134 24 34 25 050106-04 42234 25 34 26 0.5010644 42344 1? 45 17 0.5010644 42434 27 34 26 0.50106-04 42534 25 34 29 050106-04 42633 20 34 20 0.5010644 42733 21 34 21 050106-04 42533 22 34 22 0.50106.04 42933 23 34 23 0.50106-04 43033 24 34 24 050106-04 43133 25 34 25 050106-04 43233 26 34 28 050106-04 43333 27 34 27 0.50*06.04 43433 20 33 21 0.50106-04 43533 21 33 22 0.5010644 43633 22 33 23 050106-04 43733 23 33 24 0.50*0644 43833 25 33 26 0.50*06-04 43933 26 33 27 0.5010644 44033 27 33 25 0.50106-04 44132 20 33 20 0.50106-04 44232 21 33 21 0.50106-04 44332 22 33 22 0.5010644 44432 23 33 23 0.5010644 44532 24 33 24 0.50106-04 4.4632 25 33 25 0.50106-04 44732 26 33 26 0.50106-04 44532 26 33 25 0.5010644 44932 29 33 29 0.50106-04 45032 30 33 30 0.5010644 45132 15 32 19 0.5010644 45232 19 32 20 0.50106-04 45332 20 32 21 0.50106-04 45432 21 32 22 0.5010644 45532 22 32 23 0.5010644 456

32 23 32 24 0.50106.04 45732 26 32 27 0.5010644 45832 25 32 29 0.5010644 45932 29 32 30 0.5010644 46032 30 32 31 0.50106-04 46131 *6 32 18 0.5010644 46231 19 32 19 0.50106-04 46331 20 32 20 0.50*06-04 46431 21 32 21 0.5040644 46531 22 32 22 0.50106-04 46031 23 32 23 0.5010644 46731 24 32 24 0.50106-04 46031 25 32 25 0.5010644 46031 26 32 26 0.5010644 47031 29 32 29 0.50106-04 47131 30 32 30 0.5010644 47232 44 33 14 0.50106-04 47331 17 31 18 0.5010644 47434 18 31 19 0.5010644 47531 19 31 20 0.5010E-04 41631 20 31 21 0.5010644 47735 21 31 22 0.5010644 47831 22 31 3 0.50106-04 47931 23 31 24 0.50406-04 4a1 24 31 25 0.5010644 . 45131 26 31 27 0.5010644 430 18 31 18 0.5010644 48330 19 31 19 0.5010644 48430 20 31 20 0.50106-04 48530 21 31 21 0.50106-04 4M30 22 31 22 0.5010644 48730 23 31 23 0.5010644 46030 24 31 24 0.50106-04 46030 25 31 25 0.50106-04 430 26 31 26 0.5010604 49130 17 30 15 0.5010644 49230 15 30 19 0.5010644 49330 19 30 20 0.5040644 49430 20 30 21 0.5010644 49530 21 30 22 0.5010644 49630 22 30 23 0.5010644 49730 23 30 24 0.50106-04 49630 24 30 25 0.5010644 49930 26 30 27 0.50106-04 5CC29 18 30 18 0.5010644 50129 19 30 19 050106-04 50229 20 30 20 0.5010644 50329 21 30 21 0.5010644 50429 22 30 22 0.50106-04 50629 23 30 23 0.5010644 506

0-14

Page 192: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

29 24 30 24 050106-04 50729 25 30 25 050106.04 50629 2? 30 2? 0.50106-04 50929 I? 29 18 05010644 51029 18 29 19 0.50106-04 51129 ¶9 29 20 050106.04 51229 20 29 21 05010644 51329 21 29 22 05010644 51429 22 29 23 05010644 51529 23 29 24 0.5010644 51629 24 29 25 0,5010644 51729 25 29 26 05010644 SIC29 27 29 28 0.5010604 51928 18 29 18 0.50106-04 52028 19 29 19 0.5010644 52128 20 29 20 0.5010644 52225 22 29 21 0.5010644 52325 22 29 22 0.50106-04 52428 23 29 23 0.5010604 52528 24 29 24 0.5010644 52628 25 29 25 0.50106-04 52728 26 29 26 0.50106-04 52828 17 28 18 0.5010604 52925 18 28 19 0.5010604 53028 19 28 20 0.5010644 53128 20 28 21 0.5010644 53226 21 28 22 0.5010604 53328 22 28 23 0.50106-04 53428 23 28 24 0.50106-04 53528 24 28 25 0.50106-04 53828 25 25 26 0.5010604 53728 26 28 27 0.5010644 53827 18 25 18 0.5010604 53927 19 28 19 0.5010604 54027 20 28 20 0.5010644 54127 21 28 21 0.5010644 54227 22 25 22 0.5010644 54327 23 28 23 0.5010644 54427 24 28 24 0.5010604 54527 25 28 25 0.50206-04 54627 26 28 26 0.5010644 54727 27 28 27 0.5010604 54827 Ii 27 18 0.50106-04 54927 15 27 19 0.5010604 55027 19 27 20 0.50106.04 55127 20 27 21 0.50106-04 55227 21 27 22 0.501 06-04 55327 22 27 23 0.50106-04 55426 18 27 18 0.5010644 55526 19 27 19 0.50106.04 55626 20 2? 20 0.5010644 55726 21 2? 21 0.50106-04 55826 22 27 22 0.50106-04 55926 17 26 18 0,5010604 56026 18 26 19 0.5010604 56126 19 26 20 0.5010644 58226 20 26 21 0.5010644 56326 21 26 22 0.50106.04 56426 22 26 23 0.5010604 56525 18 26 18 0.5010604 56625 19 26 19 0.5010604 56725 20 26 20 0.5010604 56825 21 26 21 0,5010604 56925 22 26 22 0.5010604 57025 17 25 18 0.5010604 57225 18 25 19 0.5010644 57225 19 25 20 0.5010644 57325 20 25 21 0,50106.04 57425 21 25 22 0.50106-04 57525 22 25 23 0.5010604 57624 18 25 18 0.5010644 57724 19 25 19 0.50106.04 57824 20 25 20 0.50106.04 57924 21 25 21 0.5010644 58024 22 25 22 0.5010604 58124 17 24 1$ 0.5010604 58224 18 24 19 0.5010644 58324 19 24 20 0.5010644 58424 20 24 21 0,5010644 58524 21 24 22 0.5010604 58624 22 24 23 0.50106-04 58723 18 24 1$ 0.50106-04 58823 19 24 19 0.5010644 58923 20 24 20 0.50106.04 59023 21 24 21 0.5010644 59123 22 24 22 0.5010644 59223 17 23 18 0.5010644 593

0-15

Page 193: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

23 18 23 19 0.50106-04 59423 19 23 20 0.5010644 59623 20 23 21 0.50106-04 59623 21 23 22 050106-04 50723 22 23 23 050106.04 50622 18 23 18 050106-04 59922 19 23 19 0.5010644 60022 20 23 20 0.5010644 60122 21 23 21 0.5010644 60222 22 23 22 0.50106.04 60322 17 22 18 0.50106.04 60422 18 22 19 05010644 60522 19 22 20 0.50106-04 60622 20 22 21 0.5010644 50722 21 22 22 0,50106-04 60822 22 22 23 0.50106-04 60921 18 22 18 0.5010644 61021 19 22 19 0.50506-04 61121 20 22 20 0.5010644 61221 21 22 21 0.5010644 61321 22 22 22 0.5010644 61421 17 21 18 0.50106-04 61521 18 21 19 0.5010644 61621 19 21 20 0.5010644 61721 20 21 21 0,50106-04 61821 21 21 22 0,50106-04 61921 22 21 23 0,50106-04 62020 18 21 18 0.50106-04 62120 19 21 19 0,5010644 62220 20 21 20 0,5010644 62320 21 21 21 0.50106.04 62420 22 21 22 0.5010644 62520 17 20 16 0.5010644 62620 18 20 19 0.5010644 62720 19 20 20 0.5010644 62820 20 20 21 0.5010644 62920 21 20 22 0.5010644 63020 22 20 23 0,5010644 63119 18 20 18 0.5010644 63219 19 20 19 0,5010644 63319 20 20 20 0.5010644 63419 21 20 21 0.5010644 63519 22 20 22 0,5010644 63619 17 19 18 0,5010644 63719 18 19 19 0,5010644 63819 19 19 20 0.5010644 63919 20 19 21 0.5010644 64019 21 19 22 0.5040644 64149 22 19 23 0.5010644 64218 18 19 18 0,5010644 64318 19 19 19 0,5040644 64418 20 19 20 0.5040644 64518 21 19 21 0.5010644 64618 22 19 22 0.50106-04 64718 17 48 18 0.50106-04 64648 18 18 19 0.5010644 64948 19 48 20 0.50106-04 65018 20 18 21 0.50106-04 65148 21 18 22 0.50106-04 65217 18 18 18 0.50106-64 65317 19 18 ¶9 0,5010644 65417 20 18 20 0,5010644 65517 21 48 21 0.5010644 65647 17 17 18 0.50106.04 65717 18 17 19 0.50106.04 65647 19 17 20 0.50106-04 65917 20 17 21 0.50106-04 66017 21 II 22 0.50106-04 66116 48 17 18 0.50106-0416 19 17 19 0.50106-04 66316 20 ¶7 20 0.5010644 66416 21 17 21 0.6010644 66516 17 16 48 0.50106-04 66616 18 16 19 0,5010644 66716 19 16 20 0.5010644 60616 20 16 21 0.5010644 66915 18 16 18 0.50106-04 67015 19 16 19 0.5010644 67115 20 16 20 0.5010644 67215 17 15 18 0.50106-04 67315 18 15 49 0,5010644 67415 19 15 20 0.50106.04 67514 17 15 17 0.5010644 67614 18 15 18 0.5010644 67714 ¶9 15 19 0.5010644 67814 16 14 17 0.5010644 67944 17 14 18 0.5010644 680

0-16

Page 194: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

24 18 14 19 0.5010644 681

14 19 14 20 05010644 68213 16 14 25 0.5010644 68313 ¶7 14 17 05010644 68413 18 14 18 0.5010604 68513 19 14 29 0.5010644 68613 ¶5 13 16 05020644 68713 ¶6 13 17 0.5010644 688¶3 17 13 18 0.5010644 689¶3 18 13 19 0.5010644 69312 15 13 ¶5 0.50106-04 69112 26 13 15 0.50106-04 692¶2 17 13 17 050106-04 69322 18 13 18 0.50106-04 69412 14 12 15 0.5010E-04 69512 15 12 16 0.50106-04 69612 16 12 17 0.50106-04 69712 17 12 18 0.50106-04 69811 13 12 13 0.5010604 69911 ¶4 12 14 0.50106-04 70011 15 12 15 0.50106-04 70111 28 12 16 0.50206-04 70211 17 12 17 0.5010604 70311 II 11 12 0.50106-04 70411 12 II 13 0.50106-04 70511 13 11 14 0.5010604 706II 14 11 15 0,50106-04 70711 15 II 16 0,50106-04 70811 16 11 ¶7 0,5010644 70910 13 11 13 0.50106-04 71010 14 11 14 0.5020644 71110 15 II 15 0.50106-04 71210 16 II 16 0.50206-04 71310 11 10 12 0.50106-04 71410 12 10 13 0.50106.04 71510 13 10 14 0.50106-04 71610 14 10 ¶5 0.5010644 71720 15 10 16 0.50106-04 7189 12 10 12 0,5010644 7199 13 10 13 0.5010644 7209 14 10 14 0.5010644 7219 15 10 15 0.50106-04 7229 II 9 12 0.50106-04 7239 12 9 13 0.50106-04 7249 13 9 14 0.50106-04 7259 14 9 15 0.5010604 7268 11 9 II 0.50106-04 7278 12 9 12 0.50106-04 7288 13 9 13 0.5010644 7298 11 8 12 0.50106-04 7308 12 8 13 0.5010604 7318 13 8 14 0.5010644 7327 12 8 12 0.50106-04 7337 13 8 13 0.50106-04 734

44 18 45 18 0.5010644 73545 17 46 17 0.50106-04 73645 18 46 18 0.50106-04 73745 19 46 19 0.5010644 73845 20 46 20 0.5040604 73946 20 47 20 0.5010644 74036 27 37 27 0.50106-04 74137 27 36 27 0.5010644 74237 28 38 28 0,50106-04 74338 27 39 27 0,50106-04 74438 28 39 28 0.50106-04 74538 29 39 29 0.50106-04 74639 27 40 27 0.5010644 74739 28 40 28 0.5010644 74639 29 40 29 0.50106-04 74940 27 41 27 0.5010644 75040 28 41 28 0.50106-04 75140 29 41 29 0.50106-04 75240 30 41 30 0.50106.04 75341 24 42 24 0.5010644 75441 27 42 27 0.5020644 75541 28 42 26 0.5040644 75641 29 42 29 0.50106-04 75741 30 42 30 0.5010644 75842 23 43 23 0.50106-04 75942 24 43 24 0.50106-04 76042 28 43 28 0.5010644 76142 29 43 29 0.50106-04 76242 30 43 30 0.5010644 76342 31 43 31 0.50106-04 76443 23 44 23 0.5010644 76543 27 44 27 0.5010644 76643 28 44 28 0.50206-04 767

0-17

Page 195: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

43 29 4.4 29 0.50106-04 76843 30 44 30 05010(44 78943 31 44 31 0.5010644 77044 23 45 23 05010644 77144 24 45 24 0 50106-04 77244 29 45 29 0.50106-04 77344 30 45 30 05010(04 77444 31 45 31 0.5010604 77544 32 45 32 050106-04 77645 23 46 23 0.5010604 77745 24 46 24 0 5010(04 77845 27 46 27 0.50106-04 77945 28 46 28 050106.04 78045 29 46 29 050106-04 76145 30 46 30 0.50106-04 78245 31 46 31 0.50106-04 78345 32 46 32 0.50106-04 76446 23 47 23 0.5010(04 78546 24 47 24 0.5010(04 76646 27 47 27 0.50106-04 78746 28 47 28 0.50106-04 78848 29 47 29 0.50106-04 78947 23 4 23 0.50106-04 79047 24 48 24 0.50106-04 79137 27 37 26 0.5010(04 79238 27 38 28 0.5010(04 79338 28 38 29 0.50106-04 79439 27 39 28 0.50106-04 79539 26 39 29 0.50106-04 79640 27 40 26 0.50106-04 79740 28 40 29 0.50106-04 79840 29 40 30 0,5010644 79941 27 41 28 050106-04 60041 28 41 29 0.5010(44 80141 29 41 30 0.5010604 80242 27 42 28 0.5010(44 80342 28 42 29 0.50106-04 80442 29 42 30 0.50106-04 80542 30 42 31 0.50106-04 80643 28 43 29 0.5010604 80743 29 43 30 0.50106-04 80843 30 43 31 0.50*0644 80944 23 44 24 0.5010644 81044 28 44 29 0.5010604 81144 29 44 30 0.50106-04 81244 30 44 31 0.50106-04 81344 31 44 32 0.50106-04 81445 23 45 24 0.5010(44 81545 27 45 28 0.5010(44 81645 28 45 29 0.5010(44 81745 30 45 31 0.5010(44 81645 31 45 32 0.50106-04 81946 23 46 24 0.5010(04 82046 27 46 28 0,5010644 82146 28 46 29 0.5010644 82246 30 46 31 0.5010644 82346 31 46 32 0.5010(44 82447 23 47 24 0.5010(44 82547 27 47 28 0.50106-04 82647 28 47 ‘ 29 0.50106-04 82748 24 48 25 0.50106-04 82833 30 34 30 0.50106-04 82933 13 33 14 0.50106-04 83034 13 34 14 0.5010644 83135 13 35 14 0,50106-04 83237 13 37 14 0.5010(44 83338 13 38 14 0.50106-04 83436 14 38 15 0.50106-04 63535 14 35 15 0.5010(44 63634 14 34 15 0.5010644 63733 15 34 15 0.5010644 83833 16 34 16 0.5010(44 63933 17 34 17 0.5010(44 84034 17 34 18 0.50106-04 84134 18 35 18 0.5010(44 64234 18 34 19 0.50106-04 64335 18 35 19 0.5010(04 84436 18 36 19 0.5010(44 84537 18 37 19 0.50106-04 64637 18 38 18 0.50106-04 84738 17 38 18 0.5010644 64638 17 39 17 0.5010644 84932 15 33 15 0.50106-04 85032 16 33 16 0.50106-04 85132 17 33 17 0.5010644 85232 18 33 18 0.5010644 85332 19 33 19 0.5010644 854

0-18

Page 196: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

33 ¶9 33 20 0.SOIOE-04 85534 19 34 20 0.5010E44 55635 19 35 20 0.5010644 85739 25 40 18 0.5010644 85637 24 37 20 05040644 55437 20 38 20 0.501064436 19 37 19 05010644 56137 14 38 14 050106-04 56236 14 38 15 05010644 8638 14 9 14 050106-04 8647 11 5 II 0.50106-04 865

33 ¶4 34 14 0.50106-04 86636 14 37 14 050106-04 56745 14 45 15 050106-04 86816 13 17 13 0.5010644 86916 14 27 14 050106-04 670

31 4 31 5 0.50106-04 871

30 4 30 5 0.50106-04 872

28 $ 28 5 0.50106-04 673

23 II 23 12 0.50106-04 87423 13 24 23 0.50106.04 575

24 22 24 24 0.50106-04 87624 23 25 23 0,501 0644 87724 24 25 24 0.50106-04 67825 23 25 24 0,5010644 879

25 24 25 25 0.50106-04 S25 23 26 23 0.5010644 88125 24 26 24 0.50106-04 68225 25 26 25 0.50106-0426 23 26 24 0.50106-04 88426 24 26 25 0.50106-04 88526 25 26 26 0.50406-04 8%26 23 27 23 0.50106-04 88726 24 27 24 0.5010644 88826 25 27 25 050106-04 88926 26 27 26 0.50106-04 88027 23 27 24 0.5010644 891

.4 27 24 27 25 0.50106-04 89227 25 27 26 0.50106-04 89327 26 27 27 5010E-04 89433 28 33 29 0.50106-04 895

STRESS PERIOO N0 I. LENGTh =

NUMBER OF T1ME STEPS

MULTIPLIER FOR OELT

INflAt liME STEP SIZE0 22 WELLS

LAYER ROW 002. STRESS RATE WELL NO.

1 44 16 O.O0 I1 44 15 0.CC 21 43 13 0.CU)CO 3

1 38 12 0.00003 41 39 23 0.00 5I 39 24 0. S1 36 34 0.0 71 37 22 0.0 81 36 23 0. 91 36 24 O. 101 35 22 0.00000 111 36 20 0. 12I 33 19 0G3000 13

1 33 25 O.O0 14

I 32 25 0.O 15I 30 26 0.000CC 161 30 23 0.C*3 I?I 29 23 00(1000 18

1 27 22 0.00000 19

1 27 31 0.00000 201 31 22 O.0 21¶ 32 21 O.0 22

0

3 DRAINSo LAYER ROW 002. ELEVATION CONDUCTMCE DRAIN NO.

32 25 1103. 253.8 133 25 1503. 1370. 233 24 1503. 1370. 3

0

RECHARGE WILL SE REAL) ON UNIT 18 USWIG FORMAT: (10612.4)

0-19

Page 197: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

1 2 3 4 5 6 7 $ 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36

0 1 00050 0 0 0.00% 0.0000 0.00% O 0 0. O.0 00CC 0. 0.00% O. 0 0000 O. 0 0 0.CC% 0.0000o -- 0 0. O. 0.0%0 0 0 0 0.0000 O.0%0000CC 000CC 0. 0 0.0000 0.

0 2 0 0000 O. 0 C O. 0 0. 0 0 O. 0.00CCO. 0 0 0. 2 28305-66 0. 0 0 O. 0.0 00% O. 0. O. 0 0 00% 0. 0. 0 00% 0.00%0 00(0 0.00% O. 0 (003 0 0.

o 3 0.00% 00000 0. 0.0330 0 DXC O. 0 0 O. 00C003 Q. 0. 3.33325-04 1.41555-03 1.6323543 99767544 5.70755-04 4 54326.04 4 56605(80 0. 0.00% 0, 0.00% 0.00% 0. 0. 000% 0.0 0. 0. 0- 0- 0.

o 4 0 0.00% 0. 0. 0. 0. 0. 0.C 0. 0.0 4.1094E-05 5,CCI1E-04 1.74426-03 1.99765-03 1.98625-03 1.99765-03 4.97255-03 1,81955.03 1.72595-033 85835-04 0. 0.OXC 0. 0.0000 0.00% 0 0. 0 0.0000o.otxn 0 O.C 0, 0. 0.

0 5 0 0 O. 0. 00000 0. 0. 0. 0. 0.OCXCO.CWX 4,9998E-04 1.89265-03 1.94(6543 2.01595-03 2.09355.03 1.92235-03 1.77396-03 1.61 18E-03 1.67125-031.73955-03 7.46546-04 0.0000 0. 0.0000 0. 0 0.0000 0.0000 0.00000. 0. O. 0. 0.0%0 0.

0 6 0. 0. 0.0)30 0. 0.0%0 0.0000 0. 0. 0.00% 0.0, 1.10605-03 1.91326-03 1.99535-03 1.9953543 1.89265-03 I.1E-03 1.76025-03 1.55245.03 1.54565431,76705-03 1.99315-OS 8.42435-04 8.13205-05 0. 0 0 0,00% 0.00% 0.0.00% 00000 0. 0. 0. 0.00%

0 7 0. Q. 0. 0. 0. 0. 0. 0. 0. O.0. l.3607E-03 1.9611E-03 2.0159543 1.81505-03 1.6483543 1.6483543 1.6871E-03 1.65755.03 1S2095-031.74886-OS 1.9132543 204105-03 1.18495-03 1.59816-04 0.0(00 0.00% 0. 0. 0.0 0. 0. 0 0. 018300

0 8 0. 0. 0. 0 0.00% 0.00% 0 0. 0. 0.2.73955-04 1 85615-03 1 99086-03 1.85295-03 1.74195-03 1.7511543 1.74885-03 1.7328543 1.67575-03 1.64535431.91325-03 1.72596-03 1.99085-03 1.76706-03 1.18035-03 269395-04 0. 0.00% 0.00% 0.0 0. 0. Q. 0.0000 0.

0 9 0.0000 0. 0. 0. 0.0000 0. 0 0. 0.0000 0.00007.07735-06 1.65525-03 2.09125-03 2.10495-03 136705-03 1.4231543 1.4E03 1.67575-03 2.47025-03 1.920%-OS1.8310543 1.54835-03 1.7785543 1.7305543 1.51365-03 1.3241543 2.3743544 0.0000 0.0000 0.0. 0.0000 0.00% 0. 0. 0.

0 10 0.0000 0.0000 0. 0. 0.0000 0.0%0 0. 0.00% 0.00% 0.0%00. ¶17125.03 214375-03 2.26475-03 1.69865-00 1.42925-03 9.1777E-04 2.1760543 3.48395-03 2.30355-03l.7739E-03 1.80815-03 1.8355543 1.7282643 1.5456543 1.5668543 7.6937E-04 0.00% 0.0000 0.0.0030 0.0000 0. 0. 0.0000 0.

o II 0. 0.0%0 0. 0. 0.00% 0. 0. 0. 0.0300 0.00CC0. 1.03425-03 2.2442E-03 2.2693E-03 1.97485-03 1.55935-03 5.25095-04 2.34016-03 3,78755-03 3.10725-031.62785-03 1.36986-03 1.79446.03 1.68265.03 1.71455-03 1.5753543 1.1187E-03 5.70756-05 0.0000 0.0.00CC 0.00% 0.00% 0.00% 0.00CC 0.00%

0 12 0.0000 0. 0.0%0 0. 0.0000 0.00% 0. 0. 0. 0.00%D.0%0 4.56605-06 1.76705-03 2.31965-03 219035-OS 2.2145543 3.18485-03 3.90165-03 2.09586-03 2.47935-032.4725(03 1.57765-03 1.91545-03 1,93605-03 1.59135-03 1.65525-03 1.97945-03 1.03425-03 29679€-OS 0.0. 0. 0. 0.00% 0.0000 0.

0 13 0.00% 0. 0. 0. 0.00% 0. 0. 0.00% 0.0000 0.0.0000 0. 1.12105-03 2.36(85-03 2.23285-03 2.52735-03 3.16255-03 4.23505-03 2.31275-03 8.17316-042.7990E-03 ¶47255-03 2.00)685-03 1.91545.03 1.44(65-03 1.7830543 1.97945-03 1.95885-03 8.05905-04 7.30665-050.0000 0. 0.00% 0.00% 0.00% 0.

0 14 0. 0.0%0 0. 0. 0. 0. 0. 0 0. 0.0.00% 0. 3.0%4E-04 2.36525-03 2.2E-03 2.44285-03 3.55695-03 4.99526-03 2.87205-03 1.96346-033.18715-03 1.SSSIE.03 6.1184E-04 1.22145-03 1.83785-03 1.53426-03 1.85155-03 2.15065-03 2.OSOIE-03 9.1E-042.73955-05 0. 0. 0. 0. 0.

0 15 CDXC 0. 0. 0. 0. CDXC 0. 0. 0.0000 0o oxo 0. 6.84905-06 215975-03 2.31045-03 249635-03 353645-03 4.8514543 1.32415-03 1.6323543363455-03 1.42235.03 1.75075-04 8.0%9€-04 1.56845-03 1.48625-03 1.87C-03 2.67605-03 256845-03 1.90065-031.25115-03 7.0773545 0. 0. 0. 0.

0 16 0. 0. 0. 0. 0. 0.0030 0. 0. 0. 0.0. 0. 0.00% 1.85965-03 2.52275-03 2.59616-OS 4.C6835-03 5.1824E-03 4.34456-03 3.92685-049.67995-04 5.36515-04 4.20075.04 5.52495-04 1.73055-03 1.79446-03 2n855-OS 2.51595-03 2.01825-03 1.96165-031.90365-03 9.45165-04 0.0000 0. 0. O.

017 0.0000 0.00% 0. 0. 0.0)00 0.00% 0 0 0. 0.0.00% 0. 0. 1.85525-03 2.39945-03 2.76935-03 4.5-03 5.15505-03 3.92225-03 2S4835-048.12755-04 3.63685-03 3.11636-03 4.7258644 1.7465(03 1.37445.03 l.6€-O3 2.17575-03 1.55(65-03 1.99765-031.88356-03 1.74655-03 324195-04 0.0000 0. 0.65(0

0 18 0. 0. 0. 0. 0.0000 0.00% 0. 0. 0. 0.0. 0. 1.34705-04 220995-03 2.00905-03 2.58216-03 48033543 5,20755-03 3.66425-03 1.02745-048.83526-04 1.32676-03 1.87216-03 1.32415-03 1.39495-03 4.38345-04 2.31726-03 1.20545-03 1.54106-03 1.99765-031.97485-03 1.81275-03 1.51825-03 1.30135-04 0. 0.

0 ¶9 0.00(0 Q. 0. 0. 0.00% 0.00% 0. 0. 0.00% 0.000% 0. 5.29565-04 232645-03 2.10(145-03 2.77165-03 446106.03 5.16705M3 3.15065-03 662075-669.4(60544 4.10485.03 1.44746.03 I.4E-03 4.05375-04 1.38125.03 1.52505-03 3.99535-04 7.30662-04 1,65526-032.05615-03 196205-03 1.81275-03 1.05625-03 0.00% 0.

020 0,0000 0. 0. 0. 0.0000 0.0)30 0. 0 0. 0.00%0. 0.0000 119405-03 2.09585-03 2.02275-03 1.84925-03 1.37445-03 4,26246.03 3.60945-03 6.96326-043.5843E44 32282543 7.7165644 1.41325-03 1.85385-03 4.61865.03 1.3264643 9.17775-04 8.34016-04 1.5432,0961543 1,93146-03 1.80595-03 1.75335—OS 264885-04 0.

021 0. Q. 0. 0. 0. 0.00130 0. 0 0, 0.0.0000 0. 1.89956-03 2.44745-03 1.40405-03 I .06445-03 8.0518544 4.23275.03 4.2761E-03 3.28985-03

0-20

Page 198: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

63101544 1 15985-03 378985-04 226535-03 1.66896-03 1.12105-03 1 9953543 166206-03 96571544 1.26996-03I 4132643 1.84696-03 1.69065-03 1.71455-03 57532544 0

022 O 0 0.0000 0. 0. 0. 0 0 O. 00 262555-04 2.3061643 220775.03 1.589CC-OS 1.43375-03 12326(43 294285-03 2.7E-O3 6.7805(442.5483634 1.34706-03 2.1049643 1.6164643 3.2350(43 1.23745-03 93831544 55249(44 39496544 7.63395-04I 46536.03 1.73286-03 1.52736-03 1.63465-03 1,06395-03 0.

023 0 00 0.0 0 0.0000 0.0 0. 0 0 0223306-05 I 45205-03 2.40865-03 2.37435-03 I.4-451E.03 3.35606-04 468886-04 951596-05 0 0308215-04 7 73945.04 1.66655-03 1.73056.03 1.10045-03 3 40175-04 7 32845-04 255706-04 I 16435.04 3.1505(44

646C(.03 168265-03 1.7054533 1.70315-03 1.32645-03 2.25306-05024 0 0.0303 00 0.0003 0. 0. O 0 Q. 203196-04

I 33335-03 229445.03 223516-03 186756.03 1.63236-03 1.33566-03 2 16896-04 2.73*5-05 0 0.340175-04 7.2828E-04 19555(43 33332544 5.2052E-04 1.16435-04 273965-05 6.16416-05 S6E-05 3.036-4E-04I 59135-03 I 86966.03 1.75555-03 1.7830(03 6.5294E44 2.7395645

025 0 0 0.0 0. O.Q 0.0300 0 0 4.33776-04 1.72625-032.10126-03 1.99766-03 1.5616643 1.86526-03 1.5319543 1.63235-03 1.1210(43 3.26476-04 4.56666-06 1.62095-041,43835-04 5.17316-04 1.31276-03 2.98795-05 1.59816-04 2.73956-04 1.53196-03 1.1940(43 2.64-03 1.6986(43

1.65526-03 1 81%E-05 1.66206-03 1.62096-03 1.35385-03 1.1415644026 0 0. 0 0. 0.0000 0.0300 2.05475.05 6.1869544 1.8104E-03 1.9428(43

2.15525-03 2.21225-03 1.7374E.03 831015-04 1.10735-03 1.7103533 14223643 1.6346(43 5.93586-04 66207E-053.03645-04 1.38815-03 9.36035-04 4.01815-04 4.6E-04 3.19625-05 289946-04 5.56135-04 2.5*4(43 2.2693(432.5775543 1.52055-03 1.6164643 1.59586-03 1.52066-03 6.3924545

027 0 0.0030 0.0)30 0.00)3 0.0303 0. 8,68185-04 1.7168(43 1.48625-03 1.15296-031.6506643 1.5365543 1.3401 E-03 129455-03 1.33565-03 1.49545-03 1.56396-03 1.76486-03 12785543 4.40625441.7321(43 1.37445-03 7.6481E-04 6.67186-04 7.1458644 2.55245-03 2.5478643 329216-03 3.76705-03 2.88576432.1940(43 1.48175-03 2.3172E-03 2.68485-03 3.3058643 2.42006-04

028 0. 0.0003 0.0000 0.00)3 0.0000 1.3241644 1.6232643 1.8332543 1.38125-03 4.36065-045.502(6-04 1.02956-03 9.8854644 1.3219643 1.45206-03 1.63925-03 1.75336-03 1.72596-03 7.03165-04 1.90865-031.98855-03 1.0547E-03 7.2371644 6.18695-04 1.8310543 3.33326-03 6.1641643 3.90166-03 3.39946-03 1.03656-031.01566-03 1.69175.03 1.78075-03 2.14605-03 2.52046-03 8.44715-05

029 0. 0.0060 0.0030 0.0 0.0000 ¶07075.03 1.97715-03 1.5616543 1.70775.03 1.39495-039.22336-04 8.5384E-04 1.0388E-03 1.1803543 1.32875-03 1.7031643 1.77165-03 1.3447543 6.57505-04 1.99865-032.1004643 1.1278543 1.26935-03 5.5847544 9,3146544 1.03656-03 4.80115-03 2.3606543 1.71.03 1.420)6-031.13971-03 l.4908E-03 2.31726-03 3.1209543 2.67806-03 7.07735-05

030 O. 0.0300 Q.0 0. 2,8994E44 1.99315.03 2.01625-03 12990543 1.2488643 1.03685-039.6114644 7.83075.04 1.03915-03 1.37215.03 1.4954E-03 1.62556-03 1.77396-03 1.52735-03 1.16206-03 1.00915-033.219(6-04 1.8036544 1.92465-03 3.1094E-03 2.60956-03 4.6847643 4.01356.03 2.8766543 1.29455-03 2.16435-031.42925-03 2.14376-03 2.48395-03 2.5022E-03 l.0022E-03 9.15206-05

031 0. 0.0003 0.0 0. 1.4931543 199536-03 1.7168(43 8.7439(44 7.2143(44 1.12555-031.01596-03 9.17775-04 1.13246.03 1.42006.03 1.47945-03 1.64156-03 1.4680543 1.61415-03 1.40636-03 8.90375-060. 1.34015-03 3.35146-03 7.51345-03 7,53895-03 8.07735-03 3.88116-03 2.78536-03 248826-05 2.48396-032.2191E-03 2.49766-03 2.0889543 202955-03 9,77125.04 6.67546-05

032 0. 0. 0. 0. 1.89035-03 1.67346.03 931466-04 6.7577E-04 8.1047E-04 1.10275-038.5613644 1.1255.E-03 1.0707E-03 1.05446-03 1.39496-03 1.43836-83 1.35156-03 183466-03 1.70545-03 4.26925-045.70755-04 1.7670543 5.2532E-03 35.03 8.70746-03 7.62756-03 6.90385-03 5.7372E-03 3.4450(43 2.9108(432.48855-03 2.7259543 2.11865-03 1.79906-03 1.11415-03 9.36036-05

033 0. 0. 0.0003 210345.04 2.29676-03 1.8675(43 9.61146-04 6.0500644 7.48625-04 1.00916-036.E.04 1.03885-03 6.2783544 1.0228(43 9.33755-04 6.16416-04 8.98185-04 l.7077E.03 1*11543 1.60726432.69396-04 7.78506-04 5.3148543 8.35355-03 8.74396-03 9.33966-03 9.1297643 7.8284E.03 4.91246-03 4.01355.033.25335-03 2.3835543 2.14375-03 2.21686-03 1.6894E-03 1.34706-04

034 0. 0. 0. 1fl64E45 1.9542E-03 202506-03 1.6157E-03 7.1915644 2.21455-04 9.70286-047.3741644 ¶1164633 8.3330544 7.7622E-04 6.3696544 8.62976-04 9.04076-04 1.66896-83 1.95655-03 8.5384E-045.9175544 2.39716-04 4.80806-03 7.7188(43 8.3716(43 8.9631E-03 8.7599643 52440543 4.91765-83 3.7464E-033.12776-03 2.32875-03 2.26475-03 1.95206-03 1.48176-03 8.67546-05

035 0 0.0030 0.0000 2.8081544 2.02736-03 2.1780543 2.10125-03 1.5684543 3.4245(44 5.31946.0476252544 1.1232543 8.5384644 9.58865-04 9.45165-04 1.0958(43 1.6734E-03 1.7602543 1.9946643 2.1186(438.2416644 2.60726-03 2.09816.03 7.61476-03 8.34445-03 8.47915-03 7.9471643 7.6914543 5.76235-03 4.35146-033.23736-03 1.4657543 1.93835-03 1.55025-03 1.6186543 4.79436-06

0* 0.0600 0.0300 0.0000 9.3375(44 2.03196-03 2.06155-03 205016-03 1.50956-03 12123€-CS 8.12755-045.7075(44 1.0159E43 1.1187E-03 8.01335-04 7.4426(44 1.29906-03 1.6591543 1.7693643 1.86816-03 2.09355-032.0038(43 1.81046-03 2.6232E-03 7.6503543 8.2576543 8.2622543 1.1823(43 7.60925-05 6.41296-03 4.29435433.03416-03 2.21225-03 2.2647E-03 2.0205643 1.8218(43 6.39245-05

037 0. 0.0003 0.0( 5.61626-04 1.5250543 1.9588603 203876-03 213925-03 1.9520643 1.78996-031,6849(43 9.20056-04 9.24625-04 6.6664544 9.17775-04 1.2263(43 1.52736-03 1.7168(43 1.7328(43 1.79445-031.9642543 1.3104543 2,84696-03 8.1983543 8.27365-03 7.76225-03 7.28055-03 6.90145-03 £19385.03 2.83786-033.&€-03 3.59125-03 2.5821643 1.8378543 1.3378543 1.3698(44

038 0. 0.0030 0.D 0.C 1.05025-04 l.1712E-03 1.93836-03 20227E-03 2.0390643 1.84476431.7282543 1.4885543 7.10315-04 5.25095-04 6.6207544 5.6618544 8.65265-04 1.0456543 9.9995(44 1.7716(431.59815-03 9,1548644 5.43355-00 7.5659643 7.8581E-03 7.7668643 833075-03 6.9791E-03 4.41535-03 3.2921E-032.4fl-03 1.1575643 1.57535-03 1.71005-03 1.15986-03 6.84906-03

039 0.0600 0.0000 0.0003 0. 0.0003 0. 7.6307544 1.9132E-03 2.C86-03 20159(431.6743(43 1.8538(33 1.83326-03 9.4745544 5.0956(44 5,11396-04 6.5E-04 5.6809604 1.09365-03 1.22145-038.5613(44 4.70306-04 5.6070643 6.9051E-03 6.94265.03 8.93575-03 7.86955-03 5.7920643 3.12775-03 2.43376431 8538533 252*643 2.584.42-03 2.32185-03 6,59796-04 6.39246-05

040 0. 0. 0. 0. 0. 0. O. 769375-04 1.9154543 2.-032(5845-03 2.1E-O3 1.9269(43 1.73746-03 1.01625-OS 1.3515(33 7.7E-04 46117644 3.94966-04 7.39695-047.4198544 1.04336-03 4,2037543 5.6116543 6.59566-03 9.1252543 7.42896-03 458205-03 1.99686-03 1.49086-031.8173(43 2.1529543 1.65065-83 1.74556-03 1.20545-03 1.14156-05

041 0.0 O.0 0. 0. 0.0000 0. 0. 0. 6.2096604 1.80.032,0593(43 2.0387603 1.9976(33 1.9999543 2.04566-03 1.97026-03 2.0433(43 1.0707543 3.15055-04 2,21455-041.2739643 1.31045.03 2.6538(33 4.55-03 5.0705643 8.2416543 6,0477643 1.5182E-03 2.2647(43 1.0707E-005.2052544 1,04796-03 1.7488543 1.6675(43 6.3924(44 0.

042 0. 0.0003 0. 0. 0. 0. 0. 0 0. 7,53396-061,6232543 1,91096-03 1.9816603 2.06155-03 2.1026543 2.45426.03 3.43365-03 264145-83 5.93376-04 1,61165-031.48625-03 9.49735-04 5.3902643 7.85815-03 6.8695(43 5.87876-03 3.7966(43 1.8173543 2.3913543 2.13-031.27165.03 1,78535-03 1.8538(43 1.7511633 2.9907544 0.

043 0. 0.0 0. 0. 0.0 0.0 0. 0 0.00)3 00003

D-21

Page 199: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

29222E-04 l.4223&03 1.64E.03 2.0205E’CS 218036-03 23264€-OS 2.3720643 22214€-OS 1.87666-03 18095€-OSI 6186€-OS 20273€-OS 28l72643 38628€-OS 29357E05 30661€-OS 2.65286-03 25045603 22077€-OS 2.4154E-032.04106-03 1.917W-OS 18061€-OS 1.3652E-OS 2*79604 0.0%

044 0000 0.0% 0.0% 0.000 0.0% 00(00 0.0% 0.00% 00% 0.00%0.0000 0.0030 7.35136-04 11282€-OS 2.07*6-03 2.16436-03 l.9337€.OS I.7S79€-03 1.8789E-O3 1.81506-032.1163643 1.92236-03 2.0250643 2.4793E-0S 2(2056-03 2,27626.03 20981€.03 1.66896-OS 2.4748603 I 55616432.0159603 1.86526-03 1.78996-03 10616€-OS 66207605 000%

045 0.00% 0.0% 0.00% 00% 0.00% 0.0000 0.0% 0.00 0.0% 0.00%0.0000 0.0(fl) 5.9130€-04 8.1503644 7.55676-04 20593€-OS 19931€-OS 21072€-03 2.19856-OS 2.093564329268€-OS 19428€-OS 2.1163603 23081€-OS I 99)8603 20684€-OS 25509€-OS 1.75796-OS 23903€-OS I 8903€-OS1.5935603 1.7419E-OS 13219€-OS 2.87666-04 00% 0.0%

046 0.000 00% 0.0000 0,000 0.00 0000 0.0% 0.0% 0.0% 0.00000.0000 0.00 0.000 000% 18254€-OS 39039€-04 64381E-04 8.49266-04 11716€-OS 20752€-OS27442€-OS 2.13466-03 I 90866-03 2 0684€-OS 4.69406-OS 165846-03 20670€-OS 19246€-OS 1.79446-03 1 59266-031.60956-OS 8.15036-04 34246€-OS 0.0(00 0.0% 0.00%

047 0.000 0.00% 0.00% 0.00% 0.0% 0.000 0.0% 0.0% 0.0% 0.00%0.00% 0.00 0.00% 0.00% 0.00 0.00 0.0% 0.0% 25113€-OS 3.90396-0-412237€-OS 19999€-OS l.8766€-03 19906€-OS 2.02506-03 19132€-OS 1.28766-OS 3.15056-04 3.58436-04 1.71256-04

1.50686-04 0.000 0.000 0.0500 0.0% 0.000048 0,0% 0.000 0.0000 0.0% 0.000 0.000 0.0% 0.00 0.000 0.00

0.0000 0.000 0.0(00 0.000 0.00% 0.0% 0.0000 0.0% 0.0% 0.00054792€-OS 9.63436-04 14771€-OS 10981€-CS 9.0635€-04 I.8949€-04 0.0000 0.000 0.0)00 0.000.00% 0.0% 0.0% 0.0% 0.0% 0.0%

049 0.0000 0.0% 0.0% 0.0% 0.000 0.0% 0.0% 0.0% 0.0% 0.00%0.0000 0.0% 0.00% 0.0% 0.000 0.0% 0.0% 0.00% 0.0% 0.0000.0000 0.0% 0.00% 0.0% 0.0% 0.0000 0.000 0.000 0.0% 0.00000.0% 0.0% 0.0% 0.0% 0.0% 0.00(0

050 0.000 0.000 0.000 0.0CC 0.0% 0.0000 0.0% 0.000 0.0% 0.0000.0000 0.0% 0.0% 0.0% 0.0% 0.000 0.000 0.000 0.0% 0.0000.000 0.000 0.000 0.00% 0.0% 0.0000 0.0% 0.000 0.00 0.00000.000 0.000 0.0% 0.000 0.00% 0.0000

0

164 RIVER REACHES0 LAYER ROW COt STAG€ CONDUCTANCE BOTTOM €L€VAT1ON RIVER R€ACH

1 2 13 0.000 0.40006+09 -10.00 11 2 14 0.00 0.40006+09 -10.00 21 2 15 0.00 0.400€+O9 -10.00 31 2 16 0.0% 0.400)6+09 -10.00 41 2 17 0.0% 0.40006+09 -10.00 5¶ 3 17 0.0% 0.40006+09 -10.00 61 3 18 0.00% 0.40006+05 -10.00 71 3 19 0.0% 0.4006+05 -10.00 81 3 20 0.0% 0.400€+06 -10.0 91 4 20 0.0% 0.4006+05 -10,00 101 4 21 0.0% 0.40)06+05 -10.00 111 4 22 0.00% 0.400€+O5 -10.00 121 5 22 0.0% 0.40006+05 -10.00 131 5 23 0.0% 0.40006+05 -10.00 141 6 23 0.0% 0.40006+06 -10.00 IS1 6 24 0.0% 0,40006+05 -10.00 16I 7 24 O. 0.4006+05 -10.00 171 7 25 0.0% 0.40006+06 -10.0 181 8 25 0.0% 0.40006+06 -10.00 191 8 26 0.00 0.40006405 -10,00 201 9 26 0.0% 0.40%E+05 -10.00 211 9 27 0.00 0.4000E+05 -10.00 221 10 27 0.0300 0.40006+06 -10.03 25I II 27 0.00 0.4000€+06 -10.0 241 11 28 0.0% 0.400€+05 -10.0 251 12 28 0.00 0.4006+06 -10,00 261 12 29 0.0% 0,400€+06 -10.00 27I l3 29 0.00% 0,40006+06 -10,0 28I 13 30 0.0% 0.4006+06 -10.00 29I 14 30 0.0% 0.4006+06 -10.00 301 14 31 0.0% 0.4006+05 -10.00 31I 15 31 0.0% 0.4006+06 -10.03 321 15 32 0.00 0.4006+05 -10.0 331 16 32 0.00 0.4006+05 -10.00 341 17 32 0.000 0.400€+05 -10.00 351 17 33 0.0% 0.40006+05 -10,00 35I 18 33 0.0% 0.40006+05 -10.0 371 18 34 0.000 0.40036+05 -10.00 381 19 34 0.0% 0.40006+05 -10.00 391 20 34 0.00% 0,4006+05 -10.0) 401 20 35 0.0% 0.4006+05 -10.0 411 21 35 0.0% 0,4006+05 -10.0 42I 22 35 0.0% O.400€+06 -10.0 431 23 35 0.0% 0.4000€+05 -10.00 441 24 35 0.0% 0.4000€+05 -10.0 451 25 35 0.0% 0.4000€+05 -10.0 46I 26 35 0.00 0.4000€+06 -10.00 471 27 35 0.00 0,4006+09 -10.00 481 28 35 0.030 0.40006+05 -10.00 491 29 35 0.0% 0.40006+06 -10.00 501 30 35 0.0% O.4000€+06 -10.0 51

0-22

Page 200: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

1 31 35 0 0.4Ot0. -1000 52I 32 35 0 0.4E.a5 -10.00 531 33 35 0 0.4C+05 -1000 54

1 34 35 0 0.4OCVE i-OS -10.00 55

I 35 35 0 0.4E+05 -10.00 56

I 36 35 0 O.4C120E.c5 -10.00 57

1 37 35 0 0.46.05 -10.00 58¶ 38 35 0 0.4+05 -10.00 59

1 39 35 0 0.4E+C5 -10.00 60¶ 40 35 0 0.4+05 .10.00 611 41 35 0 0.4000C+ -10.00 62¶ 42 35 0 0.4C+ -1000 63I 42 34 0 0.4E+C6 .1000 64I 43 34 0 0.4C-0S -1000 65I 44 34 0 -10.00 66

1 45 34 0 -1000 67

1 45 33 0 0.4+05 -10.00 68

I 46 33 0 -10.00 69

I 46 32 0 0.4€4OS -10.00 70

1 47 32 a. 04.05 -10.00 71

I 47 30 0. 0.4’05 -10.00 72

I 47 31 O 0.4t -10.00 73

I 48 25 0. 0.4’t’OS -10.00 74

1 48 26 0.0 O.40.oS -10.00 75

1 48 27 0. O.4CC0C+05 -10.00 76

I 48 26 0. 0.4i- .1000 77

I 48 29 0. 0.4o+05 -10.00 78

1 48 30 0. 0.4.05 -10.00 79

1 49 20 0. 0.44( -10.00 80

1 49 21 0. 0.4Ei-C -10.00 81

1 49 22 0. -10.00 82

1 49 23 0. 0.4’e’09 -10 00

1 49 24 0. 0.4-OS -10.00 84

I 49 25 0, 0.4+ -1000 85I 46 19 0, 0.4C.09 -10.00 88I 46 20 0. 0.40CCC -10.00 87

I 47 15 0 0.4000C+ -10.00 88I 47 16 0.0000 O.46t( -10.00 661 47 17 0.0000 0,40+’O9 -10.00 90

1 47 18 0, 0.4C+ -10.00 91I 47 19 0.0 0.400D€+09 -10.00 921 46 II 0.0000 0.4€+O9 -10.00 93

1 46 12 0.0 0,4E+09 -10.00 94

1 46 13 0. 0.4OXE+ -10.00 95

1 46 14 0. 0.4C+CS -10.00 96¶ 46 15 0.0000 0.4+ -1000 97

1 44 11 0.0000 O.40WC -10.00 96

1 45 ii 0.0 0.4000C4429 -10.00 99

1 44 10 0.0 0.4C* -10.00 100

1 43 10 0. -10.00 101I 43 9 0.0 0.4C4 -10,00 1021 42 9 0. 0.4Ci’ -10.00 103

1 42 7 0.0000 0.4CCI0C4’ -10.00 1041 42 B ODXO 0.4GXE+ -10.00 1051 41 7 0.0 0.4€+00 -10.00 106

1 41 6 0.0000 0,40QX. -10.00 ¶071 40 5 0.0 0.40)X+< -10.00 106

I 40 6 0. 0.4OXE+( -10.00 1091 39 4 0. 0.4000E.C -10.00 110

I 39 5 0. 0.4i- -10CC 1111 38 3 0. 0.4E’e -10.00 1121 36 4 0. 0.4i- -10.00 113

I 37 2 0. 0.4i -10.00 114

I 37 3 0. 0.4+ -10.00 115

I 35 2 0. -10.00 116

I 36 2 0. 04.’ -10.00 117

1 35 3 0. Q,4i- -10.00 lIt

I 33 3 0.0 0.4+00 -10.00 119

I 31 3 O.0 0.4000E’.{S -10.00 120

1 32 3 0. 0.4.C8 -10.00 121

1 33 3 0. 0.4C+ -10.00 122

1 34 3 0. 0.4Ci’ -10.00 123

¶ 30 4 0. 0.4Ci- -10.00 124

1 28 4 0. -10.00 125

I 29 4 0. 0.4C4-09 -10.00 126

1 25 5 Q. 0.4+CS -10.00 127

I 27 5 0. 0.4+ -10.00 128

1 28 5 0. 0,44’ -10.00 129

1 26 6 0. -10.00 ¶33

1 26 7 0 0.40.CO -10.00 131

1 25 7 0 0.4+ -10.00 132

1 25 8 0 0,4+ -10.00 133

1 24 8 0. 0.4” -10.00 134

1 24 9 0. Q.4+ -10.00 135

1 23 9 0. 0.4ooX. -10.00 136

1 23 10 0.0 0.4000€. -10.00 137

1 22 10 O. 0.400C€. -10.00 136

0-23

Page 201: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

1 22 11 0. 040306+09 -10.00 139I 19 11 0. 0.40006+09 -10.00 140I 20 11 0. 0.40006+09 -10.00 1411 21 11 00000 0.40006+09 -10.00 1421 14 12 0. 0.4E+09 -1000 ¶431 15 12 0.000) 0.4000E+O9 -10.00 444I 16 12 0.000) 04E+09 -10.00 ¶45¶ ¶7 ¶2 0.0 0.40306+09 -10.00 ¶45¶ 18 12 0,0000 0.40006+09 -10.00 147¶ ¶9 12 0. 040006+09 -10.00 148¶ ¶2 ¶1 0. 0.4ODOE+09 -10.00 ¶491 ¶3 ¶1 0.0000 O.400’JE+09 -10.00 1501 ¶4 11 0000) o.4E+09 -10.00 1511 5 10 00000 0.4000E+09 -10.00 ¶52I 6 ¶0 0.0 0.40006+09 -10.00 ¶531 7 ¶0 0.0000 0.4E+09 -10.00 1541 8 10 0.0 0.4E+O9 -10.00 ¶551 9 10 0.0000 0.4000E+09 -10.00 156I ID 10 0.0000 0.46+09 -10.00 4571 11 40 0.0000 0.40006+09 -10.00 158I 12 10 0. 0.40026+09 -10.00 1591 4 II D. 0.40006+09 -10.00 1601 5 II 0. 0.40006+09 -10.00 161I 3 12 0.0000 0.40006+09 -10.00 1621 4 12 0.O 0.40006+09 -10.00 463¶ 3 13 0.0 0.40006+09 -10.00 164

OAVERAGE SEED 0.00076879MINIMUM SEED = 0.00000019

05 ITERATION PARAMETERS CALCULATED FROM AVERAGE SEED:

000000006+00 0.83241295+00 0.9719146E+00 O.9952933E+00 0.9992112E+0O0

I ITERATIONS FOR TIME STEP I IN STRESS PERIOD ¶OMAXIMUM HEAD CHANGE FOR EACH ITERATiON:0 HEAD CHANGE LAYERROW.COL HEAD CHANGE LAYERROW.CO4. HEAD CHANGE LAYERROW,CO1 HEAD CHANGE LAYEftROw,Ca HEAD CHANGELAYER.ROW.COL

0.85056-034 1,36.20)0OHEADIDRAWOOWN PRINTOUT RAG I TOTAL BUDGET PRINTOUT FLAG 0 CELL-SY-CELL FLOW TERM FLAGOOUTPIJT RAGS FOR ALL LAYERS ARE tIE SAME:

HEAD DRAWDOWN I-lEAD DRAWDOWNPRINTOUT PRIMTOIJT SAVE SAVE

I 0 I IO DRAiNS PERIOD I STEP I DRAIN ¶ LAYER 1 ROW 32 COL 25 RATE -34925.680 DRAINS PERIOD I STEP 1 DRAIN 3 LAYER I ROW 33 CCL 24 RATE -8611.835O RIVER LEAKAGE PERIOD I STEP I REACH I LAYER I ROW 2 CDL 13 RATE -91724230 RIVER LEAKAGE PERIOD I STEP 1 REACH 2 LAYER I ROW 2 CCL 14 RATE -28043.22O RIVER LEAKAGE PERIOD I STEP I REACH 3 LAYER I ROW 2 004. 15 RATE -41186.270 RIVER LEAKAGE PERIOD I STEP ¶ REACH 4 LAYER ¶ ROW 2 C 16 RATE 48509.820 RIVER LEAKAGE PERIOD I STEP ¶ REACH 5 LAYER 1 ROW 2 C 17 RATE -297.93170 RIVER LEAKAGE PERIOD I STEP I REACH 6 LAYER ¶ ROW 3 C 17 RATE -260017.60 RIVER LEAKAGE PERIOD I STEP I REACH 7 LAYER I ROW 3 COt 18 RATE -10177.650 RIVER LEAKAGE PERIOO I STEP I REACH S LAYER I ROW 3 COt 19 RATE -16249.960 RIVER LEAKAGE PERIOD 1 STEP I REACH 9 LAYER I ROW 3 COt 20 RATE -17428.940 RIVER LEAKAGE PERIOD I STEP I REACH 10 LAYER I ROW 4 COt 20 RATE -21346.47O RIVER LEAKAGE PERIOD I STEP I REACH 11 LAYER I ROW 4 CCI. 21 RATE -23593.95O RIVER LEAKAGE PERIOD 1 STEP 1 REACH 12 LAYER 1 ROW 4 COt 22 RATE -24182.16O RIVER LEAKAGE PERIOD I STEP I REACH 13 LAYER I ROW S ca 22 RATE -27184.64O RIVER LEAKAGE PERIOD I STEP I REACH 14 LAYER ¶ ROW 5 Ca 23 RATE -27640.890 RIVER LEAKAGE PERIOD I STEP 1 REACH 15 LAYER I ROW 6 Ca 23 RATE -30656.130 RIVER LEAKAGE PERIOD 1 STEP I REACH 16 LAYER I ROW 6 Ca 24 RATE -30929.570 RIVER LEAKAGE PERIOD I STEP I REACH 17 LAYER 1 ROW 7 Ca 24 RATE -34086.050 RIVER LEAKAGE PERIOD I STEP I REACH 18 LAYER I ROW 7 Ca 25 RATE -33741.840 RIVER LEAKAGE PERIOD I STEP I REACH 19 LAYER 1 ROW 8 Ca 25 RATE -36700.640 RIVER LEAKAGE PERIOD I STEP ¶ REACH 20 LAYER I ROW 8 Ca 26 RATE 45986,05O RIVER LEAKAGE PERIOD 1 STEP I REACH 21 LAYER I ROW 9 Ca 26 RATE 48758.430 RIVER LEAKAGE PERIOD 1 STEP ¶ REACH 22 LAYER I ROW 9 Ca 27 RATE 3fl18.820 RIVER LEAKAGE PERIOD I STEP I REACH 23 LAYER I ROW 10 Ca 27 RATE 40347.240 RIVER LEAKAGE PERIOD I STEP I REACH 24 LAYER I ROW I ¶ Ca 27 RATE -43758.410 RIVER LEAKAGE PERIOD I STEP I REACH 25 LAYER I ROW II Ca 28 RATE -42331.440 RIVER LEAKAGE PERIOD I STEP I REACH 26 LAYER I ROW 12 Ca 28 RATE 45103.380 RIVER LEAKAGE PERIOD I STEP ¶ REACH 27 LAYER I ROW ¶2 CCL 29 RATE -43397.850 RIVER LEAKAGE PERIOD I STEP 1 REACH 28 LAYER I ROW 13 Ca 29 RATE -46008.220 RIVER LEAKAGE PERIOD I STEP I REACH 29 LAYER I ROW 13 Ca 30 RATE -44089.350 RIVER LEAKAGE PERIOD I STEP 1 REACH 30 LAYER I ROW 14 ca 30 RATE -46537.840 RIVER LEAKAGE PERIOD I STEP 1 REACH 31 LAYER I ROW 14 Ca 31 RATE —44395.060 RIVER LEAKAGE PERIOD 1 STEP I REACH 32 LAYER I ROW 15 Ca 31 RATE -4,24o RIVER LEAKAGE PERIOD 1 STEP I REACH 33 LAYER I ROW 15 Ca 32 RATE 44451.42O RIVER LEAKAGE PERIOD I STEP 1 REACH 34 LAYER I ROW 16 CDL 32 RATE -46638.89O RIVER LEAKAGE PERIOD I STEP I REACH 35 LAYER I ROW 17 COt 32 RATE —48871.82O RIVER LEAKAGE PERIOD I STEP I REACH 36 LAYER I ROW 17 CCL 33 RATE -46029.780 RIVER LEAKAGE PERIOD I STEP I REACH 37 LAYER I ROW 18 CCL 33 RATE 47648.090 RIVER LEAKAGE PERIOD I STEP I REACH 38 LAYER I ROW 18 Ca 34 RATE 44849.06O RIVER LEAKAGE PERIOD I STEP I REACH 39 LAYER ¶ ROW 19 CCL 34 RATE -46470,16

D-24

Page 202: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

0 RIVER LEAKAGE PERIOD I STEP I REACH 40 LAYER 1 ROW 20 COt 34 RATE 47663.44

0 RIVER LEAKAGE PERIOD I STEP I REACH 41 LAYER I ROW 20 COL 35 RATE 44439.71

0 RIVER LEAKAGE PERIOD I STEP I REACH 42 LAYER I ROW 21 ca 35 RATE -45541.65

0 RIVER LEAKAGE PERIOD I STEP I REACH 43 LAYER I ROW 22 C 35 RATE -46205.64

0 RIVER LEAKAGE PERIOD 1 STEP I REACH 44 LAYER I ROW 23 COt 35 RATE -45728.2$

0 RIVER LEAKAGE PERIOD I STEP I REACH 45 LAYER I ROW 24 COt 35 RATE -43350.37

0 RIVER LEAKAGE PERIOD I STEP I REACH 46 LAYER I ROW 25 COt 35 RATE 37955.51

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 47 LAYER I ROW 26 Ca 35 RATE -26269.85

0 RIVER LEAKAGE PERIOD I STEP I REACH 48 LAYER I ROW 27 ca 35 RATE 497777.6

0 RIVER LEAKAGE PERIOD 1 STEP I REACH 49 LAYER I ROW 28 C 35 RATE -33742.77

0 RIVER LEAKAGE PERIOD 1 STEP I REACH 50 LAYER I ROW 29 COt 35 RATE -52499.19

0 RIVER LEAKAGE PERIOD I STEP I REACH SI LAYER I ROW 30 COt 35 RATE 64330.21

0 RIVER LEAKAGE PERIOD I STEP I REACH 52 LAYER I ROW 31 Ca 35 RATE -72783.05

0 RIVER LEAKAGE PERIOD I STEP I REACH 53 LAYER I ROW 32 Ca 35 RATE -79207.48

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 54 LAYER I ROW 33 Ca 35 RATE .84240.19

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 55 LAYER 1 ROW 34 C 35 RATE 47911,41

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 56 LAYER 1 ROW 35 C 35 RATE -93268.85

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 57 LAYER I ROW 36 Ca 35 RATE -91220,87

0 RIVER LEGE PERIOD I STEP 1 REACH 58 LAYER 1 ROW 37 Ca 35 RATE -90526.80

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 59 LAYER I ROW 38 Ca 35 RATE -88657.13

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 60 LAYER 1 ROW 39 CDL 35 RATE 45458.96

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 61 LAYER I ROW 40 Ca 35 RATE -81297.95

0 RIVER L.EAKAGE PERIOD ¶ STEP ¶ REACH 62 LAYER I ROW 41 Ca 35 RATE -76412.17

0 RIVER LEAKAGE PERIOD ¶ STEP ¶ REACH 63 LAYER ¶ ROW 42 Ca 35 RATE -72014.78

0 RIVER LEAKAGE PERIOD I STEP I REACH 64 LAYER 1 ROW 42 Ca 34 RATE -74666.69

0 RIVER L.EAKAGE PERIOD I STEP I REACH 65 LAYER ¶ ROW 43 Ca 34 RATE -67074.10

0 RIVER LEAKAGE PERIOD I STEP I REACH 68 LAYER I ROW 44 COt 34 RATE -58312.19

0 RFVER LEAKAGE PERIOD I STEP I REACH 67 LAYER I ROW 45 Ca 34 RATE 31680.56

0 RIVER LEAKAGE PERIOD I STEP I REACH 68 LAYER 1 ROW 45 Ca 33 RATE 30064,20

0 RIVER LEAKAGE PERIOD I STEP I REACH 69 LAYER I ROW 46 Ca 33 RATE -40489.55

0 RIVER LEAKAGE PERIOD 1 STEP 1 REACH 70 LAYER I ROW 46 Ca 32 RATE .34916.14

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 71 LAYER 1 ROW 47 Ca 32 RATE 31521.41

0 RIVER LEAKAGE PERIOD I STEP I REACH 72 LAYER I ROW 47 Ca 30 RATE 31428.78

0 RIVER LEAKAGE PERIOD I STEP I REACH 73 LAYER 1 ROW 47 Ca 31 RATE 31272.26

0 RIVER LEAKAGE PERIOD I STEP I REACH 74 LAYER 1 ROW 48 Ca 25 RATE -12462.38

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 75 LAYER 1 ROW 48 Ca 26 RATE -22985.18

0 RIVER LEAKAGE PERIOD I STEP I REACH 76 LAYER 1 ROW 48 Ca 27 RATE -26727.04

0 RIVER LEAKAGE PERIOD I STEP ¶ REACH 77 LAYER 1 ROW 48 Ca 28 RATE -28606.04

0 RIVER LEAKAGE PERIOD I STEP I REACH 78 LAYER 1 ROW 48 Ca 29 RATE -26245.12

0 RIVER LEAKAGE PERIOD I STEP I REACH 79 LAYER 1 ROW 48 Ca 30 RATE -25415.68

0 RIVER LEAKAGE PERIOD I STEP I REACH 80 LAYER ¶ ROW 49 Ca 20 RATE -50,81551

0 RIVER LEAKAGE PERIOD I STEP ¶ REACH 51 LAYER 1 ROW 49 Ca 21 RATE -11631.84

0 RIVER LEAKAGE PERIOD 1 STEP ¶ REACH 62 LAYER ¶ ROW 49 Ca 22 RATE -37540.60

0 RIVER LEAKAGE PERIOD I STEP I REACH 53 LAYER ¶ ROW 49 Ca 23 RATE -42825.92

0 RIVERLEAKAGE PERIOD I STEP I REACH 84 LAYER I ROW 49 CCI. 24 RATE 4212872

0 RIVER LEAKAGE PERIOD I STEP I REACH 85 LAYER I ROW 49 Ca 25 RATE -l24465.5

0 RIVER LEAKAGE PERIOD 1 STEP I REACH 86 LAYER I ROW 48 Ca ¶9 RATE -145.7339

0 RIVER LEAKAGE PERIOD I STEP I REACH 87 LAYER I ROW 48 Ca 20 RATE -39285.30

0 RIVER LEAKAGE PERIOD 1 STEP I REACH 88 LAYER 1 ROW 47 Ca 15 RATE -58.79745

0 RIVER LEAKAGE PERIOD ¶ STEP 1 REACH 89 LAYER 1 ROW 47 Ca 16 RATE -27889.59

0 RIVER LEAKAGE PERIOD ¶ STEP 1 REACH 90 LAYER I ROW 47 Ca 17 RATE -23073.21

0 RIVER L.EAKAGE PERIOD ¶ STEP I REACH 91 LAYER I ROW 47 Ca 18 RATE -31481.04

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 92 LAYER I ROW 47 Ca 19 RATE -105740.0

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 93 LAYER 1 ROW 46 Ca II RATE -132.0927

0 RIVER LEAKAGE PERIOD I STEP I REACH 94 LAYER I ROW 46 Ca 12 RATE -86061.30

0 RIVER LEAKAGE PERIOD ¶ STEP I REACH 95 LAYER 1 ROW 46 ca ¶3 RATE 49656.51

0 RIVER LEAKAGE PERIOD I STEP ¶ REACH 96 LAYER I ROW 46 ca 14 RATE -77153.77

0 RIVER LEAKAGE PERIOD 1 STEP ¶ REACH 97 LAYER 1 ROW 46 ca 15 RATE -31051.32

0 RIVER LEAKAGE PERIOD ¶ STEP ¶ REACH 98 LAYER I ROW 4-4 ca ii RATE -284612.6

0 RIVER LEAKAGE PERIOD ¶ STEP ¶ REACH 99 LAYER I ROW 45 ca ¶1 RATE -66295.58

0 RIVER LEAKAGE PERIOD ¶ STEP I REACH IOU LAYER ¶ ROW 44 Ca ID RATE -360.0085

0 RIVER LEAKAGE PERIOD I STEP I REACH ¶01 LAYER I ROW 43 COt ID RATE -75115.72

0 RIVER LEAKAGE PERIOD ¶ STEP I REACH 102 LAYER I ROW 43 ca 9 RATE 43.81532

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 103 LAYER ¶ ROW 42 COt S RATE -7867.219

0 RIVER LEAKAGE PERIOD ¶ STEP 1 REACH 104 LAYER I ROW 42 Ca i RATE -57.87478

0 RIVER LEAKAGE PERIOD I STEP ¶ REACH ¶05 LAYER 1 ROW 42 Ca 8 RATE -11492,12

0 RIVER LEAKAGE PERIOD I STEP I REACH 166 LAYER I ROW 41 Ca 7 RATE -46498,40

0 RIVER LEAKAGE PERIOD ¶ STEP 1 REACH 107 LAYER ¶ ROW 41 Ca 6 RATE 432.0776

0 RIVER LEAKAGE PERIOD ¶ STEP ¶ REACH 108 LAYER ¶ ROW 40 Ca s RATE -180.8516

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 109 LAYER ¶ ROW 40 Ca S RATE -85643.08

0 RIVER LEAKAGE PERIOD 1 STEP I REACH lID LAYER 1 ROW 39 ca 4 RATE -1724791

0 RIVER LEAKAGE PERIOD I STEP ¶ REACH Ill LAYER 1 ROW 39 Ca 5 RATE -95369.48

0 RIVER LEAKAGE PERIOD 1 STEP ¶ REACH 112 LAYER ¶ ROW 38 ca 3 RATE -122.5735

0 RIVER LEAKAGE PERIOD ¶ STEP I REACH ¶13 LAYER ¶ ROW 38 Ca 4 RATE -77453.72

0 RIVER LEAKAGE PERIOD I STEP ¶ REACH ¶14 LAYER I ROW 37 Ca 2 RATE .67,72408

0 RIVER LEAKAGE PERIOD 1 STEP ¶ REACH ¶15 LAYER ¶ ROW 37 Ca 3 RATE 45364.21

0 RIVER LEAKAGE PERIOD I STEP ¶ REACH 116 LAYER ¶ ROW 35 Ca 2 RATE -32.92231

0 RIVER LEAKAGE PERIOD I STEP ¶ REACH ¶17 LAYER I ROW 36 Ca 2 RATE -12474.78

0 RIVER LEAKAGE PERIOD ¶ STEP I REACH 118 LAYER ¶ ROW 35 Ca 3 RATE -20513.37

0 RIVER LEAKAGE PERIOD I STEP I REACH 119 LAYER 1 ROW 30 Ca a RATE -0.1014119

0 RIVER LEAKAGE PERIOD I STEP I REACH ¶20 LAYER ¶ ROW 31 Ca 3 RATE -15.20828

0 RIVER LEAKAGE PERIOD 1 STEP I REACH 121 LAYER I ROW 32 Ca 3 RATE -6469.845

0 RIVER LEAKAGE PERIOD I STEP I REACH 122 LAYER ¶ ROW 33 Ca 3 RATE -10433.96

0 RIVER LEAKAGE PER ¶ STEP I REACH 123 LAYER ¶ ROW 34 Ca 3 RATE -9626.815

0 RIVER LEAKAGE PERIOD I STEP ¶ REACH ¶24 LAYER I ROW 30 Ca 4 RATE -86.40639

0 RIVER LEAKAGE PERIOD ¶ STEP ¶ REACH 125 LAYER ¶ ROW 28 Ca 4 RATE -128.9424

0 RIVER LEAKAGE PERIOD I STEP I REACH 126 LAYER 1 ROW 29 Ca 4 RATE -64573.14

D-25

Page 203: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

I 2 3 411 12 13 1421 22 23 2431 32 33 34

5 6 7 8 9 1016 17 18 19 2026 27 28 29 3036

152535

0 RIVER LEAKAGE PERIOD I STEP 1 REACH ¶27 LAYER I ROW 26 Cot S RATE -88 074440 RIVER LEAKAGE PERIOD I STEP I REACH 128 LAYER I RON 27 Cot S RATE -44088.94

0 RIVER LEAKAGE PERIOD I STEP 1 REACH ¶29 LAYER I ROW 28 CDI S RATE 44627.080 RIVER LEAKAGE PERIOD I STEP 1 REACH 130 LAYER I RON 26 COt 6 RATE -44161.640 RIVER LEAKAGE PERIOD ¶ STEP ¶ REACH 131 LAYER I ROW 26 CCI 7 RATE -237548.50 RIVER LEAKAGE PERIOD I STEP I REACH 132 LAYER I ROW 25 COt 7 RATE -261 80470 RIVER LEAKAGE PERIOD I STEP ¶ REACH 133 LAYER I RON 25 COt 8 RATE -224779.80 RIVER LEAKAGE PERIOD 1 STEP ¶ REACH 134 LAYER I ROW 24 CCI 8 RATE -251.72290 RIVER LEAKAGE PERIOD ¶ STEP ¶ REACH 135 LAYER I ROW 24 CCI 9 RATE -127446.40 RIVER LEAKAGE PERIOD I STEP I REACH 136 LAYER ¶ ROW 23 CCI 9 RATE -235,37800 RIVER LEAKAGE PERIOD I STEP I REACH 137 LAYER I RON 23 Cot 10 RATE -106402.30 RIVER LEAKAGE PERIOD I STEP ¶ REACH 138 LAYER I ROW 22 Cot 10 RATE -271.56770 RIVER LEAKAGE PERIOD I STEP I REACH 139 LAYER I RON 22 Cot 11 RATE -163706.50 RIVER LEAKAGE PERIOD I STEP I REACH 140 LAYER ¶ ROW 19 Cot 11 RATE -207.11890 RIVER LEAKAGE PERIOD I STEP 1 REACH 141 LAYER ¶ ROW 20 Cot II RATE -53826.540 RIVER LEAKAGE PERIOD I STEP 1 REACH 142 LAYER I ROW 21 COt. 11 RATE -84271.700 RIVER LEAKAGE PERIOD I STEP 1 REACH 143 LAYER I RON 14 Cot 12 RATE -99838,400 RIVER LEAKAGE PERIOD I STEP 1 REACH 144 LAYER I ROW IS Cot 12 RATE .68604CC

0 RIVER LEAKAGE PERIOD I STEP 1 REACH 145 LAYER 1 RON ¶6 Cot 12 RATE -69498.230 RIVER LEAKAGE PERIOD I STEP 1 REACH 146 LAYER I RON 17 Cot 12 RATE 41830.060 RIVER LEAKAGE PERIOD I STEP 1 REACH 147 LAYER I RON 18 Cot 12 RATE -87288,31

0 RIVER LEAKAGE PERIOO I STEP 1 REACH 148 LAYER ¶ ROW 19 Cot 12 RATE -153706.6

0 RIVER LEAKAGE PERIOD 1 STEP I REACH 149 LAYER ¶ ROW 12 Cot 11 RATE 42858.300 RIVER LEAKAGE PERIOD I STEP 1 REACH 150 LAYER I ROW 13 Cot II RATE -29568.580 RIVER LEAKAGE PERIOD I STEP 1 REACH 151 LAYER I ROW 14 Cot 11 RATE -129.14980 RIVER LEAKAGE PERIOD I STEP I REACH 152 LAYER I ROW S Cot 10 RATE -85.61361

0 RIVER LEAKAGE PERIOD I STEP I REACH 153 LAYER I ROW 6 Cot 10 RATE -25111.980 RIVER LEAKAGE PERIOD I STEP I REACH 154 LAYER I ROW 7 Cot 10 RATE -35815.640 RIVER LEAKAGE PERIOD I STEP I REACH 155 LAYER I ROW 8 Cot 10 RATE .6233.9160 RIVER LEAKAGE PERIOD I STEP I REACH 156 LAYER I ROW 9 Cot 10 RATE -7480.9350 RIVER LEAKAGE PERIOD 1 STEP I REACH 157 LAYER ¶ ROW 10 COt 10 RATE -5238,2040 RIVER LEAKAGE PERIOD 1 STEP I REACH 158 LAYER ¶ ROW 11 Cot 10 RATE .3418.5120 RIVER LEAKAGE PERIOD I STEP 1 REACH 159 LAYER I ROW 12 Cot 10 RATE -46.184450 RIVER LEAKAGE PERIOD I STEP 1 REACH 160 LAYER I ROW 4 Cot 11 RATE -133.06420 RIVER LEAKAGE PERIOD I STEP ¶ REACH 161 LAYER I ROW 5 Cot II RATE -60672.570 RIVER LEAKAGE PERIOD I STEP I REACH 162 LAYER I ROW 3 Cot 12 RATE -137.26940 RIVER LEAKAGE PERIOD I STEP I REACH 163 LAYER I ROW 4 Cot 12 RATE -72677.490 RIVER LEAKAGE PERIOD I STEP I REACH 164 LAYER 1 ROW 3 Cot 13 RATE -64806.45

HEAD INLAYER IATENO OF TIME STEP I IN STRESS PERIOD I

0 I 0. 0.0000 0.0%0 O. 0.0%0 0. 0 0. 0.0003 0.0.0000 0.00% 0.00% O. 0. O. 0. O. O. 0.00CC0.00CC 0.0000 0.0000 O. 0.0000 0. 0. 0. 0. 0.00%0.0000 0.0000 0.0000 0. 0.0%0 0.00%

0 2 0. 0.0000 0. 0. 0.0000 O. 0. 0. 0.0000 0.0. 0.00% 2.3181E-07 7.0106E-06 1.0295E-04 9.62755-05 7.44835-07 O. 0. 0.0. 0.0000 0.0000 O. 0.00% 0. 0. Q. 0. 0.0.00% 0.00% 0.0000 0. 0.0000 0.

0 3 0. 0. 0.0000 0. 0.0600 0. 0. 0,00% 0. 0.00000. 3.4317E-07 1.6217E-04 7.02096-02 0.1031 9.648E-02 6,5064E-04 0.2544 0.3812 0.43570.00% 0.0000 0.0000 0. 0. 0.0%0 0 0. 0.0000 O.O. 0.0000 0.0%0 O. 0.0%0 0.

0 4 0. 0.0600 0.0%0 0. O.0%0 0.0000 0. 0. 0.0006 0(0%3.3271E-07 1.8I69E-04 925885-02 0.1742 0.2313 0.2656 0.2916 0.4010 0.4871 0.53370.5896 0.6046 0,00% 0. O. O. 0. 0.00% 0.0%0 0.00000. 0.0000 0,0000 0. 0. 0.

0 5 Q. O. 0. 0. 0.00% 0. 0. 0. 0.00% 2.14035-071.51685.04 8.9400E.02 0.1987 0.2652 0.3623 0.4232 0.4789 0,5512 0.6142 0.65800.6804 0.6796 0.6910 0. 0.0000 0. 0. 0. 0.00% 0.0C00D. 0.0000 0.00CC 0.D 0. O.

0 6 0. 0. 0.0000 0. 0. 0.00% 0. 0. 0. 6.278CC-OS6.2874E-02 0.1615 0.2766 0,3942 0,4892 0.5651 0.6334 0.6926 0.7445 0.78100.8006 0.7989 0.7714 0.7732 0. 0, 0. 0. 0.00% 0.0. 0. 0.00% 0. 0. O.

0 7 0. 0.0000 0.0000 O.D 0. 0.0%0 0. 0. 0.00% 89539€-OS8.9719602 0.2062 0.3409 0.5058 0.6151 0.6987 0.7582 0,8276 0,8743 0.90560,9204 0.9161 0.8930 0.8522 0.8435 0.00CC 0. 0. 0.00% 0.00%0. 0.0000 0.00% O. 0. 0.

0 8 0.00% 0.0000 0. 0 0.00% 0. 0. 0. 0. I .55855-OS1.5523E-02 111.8 124.8 0.6526 0.7485 0.8300 08996 0.9583 1.003 1.0311.042 1.035 1.012 0.9720 0.9175 0.8997 0 0. 0.0000 0.00000. 0.0000 0.0000 0. 0.00% 0.

0 9 0.00CC 0.0000 0.00% 0. 0.0000 0. 0 0.00% 0. I.8702E.051.8729E-02 151,2 200.1 154.6 0.8786 0.9555 1.025 1. 1.132 1.1551.162 1,152 1,128 1.069 1.035 0.96% 0.9430 0. 0. 0.0. 0.0000 0.0%0 0. 0.0%0 0.

010 0. 0.0000 0.0000 0, 0.00% 0. 0 - 0. 0. 1.30985-051.3107E02 148.5 221.9 217.1 144.6 1.074 I 144 1.210 1.258 1.2781.280 1.268 1.243 1.202 1.148 1. 1 0% 0. 0. 0.00000. 0.0000 0.0000 0. 0.00% 0.

011 0. 0.0%0 0.0000 Q. 0.0%0 0. 0. 0. 0.0000 8.54635-CS

0-26

Page 204: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

855866.03 109.4 178.1 192.7 190.4 1370 1 260 1331 1.377 1,3961394 1.379 1.353 1,313 1,258 1.187 1.094 1 058 00% 0.0000

00000 0.00% 0.0% 0.0% 0.0%012 0.00% 0.0% 0.0% 0.0% 0.03% 0.0% 00% 0.0% 0.00% 1.15466.07

1.0715E-04 9.8929E’02 0.2101 0.2952 148.1 1948 184.0 1.455 1.489 1.5051505 1.487 1.460 1.420 1.368 1.300 1.219 1.128 1.065 0.000

0.00% 0.00% 0.0000 0.0% 00% 0.000

o is o.c 0.0% 0.000 0.0% 0.0% 0.00% 0.0% 0.0303 0.0% 000%7.3922E-06 7.40306.02 0.1968 0.3156 0.4178 172.3 255.0 235.3 1.587 1.6071.609 1.589 4.561 1.522 1.471 1.410 1.336 1.250 1.150 1.1020.0% 0.0% 0.0000 0.03% 0.000 00%

0 14 0.000 OXUJO 0.0% 0.0% 0.000 0.000 0.0% 0.0000 00000 0.0%3.2287EV? 2.49606-04 0.1763 0.3289 0.4593 0.5778 224.3 324.6 217.3 1.7181.708 1.684 1.653 1.617 1.573 1.515 1.446 1.366 1.270 1.1631.110 0.000 0.0000 0.000 0.0% 0.0%

0 15 0.0000 0.0% 0.0000 0.0% 0.0000 0.000 0.0% 0.0% 0.0000 0.0%0.0% 1.7151E-04 0.1716 0.3406 0.4903 0.6224 0.7455 325.7 268.6 1.7931.790 1.771 1.742 1710 1.669 1.615 1.550 1.474 1.382 1,2781.167 1.111 0.0% 0,0% 0.000 0.0000

016 0.0000 0.0% 0.0000 0.03% 0.000 0.0% 0.000 0.000 0.0% 0.0%0.0% 1.7374E-04 0.1738 0.3497 0.5160 0.6509 0.7588 365.8 383.3 206.81.850 1.854 1.834 1.601 1.762 1.710 1.647 1,571 1.481 1.3801,272 1.166 0.0000 0.0000 0.0% 0.0%

0 17 0.00% 0.0% 0.0000 0.03% 0.000 0.0000 0.0% 0.0300 0.0% 0.0%0.000 2.04586-04 0.2047 0.3957 0.5479 0,6804 0.7893 394.5 440,1 309.9173.8 1.957 1.933 1.894 1.852 1.798 1.735 1.659 1.569 1.4701.356 1.222 1.151 0.0% 0.0% 0.0%

0 18 0.0% 0.0000 0.0000 0.0% 0.0000 0.0% 0.000 0.0% 0.000 0.00000.0% 2.1822644 0.2182 0.415? 0.5755 0.7089 0.8153 412.5 472.5 369.3252.1 2.026 2.017 1.963 1.937 1.680 1.818 1.738 1.650 1.5531.442 1.319 1.191 1.121 0.0% 0.0%

0 19 0.0000 0.0000 0.0000 0.0% 0.0000 0.0% 0.0% 0.00% 0,0000 0.00005.17806-07 3.8427644 0.2507 0.4513 0.6095 0.7384 0.6398 419.6 491.5 417.7339.9 246.4 2.106 2.071 2.020 1.963 1.8% 1,813 1.725 1,6291.522 1.402 1.278 1.162 0000 0.0000

020 0,0030 0.0000 0.0% 0.0% 0.0% 0.0% 0.0% 0.0300 0.0% 0.00001.34576.04 0.1347 0.3276 0.5080 0.6517 0.7681 0.8566 410.9 505.6 457.6376.6 2871 2.191 2.152 2.104 2.044 1,973 1.890 1.799 1.7021.592 1.470 1.338 1.192 1.111 0.0%

021 0.000 0.0% 0.000 0.0% 0.0000 0.0000 0.00% 0.00% 0.0000 0.00002.10686-04 0.2107 0.4089 0.5724 0.7030 0.8070 0.8864 394.6 509.2 486.0392.4 271.8 2.266 2.230 2.180 2.119 2.050 1. 1.871 1.7691.654 1.529 1.393 1.257 1.139 0.00%

022 0.000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0% 0.0000 0.00% 6.7892E-074.0927604 0.3008 0.4980 0,6490 0,7669 0.8595 0.9288 336,9 448.4 437.6376.0 270.7 2.337 2.297 2.253 2.190 2.120 2.037 1.941 1.8341.714 1.579 1.433 1.288 1.155 0.0000

023 0.0% 0.0000 0.0000 0.00% 0.000 0.0% 0.0000 0.00% 5.88456-07 2.71016-040.1097 0,4914 0.6120 0.7366 0.6403 0.9210 0.9804 251.9 367.9 401.1380.1 2902 2.391 2.354 2.311 2.257 2.195 2.116 2.019 1.9061.774 1.622 1.456 1.291 1.143 0.0300

024 0.0% 0.0030 0.0% 0.00% 0.0000 0.0% 0.0% 62931647 3.18626-04 0.16230.3281 0.5489 0.6979 0.8214 0.9223 1.0% 1,054 231.4 356.3 416.9430,2 389.6 270.7 2.398 2.368 2.329 2,279 2209 2.113 1.9891.840 1.661 1.463 1.261 1.084 0.0000

025 0.00% 0.0000 0.0000 0.0% 0.000 0.0% 6.5451647 3.11956-04 0.1575 0.31840.4802 0.6471 0.7688 0.9101 1.011 1.091 1,148 2592 3952 475.3511.2 505.6 434.1 267.1 2.429 2.412 2.383 2327 2.235 2.0951.918 1.703 1.454 1.187 0.9489 0.0%

026 0.0000 0.0% 0.0% 0.03% 2.20196-07 1.10406-04 3.43876-04 0.1556 0.3066 0.45610.6059 0.7524 0.8645 1.001 1.104 1.190 1.255 321.1 469.7 5602617.0 632.3 581.3 470,7 304.9 2.504 2.503 2.468 2.377 2.2232.017 1,759 1.447 1.068 0.6567 0.000

027 0.00% 0.0000 0.0000 0.00% 1.10226.04 0.1104 0.1892 0.3069 0.43% 0.57390.7133 0.8501 0.9786 1.097 1202 1.293 1.366 373.1 550.7 661.0738.0 755.3 721.4 646.7 531.6 364.8 2.644 2.658 2.558 2.3782.144 1.855 1.491 0.9660 24944643 0.0%

028 0.00% 0.0000 0.0000 322366-01 1.6157644 0.2520 0.3291 0.4346 0,5518 0.67550.009 0.9405 1,070 1.192 1,303 1.400 1.481 415.4 616.5 760.5843.8 869.1 855.5 801.7 712,3 571.5 354.9 2.931 2.780 2.5602.302 2.011 1.673 1.273 0.8436 0.0%

029 0.0000 0.0000 0.0000 1.6143E-04 0.1619 0.3151 0.4244 0.5301 0.6442 0.76500.8927 1.025 1.158 1285 1.402 1.506 1.595 454.1 677.9 836.4932.9 978.5 991.0 9482 843.8 656.9 374.0 3.265 3.039 2.7672.484 2.196 1,897 1,589 1.312 0.0%

030 0.0% 0.0000 2,53536-10 2.16026-07 0.3319 0.41 16 0.5033 0.6018 0.7126 0.83390.9543 1.101 1.241 1.376 1.5cc 1.612 1.710 506.9 741.7 895.01001. 1079. 1131, 1116. 993.5 738.2 4.255 3.748 3.326 2.9712.658 2.378 2.106 1.843 1.608 0.0000

031 0.00% 0.000 3.80216.08 2.10%C-05 0.4195 0.4760 0.5552 0.6481 0.7580 0.88351.020 1.166 1.320 1.464 1.595 1.714 1.824 586.6 808.1 953.61078. 1191. 4273. 1287. 1155. 8592 4.528 4.114 3.533 3,1112.786 2.531 2.283 2.042 1.820 0.0%

032 0.00% 0.0% 1.61756-05 1.61976-02 137.8 177.9 173.7 170.0 184.6 217.6262.8 348.1 476.5 529.1 549.5 566.2 608.3 749.4 871,6 1014.1154. 1287. 1392. 1406. 1240. 949.2 5.0% 4.620 183.5 158.82.821 2.652 2.431 2.201 1.980 0.0000

0-27

Page 205: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

033 O 0Q 2S€-05 264226.02 1930 250.7 2503 2437 259.7 304.3368.1 476,6 476.7 839.1 8398 8409 842.2 643,9 845.6 1048.1208. 1356. 1476 1566 1404. 1095 5.576 334.8 269.4 192.92.982 2.796 2.567 2.333 2.1% 0.

034 O. O 2.46676-06 2.46816.02 192.0 260.3 269,4 252.8 254.8 304.9375.9 476.6 476.6 6285 758.9 7501 759.2 643.7 847.0 1058.1251. 1421. 1531. 1601. 1539. 1319 891 1 470.7 4.039 3.7223.273 2.960 2.687 2434 2.198 O

035 0 6.2306E-06 S 12836-05 2.01846-02 1461 200,4 2110 196.7 182.3 2191302.7 476 5 476 8 628.2 7588 759 0 759.2 759 4 548.2 1035.1280. ¶523 1523. 1667, 1641. 1453 1047. 4,654 4.197 3.7943396 3,059 2.766 2.500 2.257 0 D

036 0.0 311876-05 312796.02 0.1249 0.2515 03926 05439 07039 0.8730 1.0491,244 ¶ 478 627.3 627.9 758.6 758.6 759,1 7593 649.2 850.11256. 1492. 1625. 1743. 1729. 1562. 1172. 4.722 4.244 3.8153.433 3.096 2,796 2.528 2.281 0.

037 0.0 1.4431E-07 1.1341E-04 8.25746.02 0.1994 0.3365 0.4882 0.6544 0.8315 0,99411,157 273.9 551,0 757.7 758.2 758.6 7590 7594 927.7 1020.1264. 1504. 1680. 1805. 1804. 1674. 1390. 888.9 4.179 3.7453.392 3.073 2.780 2.512 2.266 0.

038 0.0 0. 3.08438-07 1.93636.04 0.1118 0.2463 0,3974 0.5724 0.7849 0.9207189.5 318.9 433.1 545.8 757,9 758.3 758.8 927.3 927.8 928.41273. 1514. 1718, 1839. 1853. 1761. 1550. 1199. 705.8 3.5663.280 2.986 2312 2.456 2.216 0.

039 0. 0.0 0. 4.31208.07 2,38426434 0.1275 0.2633 0.4325 91.47 170.0242.9 273.0 235.6 1.882 6.649 6.831 926.1 927.1 927.8 928.41276. 1515. 1723. 1841. 1868. 1807. 1629. 1328. 886.6 3.5103.151 2.868 2.609 2.368 2.136 0.

040 0. 0.6000 0. 0.0000 4.52138-07 2,14516-04 8.79046-02 8.6237E-02 0.1359 1682215.2 174.2 1.601 1.751 6.317 6.667 683.8 854.7 928.0 1090.1311. 1514. 1698. 1810. 1845. l. 1543. 1374. 1015. 550.52.928 2.701 1465 2.241 2.032 0.

041 0.0000 0.0000 0. 0.0000 0. 3.30198.07 1.1625E-04 2.67966.02 1.96968-02 1172131.9 1.140 1.381 4.546 5.625 342.5 666.8 849.6 961.6 1139.1320. 1491. 1647. 1751. 1781. 1744. 1595, 1352. ¶053. 680.82.821 2.523 2.291 2.082 1,910 0.C

042 0.0000 0.0000 0. 0.0000 0.0 0. 1,44596-07 2.87306-05 1.96686-05 1.44488-020.5255 0.8427 3.201 4.046 155.9 361.4 649.8 840.6 984.1 1139.1292. 1438. 1586. 1678, 1689. 1633. 1497. 1298. 1065. 774.9404,9 2.268 2,076 1.867 1.800 0.

043 0. 0.0 0.0 0. 0. 0.0600 0.0 0. 2.0954E.07 1.90298-040.1766 1.444 2.335 49,31 0.8888 1.054 536.5 768.8 932.2 1083.1222. 1349. 1458. 1524, 1523. 1471. 1361. 1204. 1012. 779.0486.4 2,127 1.659 1.677 0.0000 0.

044 0.0 0.0000 0.0 0.00CC 0. 0. 0. 0. 0.0 9.0302E-077,11538-04 0.5372 0.1318 0.4470 0.6783 0.3055 430.6 646.9 811.6 967.81107. 1216. 1296. 1341. 1331. 1280. 1187. 1055. 898.7 699.2483.2 234.1 1.539 1.458 0. 0.

045 0. 0.0000 0.0 0. 0. 0. 0.GYfl 0. 0.0800 0.00001.6574E-04 0.1655 0.1241 0.1932 7.7318803 0.2175 287.1 448.1 503.3 753.1942.6 1043. 1105. 1133. 1108. 1047. 964.0 850.1 708.8 510.0350.4 197,1 1.252 1.292 0.00CC 0.0

045 Q. Q.0 0. 0.0000 0. 0.0 0.0 0. 0.0 0.03.3023E-07 1.65156.04 1.24146.04 1.92886.04 7.76266-05 6.9825E-02 5.77046-02 7.86066-02 0.1980 481.8708.6 816.8 869.9 877.2 825.6 716.6 641.0 550.0 405.7 0.9490

0.6482 0.6729 1.012 0.0000 0.0000 0.C047 0. 0. O. 0.0900 0. 0. 0. O.W30 0.0000 0.0

0. 0.0030 0. 0.0W) 1.46998-07 6.9674E-05 5.76838-66 7,8703E-05 2.56858-04 6.95276-02386.7 5123 555.5 546,5 448.6 0.7995 0.7964 0.7960 0.7782 0.7857

0,7818 0.7680 0.W)0 0. 0.0000 0.048 0.08CC 0.0030 0. 0. 0. 0.0W) 0. 0. 0.0000 0.0000

0.0000 0. 0. 0. 0.0W) 0. 0.0W) 0.0W) 3.6433E.07 9.8213E-052.90726-02 9.39868.02 0.1072 0.1052 0.3116 0.5746 0.6682 0.7002 0.7081 0.71060.0060 0. 0.0000 0.0W) 0. 0.

049 0. 0. 0.W)0 0.0800 0. 0. 0.0W) 0. 0.0 0.0. 0.0030 0. 0.0W) 0.0W) 0.06CC 0.0000 0. 0.0000 1.27046.072.90808-05 9.38526-05 1.07086-04 1.05326-04 3.11468-04 0.0000 0. 0. 0.0000 0.0.0W) 0. 0.0300 0.0000 0.W)0 0.

050 0. 0. 0.W)0 0.0000 0.0W) 0. 0. 0. 0. 0.0W)0.0W) 0. 0. 0. 0. 0.0000 0.0060 0. 0.0W) 0.0.0W) 0.0W) 0. 0,0W) 0.0000 0.C/ 0.0W) 0. 0.0008 0.000)00000 0. 0. D. 0.0W) 0.

01-lEAD WILl BE SAVED ON UNIT 30 AT END OF TIME STEP 1. STRESS PERIOD 10ORWDOWN WiLL BE SAVED ON UNIT 40 AT END OF T#IE STEP 1. STRESS PERIOD I

D-28

Page 206: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

0

VOLUMETRIC BUDGET FOR ENTiRE MODEL AT END oc T#AE STEP I IN STRESS PERIOD I

IN

STORAGE a 000000CONSTANT HEAD •

WELLS 0000cCDRAINS a 000000

RECHARGE 0.82316E+07RWER LEAKAGE •

TOTAL IN D.823isE.07OUT

STORAGE • O.DCONSTANT HEAD • aoo

WELLS •

DRAINS a 43538RECHARGE • 0033%

Rn/ER LEAKAGE • 081884E07O TOTAL OUT O.82320E+07O IN - OUT -338.50D PERCENT DISCREPANCY a

STORAGE • DC0CONSTANT HEAD • D.0WELLS a

DRAINS. 0RECHARGE • O.82316E+07

Rn/ER LEAKAGE a 0.0TOTAL WI a 0 82316E.G7

STORAGE a

CONSTANT HEAD • O.OOWELLS a

DRAINS a 435.38RECHARGE a

Rn/ER LEAKAGE a 081884E.G7TOTAL OUT a 0 82320E.07

IN-OUTa .33850PERCENT DISCREPANCY a

TIME SUMMARY AT END OF TIME STEP I IN STRESS PERIOD ISECONDS MINUTES HOURS DAYS YEARS

TIME STEP LENGThSTRESS PERIOD TRAE

TOTAL SIMULATION TIME

86400.0 14-4D.0086400.0 1440CC

86400.D 1440.D0

24.DDDO 1,00030 D273785t-24.O I .00033 O273785E-2400cc 1 .D0 O.273785E-02

CUMULATrw’E VOLUMES L3 RATES FOR THIS TIME STEP L1(T

00

IN:

OUT

0.00

0-29

Page 207: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

APPENDIX E

Page 208: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Appendix E-1. GIS Calculated Stress Period Recharge In cfd

. Monthly Recharpe, R in million cid

Periodl Period2 Periods Period4 PeriodS Period6 Period? Periods

?hnth 42-51 52-56 ‘57-8/61 ‘9)2-/64 ‘65-69 70-83 84-90 91-94

Jan. 30.50 2079 26.40 53.91 36.04 35.10 12.48 10.56

Feb. 11.18 9.86 5.19 3.15 16.84 14.10 15.52 10.19

Mar. 19.14 7.43 9.75 35.G3 16.36 6.74 6.95 3.86

Apr. 17.51 202 2.00 16.96 20.49 8.00 12.19 0.72

May 2.26 124 6.38 11.83 9.07 1.82 212 2.36

Jun. 1.07 0.42 0.96 0.50 0.60 0.80 0.69 0.99

Jul. 1.64 1.44 0.80 2.91 2.84 1.00 1.45 1.31

Aug. 0.83 0.47 0.67 0.75 0.92 0.80 0.43 0.52

Sep. 1.50 1.80 117 0.78 8.22 1.14 1.97 413

Oct. 1.88 2.57 2.39 10.54 6.12 2.83 6.37 7.09

Nov. 8.45 16.09 9.48 13.25 29.25 7.19 14.73 6.86

Dec. 13.72 25.03 12,86 11.67 24.92 16.67 22.53 8.95

Year 9.17 7.44 6.56 13.44 14.29 8.02 8.17 4.86

Appendix E-2. GIS Calculated Stress Period Recharge In mgd

Mthdwge1flisng1

, ‘ . Periodi Period2 Period3 Period4 Periods Penod6 Periodl Periods

, Month ‘42-’Sl ‘52-’SG 57-’8/61 ‘9*2-/64 tS-’69 ‘70-’83 ‘84-’90 ‘91-’94

Jan. 228.02 155.41 197.42 403.04 269.44 262.46 93.31 79.11

Feb. 83.60 73.73 38.79 23.54 124.43 105.43 116.03 76.31

Mar. 143.11 55.52 72.90 261,94 122.31 50.36 51.98 28.87

Apr. 130.92 15.14 14.96 126.85 153.20 59.83 91.18 5.39

May 16.93 9.27 47.73 88.47 67.78 13.59 20.36 17.63

Jun. 8.01 3.16 4.16 3.76 4.50 6.00 5.19 7.41

Jul. 12.23 10.80 5.99 21.77 21.21 7.45 10.82 9.82

Aug. 6.21 4.29 5.02 5.62 6.92 5.96 3.20 4.67

Sep. 11.20 13.48 1327 5.84 61.48 8.49 1411 35.39

Oct. 13.88 19.18 17.86 78.83 4514 21.18 47,60 53.01

Nov. 63.20 120.31 70.91 99.06 218.69 53.78 110.11 51.32

Dec. 102.59 187.15 96.33 87.29 186.29 124.67 168.42 66.90

Year 68,33 55.62 49.03 100.50 106.83 59.93 61.06 36.31

El

Page 209: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Calculated values in feet for input into Lanai Grid In MODFLOW.1 01 0

18 0.0002367(10612.4) 0 42-510.0000E÷00 0.0000E+0O 0.00006.00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006.00 0,00006+00 0.00006.000.0000E÷00 0.0000E+00 0.00006.00 0.0000E+0O 0.00006+00 0.00006+00 0.00006+00 000006÷00 0.00006÷00 0.00006+000.00006+00 000006÷00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006÷000.00006+00 0.00006+00 0.00006÷00 0.00006÷00 0.00006+00 0.00006+00 0.00006+00 0.€+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006÷00 0.1000E-01 0.00006+00 0.0000E00 0.0GD0E00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 006+00 0.00006+00 0.00006+000.00006+00 0.00006÷00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+000.00006+00 0.00006÷00 0.00006+00 0.0000E+00 0,00006+00 0.00006÷00 0,00006+00 0.DXOC÷00 0.0000E+00 0.00006+000,00006+00 0.00006+00 0.00006+00 0.1480E+0l 0.82006+01 0.71506+01 0.43706+01 0.25006+01 0.19906+01 0.20006-010.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+000.0000E+00 0.0000E+00 0.00006÷00 0.00006÷00 0.00006+00 0.0000E+0Q0.0000E+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+000.00006+00 0.18006+00 0.22306+01 0.76406+01 0.87506+01 0.87006+01 0.87506+01 0.86406+01 0.79706+01 0.75606+010.1690E+01 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006+00 0.00006÷00 0.0E+00 0.00006+00 0.0000E+000.0000E+00 0.00006+00 0.00006÷00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+000.00006+00 0.21906÷01 0.8290E+01 0.85006+01 0.8830E+01 0.91706+01 0.84206+01 0.77706+01 0.7060E+0l 0.7320E+0l0.76206+01 0.3270E+0l 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.4840E+01 0.83806+01 0.87406+01 0.87406+01 0.82906+01 0.71406+01 0.77106+01 0.68006+01 0.6770E+0l0.77406+01 0.87306+01 0.36906+01 0.40006-01 0.00006+00 0.00006+00 0.00006+00 0.00006*00 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.59606+01 0.85906+01 0.88306+01 0.79506+01 0.72206+01 0.72206+01 0.73906÷01 0.72606+01 0.71006+010.7660E+01 0.83806+01 0.89406+01 0.51906+01 0.70006+00 0.00006+00 0.00006+00 0.6+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006÷00 0.00006+00 0.00006+000.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006÷00 0.00006+00 0.00006+000.12006+01 0.81306+01 0.87206+01 0.81606+01 0.76306+01 0.7670E+0l 0.7660E+01 0.75006+01 0.73406+01 0.72206+010.83806+01 0.75606+01 0.87206+01 0.7740E+01 0.51706+01 0.11806+01 0.00006+00 0.GX0E+00 0.00006+00 0.00006+000.00006+00 0.00006÷00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.31006+00 0.7250E+01 0.91606+01 0.92206+01 0.77406+01 0.6540E+0l 0.6530E+01 0.73406+01 0.10826+02 0.84106+010.80206+01 0.72206+01 0.77906+01 0.7580E+01 0.66306+01 0.58006+01 0.10406+01 0.CE+00 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+000.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E÷00 0.00006÷000.0000E+00 0.51306+01 0.9390E+0l 0.9920E+0l 0.7440E+0l 0.62606+01 0.40206+01 0.95406+01 0.1526E÷02 0.10096+020.7770E+01 0.7920E+0l 0.8040E+01 0.75706+01 0.6770E+0l 0.66006+01 0.3370E+0l 0.00006.00 0.00006+00 0.00006+000.0000E+00 0.0000E+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006÷00 0.00006+00 0.00006+000.0000E÷00 0.4530E+0l 0.9630E+01 0.99406+01 0.8650E+01 0.68306+01 0.2300E+0I 0.10256+02 0.16596+02 0.13616+020.71306+01 0.60006+01 0.78606+01 0.73706+01 0.75106+01 0.69006+01 0.49006+01 0.25006+00 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006÷00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+000.00006+00 0.20006-01 0.77406+01 0.10166+02 0.95506+01 0.97006+01 0.13956+02 0.17096+02 0.91806+01 0.10866+020.10836+02 0.69106+01 0.83906+01 0.8480E÷01 0.6970E+01 072506+01 0.86706+01 0.45306+01 0.1300E+00 0.00006+000.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0E÷00 0.00006+00 0.00006+000.0000E+00 0.0000E+00 0.49106+01 010346+02 0.97806+01 011076+02 013946+02 0.18556+02 0.10136+02 0.35806+010.12266+02 0.64506+01 0.87906+01 0.83906+01 0.63106+01 0.78106+01 0.86706+01 0.85806.01 0.3530E+01 0.32006+000.0000E+00 00000E+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006*00 0.00006÷00 0.0000E+000.0000E+00 0.00006+00 013306.01 0.10366+02 0.9770E+0l 0.10706+02 0.1558E+02 0.21886+02 0.12586+02 0.86006+010.1396E+02 0.70006+01 0.26806+01 0.53506+01 0.80506+01 0.67206+01 0.8110E+0l 0.94206+01 0.89806÷01 0.41106+010.1200E+00 0.0000600 0.0000E+00 0.0000E+00 0.0000E+00 0.00006.000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006.00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+000.00006.00 0.0000E+00 0.3000601 0.94606+01 0.10126+02 0.10936+02 0.1549E+02 0.21256+02 0.58006+01 0.71506+010.15926+02 0.62306.01 0.7800E+00 0.3770E+0l 0.68706+01 0.65106.01 0.82306+01 0.11736+02 0.11256+02 0.8360E+010.54806+01 0.3100E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006÷00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+000.00006+00 0.00006+00 0.00006+00 0.81906+01 0.11056+02 0.11386+02 0.17826+02 0.22706+02 0.1903E+02 01720E+010.4240E+0l 0.2350E+0l 0.18406+01 0.24206+01 0.7820E+0l 0.7860E+01 0.92806+01 0.11026+02 0.88406+01 0.86806+010.79006+01 0.41406+01 0.0000E+00 0.00006+00 0.0000E+00 0.00006.000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006.00 0.0000E+00 0.0000E+00 0.C’XO€+OO 0,00006+00 0.00006÷000.00006+00 0.00006+00 000006+00 0.81706+01 0.1051E+02 012136+02 0.19936+02 0.22586+02 0.1718E+02 0.11606+010.3560E+01 01593E+02 0.13656+02 0.20706+01 07650E+01 0.60206+01 0.82806+01 0.96306+01 0.81506+01 0.87506+010.82506+01 0.76506+01 0.14206+01 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006÷00 0.0000E+00 0.00006÷00 0.0000E+00 0.00006÷00 0.00006+00 0.C÷00 0.0000E+00 0.00006+000.0000E+00 000006+00 0.59006+00 0.96806+01 0.88006+01 0.11316+02 0.21396+02 0.22616+02 0.1605E+02 0.4500E+000.3870E+0l 0.58206+01 0.8200E+01 0.58006+01 0.6110E+0l 0.1920E+01 0.10156+02 0.52806+01 0.6750E+01 087506+010.8650E+0l 0.79406+01 0.66506+01 0.57006+00 0.00006+00 0.00006+000.0000E+00 0.00006+00 0.0000E+00 0.00006.00 0.00006+00 0.0000Ei-00 0.0000E+00 0.6+00 0.00006+00 0.0000E+000.00006+00 0.00006+00 0.23206+01 0.10196+02 0.9200E+01 0.12146+02 0.19546+02 0.22726+02 0.13806+02 0.29006+00

6-2

Page 210: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

041201+01 0.17981+02 0.63401+01 0.86001+01 0.1780E+01 060501+01 0.66801+01 0.1750E+0l 0.32001+01 0.72501+010.90501.-Ol 0.8550E+0I 0.79401+01 0.46701+01 0.0000E+00 000001+000.00001+00 0.00001+00 0.00001+00 0.00001÷00 0.0000E+00 0.00001+00 0.00001+00 0.00001+00 0.0000E+0O 0.00001+00

0.00001+00 0.0000E+00 0.52301+01 0.91801+01 0.8860E+01 0.81001+01 0.60201+01 0.18671+02 0 15811.02 0.30501+0*

0,1570E+O1 0.14l4E+02 0.33801+01 0.61901+01 0,81201+01 0.70901+01 0.56101+01 0.40201+01 0.3640E+0* 0.79001+01

0.91901+01 0 84601+01 0.79101+01 0.76801+01 0.II60E+0l 0.00001+000.0000E.00 0.00001+00 0.00001+00 0.00001+00 0.0000E+00 0.00001+00 0.00001+00 0.00001+00 000001+00 0.00001+000.00001.00 0.00001+00 0.83201+01 0.10721+02 0.6150E+0I 0.47501+01 0.35401+01 018541+02 018731+02 0.14411+020.36401+01 050801+01 0.16601+01 0.10011+02 0.73101+01 049101+01 0.67401+01 072801+01 042301+01 0.56501+01

0.6190E+01 050901+01 0,74401+01 0.75101+01 0.25201+01 0.0000E+000.00001+00 0.0000E+00 0.00001+00 0.00001+00 0.0000E+00 0.00001+00 0.00001+00 0.00001.00 0.00001+00 0.00001÷00

0.00001+00 011501+01 0.10111+02 0.96701+01 0.69601+01 0.62801+01 0.5390E+01 0.12891.02 0.1196E+02 0.2970E+010.1160E+01 0.59001.01 0.92201+01 0.70001+01 0.1417E+02 0.54201+01 0.41101+01 0.24201+01 0.17301+01 0.33001+010.61601+01 0.7590E+01 0.66901+01 0.71601+01 0.46601+01 0.00001.000.00001+00 0.0000E+00 0.00001+00 0.0000E+00 0.00001+00 0.00001.00 0.0000E+00 0.00001+00 O.0000E+00 0.00001+000,I000E+00 0.63601.01 010551.02 0.10401+02 0.6330E+01 0.14701+01 0.20101+01 0.43001.00 0.00001+00 0.00001+00

0.1350E+01 0.33901+01 0.73001+01 0.75801.01 O.4820E÷0l 0.14901+01 0.32101+01 0.1120E+01 0.S100E+00 013801+010.72101+01 0.73701+01 0.7470E+0l 0.7460E+01 0.58101÷01 0.1000E+000.00001+00 0.00001÷00 0.00001+00 0.00001+00 0.00001+00 0.00001+00 0.00001+00 0.00001+09 0.00001+00 0.89001+00

0.58401+01 0.10051+02 0.97901+01 0.61801+01 0.7150E+0I 0.58501+0* 0.95001+00 0.12001+00 0.0000E+0O 0.00001+00

0.14901+01 0.31901+01 0.85701+01 0.14601+01 0.22801+01 0.51001+00 0.1200E+00 0.27001+00 0.2200E+00 0.1330E+010.6970E+01 0.81901+01 0.76901+01 0.7810E+01 0.2880E+0I 0.12001+000.00001+00 0.00001+00 0.00001+00 0.00001+00 0.00001+00 0.00001+00 0.0000E+00 0.00001+00 0.1900E+0l 0.75701+010.92301+01 0.8750E+0I 0.6840E+01 0.61701+01 0.8710E+01 0.71501+01 0.49101+01 0.l430E+0l 0.2000E-0l 0.71001+00

0.63001÷00 0.35801+01 0.57501+01 0.13001+00 0.70001+00 0.1200E+01 0.57101+01 0.52301+01 0.11591+02 0.74401+010.72501+01 0.79701+01 0.72801+01 0.7100E+01 0.5930E+0l 0.50001+000,00001+00 0.00001+00 0.0000E+00 0.00001+00 0.00001+00 0.00001+00 0.90001-01 0.27101+01 0.79301+01 0.85101+010.94401÷01 0.96901+01 0.76101+01 0.36401+01 0.48501+01 0.7490E+01 0.6230E+0l 0.71601+01 0.26001+01 0.2900E+000.13301+01 0.6080E+01 0.4100E+0l 0.17601+01 0.20501+01 0.14001+00 0.12701+01 0.37501+01 0.11111+02 0.99401+010.11291+02 0.66601+01 0.70801+01 0.69901+01 0.66601+01 0.2800E+000.00001+00 0.0000E+00 0.0000E+00 0.00001+00 0.0000E+00 0.00001+00 0.35401+01 0.7520E÷01 0.6510E+01 0.50501+01

0.72301+01 0.67301+01 0.5870E+01 0.5670E+0I 0.58501+01 0.65501+01 0.6850E+01 0.77301+01 0.56001+01 0.19301+010.75901+01 0.6020E+01 0.33501+01 0.30101+01 0.3130E+01 0.11181+02 0.11161+02 0.1442E+02 0.16501+02 0.12641+020.9610E+01 0.6490E+0l 0.10151+02 0.1176E+02 0.14481+02 0.1060E+010.00001+00 D.0000E+00 0.0000E+00 0.00001+00 0.00001+00 0.58001+00 0.71101+01 0.80301+01 0.6050E+01 0.19101+010.2410E+0l 0.45101+01 0.43301+01 0.57901+01 0.63601+01 0.7180E+0l 0.76801+01 0.75601+01 0.30801+01 0.83601÷010.87101+01 0.46201+01 0.31701+01 0.27101+01 0.80201+01 0.14601+02 0.22621+02 017091+02 0.14691+02 0.45401+010.44501+0l 0,7410E+0I 0.78001+01 0.94001+01 0.11041+02 0.37001+000.00001+00 0.00001+00 0.00001+00 0.00001+00 0.0000E+00 0.4690E+0l 0.8660E+01 0.68401+01 0.74801+01 0.61101+010.40401+01 0.37401+01 0.45501+01 0.51701+01 0.58201÷01 0.74601+01 0.71601+01 0.58901+01 0.28801+01 0.83601+010.92001+01 0.49401+01 0.55601+01 0.2490E+01 0.40801+01 0.45401+61 0.2103E+02 0.10341+02 0.74901+01 0.62201+010.49901.01 0.6530E+0I 0.10151+02 0.1367E+02 0.11731+02 0.31001+000.00001+00 0.00001+00 0.00001+00 0.0000E+00 0.12701+01 0.87301+01 0.8840E+0l 0.56901+01 0.54701÷01 0.4410E+010.42101+01 0.3430E+0I 0.44201+01 0.60101+01 0.65501+01 0.71201+01 0.77701+01 0.66901+01 0.5090E+01 0.44201+010.14101+01 0.79001+00 0.84301+01 0.1362E+02 0.11431+02 0.2052E+02 0.17581÷02 0.12601+02 0.56701+01 0.94801+010.62601+01 0.9390E+01 0.10881+02 01096E+02 0.43901+01 0.40001+000.0000E+00 0.00001+00 0.00001+00 0.00001+00 0.6540E+01 0.8740E+0l 0.75201+01 0.38301+01 0.31501+01 0.49301+010.44501+01 0.40201+01 0,49601+01 0.62201+01 0.64801+01 0.7l90E+01 0.6430E+01 0.70701+61 0.61601+01 0.39001+000.00001+00 0.58701+01 0.1468E+02 0.32911÷02 0.3346E+02 0.3538E+02 0.17001+02 0.12201+02 0.10891+02 0.1068E+020.97201+01 0.10941+02 0.91501+01 0.88901+01 0.42801+01 0.38001+000.00001+00 0.00001+00 0.0000E+00 0.00001+00 0.8280E+0l 0.7330E+0l 0.40801+01 0.29601+01 0.35501+01 0.4830E+010.37501+01 0.49301+01 0.46901+01 0.47501+01 0.81101+01 0.63001+01 0.5920E+0l 0.71601+01 0,7470E+0l 0.18701+010.2500E+01 0.71401+01 0.2301E+02 0.36751+02 0.38141+02 0.334lE+02 0.30241+02 0.25131+02 0.15091+02 0.1275E+020.10901+02 0.11941+02 0.92801+01 0.78801+01 0.48801+01 0.41001+000.00001+09 0,00001+00 0.0000E00 0.92001+00 0.10061+02 0.81801+01 0.42101+01 0.28501+01 0.32801+01 0.44201+01

0.29801+01 0.45501+01 0.27501+01 0.44801.01 0.40901+01 0.27001+01 0.3540E+01 0.74801+01 0.65901+01 0.70401+010.11801+01 0.34l0E+01 0.2328E+02 0.36591+02 0.38301+02 0.40911+02 0.39991+02 0.34291+02 021781+02 0.1758E+020.14251+02 0.10441+02 0.93901+01 0.97101+01 0.74001+01 0.59001+000.0000E+00 0.00001+00 0.00001+00 0.80001-01 0.85601+01 0.8870E+0l 0.73401+01 0.31501+01 0.97001+00 0.4250E+010.32301+01 0.48901+01 0.3650E+0l 0.34001+01 0.27901+01 0.37801+01 0,39601+01 0.73101+01 0.85701+01 0.37401+010.30301+01 0.10501+01 0.2106E+02 0.33811+02 0.3667E+02 0.3926E+02 0.38371+02 0.27351+02 0,2154E+02 0.1641E+020.13701+02 0.1020E+02 0.9920E+01 0.8550E+01 0.64901+01 0.3800E+000.00001+00 0.00001+00 0.00001+00 0.12301+01 0.88801+01 0.95401+01 0.9230E+01 0.68701+01 0.1500E+0l 0.23301+010.33401+01 0.4920E+0l 0.37401+01 0.42001+01 0.41401+01 0.48001+01 0.7330E+01 037101+01 0.83401+01 0.92801+010.36101÷01 0.11421+02 0.91901+01 0.34231+02 0.36551+02 0.37141+02 0.3481E+02 0.33691+02 0.25241+02 0.19061+020.14181+02 0.64201+01 0.6490E+01 0.67901+01 0.7090E+01 0.2100E+000.00001+00 0.00001+00 0.00001+00 0.40901+01 0.89001+01 0.9030E+01 0.8980E+0l 0.70501+01 0.5310E+01 0.35601+010.25001+01 0.4450E+01 0.49001+01 0.35101+01 0.32601+01 0.5690E+0l 0.72701+01 0.77501+01 0.7920E+0l 0.9170E+010.90401+01 0.79301+01 0.11491+02 0.33511+02 0.36171+02 0.36191+02 0.3146E+02 0.33331+02 0.2809E+02 0.18811+020.13291+02 0.96901+01 0.99201+01 0.8850E+0l 0.7980E+01 0.28001.000.0000E+00 0.00001+00 0.0000E+00 0.2450E+0l 0.66801+01 0.85801+01 0.89301+01 0.93701+01 0.65501÷01 0.78401+010.73801+01 0.4030E+0l 0.40501+01 0.29201+01 0.40201+01 0.53801+01 0.66901+01 t7520’E+01 0.75901+01 0.75601+010.85601+01 0.57401+01 0.1247E+02 0.35911+02 0.36241+02 0.34001+02 0.31891+02 0.30581+02 0.22751+02 0.12431+020.1668E+02 0.15731+02 0,11311+02 0.80501+01 0.58601+01 0.80001+000.00001+00 0.00001+00 0.00001+00 0.00001+00 0.46001+00 0.51301+01 0.64901+01 0.88601.01 0.88001+01 0.80801+010.75701+01 0.65201+01 0.31101+01 0.23001+01 0.29001+01 0.24801+01 0.37901.01 0.45801+01 0.43801+01 0.77601+010.70001+01 0.40101+01 0.2380E+02 0.33141+02 0.34421+02 0.34021+02 0.36491+02 0.30571+02 0.19341+02 0.14421+020.10671+02 0.50701+01 0.69001+01 0.74901+01 0.50801+01 0.30001+00

1-3

Page 211: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

O.0000E+OO O0000E+OO O.0000E+OO O.0000E+cO O0000E+OO o0000E.oo O.3430€.O1 O8380E+Oi Q.8790E+O1 O883CE+O1O.8210E+O1 Q$120E.OI O8030E+DI O4150E+O1 O.2670E+O1 O.2240E+O1 O2850E+O1 O3890E+Ol O,479OEO1 O.5350E+O1O.3750E.O1 O2060E+Ol O2458E+02 O3025E+02 O.3041E+02 O,3914E+02 Q.3447E+02 O2537E+02 O1370E+02 O.1066E+02O.BIZOE+O1 O.I1OSE+02 Q.1132E+02 O1017E+02 O.2690E+Ol O2800E+OOO.0000E+OO O.0000E+OO O.0000E+OO O0000E+OO O.0000E+OO O,0000E+OO O.QE.OO O.3370E+O1 OB3QOE+O1 O8600E+O1O.9060E+O1 O9050E+Ol O8440E+O* O7610E+OI O.4460E+O1 o.5g20€.o1 O.3400E4O1 O.2020E+O* O.1730E.Ol O.3240E÷OlO3250E+O1 O4570E+O1 O.1840E.02 O.2458E+02 O.2889E.02 O.3997E+02 O.3254E+02 O.2007E+02 D.8720E.O1 O.6530E+O1D.7960E+O1 O.9430E+Ol O.7230E+D1 Q7550E+Q1 O.5280E+Ol O.5000E-O1O0000E+OO O0000E+OO O0000E+OO O.0000E.OC ooGDoE.OO O.0000E+OO O0000C.OC OOOOOEOC O.2720E+O1 O7900E+OlO9020E+Ql O8930E.Ol OS7SGC+Oi O8760E+Ol O8960E+O1 O8630E+O1 0 6950€+O1 0.4690E+01 O1380E.Ol 09700E+0O05560E+01 0.5740E.01 O.1250E+02 01993E+02 0.2221E+02 O3610E+02 0 2649E.02 O.6650E.01 O9920E.01 0.4590E+01O2280E+0I O.4590E+O1 OJSSOE+01 0.8180E+01 O2600E+01 0.0000E.OOO.0000E+0O 0.0000E.0O 00000E.OO 00000E+0O O.0000E+O0 0.0000E.OO O0OE.O0 00000E+0O O0000E.OO 03300E+0O07110E+01 0.8370E+01 O8680E01 O9030E+01 0.9210E+O1 O1075E+02 0.1504E+02 O1157E+02 03900E.0l 0.7060E+Ol06510E+01 O4160E+O1 O2361E.02 03442E+02 0.3009E+02 02575E÷02 01663E+02 O7960E+01 OIOOSE.02 09330E+Ol0.5570E+0I 07820E+01 0.8120E+01 0.7670E+01 O1310E+Ol O.0000E+OO00000E+0O O.0000E+OO 00000E+0O 0.0000E+0O O.00E+OO O0000E+O0 00000E.OO O.0000E+0O O.0000E.OO 0OQOO€+0OO.1280E+0l 0.6230E+O1 0.B000E+01 08850E+01 O9550E+01 O.1019E+02 01039E.02 O.9730E+01 0BflOE.Ol 08320E+OI07090E.Ol 08880E+O1 O.1234E+02 O1692E+02 O.1285E+02 O.1343E+02 D1162E.V2 O.1097E+02 O.9670E+Ol 0.IOSSE+020.6940E+0l 0.8400E+0l 0.7920E’OI 0.5980E+Ol 0.1300E+0l 0.0000E+OOO.0000E+00 0.0000E+00 0.0000E+00 0.0000E+O0 0.0000E+0O 0.0000E+0O 0.00006*00 0.0000E+00 O.0000E+00 00000E+0Q0.0000E00 00000E+00 0.3220E+01 0.75706*01 0.91106*01 0.94806*01 0.8470€+01 0.7700E+01 0.82306*01 0.7950E+01O.9270E+01 0.84206+01 0.88706+01 oIOSSE+02 0.8850E+0I 0.9970E+0l 0.91906+01 0.73I0E+0I OAOS4E+02 0.8130E+0I0.88306+01 0.8170E+0I 0.78406+01 0.48506+01 0.2900E+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0,00006+00 0.0000E+000.0000E+00 0.00006+00 0.25906+01 0.35706+01 0.33106+01 0.90206+01 0.87306+01 0.92306+01 0.9630E+01 0.91706+010.1282E+02 0.85106+01 0.92706+01 0.10116+02 0.87206*01 0.90506+01 0.1021E+02 0.77006+01 0.10476+02 0.82806+010.69806+01 0.78306+01 0.5790E+0I 0.12606+01 0.00006+00 0.00006+000.00006+00 0.00006+00 0.0000E+00 0,00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.80006-01 0.17106+01 0.28206.-Ol 0.3720E+0I 0.77606*01 0,90906+010.12026+02 0.9350E+01 0.83806.01 0,90606+01 0.7420E+01 0.81406+01 0.90106+01 0.84306+01 0.7880601 0.82906+010.70506+01 0.35706+01 0.15006+00 0.0000E+00 0.00006+00 0.00006+000.0000E+00 0.00006+00 0.0000E+00 O.0000E+00 0.00006+00 0.00006+00 O.0E.-00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.11006+00 0.17106+010.5360E+01 0.87606+01 0.8220E+01 0.8720E+01 0.88706+01 0.83806+01 0.58406+01 0.13806+01 D.1570E+01 0.75006+000.56006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006*00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 000006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 00000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006.00 0.00006-00 0.00006+000.24006+00 0.42206+01 0.64706+01 0.48106+01 0.39706+01 0.83006+00 000006+00 0.00006+00 0.0000E+00 0.00006+000.00006+00 0.00006+00 0.00006*00 0.00006+00 0.00006÷00 0.00006+000.00006÷00 0.00006+00 0.00006÷00 0.00006+00 0.00006+00 0.00006.00 O.OCOOE+OO 0.00006+00 0.00006÷00 0.00006+00000006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006.00 0.0E÷00 0.0000E+00 0.0000E+00 0.0000E+O00.00006+00 0.0000E÷00 0.00006+00 0.0000E÷00 0.00006+00 0.00006+00 0.00006+00 0.00006.00 0.00006+00 0.0000E+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00000006+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006÷00 0.00006+00 0.00006+00 0.0000E+00 0.00006.00 0.00006+000.0000E+00 0.00006*00 0.00006+00 0.00006.00 0.00006+00 0.00006.00 0.00006*00 0.00006+00 0.00006+00 0.00006+000.00006.00 0.00006+00 0.00006+00 0.00006+00 00000E÷00 0.00006+00 0.00006*00 0.0000E+00 0.00006.00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006÷00 0.00006+00

1 0IS 0.0002036(10612.4) 0 ‘52-58

0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0S000E.00 0.00006*00 0.00006÷00 0.0000E+00 0.00006+000.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006.00 0.00006+00 0.0000E+00 0.00006+000.0000E+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+000.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+000.00006+00 0.00006+00 0.0000E+00 0.000064-00 0.00006+00 0.00006+00 0.00006÷00 0.OCiOOE+00 0.00006+00 0.00006+000.00006*00 0.00006+00 0.00006+00 0.00006+00 0.1000E-0I 0.0000E+0O 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.00006*00 0.00006*00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006.00 0.00006.00 0.0000E+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006*00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+000.00006+00 0.00006+00 0.00006+00 0.14506+01 0.6200E+01 0.71506+01 0.43706+01 O.2500E+0I 0.19906+01 0.20006-010,0000E+00 (L0000E+00 0.00006.00 0.0000E+00 0.00006+00 0,00006÷00 0,00006*00 0.0000E+00 0.00006+00 0.0000E+000.00006+00 0.00006+00 0.0000E+00 0.00006*00 0.0000E+00 0.00006*000.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006+00 0.00006÷00 0.00006*00 0.00006+00 0.0000E+00 0.00006+000.00006.00 0.18006+00 0.2230E+01 0.76406+01 0.87506+01 0.87006+01 0.87506+01 0.88406+01 0.79706+01 0.75606+010.15906+01 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006*00 0.0’OOOE+OO 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+000.00006+00 0.00006.00 0.00006+00 0.00006+00 0.0000E+00 0.00006.00 0.00006+00 0.0000E+00 0.00006.00 0.00006+000.00006.00 0.2190E+01 0.82906+01 0.8500E+01 0.88306+01 0.91706+01 084206+01 0.77706+01 0.7080E+01 0.7320E+010.76206+01 0.3270E+01 0.00006.00 0.0000E+00 0.00006+00 0.00006.00 000006+00 0.00006÷00 0.00006.00 0.0000E+00000006+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 &0000E+000.00006+00 0.0000E+00 0.00006.00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006*00 0.00006+000.00006+00 0.48406+01 0.SSSOE.0l 0.8740E+01 0.87406+01 0.8290E+01 0.71406+01 0.77106+01 0.68006+01 0.67706+010.77406+01 0.87306+01 0.38906+01 0.40006-01 0.00006+00 0.0000E+00 0.00006*00 0.0000E+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.0E.00 0.00006.00 0.00006+00 0.00006.000.0000E+00 0.00006.00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0,00006+00 0.00006+000.0000E+00 0,5980E+01 0.85906÷01 0.68306+01 0.79506+01 0.72206+01 072206+01 0.73906+01 0.7280E+0I 0.71006+010.76606+01 0.83806+01 0.8940E+01 0.5190E+01 0.7000E+00 0.00006*00 0.00006+00 0.00006+00 0.00006+00 0.00006+00000006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00

E4

Page 212: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

0.00002+00 0.00002+00 0.00002+00 0.00002+00 000002+00 0.00002+00 0.00002+00 0.0000E+00 0.00006+00 ê0000E+0O

0.12002+01 0.8130E+01 0.87202+01 0.81606+01 0.78302+01 0.76702+01 0.76602+01 0.75902+01 0.73402+01 0.72202+01

0.8380E01 075602+01 0.87202+01 0.77402.01 0.51706+01 0.11802+01 O.0000E+00 0.00002.00 0.00002.00 0.00002+00

0.00002+00 0.00002+00 0.0000E+OO 0.00002+00 0.00002+00 0.00002+000.0000E+OO 0.00002+00 0.00002+00 0.00002+00 0.00002+00 0.00002.00 0.0000E+0o 0.00006.00 0,00002+00 0.00002.00

0.3100E+0O 0.72502+01 0.91602.01 0.92202+01 0.77402+01 0.65402+01 0.65302+01 0,73402+01 0.10822+02 0.84102+01

O.8020E+01 0.7220E+01 0.77902.01 0.75802.01 0.66302+01 0.58002+01 0.1040E+0l 0,00002+00 0.00002+00 0.00002+00

0.00002.00 0.00006+00 0.00002.00 0.00002.00 0.00002+00 0.00002+000.00006.00 0.00002+00 0.0000E+00 0.00002.00 0.00006+00 000002+00 0.00002+00 0.00002+00 0.00002.00 ê0000E+00

0.00002+00 0.51302+01 0.9390E+01 0.99202+01 0.74402+01 0.62602+01 0.40202+01 0.95402.01 0.1526E+02 0.10092+020.77702.01 O.7920E+01 0,80402.01 0.75702.01 0.67702+01 0.66002.01 0.33702+01 0.00002.00 O.0000E+O0 0.00002+00

0.00002+00 0,00002+00 0.00002.00 0.00002+00 0.00002+00 0.00002+000.00002+00 0,00002+00 0.00002÷00 0.00002+00 0,00002.00 0.00006+00 0.00002+00 0.00002+00 0.00002+00 0.0000E+OO

0.00002+00 0.45302+01 0.98302+01 0.99402+01 0.86502+01 0.68302+01 0.2300E.OI 0.10252+02 0.16592+02 0.13612+02

0.71302+01 0.60002+01 0.78602+01 0.73702+01 0.75102+01 0.69002+01 0,49002+01 O.2500E+00 0.0000E+00 0.00002+00

0.00002+00 0,00006+00 0.00002+00 0.00002.00 0,00002+00 0.00002.000.00006+00 0.00002+00 0,00002+00 0.00002+00 0.00006+00 0.00002+00 0.00002+00 0.00002.00 0.00002.00 0.0000E+00

0.00002+00 0.20002-01 0.7740E+01 0.10182+02 0.95502+01 0.97002+01 0.13952+02 0.17092+02 0.91802+01 0.10862+02

0.10832+02 0.69102+01 0.63902+01 0.84802.01 0.89702+01 0.72502+01 0.86702+01 0.45302+01 0.1300E+0O 0,0000E+00

0.00002+00 0.00002+00 O.0000E+00 0.00002+00 0.00002+00 0.00002+00

0.00002+00 0.00002+00 0.00002+00 0.00006.00 0.00002+00 0.00002+00 0.00002.00 0.00006+00 0.00002+00 0.00002+00

0.00002+00 0.00002+00 0.49102+01 0.10342+02 0.87806+01 0.11076+02 0.13942+02 0.1855E+02 0.1013E+02 0.35802+01

0.12266+02 0.54506+01 0.8790E.01 0.83902+01 0.83102+01 0.78102+01 0.86706+01 0.85802+01 0.35302+01 0.32002+00

0.00002+00 0.00006+00 0.0000E+00 0.00002+00 0.00002+00 0.00006+000.00002.00 0.00006+00 0.00006+00 0.00002.00 0.00006+00 0.0000E+00 0.00002+00 0.00002+00 0.00006+00 0.0000E+00

0,00002.00 000006+00 0.13302.01 0.10352+02 097706+01 0.10706+02 0.15582+02 0.21882.02 0.12582+02 0.86006.01

0.1396E+02 0,70006+01 0.26806+01 0.53506.01 0.80502+01 0.67202+01 0.81106+01 0.94206+01 0.8980E+01 0.41102+01

0.12006+00 0.00006+00 0.0000E+00 0.00002.00 0.00006+00 0.00006+000.00002+00 0.00006+00 0.00002+00 0.00006+00 0.00006+00 0.00002+00 0.00002+00 0.0000200 0.0000E+00 0.00006+00

0,00002+00 0.00006+00 0.30002-01 0.94606+01 0.10126+02 0.10932+02 0.15496+02 0.21252+02 0.58002+01 0.71502+01

0.1592E+02 0.62306+01 0.78006+00 0.3770E+Q1 0.68706+01 0.65102+01 0.82302+01 0.1173E+02 0.1125E+02 0.8360E+01

0.54802+01 0.31006+00 0.00002.00 0.00006+00 0.00006+00 0.00006+000.0000E+00 0.00002.00 0.00002+00 0.00006+00 0.00002+00 0.0000E+00 0.00006+00 0.0000E+00 0,00002+00 0.00006+00

0.00002.00 0.00006+00 0.00002+00 0.81906+01 0.11056+02 0.11386+02 0.17826+02 0.22706+02 0.19036+02 0.1720E+D1

0.4240E+01 0.23506+01 0.16406+01 0.24206+01 0.76202+01 0.78606+01 0.92802+01 0.11022+02 0.88406+01 0.86806+01

0.79002+01 0.41406+01 0.00006+00 0.00006.00 0.00006+00 0.00006+000.00002.00 0.00006+00 0.00002+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00002+00 0.00002+00 0,00006+00

0.00006+00 0.0000E+00 0.00002+00 0.81702+01 0.10512+02 0.12132+02 0.1993E+02 0.22586+02 0.17186+02 0.11606+01

0.35602.01 0.15936+02 0.13656+02 0.20702+01 0.7650E+01 0.60206+01 0.82802+01 0.95306+01 0.81502+01 0.8750E+01

0,82502+01 0.75506+01 0.14202+01 0.00006+00 0.00006+00 0.00006+000.00002.00 0,00002.00 0.00002.00 0.00002.00 o.0000E+00 0.00002+00 0.00006+00 0.00006+00 0.00002+00 0.00006+00

0.00002+00 0.0000E+00 0.59006+00 0.96806+01 0.8800E+0l 0.11316+02 0.2139E+02 0.22816+02 0.16056+02 0.4500E+00

0.3870&’Ol 0.58202+01 0.52006+01 0.58002+01 0.6110E+01 0.19202+01 0.10152+02 0.52802+01 0.s7soE+0l 0.87506+01

0.66502+01 0.79402+01 0.68502+01 0.57002+00 0.0000E+00 0.00006+000.0000E+00 0.00002+00 0.00002.00 0.00002+00 0.0000E+00 0.00006+00 0.00002+00 0.00002+00 0.00002.00 0.00002+00

0.00002+00 0.00002+00 0.23206+01 0.10192+02 0.92002+01 0.12146+02 0.1954E+02 0.22722+02 o.I38oE+o2 0.29002+00

0.41202+01 0.17982+02 0.63402+01 0.86002+01 0.1780E+0l 0.50502+01 0.66802+01 0.17502+01 0.32002+01 0.72502+01

0.90502+01 0.85502+01 0.79402+01 0.46706+01 0.00002+00 0.00006’OO0.00002+00 0.00006+00 0.00006+00 0.00002+00 0.00002+00 0.00002.00 0.0000E+00 0.00006+00 0.00002+00 0.00002+00

0,00002+00 0.00002+00 0.52306+01 0.91806.01 0.88602+01 0.SIOOE+01 0.60202.01 0.1867E+02 0.15812.02 0.30506+010.15702+01 0.14142+02 0.33802+01 0.61902+01 0.81202.01 0.70902+01 0.58102+01 0.40202.01 0,36402.01 0.79002+01

0.91902+01 0.8460E+01 0.79106+01 0.76806+01 0.1180E+01 0.0000E+000.00002.00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.00002+00 0.00002+00 0.00002+00 0.00006+00 0.00002+00

0.00002.00 0.00002+00 0,83206+01 0.10722+02 0.61502+01 0.47502+01 0.35402.01 0.18542+02 0.18732+02 0.14412.02

0.36402.-Ol 0.50802+01 0.18606+01 0.10016+02 0.7310E+0l 0.49102+01 0.87406+01 0.72802+01 0.42302+01 0.56506+01

0.61902+01 0.8090E+0l 0.74406+01 0.75102+01 0.25202+01 0.00002+000.00002+00 0.00002+00 0.00002+00 0.00002+00 0.00002+00 0.00002+00 0.00002+00 0.00002+00 0.00002.00 0.00002+00

0.00002+00 0.11502+01 0.IOIIE+02 0.96702+01 0.6960E+0l 0.62802+01 0.5390E.01 0.12892+02 0.11962+02 0.29702.01

0.1180E+01 0.59002+01 0.gz2oE+01 0.70802+01 0.14172+02 0.54202+01 0.41102+01 0.2420E+01 0.17302+01 0.33006+01

0.61602+01 0.75906+01 0.68902+01 0.71602+01 0.46602+01 0.00002+000.0000E+00 0.00006+00 0.00002+00 0.00002+00 0,00002.00 0.0000E+00 0.00002+00 0.0000E+00 0.0000E+00 0.00002+00

0.10002+00 0.63602+01 0.10552.02 0.10402+02 0.63302+01 0.1470E+01 0.20102+01 0.43002+00 0.00002+00 0.00002+000.13502.01 0.33902.01 0.73002+01 0.75802.01 0.48202+01 0.14902+01 0.32102+01 0.11202+01 0.51002+00 0.13802+01

0.72102+01 0.7370E+0l 0.7470E+0l 0.74602+01 0.58102+01 0.I000E+000,00002+00 0.00006+00 0.00002+00 0.00002+00 0.00002+00 0.00002+00 0.0000E+00 0.00002.00 0.00006+00 0.89002.00

0.5840E+01 0.10052.02 0.97902.01 0.81802+01 0.7150E+01 0.58502+01 0.95002+00 0.12002+00 0.0000E’OO 0.0000E.000,14902+01 0.31906+01 0.85702+01 0.14602.01 0,22802+01 0,51002+00 0.12002+00 0.27002+00 0.22002+00 0,13306+01

0.69702.01 0.8190E+0l 0.76902+01 0.78102+01 0.28602’-Ol 0.12002+000.00002+00 0.00002+00 0.00002+00 0.00002.00 0.00002.00 0.00002.00 0.00002+00 0.0000E+00 0.19002+01 0.75702+01

0.9230E+0l 0.87502+01 0.6840E+0l 0.81702+01 0.6710E+01 0.71502+01 0.49106+01 0.14302+01 0.20002-01 0.7100E+00

0.63006+00 0.35806+01 0.57502+01 0.13006.00 0.70006+00 0.1200E+0l 0.67102+01 0.5230E+01 0.11592+02 0.74402.01

0.72502+01 0.79702+01 0.7280E+0l 0.71002+01 0.59302+01 0.50006+000,00002+00 0.00006+00 0.00002.00 0.00002.00 0.00002+00 0.0000E+00 0,90002-01 0.27102.01 0.79302.01 0.65102.01

0,94.402+01 0.9690E+01 0.7610E+0l 0.36402+01 0.4850E+0l 0.74902+01 0.62302+01 0.71802+01 0.26002.01 0.29002i-00

0.1330E+01 0.60802+01 0.41002+01 017606.01 0.20502+01 0.14002+00 0.12702+01 0.3750E+0l 0.11112+02 0.9940E+01

0.1129E•02 0.66606+01 0.70806+01 0.69902+01 0.66602+01 0.28002.000.00002.00 0.00002+00 0.00002+00 0.00006+00 0.0000E+00 0.00002400 0.35402+01 0.75202+01 0.85106+01 0.50502.01

0.7230E•01 0.67302+01 0.58702+01 0.56702.01 0.5850E+01 0.65502+01 0.68502+01 0.77302.01 0.5600E+01 0.19302+01

2-5

Page 213: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

07590E+01 0.6020E+0l 0.3350E+O1 O.3010E+01 0.3130E+01 0.1118E+02 0.1116E+02 0,1442E+02 0.IGSOE+02 0.1254E+02O.9810E+0l 0.6490E+0l 0.IOISE.02 O.1176E+02 0.1448E+02 01080E+010.0000E+00 O.000CE0O 00000E+0O 0.0000E+0O 0.0000E+0O 0.5800E+O0 0.7110E.0I 0.8030E+01 O.BOSOE+01 0.I9IOE+O10.2410E+01 O.4510E.0l 0.4330E+01 0.5790E+01 0.6360E+01 0.7180E+O1 0.7680E01 0.75E+01 0.3080E+01 0.8360E+010.8710E+0l 0.4620E+0l 0.3l70E.01 0.2710E+01 0.8020E+01 0.1460E+02 O.2262E+02 O.IYOSE.02 O.1489E+02 0.4540E+010.4450E+0l 0.7410E+0l 0.7800E+Ol 0.9400E+01 0.1104E+02 0.3700E+000.0000E.00 00000E+00 00000E+00 00000E+00 0.OOciOE.0O 0.4690E+o1 0.86s0E0l 0.6S40E+0l 0.7480E+01 0.O1IOE+Q10.4040E.0l O.3740Et01 0455GE+0l 0.5170E+01 0.5820E+0l 0.7460E+OI 0.7760E+0l 0.5a9OE+01 0.2680E+0l 0.8360E+Olo.9200E+01 0.4940E+0l 0SSSOE•01 0.2490E.0l 0.4080E.D1 0.4540E.o1 02103E.02 O.1034E+02 D.7490t,-0l 0.6220E.O1049OE+0l 0.6530E+01 0.1OISE+02 0.1367E+02 0.1 173E+02 0.3100E+OQO.0000E+DO 0.0000E+00 0.0000E+00 O.0000E+00 0.1270E+01 O.8flOE+Ol 0.8S40E.01 0.5890E+01 0.5470E+O1 0.4410E+010.4210E+01 O.3430E+O1 04420E+0l 0.60l0E+01 0.6550E+01 0.7120E401 0,7770E+0l 06690E.01 05090E+0l OM2OE.010.1410E+01 0.7900E•0C 0.8430E+Dl 0.1362E+02 01143E+02 0.2052E.02 0.175$E+02 01260E.02 0.5670E+01 0.9480E.0IO.6260E+0l Q.9390E+01 0.lOS*E+02 01096E+02 0.4390E+Ql 0.4000E+000.0000E+00 0.0000E•00 0.0000E+00 0.0000E.00 0.6540E+Ql 0.S740E.01 O.7520E+0l 0,3830E+01 0.3160E+01 O.49S0E+0104450E+0I 0.4020E.01 0.4960E.0l 0.6220E+0l O.5480E+Ol 0.7190E+01 05430E+0I 0.7070E+Ol O.6160E+0l 0.3900E+000.0000E+00 0.5870E+01 0.1468E+02 0.3291E+02 O.3346E+02 0.3536E+02 0.1700E+02 0 1220E+02 0.1089E+02 0.1088E+020.9720E+01 O.1094E.02 O.9150E.Q1 0.OSSOC+0l 0.4280E+01 0.3800E+O0a.0000E+00 o.0000E.0Q 0.0000E.0O 0.0000E+O0 0.8280E+0l 0.7330E+01 0.4oeOE+01 0.2960E+01 0.3550E+01 0.4830E+010.3750E+0l O.4930E+01 0.4690E+Q1 04750E+0l 0.6110E+01 0.6300E+0I 0.5920E.01 0,7160E+0l 0.7470E+0l 0.1870E+010.2500E+0l 0,7740E+01 0.2301E+02 0.3675E+02 0.3814E+02 0.3341E+02 03024E+02 0.2513C+02 0.1509E+02 0.1275E+020.1090E+02 0.1194E+02 0.928iE+0l 0.7880E+01 0.4880E+01 0.4100E+000.0000E+00 0,0000E+0Q 0.0000E+00 0.9200E+00 0.1006E+02 0.BIBOE+0l 0.4210E+01 0.2650E+01 0.3280E+O1 0.4420E+010.2980E+0l 0.4550E+01 o.2lseE+oj 0.4480E+01 0.4090E+01 02700E+01 0.3540E.01 0.7480E4-o1 0.8590E.-01 07040E+010.118O+0l 0.3410E+0l 0.2328E+02 0.3659E-02 0.3830E+02 0.4091E+02 0.3999E+02 O342SE+02 0.2178E+02 0.1758E+020.1425E+02 0.1044E+02 0.930E+0l 0.9710E+01 0.7400E+01 0.5900E+00D.0000E+QO 0.0000E+00 0.0000E+00 0.B000E-01 OS5GOE+01 0,8870E+01 Q7340E.0l 0.3150E+01 0S700E+O0 0.4250E+010.3230E+O1 0.4890E÷0I 0SSSOE+01 0.3400E+O1 0.2790E+01 O.3780E+O1 0.3960E+0l 0.7310E+0l O.8570E+0l 03740E+0I0.3030E+DI 0.IQSQE+0j 02106C+02 0.3381E+02 0.3867E+02 0.3926E+02 0.3837E02 G.2735E+02 O.2154E+02 0.1641E+0201S7OE+02 0.1020E+02 0.9920E+01 0,8550E+0i 0.6490E+Ol 0.3800E+000.0000E+00 O.0000E+QQ 00000E+OO OA2SOE+O1 0,858OE÷0 0.9540E+0i O.9230E+0l 0.6870E+01 0.ISOOE+01 0.2330E+0I0.3340E+01 0.4920E+01 0.3740E.01 0.4200E+0l 0.4140E+Ot 0.4600E+01 0.?330E+0l 0.7TIOE+O1 0.8340E+01 0.9280E+010.3810E+01 0.1142E+02 0.9190E+O1 03423E+02 0.3655E+02 O.3714E+02 0.3461E+02 0.3369E+02 0.2524E+02 0.1906E+02O.1418E+02 0.6420E÷01 0.8-490E+0I 0.6790E+0l 07090E+01 G.2WOE+00o.0000E+oo 00000E&oo 0.0000E+0o 0.4oGoEi-01 0,8900E+0l 0.9030E+0l 0BgOOE+01 07050E+0l 05310E+01 0.3560E+01O2500E+01 0.4450E+01 0.4900E+0I 03510E+0l 0.3260E+01 0.5890E+01 0.7270E+0l 0.fl5OE+01 0.7920E+0l 09170E+010.9040E+0l 0.7930E+O1 0.II4E+02 0,3351E+02 O.3817E+02 0.3819E+02 0.3146E+02 0.3333E.02 0.2809E+02 0.ISSIE+020.1 329E+02 0.96906+01 0.99206+01 0.66606+01 0.79806+01 0.28006+000.00006.00 0.00006+00 0.00006+00 0.2460E+01 0.66806+01 0.8580E+0I 0.89306+01 093706+01 0.8550E+0I 0.7840E+0l0.7380E+01 0.40306+01 0.40506+01 0.29206+01 040206+01 053806+01 0.66906+01 075206+01 075906+01 0.7660E+010.8560E+0l 0.574OE-0l 0.12476+02 0.35916+02 0.36246+02 0.34006+02 0.31896+02 0.30586+02 0.22756+02 0.12436+020.16686+02 0.15736+02 0.I131E+02 0.6050E+0l 0.5860E+01 0.60006+00O.0000E+00 0.00006+00 0.0000E+O0 0.00006.00 0.46006+00 051306+01 0.8490E+01 0.86606+01 0.88006+01 0.8080E+01075706+01 0.6520E+0I 0.31106+01 023006+01 0.2900E+0l 0.24806+01 0.37906+01 0.45606+01 0.4380E+0I 0.77606+010.70006+01 0.40106+01 023806+02 0.33146+02 0.34426+02 0,34026+02 0.36406+02 0.30576+02 0.19346÷02 0.1442E+020.10676+02 0.50706+01 0.69006+01 0.74906+01 0.5080E+01 0.30006+000.00006+00 0.00006+00 0.00006.00 0.00006+00 0.00006+00 0.00006+00 0.34306+01 0.83806+01 0.87906+01 0.8830E+0l0.82106+01 0.81206+01 0.80306+01 0.41506+01 026706+01 0.22406+01 0.2850E01 0.38906÷01 O.4790E+01 0.53506+010,37506+01 020606+01 0.24566+02 0.30256+02 0.30416+02 0.39146+02 0.34476+02 025376+02 0.1370E+02 0.1066E+020.61206+01 0.1I08E+02 011326+02 0.1017E+02 0.28906+01 0.28006+00O.0000E+O0 O.0000E+0Q 0.00006+00 0.00006+00 0.00006+00 0.OOCJOE+00 0.00006+00 0.33706+01 0.8390E+01 0.88006÷01O.9060E+01 0.9050E+01 0.64406+01 0,76106+01 0.4460E+OI 0.59206+01 0.34006.01 0.20206+01 0.1730E+01 0.32406+010.32506.01 0.4570E+01 0.1840E+02 0.24586+02 0.28896.02 0,3997E+02 0.32546+02 0.2007E+02 0.87206+01 0.6530E+010.7960E+O1 0.94306+01 0.72306+01 0.76506+01 0.5280E+01 0.5000E-010.0000E+00 0.0000E•00 0.0000E+OO 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.27206+01 0.7900E+010.9020E+0I 0.89306+01 0.87506+01 067606+01 0.89606+01 O.8630E+01 0.89506.01 0.46906+01 0.13806+01 0.9700E+O00.55806+01 0.57406+01 0.12506÷02 0.1993E+02 0.22216+02 0.36106+02 0.26496.02 0.8650E+01 0.9920E+01 0.4690E+O10.2280E+01 0.45906+01 0.76806+01 0.81806+01 0.28006+01 0.0000E+000.0000E+00 0.00006+00 0.00006÷00 0.00006+00 0.00006+00 0.0000E+0O 0,00006+00 0.0000E+0O 0.0000E+00 0.3300E+0O0.7110E+01 0.8370E+01 0.86806+01 0.90306+01 0.9210E+01 0.10756+02 0.15046.02 0.11576+02 0.39006+01 0.70606+01O.6510E+0l 0,41606÷01 023616+02 0.34426+02 0.3009E+02 0.2575E+02 0.16636+02 079606+01 0.1008E+02 O.9330E+010.55706+01 0.78206+01 0.8120E+0l 0.76706+01 0.1310E+01 0.00006.000.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+O0 0.00006+00 O.0000E.00 0.00006÷00 0.00006÷00 0.00006+000.12806+01 0.62306+01 0.8000E+0I 0.88506+01 0.95506+01 0.10196.02 0.10396÷02 0.9730E+01 0.6220E+01 0.83206+010.70906+01 0.88806+01 0.12346+02 0,16926+02 0.1285E+02 0.13436+02 0.11626+02 0.10976*02 0.96706+01 0.10586+020.89406+01 0.84006+01 Q.7920E+01 0.5980E+01 0.1300E.01 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+0O 0.00006.00 0.00006+00 0.00006.00 0.00006+00 0,0000E+00 0.00006+000.00006+00 0.00006+00 0.32206+01 0.7570E+0I 0.91106+01 0.9480E+01 0.84706+01 0.7700E+01 O.8230E+01 0.7950E+010.9270E+O1 0.8420E+01 0.88706+01 0.IOBSE+02 0.6850E+01 0.99706+01 0.91906.01 0.73106+01 0,1064E+02 0.81306+010.88306+01 0.81706+01 0.7840E+0l 0.4650E+01 0.29006+00 0.00006.000.00006+00 0.00006+00 0.00006.00 0.00006+00 0.0000EtOO 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006.000.00006+00 0.00006+00 0.25906+01 0.35706+01 0.33106+01 0.90206+01 0.67306+01 0.9230E+01 0.9630E+0l 0.9170E+010.I282E+02 0.85106+01 0.92706.01 0.10116+02 0.8720E+0l 0.90606+01 0.1021E+02 0.77006+01 0.10476+02 0.8280E+010.6980E+01 0.76306+01 0.5790E+01 0.1260E+01 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006.00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+0O 0.00006+00 0.0000E+000.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.6000E-01 0.1710E+01 0.28206+01 0.37206+01 0.77606+01 0.90906+010.12026.02 0.93506+01 0.83606+01 0.90606+01 0.74206+01 0.61406+01 0.90106+01 0.84306+01 0.7860E+01 0.82906+010.70506+01 0.35706+01 0.15006+00 0.00006+00 0.00006.00 0.00006+00

6-6

Page 214: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

0.0000E.00 00000E+00 00000E+00 0.000DE+0O 0.0000E+OO 0.0000E+00 0.0000€4-00 0.0000E+00 O.0000E+00 0.0000€+0O00000E.00 00000E+00 00000E+0O 00000E+00 0.0000E+00 0.0000E+0Q 0.0000E.-OO 00000E+00 0.1IOOE+00 O17l0€.0l0,5380E+01 0.8760E+0l 08220E.0l 0.8720E+0l 08870E+C1 O8380E+Ol 05640€+C1 OA3BOE+0l 0.1570E+Ol 0.7500€+0O05600E.0O 0,0000E+00 0.0000E+0C 00000E+00 0.0000E+00 00000E.000.0000E+0O 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+0O 00000E+O0 00000E+00 0.0000E+00 O0000E.O00.0000E+00 0,0000E+00 00000E+00 00000E+00 00000E+00 00000E+00 Q0000€.OO 00000E+00 0.0000E.0O O0000€+000.2400E+00 04220E+0l 0.8470E+0l 0.4810E+01 03970E+Ol 0.8300E+00 0.0000E+00 00000E+00 00000E+00 0.0000€+0000000E+00 0.0000E+00 0.0000E+00 00000E+00 0.0000E+0O 00000E+0000000E+00 00000E.00 0.0000E+00 O0000E+00 00000E-eQO O.QOG0E+QQ Q0000E+00 00000E+00 00000E+00 00000€+000,0000E+00 00000E00 0.0000E+00 00000E+00 00000E+O0 00000E+00 00000E+00 0.0000E+00 0.0000E+00 0.0000E.-000,0000E+00 0.0000E+00 00000E+00 0.0000E+0C 000-OOE.00 00000Ei-0O 00000E+00 0.0000E+00 00000E+00 000006.-CO0.0000€+00 0.0000E+00 00000E+00 0.0000E+00 0.0O-0OE+OO 0.0000E+000.0000E-.-00 O.0000E+0C O.0000E+00 00000E+OO 00000E+00 0.0000E+O0 O.0000C.00 00000E+00 0.0000E+00 000006+0000000E+00 0.0000E+O0 00000E+00 00000E+00 00000E+00 00000E+00 O.0000E+00 000006+00 O0000E+O0 000006.0000000E+OO 000006+00 000006.00 00000E+00 00000E+C0 000006+00 000006.00 0.0000E+00 00000E+00 00000€-’-COO0000E-00 O.0000E+00 0.00006.00 O.0000E+00 0.00006+00 O.0000E+0O

I 0IS O.0001941{lOEI2.4) 0 57-8/81

0.0000E+00 O.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E-e00 0.00006.00 0.0000E+0O 0.0000E+0C 0.00006-i-COO.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 O.0000E+00 O.0000E00 O.0000E+OO O.0000E+00 0.00006.-CO0.00006+00 O.0000E+00 0.0000E+00 0.0000E+00 0.0000E+OO 0.00006+00 00000€-i-CO O.0000E+0C 0.0000E+00 0.00006+00O.0000E+0O O.0000E+00 0.00006+00 0M000E-i- 00 0.0000E+00 0.0000E+000.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+O0 0.0000E+O0 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.0000E+00 0.000-OE+00 0.10006-Cl 0.00006+00 0.00006÷00 0.0000E+00 0.00006+00 0.00006.000.00006+00 0.00006+00 0.00006.00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00aooooE.o0 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 OL000E+000.00006+00 0.00006+00 0.00006+00 O.0000E+00 0.00006+00 OM000E+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.14606+01 0.62006+0* 0.71506+01 0.43706.01 0.25006+01 0.19906+01 02000€-Cl0.00006+00 0.00006+00 0.00006+00 0.0000E-00 0.00006+00 0.000-06+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.0000E+0C 0.0000E+00 0.00006+000.0000E+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E.00 000006+000.00006+00 0.1800E+00 0.22306+01 026406+01 0.8750E+0l 0.87006+01 0.87506+01 0.86406+01 0.79706+01 0.75606+010.16906+01 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006.00 0.00006+000.00006+00 000006+00 0.00006.00 0.00006+00 0.00006+00 0.0000E+000.00006.00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000Et0O 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006.00 e21906+Ol 0.8290E+0l 0.85006+01 0.88306+01 0.9170E-’Ol 0.84206.01 0.777064-01 0.70606+01 0.73206.010.76206+01 &3270E+01 0.00006.00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+0O 0.00006+000.0000E+00 0.00006.00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00OM000E+00 0.4840E+01 0.83806+01 0.87406+01 0.8740E+01 0.82906+01 0.71406+01 0.77l0E+0l 0.68006+01 0.67706.010.77406+01 0.8730E01 0.36906+01 0.40006-01 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0-0006.00 0.0000E+00 0.00006.000.00006.00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006--0O 0.00006.00 0.00006+00 0.00006.000.00006+00 0.59606+01 0.85906+01 0.8830E+0I 0.7950E+0I 0.72206+01 0.72206-i-Cl 0.73906+01 0.728CE+Ol 02100€.-010.76606+01 0.8380E+01 0.89406+01 0.5190E+01 0.70006+00 0.00006+00 000006+00 0.0000E+00 0.00006+00 0.00006-i-CO0.00006.00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006.00 0.00006+00 0.0000E-i-00 0.00006+00 0.00006+00 0.00006.000.l200E+0l 0.81306+01 0.87206+01 0.81606+01 0.7630E+0l 0.76706+01 0766CC-i-Cl 0.75906+01 0.7340E+01 0.72206-i-Cl0838C6+0l 0.75606+01 0.87206+01 0.77406+01 0.51706.01 0.11806+01 0.00006+00 0.00006+00 0.00006.00 0.000064-000.00006.00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.31006+00 0.72506+01 0.91606+01 0.92206+01 0.77406+01 0.65406+01 0.65306+01 0.73406+01 0.10826.02 0.84106+0*0.80206+01 0.72206+01 0.77906+01 0.75806+01 0.66306+01 0.58006+01 010406+0* 0.00006+00 0.00006.00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 00000E+00 0.0000E.00 0.00006+00 0.00006+000.00006+00 0.51306+01 0.93906+01 0.99206+01 0.74406.01 O.6280E+01 0.40206+01 0.95406+01 0.15266+02 0.10006+02027706+01 0.79206+01 0.80406+01 0.75706+01 0.67706+01 06600E+01 0.33706+01 0.00006+00 0.00006+00 0.00006+00000006+00 0.00006+00 0.00006+00 0.00006.00 0.00006+00 0.00006+000.0000E+00 0.0000E+00 0.0000E+00 0.0000E.00 0.00006+00 0.0000E+00 0.00006.00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.45306+01 0.98306+01 0.99406+01 0.88506+01 0.68306+01 0.23006+01 0.1025E+02 0.16596+02 0.13616.020.71306+01 0.6000E+01 0.78506+01 07370E+0l 0.75106+01 0.69006+01 0.49006+01 0.25006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.0000E.00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+000.00006+00 0.2000E-01 0.77406+01 0.10166+02 0S5506+01 0.97006+01 0.13956+02 0.17096+02 0.91806.01 0.10866.020.10836+02 0.6910E+01 0.83906+01 0.8480E+01 0.69706+01 0.72506+01 0.86706+01 0.4530E+01 013006+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006-i-DO0.00006+00 0.0000E+00 0.0000600 0.0000E+0C 0.0000E+00 0.0000E.00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00000006+00 0.00006+00 0.49106+01 0.10346+02 0.97806+01 0.11076+02 0.13946+02 0.18556+02 0.10136+02 0.35806+010.12266+02 0.6450E+01 0.87906+01 0.8390E+0l 0.63106+0* 038106+01 0.86706+01 0.8580E+0l 0.35306+01 0.32006+000.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006.00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006.00 0.0000Ei-00 0.00006.00 0.00006+00 0.00006.00 0.0000E+00 0.00006.000.0000E+00 0.00006+00 0.13306+01 0.1036E+02 0.97706.01 0.10706+02 0.1558E+02 0.21886+02 0.12586+02 0.86006+010.13966+02 0.70006+01 0.26806+01 0.53506+01 0.80506.0* 0.67206+01 0.81106+01 0.94206+01 0.89806+01 0.41106+0101200E+00 0.00006+00 0.00006+00 0.0000E+00 0.00006.00 0.0000E•000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.30006-01 0.94606+01 0.10126+02 0.10936+02 0.15496+02 0.21256+02 0.58006+01 0.71506+010.15926+02 0.62306+01 0.78006+00 0.3770E.01 0.68706+01 0.65106+01 0.82306+01 0.11736+02 0.11256+02 0.83606+010.54806+01 0.31006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00

E-7

Page 215: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

0.0000E+00 00000E+00 0.0000E.0C 00000E.00 0.0000E+O0 0,0000E+00 00000E+0O 00000E+00 00000E+00 00000E+0000000E.OO 00000E÷0O 00000E+O0 0.8190E+01 01105E+02 0.1138E+02 01782E+02 0.2270E+02 01903E+02 01720E+0104240E+01 02350E+01 0.1840E+O1 02420E+01 07820E+Ol 0?880E+01 09280E+0l 0.1102E02 08840€+0l O.SSBOE+O107900E+01 04 140E+01 00000E+0O 00000E.O0 00000E+00 00000E÷000.0000E+00 00000E+00 00000E÷0O 00000E÷0O 00000EtOO 00000E+0O 0.0000E+00 0.0000E€G 0.0000€.O0 O.0000E+O00,0000E.00 0.0OOOE0O 0.0000E+00 08170E+OI 0.1051E+02 0.1213E+02 01993E+02 02258E+02 01718E+02 OI16OE.0l03560E+01 0.1593E+02 01365E+02 0,2070E+01 07650E+01 0.6020E+0I 06280E+01 09530E+01 O.SISOE+Ql 08750E+O10.8250E+01 07650E+0l 0.1420E+01 0.0000E+00 0.0000E+00 00000E+0O0.0000E+00 0.0000E+0O 00000E+0O 00000E+0O 00000E+00 00000E+0O 0,0000E+0O 00000E-00 0 0000E+0Q Q0000E+QQ00000E+00 0.0000E+0O 05900Et00 0.9680E+01 08800E+01 01131E+02 02139E.02 02281E+02 0IBOSE+02 0,4500E+00o3a70E01 0,5820E+0l 08200E+01 05800E+0l 0,8110E.0I 01920E+01 0.1015E+02 05280E+0t 06750E+0l 0,8750E+0l0B6SOE+01 07940E+01 06650E+0l 05700E.OO o.ooooE.oo 00000E+OO0.0000E+0O 0.0000E+00 00000E+00 0.0000E+00 0.0000E+0O 00000E+00 0.0000E÷0O 0.0000E+00 00000E+0O 00000E+0O0.0000E+00 00000E+0O 0.2320E+01 OIOISE.02 09200E+0l 0.1214E+02 0.1954E+02 02272E+02 01380Et02 &2900E+000.4120E+01 01798E+02 06340E+01 08600E+01 01780E+01 06050E+0l 0.6680E+0I 0.1750E-.C4 0.3200E+01 02250E+O10.9050E+01 0.8550E+01 0.79406+01 0.46706+01 0.0000E+00 0.00006+000.0000E+0O 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 000006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.5230E+0l 0.91806+01 0.8860E+0l 0.8100E+01 060206+01 0.18676+02 0.1SSIE+02 0.30506+0101570E+0l 0.14146+02 033806+01 0.61906+01 081206+01 0.7090E+0I 058106+01 0.4020E+0I 0.36406+01 0.7900E+010.91906+01 0.8460E+01 0.7910E+0l 0.76806+01 011606+01 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 O.0000E+O0 0.00006+00 0.0000E+000.00006+00 0.0000E+0O 083206+01 0.10726+02 061506+01 0.47506+01 0.35406+01 0.18546+02 0.18736+02 0.14416+020.36406+01 0.5080E+0l 016606+01 0.10016+02 0.73106+01 0.49106+01 0.87406+01 0.72806+01 0.42306+01 0.56506+01061906+01 080906+01 0.74-406+01 0.7510E+01 0.25206+01 0.00006+000.00006+00 0.0000E+00 0.0000E+0O 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+0O0.0000E+00 011506+01 0.10116+02 0.9670E+01 0.69606+01 0.62806+01 0.53906+01 0.1289E+02 0.11966+02 029706+010.11606+01 0.5900E+01 0.9220E+0l 0.70806+01 0.1417E+02 054206+01 0.41106+01 024206+01 017306+01 033006+010.6160E+0I 075906+01 0.66906+01 0.7160E+0I 046606+01’ 0.00006+000.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.0000E+0O 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.10006+00 063606+01 010556+02 0.1040E+02 063306+01 0.14706+01 0.20106+01 0.43006.00 0.00006+00 0.00006+000,13506+01 0.33906+01 0.7300E+0l 0.75806+01 048206+01 0.1490E+01 0.32106+01 0.11206i-01 0.51006+00 0.13806+010.7210E+01 0.73706+01 074706+01 0.74606+01 058106+01 0,1000E+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.89006+000.56406+01 0.1005E+02 0.97906+01 081806+01 0.71506+01 0.5850E+01 0.95006+00 0.1200E+00 0.0000E+00 0.0000E+000.1490E+0I 0.31906+01 085706+01 0.1460E+0l 0.22806+01 051006+00 0.12006+00 0.2700E+00 022006+00 0.1330E+0I0.69706+01 0.8190E+01 076906+01 0.78106+01 0.2860E+0I 0.1200E+0O0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0,00006+00 0.0000E+00 0.0000E+00 0.0000E+00 019006+01 0.7570E+010.92306+01 0.87506+01 0.68406+01 0.81706+01 0.67106+01 071506+01 0.49106+01 0.14306+01 0.20006-01 0.71006+000.6300E+00 0.3580E+01 0.57506+01 013006+00 0.70006+00 0.I200E+01 0.67106+01 0.52306+01 0.1159E+02 0.74406+010.72506+01 079706+01 0.72806+01 0.71006+01 0.59306+01 0.50006+00000006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.90006-01 0.2710E+01 079306+01 085106+010.94406+01 0.96906+01 0.76106+01 0.3640E+0l 0.48506+01 0.74906+01 0.6230E+01 0.71606+01 0.2600E+01 0.2900E+000.13306+01 0.60806+01 041006+01 017606+01 020506+01 0.14006+00 0.12706+01 0.37506+01 0.11116+02 0.9940E+010.1129E+02 0.666061-01 0.70806+01 0.6990E+0I 0.6660E+0I 0.28006+000,00006+00 000006+00 0.00006+00 0.00006+00 000006+00 000006+00 035406+01 075206+01 0.55106+01 0.5050E+010.72306+01 0.67306+01 0.58706+01 0.56706+01 0.58506+01 0.65506+01 0.68506+01 0.77306+01 0.56006+01 0.1930E+010.75906+01 0.6020E+0I 0.3350E+0I 0.30106+01 0.31306+01 0.11186+02 0.11166+02 0.14426+02 0.16506+02 0.1264E+020.96106+01 0.64906+01 0.10156+02 0.11766+02 0.14486+02 0.10606+010.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.58006+00 0.71106+01 0.80306+01 0.60506+01 0.I910E+010.24106+01 0.45106+01 0A330E+0I 0.5790E+0I 0.63606+01 0.71806+01 0.7680E+01 0.75606+01 0.3060E+0l 0.8360E+010.87106+01 0.4620E+01 0.3170E+01 0.27106+01 0.80206+01 0.14606+02 0.22626+02 0.17096.02 0.14896+02 0.4540E+0I0.44506+01 0.74106+01 028006+01 0.94006+01 0.11046+02 0.37006+000.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+oO 0.46906+01 0.86606+01 0,68406401 0.74806+01 0.61106+010.40406+01 0.3740E+0l 0.45506+01 0.51706+01 0.58206+01 0.74606+01 07760E+0l 0.58906+01 0.28806+01 0.8360E+010.9200E+01 0.4940E+01 0.556OE+0l 0.24906+01 0.40806+01 0.45406+01 0.21036+02 0.10346+02 0.74906+01 0.62206+010.49906+01 0.65306+01 0.1015E+02 0.13676+02 0.1173E+02 0.31006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.12706+01 0.87306+01 0.88406+01 0.56906+01 0.5470E+01 0.44106+010.42106+01 0.34306+01 0.44206+01 0.6010E+01 0.6550E+01 0.71206+01 0.77706+01 0.66906+01 0.50906+01 0.44206+010.14106+01 0.79006+00 0.84306+01 0.13626+02 0.1143E+02 0.20526+02 0.17586+02 0.12606+02 0.5670E+0l 0.94806+010.6260E+01 0.93906+01 0.1088E+02 0.10966+02 0.43906+01 0.40006+000.00006+00 0.00006+00 0,00006+00 0.00006+00 0.6540E+01 0.87406+01 0.75206+01 0.38306+01 0.31606+01 0.4930E+010.4450E+01 0.4020E+0l 0.4960E+01 0.62206+01 0.64806+01 0.7190E+0I 0.64306+01 0.70706+01 0.61606+01 0.39006+000.00006+00 0.58706+01 0.14686.02 0.32916+02 0.33466+02 0,35386+02 0.17006+02 0,12206+02 0.10896+02 0.1088E+020.9720E+01 0.1094E+02 0.9150E+01 0.88906+01 0.42806+01 0.3800E+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.8280E+01 0.73306+01 0.40806+01 0.29606+01 0.35506+01 0.4830E+010.37506+01 0.49306+01 0.4690E+01 0.47506+01 0.61106+01 0,63006+01 0.59206+01 0.71606+01 0.74706+01 0.1870E+010.25006+01 0.77406+01 0.23016+02 0.36756+02 0.38146+02 0.33416+02 0.30246+02 0,25136+02 0.15096+02 0.1275E+020.10906+02 0.1194E1-02 0.9280E+01 0.7880E+01 0.48806+01 0.4100E+000,00006+00 0.00006+00 0.00006+00 0.9200E+00 0.10066+02 0.81806+01 0.42106+01 0.26506401 0.32806+01 0.4420E+010.29806+01 0.45506+01 0.27506+01 0.44806+01 0.40906+01 0.2700E+01 0.35406+01 034806401 0.85906.-Cl 0.70406+0101180E+01 0.3410E+01 0.23286+02 0.36596+02 0.3830602 0.4091E+02 0.3999E+02 0.34296+02 0.21786+02 0.1758E+020.14256+02 0.10446+02 0.93906+01 0.97106+01 0.74006+01 0.59006+000.00006+00 0.00006+00 0.0000E+00 0.80006-01 0.85606+01 0.88706+01 0.73406+01 0,31506+01 0.97006+00 0.4250E+010.32306+01 0.48906+01 0.36506+01 0.34006+01 0.27906+01 0.37806+01 0.39606+01 0.73106+01 0.85706+01 0.3740E+010.30306+01 0.10506+01 0.21066+02 0.33816+02 0.36676+02 0.3926E+02 0.38376+02 0.2735E+02 0.2154E+02 0.16416+020.13706+02 0.10206+02 0.99206+01 0.85506+01 0.64906+01 0.38006+000.0000E+00 0.0000E+00 0.00006+00 0.1230E+01 0.88806+01 0.95406+01 0.92306+01 0.68706401 0.1500E+0l 0.23306+010.33406+01 0.49206+01 0.37406+01 0.42006+01 0.41406+01 0.48006+01 0.7330E+0l 0.7710E+01 0.83406+01 0.9280E+01

E-8

Page 216: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

O.3610E.O1 O.1142E+02 O9190E+O1 O.3423E+02 D.3655E+02 O3714E+02 O.3481E+02 O3369E+02 O2524E+02 O1906E+02O,1418E+02 O,6420E+O1 O&490E+Oi O,679OE+O1 O.7090E.Ol O.2100E00o.c’OOOE.OO Q.0000E+OO OO000E.OO D.4090E+O1 UBSOQE+O1 O.9O3OE.O1 O8980E+Ol O.7CSOE+O1 O.5310E+Dl 03580E+OlQ.2500E+Q1 O,4450E+OI O4900E+O1 Q3510E+Ol O3260E+Ol O,5690E01 O.7270E+O1 O.7750E+Ol o7g2oE+ol 0S170E+OlO9040E+O1 O,7930E+O* O.1149E+02 Q.3351E+02 O.3617E+02 O3619E+02 O.3146E+02 O3333E÷02 O.2809E+02 DlS$IE+02

O1329E+02 O9690E+Ol O.9920E+Ol OM5OE+Ol O.7900E+Ol O280CE-OOO0000E+OO O,0000E+OO O.0000E+OO O2460E+Ol O668OE+Ol O.BSSOE+Ol Q8930E+Dl O.9370E+Ol O8550E+O1 Q7540E.OlO.7380E+Ol O4030E+Oi O.4050E+O1 D.2920E+Dl O.4020E+Ol 05380E+o1 OBG9QE+Q1 Q.7520E+O1 O.7590E+O1 O7560E+D1O.BSSOE+O1 O5740Et01 O.1247E+02 O.3591E+02 O3624E+02 O.3400E+02 O.31$9E+02 O3058E+02 O2275E+02 O.1243E+02

O1668E+02 O.1573C.02 O1131E+02 O.BOSCE+O1 O5860E.Ol O.S000E+OOO0000E+OO Q0000E+OO O0000E+OO O0000E+OQ O.4600€+OO O5130E.Ol O8490Et01 O.B86OE.O1 OBBOCE+O1 O.8080E+OlO7570E.O1 06520E.Q1 33113E+Ql Q2300E+D1 O.2900E+O1 O2400E+O1 O.3790E+Ol O.4580E+O1 O4380E+O1 Q.fl6CE+O1O7c100E+Ol O.4010E+O1 O2380E+02 O.l4E+O2 O.3442E.02 O3402E.02 O.3649E+02 O.3057E+02 O.1934E+02 O.1442E+02O1067E+02 O.5070E+OI O.6900E+O1 O7490E+Ol o.soeo€.oi O3OoO€.O.0000E.OO O0000E.OC O0000E.OO Q.OOOOE-OO O.OE+OO O0000E.OO O3430E+O1 O.8380E+O1 O8790E+Ol O.B830E+O1O8210E+Ol O.8120Et01 O8030E+O1 04150E+Ol O.2670C+O1 Q2240E.Ol O.2850E+O1 O3890E+O1 O.4790E.O1 O5350E+OlO3750E+Ol Q2060E+OI O.2456E+02 O3025E+02 O.3041E+02 O.3914E.02 O.3447E+02 O.2537E+02 O.1370E.02 O.1066E+02

Q.8120E+Ol OI1OSE+02 O.1132E+02 01017E+02 02890E+O1 O2BtOE.OOO0000E+OO O0000E+OO O0000E+OO O0000E+OO OOOcIE+OO O.D000E+OO O0000E+OO O.3370E+O1 D.M90E•Ol OB800E+O1D.9060E+O1 O.9050E÷O1 O.8440E+O1 OJB1OE+O1 O4460E+O1 O.5920E+O1 O3400E+O1 O2020E.-O1 O.1730E•O1 O324CE+O1O3250E+Ol O4570E+Ol O.1840C+02 O.2458E+O2 O,2S89E.02 O3997E+02 Q3254E+02 O2007E+02 O6720E+OI O.6530E01O7960E+Ol O9430E+OI O.7230E+O1 O.7650E01 O.5280E+Ol O.S000E-O1O.0000E.OO O0000E+OO O0000E+QO Q0000E+OQ O0000E+OO O0000E+OO 0000QE+OO 00000E÷OO O2720E.OI Q7900E+OI

Q9Q2OEOl O8930E+OI O.S7SGE+Ol O8760E+Ol &8960E+O1 O.8630E.C1 O8950E.OI C.4690E4-O1 D.fleOE+Oi O9700E.oOO5560E+Ol O.5740E+O1 01250E+02 O.1993E+02 O.2221E+02 O.SS1OE+02 O.2649E+02 Q6650E+O1 O.9920E+Ol O4690E+OI

O2280E+Ol O4590E+OI O.7660E+Ol OSIBOE+O1 O28COE+O1 GOOOOE4-CO.0000E+OO O.0000E+OO O.0000E+OO O0000E+OO O.0000E+OO O.0000E+OO O.0000E+OO Q.0000EtOO O.0000E+OO O3300E+OOO7110E+O1 O.BS7OE+Ol O.B6BOE+Ol O.9030E+D1 O.9210E+O1 O.1075E+02 O.1504E+02 O.1157E+02 O3900E+Ol O.7060E+OlO.6510E+Ol O4160E+O1 O.2361E+02 O3442E+02 03009E+02 Q,2575E+02 Q1663E+Q2 Q.7960E+Ol O1008EN32 O.9330Et01O5570E+O1 O7820E+Oi O.8120E+Oi D.7670E+Ol 0.13106.01 0.00006.000.00006.00 00000E+00 0.00006.00 00000E+00 0.00006.00 0.0000E00 0.00006.00 0.00006.00 0.00006.00 0.0000E+000.12606.01 0.62306.01 0.60006.01 0.88506.01 0.95506.01 0.1019E+02 0.1039E+02 0.9730E+01 0.82206.01 0.8320E+0l0.70906.01 0.BSSOE+OI 0.12346.02 0.16926.02 0.1265E+02 0.13436.02 0.11626*02 0.10976*02 O.9670E+01 0.1058E+020.69406.01 0.84006.01 0.79206*01 0.5980E+01 0.1300E+0I 0.00006.000.00006*00 0.0000E+00 0.00006.00 0.0000E+00 0.00006*00 0.00006*00 0.0000E+00 0.00006*00 O.0000E+O0 0.0000E+000.00006*00 0.00006*00 0.3220E+01 0.75706.01 0.91106*01 0.9480E-01 0.8470E+01 0.77006f01 0.82306*01 0.79506*010.92706*01 0.64206*01 0.88706.01 0.1086E+02 0.8850E+01 O.9970E1-01 0.91906*01 0.73106*01 0.1084E+02 0.8130E+010.88306.01 0.81706*01 0.78406.01 0.4650E+O1 0.29006*00 0.0000E+O00.00006*00 0.0000E+00 0.00006.00 0.00006*00 0.00006+00 0.0000E+t0 0.00006.00 0.00006*00 0.00006.00 0.00006.000.00006*00 O.0000E+00 O.2590E.O1 0.35706*01 0.3310E+0l 0.90206*01 0.8730E+O1 0.9230E+01 0.96306.01 091706*010.1282E+02 0.8510E+01 0.9270C+01 0.10116*02 0.87206+01 0.90606.-Cl 010216+02 0.77006+01 010476+02 O.8280E+0I069806+01 0.76306+01 0.57906+01 0.1260E+01 0.00006+00 0.00006+000.00006+00 0.0000E+00 000006+00 000006+00 0.00006+00 000006+00 000006+00 0.00006+00 0.00006.00 0.00006+00

0.00006+00 0.00006.00 0.0000E+00 0.0000E+00 0B000E-0l 0.17106+01 0.26206+01 0.37206+01 07760E+01 090906+010.12026+02 O.9350E+01 0.83606+01 090606+01 014206+01 0.8140E+0I 0.90106+01 0.84306+01 0.76606+01 O.8290E+010.7050E+01 035706+01 0.ISOOE+00 0.00006*00 0.00006+00 0,00006+000.00006.00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E.OO 0.00006.00 0.00006+00 0.0000E.O0 0.0000E+00

00000E+00 0.00006+00 0.00006+00 0.00006+00 0.0€+00 0,00006+00 0.00006+00 0.00006+00 0.11006.00 0.17106+010.53806+01 0,8760E+01 0.82206+01 0.87206+01 0.88706+01 0.8380E+01 0.56406+01 0.13806+01 O.IS7OE+0l 0.75006+000.66006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 OM000E+00 0.00006+00 0.0000E+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+000.24006+00 0.4220E+0I 0.84706+01 0.4810E+01 0.39706+01 0.83006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00

0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+000.00006+00 0.0000E+0O 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0000E+00 0.00006+00 0.00006+00

0.0000E+00 0.00006+00 0.00006.00 0.00006.00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.0000E+O0 0.00006+00 0.00006+00 0.00006+00 O.0000E+OO 0.00006+00 0.00006.00 0.00006+00 0.0000E+00

0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006*00 0.00006+00 0.00006+00 0.00006+00 000006+00

0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 O.0000E+00 0.00006+00 0.00006+00 0.00006+00

0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006*00 0.00006+00 0.00006+00 0.00006+00 O.0000E+O0

0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006.00 0.00006+001 0

lB 0.0002914(10612.4) 0 9/61440.00006+00 0.0E0O 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006*00 0.00006+00 0.00006+00

0.00006+00 000006+00 0.00006+00 0.00006+00 0.E+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00

0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006.000.00006*00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006*00 0.00006+00

0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.10006-01 O0000E.O0 0.00006+00 0.00006*00 0.00006+00 0.00006+00

0.00006+00 0.00006+00 0.00006.00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006.00 0.0000E+000.00006*00 0.00006+00 0.00006+00 0,00006+00 0.00006400 0.00006+000.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006*00 0.00006+00 0.0000E+00 0.00006+00 0.00006.00 0.0000E+00

000006+00 0,0000E+00 0.00006+00 0.14606+01 0.62006+01 0.71506*01 0.43706+01 0.25006*01 0.1990E+0l 0.2000E-010.00006.00 0.00006.00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E.00 0.00006+00

0.00006+00 0.0000E+00 0.0000E+0O 0.00006+00 0.0E+00 0,00006+000.00006+00 0.00006+00 0.0000E+00 0.00006+00 0,0000E+00 0.00006+00 0.00006.00 0.00006+00 00000E+00 0.00006+00

0.00006+00 0.18006*00 0.22306+01 0.76406+01 0.87506+01 0.87006*01 0.67506+01 0.86406+01 0.79706+01 0.75606+01

6-9

Page 217: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

OIC9QEtOI O.0000E+OO O0000E.OO O.0000E+OO O0000E+OO O.0000E+OO O0000E+OO O0000E.OO O,OQOOE+ DOOOOEOOO.0000E÷DO O.0000E.OO O0000E+OO O0000E+OO O0000E+OO O0000E+OOO0000E+OO O.0000E.OO Q.0000E.OO O0000E.OO O.0000E+OO O.0000E+OO O.0000E+OO O0000E+OO O.0000E+OO O0000E+OOO.OOtOE+DO O2190E+Ol O8290E+Ol Q.8500E+O1 O.OBSOE+O1 O.9170E+C1 Q8420E+Q1 O.7T7OE+O1 O.7060E.-Ol O.7320E•O1O7620E+Dl O3270E+Q1 O.0000E+OO O0000E+OO O0000E+OO O.0000E+OO O0000E+OO O0000E+OO O.ø000€+OO O.0000E.OOO0000E+DO O.0000E.OO O.0000E+OO O0000E.OO o.0000E+OC O.0000E+DOO0000E+OO O0000E.OO O0000E+OO O0000E+OO O0000E+OG D.0000E+OQ O.0000E+OO O0000E+OO O.0000E+tt O.0000E.-OOO.0000E+OO D.4840E+O1 O8380E+Ol O8740E+O1 O.8740E+D1 O8290E+Ol O.7140E+Q1 O.7710E+O1 O5800C+O1 O6770E.O1O7740E.D1 O.6730E.O1 O.3690E+Ol O.4000E-O1 O0000E÷OO O.0000E+OO O0000E+OO O0000E+GO O0000€+OO O0000E+OOO.0000E+OO O.0000E+OO O0000E+OO O0000E+OO O.0000E+OO O0000E+OOO.0000E+OO D.0000E+OO O.0000E+OO O.0000E+DO OOOCOE+O O0000E+OC O.0000E+OO O0000E+OO D.0000C+c’O O.0000E+DOO0000E.OO Q.5960E+O1 O.8590E+Ol G.BSSOE.O1 O.7950E+Oi O.722DE+Ol O7220E+O1 O.739OEi-O1 O7260E.-O1 O.7WOE•O1O7680E+O1 O6380E+OI O8940E+Ol O.519CE+Ol O.7000E+OO O.0000E+OO O.0000E+OO O0000E.OO O.OOE. O.0000E.OO

O0000E.OO O.0000E+OQ O0000E.OO O0000E+OO O0000E÷OO O.0000E+OOO0000E.-DO O0000E+OO Q0000E+OO &0000E÷OO O0000E+OO O0000E+OO O0000E+OO O.000OE+OO OOOOOE.- O0000E.OO

O.1200E+O1 O8130E+Ol O.8720E+O1 O.8160E+Ol O7630E+O1 O.7670E+O1 O7660E+O1 O.7590E+O1 O7340C+O1 O722OEQ1O8380E+OI O7560E+Ol O8720E+O1 O7740E+O1 O.5170C+O1 Ol18OEO1 O.0000E+OO O.OOE+OO OOOOOC. O0000L.OO

O0000E+OO O0000E+OO O.0000E.OO O0000E+OO O0000E+OO O0000E+OOO0000Ei-OO O0000E÷OO O.0000E+OO O0000E+OO O0000E+DC O0000E4-OO O.0000C+OO O0000E+OO OOOOOE+ 00000E+OO

O3100E.OO O7250E+OI O9160E+O1 O.9220E+O1 O7740E+O1 O6540E+Ol O.6530E+O1 O7340E÷Ql Q.1082E-.-02 O.8410E401OS020E.Ol O7220E+OI O.fl9OE+O1 O7580Et01 O.883OEtO1 OSBOOE+Ol O1040E+O1 O.0000E+OO OOOOOC’ O.0000E+OO

OOOOOEOO O0000E+OO O.0000E+OO O.0000E+OO O.0000E+OQ O0000E+COO0000E+OO O0000E+OO O.0000E+OO O.0000E+OO O.0000E+OO O.OcJQOE+OO O.0000E+DO O.000QE+OO O0000C+OO O0000E+CO

O0000L+OO O5130E+O1 O.9390E+O1 O.9920E+O1 Q.7440E+Gi D.6260E+D1 O4020E+O1 O.9540E.O1 O1525E.02 D.IOOPE+02O.7770E+Ol O7920E+Ol O6040E+O1 a757OE+OI G6770E+Ol O.6600E+O1 O.3370E+OI D.0000E+OO O.00006-OO OQOOOE#O.0000E+OO O0000EtCO O0000E÷OO O.0000E+OO O.0000E+OO O.0000E+OQG0000EtCO O0000E+OO O0000E.OO O.0000E.CO &0000E+OO O.0000E+OO O.OOciOE+OO O.0000E+OO OOOOOE÷ O.0000E.-OOG.0000E+OO O.4530E+O1 O9830E+O1 O.9940E+Ol O.8650E+Oi O6830E+D1 O2300E+O1 D1025E-t02 OlB5gEi-02 O1361E.02G7130E+O1 O.S000E+O1 D7860E+Ol O7370E+O1 O.7510E+D1 O6900E+D1 O4900E+O1 D2500E-OO O.DOOOE+ O0000E+OOO.0000E.OO O0000E+OO Q0000E+QG O0000C+tJO O.0000E+OO O0000E+OOO.0000E+OO O0000E+OO O.0000E+OO O0000E÷OO O0000E+OO C0000E+OO O.0000E+OO O.0000E+OO O000OE÷OO O.0000EOCO0000E.OO O2000E-O1 O7740E+OI O.IOIBE+02 O9550E+O1 O9700E+Q1 O1395E402 O1709E+02 O9150COI O1086E+02O1083E+02 C6910E+O1 D8390E+Ol O8480E+Ol O6970E+Ol O7250E+O1 O8670E+O1 O.4530E+O1 O.I3OO€. O0000E.OO

fl0000C+OO O0000E+OO 00000E+QQ O.0000E+OO O0000C+OO O.0000E+OOO.0000E+OO O0000EtCO O0000E+OO O.0000E+OO O.0000E+OO O0000E+OO O0000E+OO O.0000E+OO O,OQE+ G0000E+OOO0000E+OO C.0000E+OO O4910E+Ol O.1034E.02 Q.9780E+O1 O.IIO7E+02 O1394E+02 G.1855E+02 O1013E+02 O3580E+OlO.1226E+02 O6450E+O1 O8790E+Ol O.8390E+O1 O.6310E+Ol O.7810E+Ot O.BGTOE’Ol OBSBOE+Ol O3530E+O1 O.3200E+OOQ.0000E+OO O0000E+OO O0000E+OO O0000E+OO O0000E+OO O.0000E+OOO0000E.OO O0000E+OO O.O000E+OO O.0000E+OO O.0000E+OO O0000E+OO O.0000E+OO O.0000E+OO O0000C+OO O.0000E+OQO0000E+OG O0000E.OO O.1330E+Ol O1036E+02 O9770E+O1 O1070E+02 O.1558E+02 O2188E+02 O.1258Ei-02 O.8600E+OlO.1396E+02 D700OE+O1 O2680E÷Ol O.5350E+Ol O.8050E+O1 O.6720E+O1 O.B1IOE+Ol O.9420E+O1 O8980E+O1 O.4110E4OlO.1200E+OO O0000E+QQ O0000E+OO O0000E+OO O0000E+OQ O.0000E+OOO.0000E+OO O.0000E+QO OOOOOE+OO OOOGOE+DO O0000E+OO O0000E+DO O.0000E+OO Q0000E+QO O0000E÷OO O0000E+OCO.O000E+DO O.0000E+OO O.3000E-Ol O.9460E+OI O1012E+02 O.1093E+02 O.1549E+02 O2125E+02 D5800E-’-Ol O.7150E+O1O.1592E+02 O6230E+Ol O.7600E+OO O3770E+O1 O6870E+Ol O.6510E+O1 O.8230E+O1 O1173E+02 O1125E-02 O8380E+O1O.5480E+O1 O3100E+OO O0000E+CO O.000OE.OO D.0000E+OO OOtiOOE+OOO,0000E+OO O0000E+OO O.0000E+OO O.0000E+OO O0000E+OO O.0000E+OO O.0000E.OO O0000E+OO O0000E+OO O.0000E+OCO.0000E+OO O0000E+OO O.0000E+CO O8190E+O1 OI1OSE+02 O.1138E+02 O.1782E+02 O2270E+02 O1903E+02 D1720E+O1O.4240E+O1 O2350E+O1 O1840E+O1 O2420E+O1 O.7620E+Ol O7860E+O1 O9280E+O1 O1102E+02 O8840E+G1 D.BGBOE’D1O.7900E+O1 O4140E+D1 O.0000E+OO O0000E+OO O.0000E+DO O.0000E+OCO.0000E÷OO O0000E+OO O0000E+OO O.0000E+OO O0000E+OO O0000E+OO O0000E+OO O.0000E+OO ODOE+OO O.DOCOE+O.0000E+OO D0000E+OO OOcIOOE+OO O.6170E+O1 D.1051E+02 O.1213E+02 O.1993E+02 O.2258E+02 0171SE+02 O.ll6tE+VIO.3560E+O1 O.1593E+02 O1365E+02 O2070E+bl O.7650E+Ol O.6020E+O1 O.8280E+O1 O9530E+O1 O.S1SOC+O1 O.B75OE.OO8250€+O1 O7650E+O1 O1420E+O1 O0000E+DO D0000E+OO O.0000E+QQC0000E+OC O0000E+OO O0000E+OO O.0000E+OO O.0000E+OO O.0000E+CO O.000VE+OO O0000E+OO ODOOOE+ O.OOOOEOOOOOE÷OO O.0000E+OO O5900E+OC O.9660E+Ol OSBOCE+Ot O.1131E+02 O.2139E+02 O.2281E.02 0.16056.02 04500E+O00.36706.-Cl 05620E+0l 0,8200E4-01 0.5800E+0l O6110E+0l O1920E+01 0.1015E+02 05280E+0l 0.67506.01 08750E+0l0.86506.01 07940E+0I 06650E+0l 0.5700E+00 00000E+00 00000E+0000000E.00 00000E+00 00000E+00 0.00006+00 0.0000E.00 000006+00 0,00006+00 00000E+O0 0.00006.00 0.0000E+000.0000E+00 0.0000E+00 0.23202+01 0.1019E+02 0.9200E+0I 0.1214E+02 0.1954E+02 0.22722+02 013806.02 029002+000,41202+01 0.17952+02 0.63402+01 0.86002+01 0.17802+01 060502+01 0.6680E+01 0.17502+01 0.32006+01 0.7250E+Ol0.90506+01 0.85502+01 0.79402+01 0.4670E+01 0.00002+00 0.00002+000.00002+00 000002+00 0.00002+00 0.00002+00 0.00002+00 00000E+00 0.00002+00 0.00002+00 0.00002+00 0.00006.000.00002+00 0.00002+00 0.5230E+0l 0.91806+01 0.8860E.Ol 0.8100EO1 0.60202+01 0.18672+02 0.15812*02 0.305024-010,15702+01 0.14142+02 0.33802+01 0.61902+01 0.81202+01 0.70902+01 O.SSIOE+O1 O.4020E+O1 0.36406+01 0.79002+010.91902+01 0.84602+01 0.79I0E+OI 0.76802+01 O.1160E+01 0.00002+000.00006+00 000002+00 0.00002+00 0.00002+00 0.00002+00 0.00002+00 O.0000E+00 0.00002+00 0.00002+00 0.00002+000.00006.00 0.00002+00 0.83202+01 0.10722+02 0.61502+01 0.47502+01 0.3540E+01 0.1854E+02 0.18736+02 0.1441E+020.36406.01 0SOBOE+0l 0.16602+01 0.10012+02 0.73102+01 0.49102+01 0.8740E+0I 0.72802+01 0.42302+01 0.56502+010.61906+01 05090E+O1 074406+01 0.75102+01 0.2520E+O1 0.00002+000.00002+00 0.0000E+OO 0.00002+00 0.0000E+00 0.00002+00 0.00002+00 0.00002+00 O.0000E+0O 0.00002+00 0.00002+000.00002+00 0.11502+01 0.10112+02 0.9670E+0I 0.69602+01 0.62802+01 0.5390E+O1 0.12892+02 0.Il966.-02 0.29702+010.11606+01 0.59002+01 0.92202+01 0.7080E+Ol 0.14172+02 0.5420E+0l 0.41106+01 0.24202+01 0.17302+01 0.33002+010.61602+01 0.7590E+01 0.66902+01 0.7I60E+0I 0.46602+0I 0.00002+000.00006+00 0.00002+00 0.00002+00 0.00002+00 0.00002+00 0.00006*00 0.00002.00 0.00002+00 0.0000200 0.00002+000.10006+00 0.6360E+O1 010552+02 0.1040E+02 083302+01 0.1470E+01 0.20102+01 0.43002+00 0.0000C00 0.00002+000.13506+01 0.33902+01 0.73002+01 0.75802+01 0.48202+01 0.14906*01 0.32102+01 0.11202+01 0.51006+00 0.13806.010.72106+01 0.73702+01 0.74702+01 O.7460E+01 0.58102+01 0.I000E+oo

2-10

Page 218: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

00000E+00 O.0000E+00 O.0000E+O0 0.0000E.0O 0.0000E+00 0.0000E+00 Q0000E+OO 0,0000E+0O O0000E+00 0.B900E+000.5840E+0I O.IOOSE+02 0.9790E+01 0.B1SOE+0I 0.7150E+OI 0.5850E+OI O.Q5C0E-CO O.1200E+00 00000E+00 0.0000E+0O0.1490E+01 O.319OE+O1 0.8570E.01 0.I460E+01 O2280E+O1 0.5100E+0O 0.1200E+O0 0.2700E+00 0.2200E+00 0.lflQE+0lO.6970E+01 0.8190E+01 0.7690E+0I 0.7O10E0l o,2860E+01 0.1200E.OQ0.0000E.OQ Q,0000E+0Q 0.0000E.00 O.0000E÷0Q 0.0000E+0O O.0000E+0O 00000E+0O 0.0000E.0O 01900E+01 0.7570E+0I09230E+01 0.8750E+0I 06840E+01 0.8170E+01 0.6710E+01 0.7150E.0l 0.4910E.01 0.1430E+O1 0.2000E01 0TIOGE+0O0.6300E+00 0.3580E+0I 0.5750E+0I O.1300E+00 0.7000E+0O 0.20OE+Q1 0.6710E+O1 0.5230E+01 0.1159E+02 0,7440E+0I0.7250E+01 0.7970E+0I 0.7280E+01 0.7100E+01 0.5930EiOl 0.S000E.0O0.0000E+00 0.0000E+00 0.0000E+00 0,0000E+00 0.0000E+0O 0.0000E+00 0.9000E-01 0.2710E+0I 0.7930E+01 0.B510E.0I09440E÷01 0.9890E+01 0.7610E.01 01640E+01 0.4850E+O1 O.7490E+0I 0.6230E+0l 0.7160E+01 02600E+01 0.2900E+0O0.1330E+0I 0.GOBOE+01 0.4100E+0I 0.1760E+01 0.2050E+O1 0.1400E00 0.1270E+01 0.3750E.0I 0.IIIIE+02 0.9940E+0I0.112E+02 0.6660E+01 0.7080E+01 0.6990E+01 0.G66OE+01 0.2800E+000.0000E+00 0.0000E+00 0.0000E.0O 0.0000E+0O 0.0000E÷00 0.0000E+00 0.3540E+01 0.7520E+01 0.SSIOE+01 0.5050E+010.7230E+01 0.6730E+01 0.5870E+01 O.5670E+0l 0.SSSOE+0I 0.SSSQE+0l 0.BSSOE+0l O.flaOE+01 0.5600E+0I 0.1930E+010.7590E+01 0.6020Et01 0,3350E+01 03010E+0l O.3laOE÷O1 0.1118E+02 0.1116E+02 0.1442E+02 0.IBSOE+02 0.1264E+0209610E+01 0.6.490E+01 0,1015E+02 0.1I76E+02 0.1448E+02 0.1060E+0100000E+00 0.0000E00 0.0000E+0O 00000E+00 0.0000E+00 0.S800E+00 0.7110E+O1 0.BOSQE+01 0GOSOE+01 0.1910E+010.2410E+01 0.4510E+0I 0.4330E+0I 0.5790E+0l 0.6360E+01 0.7180E+01 0.7680E+01 0,7560E+0I 0.3060E+01 0.8360E+010.87I0E+01 0.4620E+0l 0.3170E+0I 0.2710E+01 O.8020E+01 0.1460E+02 0.2262E+02 0.1709E+02 0.1489E+02 0.4540E+0lO.4450E+0I 0.7410E+0I 0.7800E+01 0.9400E+0I 0.1104E+02 O.3700E+000.0000E+00 0.0000E+00 0.0000E.0O 0.0000E+0C 0.0000E+0O 0.4890E+0I 0.8660E+OI 0.6840E+0I 0.7480E+01 0.611 OE+010.4040E+01 0.3740E+0l 0.4550E+0l 0.5170E+0I 0.5620E+0l 0.7460E+0I 0.fl6OE+0I 0.5890E+0l 0.2880E+01 0.8380E+010.9200E+01 0.4940E+0l D.5560E+0I 0.2490E+01 0.4080E+01 0.4540E+OI 02103E+02 0.1034E.02 0.7490E+0l 0.6220E+0IO,4990E+O1 0.6530E+0l 0.1015E+02 0.1367E+02 0.1173E+02 0.3100E+00o.o000C+oC 0.0000E+00 0.0000E+0O 0.0000E+00 0.1270E+01 0.6730E+01 0.S84t€+V1 0.5690E+01 0.5470E+0l 0.4410E+OI0,4210E+0l 0.3430E+0l 0.4420E+01 0.6010E+0l 0.6550E+01 0.7120E+0l 0.7770E+01 0.6690E+01 0.SO9CE+01 0.4420E+0101410E+0l 0.790OE+0O 0.8430E+01 0.1362E+02 01143E+02 0.2052E+02 0.1758E+02 0.1260E+02 0.5670E+01 O.9480E+Ol0.6260E+0l 0.9390E+0I 0.1088E+02 0.1096E+02 0.4390E+01 0.4000E+000.0000E+0O 0.0000E+0O 0.000OE+0O 0.0000E+00 0.6540E0l 0.8740E+01 0.7520E+01 0.3830E01 0.3160E+0l O.4930E+010.4450E+0l 0.4020E+0l 0.4960E+QI 0.6220E+01 0.6480E+0l 0.7190E+01 0.6430E+0l 0.7070E+Ol 0.6160E+01 0.3900E+000.0000E+0O 0.5870E+01 0.1468E+02 0.3291E+02 0.3346E+02 0.3538E+02 0.1700E+02 0.1220E.02 0.1089Et02 0.IOSBE+020.9720E+0l 0.1 094E+02 0.9150E+01 0.8090E+0l 0.4260E+01 0.3800E+0O0.0000E+0O 0.0000E+00 0.0000E+00 0.0000E.00 0.8280E+01 0.7330E+0l 0.4080€+01 0.2960E+01 O.SSSOEtOI 0.4630E+010.3750E+0l 0.4930E+01 0.4690E+0l 0.4750E+0l 0.6110E+0l 0.6300E+0l 0.5920E+0l 0.7160E+01 0.7470E+0l 0.1870E+0l0.2500E+01 0.7740C+01 0.2301E+02 0.3675E+02 0.3814E+02 0.3341E+02 o.zo24E.o2 0.2513C+02 0.1509E+02 O.1275E+02O.1090E+02 0.1 194E+02 0.9280E+01 0.7880E+01 0.4880E+01 0.4100E+00O.0000E+00 0.0000E+00 0.0000E+00 0.9200E+0O 0.1006E+02 O.OISOE+01 0.4210€+O1 0.2650E+01 0,3280E+0I O.4420E+0I0.2980E.0l 0.4550E+0l 02750E+01 0.4480E+01 0.4090E+01 0.2700E+01 0.3540E+O1 O.7480E+01 0.8590E+0I 0.7040E+010.1180E+01 0.3410E+0I 0.2328E+02 0.3659E+02 0.3830E+02 0.4091E+02 0.3999E+02 0.3429E+02 02178E+02 0.1758E+020.1425E+02 0.1044E+02 0.9390C+01 0.9710E+01 0.7400E+0l 0.5900E+000,0000E.00 O.O000+00 0.0OCOE+00 O.8000E01 0.8560E+0l 0.8870E+O1 0.7340E*O1 0.3150E01 0.9700E+00 0.4250E+010.3230E+0l 0.4890Ef01 0.3650E+01 0.3400E+01 0.2790E+0l 0.3780E+0l 0.3960E+O1 0.7310C+01 0.8570E+0I 0.3740E+010.3030E+01 0.1OSOE+01 0.2106E+02 0.3361E+02 0.3687E+02 0.3926E+02 0.3837E+02 0.2735E+02 0.2154E+02 0.1641C+020,1370E+02 0.1020E+02 0.9920E+0l O.8550E+01 0.6490E.01 0.3800E+000.0000E+00 0.000DE+00 0.0000E+00 0.1230E+0I 0.BBSOE+01 0.9540E+01 0.9230E+O1 0.6670E+01 0.ISOOE+01 0.2330E+0l0.3340E+0I 0.4920E+0l 0.3740E+01 0.4200E÷01 0.4140E+0l 0.4800E+0l 0.7330E.01 03710E+01 0.8340E+01 0.9280E+0I0.S6IOE+0l 0.1142E+02 0.9190E+01 0.3423E+02 0.3655E+02 0.3714E+02 0.3481E+02 0.3369E+02 02524E+02 0.IDOGE+020.1418E+02 0.6420E+0l 0.8490E+0I 0.6790E÷0l 0.7090E+01 0.2100E÷0O0,0000E00 0.0000E+0O 0.0000E+00 O.4090E+01 0.6900E+01 0.9030E+0I 0.8S80E+Ol 0.7050E+01 0.5310E+0l 0.3560E+010.2500E+01 0.4450E+0l 0.4900E+01 Q.3510E+0j o.z2eoE+o1 o.o+oi o.n7oc.o1 o.n5oE.ol 0.7920E+01 0.9170E+010.9040E+01 0.7930E+01 0.1149E+02 O.3351E+02 0.3617E+02 0.3619E+02 0.3148E+02 0.3333E+02 0.2809E+02 0.ISSIE+020.1329E+02 0.9690E+01 0.9920E+01 0.6650E+01 0.7980E401 0.28006.000.0000E+00 0.00006.00 0.0000E+00 0.2460E+O1 0.6880E+01 0.8580E+01 0.89306+01 0.9370E+01 0.SSSOE+0l 0.78406.010.7380E+0l 0.40306+01 0.4050E÷0I 0.2920E+0I 0.40206.01 0.53806.01 0.6890EO1 0.75206+01 0.75906.01 0.78606+010.85606.01 0.5740E+01 0.12476.02 0.3591E+02 0.3624E+02 0.34006+02 0.31896+02 0.3058E+02 0.22756+02 0.12436+02C.I688E+02 0.15736+02 0.11316.02 0.80506+01 0.58806+01 0.60006+000.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.46006+00 0.51306+01 0.84906+01 OSS6OE+0I 0.8800E+01 0.80606+010.75706.01 0.65206+01 0.31106+01 0.23006+01 0.29006.01 0.24806+01 0.37906+01 0.45806+01 0.4380E+01 0.77606+010.70006.01 0.4010E+01 0.23606+02 0.3314E+02 0.3442E+02 0.34026+02 0.36496.02 0,30576+02 0.1934E+02 0.14426+020.10676+02 0.50706+01 0.69006+01 0.74906+01 0.50806+01 0.30006.000.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.0000E+00 0.G000E+0O 0.34306+01 0.83606+01 0.87906+01 0.8830E+010.8210E+01 0.81206+01 0.80306+01 0.41506+01 0.26706+01 0.22406+01 0.28506÷01 0.38906+01 0.4790E+0l 0.5350E+010.37506+01 0.2060E+0I 0.24566+02 0.3025E+02 0.3041E+02 0.39146+02 0.3447E+02 0.25376+02 0.1370E+02 0.1066E+020.81206+01 0.11086+02 0.11326+02 0.10176+02 0.28906+01 0.28006+000.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.33706+01 0.8390E+0I 0.8&JOE+010.90606+01 0.90506+01 0.84406+01 0.76106+01 0.44606+01 0.59206+01 0.34006+01 0.20206+01 0.17306+01 0.32406+010.3250E+01 0.4570E+0l 0.18406+02 0.24586+02 0.28896+02 0.3997E+02 0.3254E+02 0.20076+02 0.87206+01 0.6530E+0l0.79806+01 0.9430E+01 0.72306+01 0.7650E+0I 0.52806+01 0.50006-010.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006.00 0.00006+00 0.27206+01 0.79006+010.90206+01 0.8930E+01 0.87506+01 0.87606+01 0.89606+01 0.86306+01 0.89506+01 0.4690E+01 0.13806+01 0.97006+000.55806+01 0.57406+01 0.12506+02 0.19936+02 0.22216+02 0.3610E+02 0.26496+02 0.66506+01 0.99206+01 0.4690E+010.22806+01 0.4590E+01 0.76606+01 0.81806+01 0.28006+01 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+0O 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.3300E+000.71106+01 0.8370E+0I 0.86806+01 0.90306.01 0.92106+01 0.1075E+02 0.15046+02 0.1157E+02 0.3900E+01 0.70606+010.65106+01 0.41606+01 0.23616+02 0.3442E+02 0.3009E+02 0.2575E+02 0.16636+02 0.7960E+01 0.I008E+02 0.93306+010.55706+01 0.78206+01 0.81206+01 0.76706+01 0.1310E+01 0.0000E+00000006+00 OD000E+00 0.00006.00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+000.1280E+01 0.62306+01 0.80006+01 0.8850E+0I 0.9550E+0I 0.1019E+02 0.10396+02 0.97306+01 0.62206+01 0.8320E+01

6-11

Page 219: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

O7OSCE+OI O.8880E.O1 O1234E+02 O.1692E+02 O.1285E+02 01343E+02 0.1162E+02 O.1097E+02 O,9670E+Ol O1058E.02

03940E+OI 0&400E+01 07920E+Ol oS9SQE+Ol o.1300E+O1 00000E+OO

o 0000E+QO O0000EtOO O0000E+OO 0 0000E+OO O0000E+0O 0.0000E+OO 0.0000E+OO O0000E+OO O,0000E+W D.0000E+OO

00000E+OO O.0000E+OO 0.3220E+O1 07570E+01 09110E+0l 09480E+bl 0.5470E+Ol 0.7700E+0l 08230E-01 0.7950E+0l

09270E+01 O.8420E+01 0BB7OE.0t D.106SE+02 0S850E+0l O.9970E+01 0QI9OE+O1 07310E+01 O.1084E+02 08130E+O1

Ofl3OE+01 08170E+01 O.7840E+Ol o.4650C.01 O.2900E+OO O0000E+OO

OE+OO O0000E+0O D.0000E.0O 0.0000E+OO 0000OE+OO 00000E+OO O.OOOOE0O O0000E+OO 0.0000E+OO 0 E+OO

OO000+OO O0000E+OO O.2590E+O1 O3570C+0l O.3310E+Ol 0.9020E+01 O.8730E+01 09230E+0l 0.9630E+01 09170E+01

O1282E+02 OSSIOE+0l 09270E+0I OIOI1E+02 08720E+Ol O.9060E+OI O1021E4-02 O7700E.O1 O1047E-02 08250E+0l

06980E+0l O7630E+Ol 0 5790E+0I 0.120Et0l 0.0000E+0O 0.0000E+OO

o0000E+OO O000OE+O0 O0000E+OO O0000L+OO o.0000E÷00 00000E+00 Q0000E+0O 0.0000E+O0 o0000E.OO 00000E+OO

00000E÷00 O0000E.-OO 0.0000E.OO O0000E+O0 OS000E-01 0.1710E.O1 O.2620E+01 O.3720E+0l O7760E.O1 0SOSOE+0l

O1202E+02 O.9350E+O1 O8360E.01 09060E+01 0.7420E+01 08140E+01 09010E+01 08430E+O1 07660E.O1 a 829oC+oi

07060E+01 O.3570E+01 0.15COE+OO 00000E+O0 0.0000E+00 00000E+OO

O0E+O0 0.0000E+O0 O0000E.OO 00000E+00 O0000E+O0 00000C+OO 0.0000E+0O 00000E+O0 O.0000E+OO 0GXOE÷00

o 0000E+O0 00000E+00 00000E.OO 0.0000E+O0 0.0000E+00 00000E÷O0 OO000E00 Q0000E+00 0.IIOOE.O0 OI7IOE+O1

05360E+O1 0.8760E+01 0.8220E.0l O8720E+0l o.8e7oE-Ol 0BSSOE.0l 05640E+0l O1380E+01 01570E.O1 07500E+00

OSSOOE+0O 0O0OOE+00 O0000E+0O 0.0000E+0O O0000E+O0 0.0000E+OO

O,O0E+OO Q0000E.O0 O0000E+OO O0000E+O0 00000E+OO O0000E+00 O.0000E+0O O0000E+O0 o.0000E+OO O.0000E+O0

O0000E+O0 00000E+OO 00000E+OO oooooc÷oo o,OCOCE÷OO 00000E400 00000E+0O 0.0000E+O0 O.0000C+O0 0OY3OE+00

024’3OE*00 04220E+Ol O6470E.Ol 04$IOE+OI 0.3970E+0l 0.8300E+O0 00000E+00 O.0000E+OO oooooc÷oo aOE+00

0.0000E+0O O.0000E+OO 00000E+00 O0000E+00 0.0000E+OO 00000C+O0

O.0000E+0O O.0000E+0O O0000E+O0 0.0000E+O0 o.0000E+00 00000E+O0 o0000E+00 00000E.00 O0000E+OO 00000E+00

O0000E+OO 0.OciOOE+OO O0000E+OO 00000E+OO O.0000E+O0 00000E+O0 00000E+OO 00000E.0O 0.0000E+O0 0.E+O0O0000E+OO O0000E+00 O0000E+O0 O0000E+00 O0000E+0O O0000E+O0 O0000E+O0 00000E+QQ O0000E+0O 00000E+00

0.0000E+O0 o.0000C+oO 00000E+O0 00000E+O0 0.0000E+00 0.o000COO00000E+O0 00000E+OO O0000E+OC 0.0000E+OO 00000E+00 00000E+O0 00000E+0O 00000E+0Q O0000C÷0O OfXfi0+OO

O0000E+OO O.0000E+OO O0000E+00 00000E+0O 00000E+0O 00000E+O0 O.0000E’OO 00000E+OO 00000E+O0 O0000E+00

O.0000E+OO O.0000E+OO O0000E+O0 O0000E+O0 O.0000E+00 O0000E+00 O.0000E+0O O,0000E+OO O.OO0E’0O O0E+00

o c0aE+O0 O.0000E+O0 O0000E+0O 0.0000E+0o O0000E+0O 00000E+0O

I 0IS o.0003257(10E12.4) 0 65-69

O.0000E+OO O.0000E+OO 0.0000E+OO 0.0000E+00 0OODOE+0O 00000E+OO 00000E+OO O0000E+OO O.0000E+OO 0 E+O0

0.0E+O0 O0000E+OO O,0000E+0O 00000E+O0 00000E+DO 0.0000E+O0 0.0000E+00 0.0000E+OO O0000E+00 0.0000C.00

O00O0EOO 00000E+OO 00000E+00 D.0000C+OO o.00OOE+OO 0.0000E+O0 O0000E+00 O0000C+OC 00000E+O0 0%OOE+OO

OOE+D0 00000E+O0 00000E+0O O0000E+O0 D0000E+0O O0000E+OOO.0000E+00 00000E+OO 00000E+O0 Q.0000E+OO 00000E+00 0.0000E+0O 00000E+00 0.0000E+00 00000E+O0 0OOD0C.O0

00000E+00 O.0000C+O0 00000E+O0 00000E+00 0I000E-Ol 0,0000E+0O 0.0000E+OO O.0000E+00 O.0000E+O0 0.OE+00

O.0000E.0O 0.0000E+00 O0000E+O0 0.0000E+00 O0000E+00 0.0000E+OO 0.0000E+00 O.0000E+OO O.0000E+OO 0.C.O0

0O0E+OO 00000E+0O 0.0000E+O0 00000E+O0 O.0000E+O0 0.0000E+0O0.0000EeOO O.0000E+00 00000E+O0 00000E+OO 0.0000E+OO O0000E.OO O0000E+OO O0000E+00 00000E+0O 0.OE.00

00E+OO 0.0000E+00 O.0000E+OO 0.I450E+0I 06200Ei-01 07150E.0I 04370E+01 O.2500E÷OI 01990L.0I 02W0E-O1

O0000E+O0 0.0000E+00 00000E+0O O0000E+O0 o0000E+OO 0000OEOO 0.0000E+O0 O.0000E+OO O.0000E.00 0 +O0

0.0000E+O0 0.0000E÷00 00000E+OO 00000C+O0 o.0000E+O0 00000E+OO00000E+O0 00000C.OO O0000E+O0 O.0000E+00 0.OCOOE+00 O.0000E.O0 00000E.O0 O.OCOOE+O0 0.0000E.tO 0.0E+00

O0000E+O0 O.1800E-00 O.fl30C.0I 07640E+0l O.8750E+0l 0.B700E+O1 0BZSOE+o1 0.6640E+QI 0.7970E.-01 O.7560E+0I

01690E+0l O0000E+O0 O.0000E+OO 0.0000E+O0 00000E.-OO O.0000E+O0 00000E+C0 00000E+00 0.0000E+OO O0000E+OO

0.00E+00 00000E+O0 0.0000E+O0 00000E÷00 00000E+OO O0000E.0000000E+00 00000E+00 00000E+00 00000E+00 00000E+0O 00000E+00 00000E+00 0.0000E+00 0.0000E+00 00XOC÷O0

O0®OE+0O 02190E+OI 08290C+0l OSSOOE+0I o.8830Et01 O.9170E+0l 08420C+0I O.7770E+0l 0706E+Ol 07320E+OIC.7820E+01 &3270E+0I 0ø0OE+O 00000E+00 0.0000E+0O 00000C+0O 00000EtOO 0.0000E+O0 O.0000E+0O 0.E.0O0.0000E+00 0000OE+O0 0.0000E+00 00000E+00 OO000E-OO 00000E+00O0000E+00 00000E+00 0.0000E+O0 O0000E+00 0.0000E+OO 00000E+00 QO0QOE+00 O.0000E+OO O.0000E+O0 00000E+QO

00000E+0O 0.4B40E+O1 0.8360E+Ol 0.6740E-fOI 0.8740E+0l 08290E+0l Q7140E+0I .0.7710E+Ol 0.6800E+Ol 0.6770E+0I

07740E+01 O.8730E+Ol O3690E+0l O4000E-0I 0.0000E+0O 0.0000E+00 00000E.00 0.0000E+00 00000E+O0 QOO+O0

0.0000E+O0 O.0000E+00 0.0000E+0O 0.0000E+0O 00000E+00 00000E+000.0000E+0O 0.0000E+O0 00000E+00 00000E-’OO 0.0000Ei-00 0.0000E+OO 00000E+00 0.0000E÷00 0.0000E+OO O.€+OO

00000E+00 0.5960E+0I 08590E+OI 06830E+0l 01950E+0I 07220E+0I D7220E+Ol OJ39OE-0I 0.7260E+0I OT100E+0lO7660E+Ol O6380E+0I O8940E+0I 05190E+0l O.7000E+00 O.0000E+O0 00000E+00 0.0000E+00 O00O0E+0 O.E÷00O0000E+00 0.0000E+0O 00000E+D0 00000E+OO 0.0000E+O0 O0000E+OO00000E+O0 0.0000E+00 00000E+OO 0.0000E’-OO 00000E+00 0.0000E+O0 O.0000Ei-O0 0.0000E+O0 0.0000E’-OO 0E+0C

0I200E+01 0.8130E+0l O.S720E+0l 06160E+0l O.7630E+Ol 0.7670E+01 07660E+OI 0.7590E+0l 0.7340E+0I O.7220E+0108380E+O1 07560E+OI 08720E+01 07740E+Ol 05170E+Ol 0.IISOE+OI 00000E+O0 00000E+O0 0.0000E+OO 0.E+000.0000E+00 00000E÷OO O0000E+0O 0.0000E+O0 00000E+OO 0.0000E+00O.0000E+00 00000E.OO O0000E+00 00000E+00 0.0000EeOO O0000E+00 00000E+00 O0000E+O0 00000E+O0 0.0000E+O0

0.3100E+00 0.7250E+OI 0,SISOE+OI 09220E+0I 0.7740E+0I O6540E+0l 06530E+0I 07340E+0l O1082E.02 06410E.0I08020E+0I O7220E+OI 0.7790E.0l 07580E+OI 06630Ei-01 0.SSOOE+0I 0.1040E+OI O0000E+00 00000E+OO 00E+00O0000E+00 0.0000E+0O 0.0000E.O0 O0000E+O0 00000E+00 00000E+0CO0000E’OO O0000E-tOO 0.0000E+00 O0000E+O0 0.0000E+O0 0.0000C+O0 00000E+0O 00000E+00 O.0000E+O0 0.E+0OO.0000E+OO 05I30E+01 0.9390E+01 09920E+01 0.7440E+0I 0.6260E+0I 04020E+01 09540E+0I O.1526E.02 019E+O2O7770E.OI 0.7920E+01 O.8040E•0I 0.7570E+0I 0677OEi-0I O.6600E.0I 0.3370E+0I 0.0000E+00 00000E+G0 00C+00

00000E+O0 O.0000E+O0 0.0000E+0O 00000E+0O 00000E+O0 00000E+00O0000E+O0 O.0000E+00 00000E+00 0.0000E+00 0.O000E+00 0O00OEOO 0.0000E+00 O.0000E+00 O.0OO0E. 0€+00

00000EO0 O.4530E.0I O.9830E.0l 09940E+0I 06650E+0I 0.6830E+01 0.2300E+01 O.1025E+02 O1659E.02 0.1361E+0207130E+0l O6000C+0I O.7580E+OI 0.7370E+Q1 07510E+OI 0.6900E+OI 04900E+0l 0.2500E+00 0.0000E+0O 00000€+0Q

00000E+00 0.0000E+00 00000E.00 00000E+00 00000E+00 00000E.0OO.0000E400 0.0000E+0O 00000E+00 00000E+00 0.0000E+00 O0000C+00 O0000E+00 00000E+0O 00000E+X 0OOXE+0Q

00000E+00 02000E-O1 0J740E+0I 0.1016E+02 09550E+0I 09700E+0I 01395E+02 01709E+02 O9160E+0I 010E+02

E-1 2

Page 220: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

0.1083E+02 O.6910E+01 O8390E+Oj OS4SOE+Q1 O.6970€+01 07250E+O1 08670E+01 O4530E+01 O.1300E+OO O0000E+OOO.0000E+OO O.0000E+OO O.0000E+OO O.OQOOEOO O0000E+OO O0000E+OOO.0000E+OO O.0000E+OO O0000E+OO O.0000E.OO O.0000€+OO O0000C+OO O.0000E.OO O.0000E+OO O.0000E+OO O0000E+OOO.0000E+OO O.0000E.OO 04910E+0l O1034E.02 O.G7SOE+Ot O.IIO7E+02 Q.1394E+02 O1855E+02 01013E+02 O.3580€0101226E+02 O645OE+O 08790E+OI 08390E+0l O.63*OE+0l 0.IG1OE.01 Q.8670E+Ol OSSSOE+Ol O,3530E+Ol O3200E+OOO.OOOOEOO O.0000E+OO O0000E+OO O0000E+OO O.0000E+OO O.0000E+QQo 0000E+OO O.0000E+OO O0000E.OO O0000E+OO O0000E.OO O.0000E+QO O0000E+OO O.0000E+OQ O.0000E+OO O.0000E+OOO.0000E+OO O.0000E+OO 0.1330E+0l 0.1036E+02 o9770E401 0.1070E+02 O1558E+O2 02188E+02 O1258E+02 O.SÔOOEO10.1396E+02 O7000E+O1 02880E+0l O.5350E+Ol O8O5OEO1 D6720E+O$ OB11OE+0l O9420E+O1 O5980E+01 0.4110E+01O.1200E+OO O.0000E+OO 0.0000E+OO O,0000E+OO O.0000E+OO O.0000E+OO0.0000E+OO D.0000E+0O 0.00006+00 0.00006+00 O.0000t.OO 0.00006+00 0.O0O0E00 0.00006+00 0.00006+00 0.00006+000.0000E.00 0.00006+00 0.30006-01 094606+01 0.10126+02 0.1093E+02 015496+02 021256+02 O.SSOOE+01 O.7150E+010.15926+02 0.62306+01 0.7500E+00 0.3770E+01 0.58706+01 0.65106+01 0.82306+01 0.11736+02 0.11256+02 0.8360E+0l054606.01 0.31006+00 0.00006.00 0.00006.00 0.00006+00 0.00006+000.00006.00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006.00 0.00006+00 0.0000E+OO 0.00006+00 0.00006+000.00006.00 0.00006+00 0.00006+00 0.81906+01 0.1105E+02 0.11386+02 0.17826+02 022706+02 0.19036+02 0.1720E+010.4240E.O1 0.23506+01 0.I840E+01 0.24206+01 0.76206+01 0.78606+01 092806+01 0.1102E+02 0.88406+01 0.8680E+010.7900E+0I 041406+01 0.00006+00 0.00006+00 0.00006+00 0.00006+00O.0000E+00 0.00006+00 O.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E÷OO 0.00006+00 0.0000E+OOO.0000E.0O 0.00006+00 0.00006+00 0.81706+01 0.1OS1E+02 0.12136+02 0.1993E+02 0.225864-02 017186+02 0.1160E+010.3560E+0l 015936+02 0.13656.02 0.2070E+01 0.76506+01 0.60206+01 0.82806+01 09530E01 0.81506+01 0.87506+010.82506.01 0.7650E+0I 0.14206.01 O.0000E+0O 0.00006.00 0.00006.000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006.00 000006+00 O.0000E+O0 0.00006+00 0.00006+00 0.00006.000.00006+00 O.O000EO0 0.59006.00 0.9680E+OI 088006+01 0.1I31E+02 0.213961-02 0.22816+02 0.16056+02 0.45006+000.38706+01 0.5820E+Q1 0.82006+01 O.5800E+O1 0.61106+01 0.19206+01 0.1015E+02 0.52806+01 0.67506+01 0.87506+010.06506.01 0.7940E+0I 0.66506+01 0.5700E+OO 0.00006+00 G.0000E.000.0000E.00 0.00006+00 0.00006+00 O.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 o.0000E•OO 0.00006.000.00006.00 0.00006+00 0.23206+01 0.1019E+02 0.92006+01 0.1214E+02 019546+02 0.2272602 0.13806+02 0.2900E+O00.41206+01 0.17986+02 0.63406+01 0.86006+01 0.17806+01 0.60506+01 0.6680E+01 0.1750E+01 0,32006+01 0.72506+01090506+01 085506+01 0.7940E-O1 c4870E+01 0.00006+00 0.00006+00000006+00 0.00006.00 0.00006+00 O.00006’OO 0.00006.00 0.00006.00 0.00006+00 0.0000E+00 0.00006+00 O.0000E+O00.00006+00 0.0000E+0O 0.52306+01 0.91806.01 0.58606+01 0.8100E+01 060206+01 O.1867E+02 0,15816+02 0.30506+010.15706+01 0.1414E+02 0.33806+01 0.81906+01 0.81206+01 070906+01 058106+01 O.4020E+01 0.3640E+0I 0.79006+010.91906+01 0.84606+01 0.79106+01 0.76806+01 011606+01 0.0000E+0O0.00006+00 000006+00 000006+00 000006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006+000.00006+00 0.00006+00 0.83206+01 O.1072E+02 0.61506+01 0.4750E+0I 035406+01 0.18546+02 0.18736+02 0.14416+020.36406+01 050806+01 0.16606.01 0.10016+02 0.73106-01 0.49106+01 0.8740E+Ol 0.72806+01 0.42306+01 0.56506+010.61906+01 000906.01 0.74406+01 0.7510E+Ol 025206+01 O.0000E+0O0.00006+00 0.00006+00 0.00006+00 0.00006+00 O.0000E+O0 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.11506+01 010116+02 096706÷01 0.6960E+01 062806+01 053906+01 0.12896÷02 0.11966+02 029706+01O.1I60E+0I 059006+01 092206+01 070806+01 0.1417E÷02 0.54206+01 0.41106+01 0.24206+01 0.1730E+01 0.33006+010.61606+01 0.75906+01 0.66906+01 0.71606+01 0.46606+01 0.00006.000.0000E+00 0.00006÷00 0.90006+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E÷00 0.00006+000.10006+00 0.6360E÷0I 0.1055E+02 0.1040E+02 0.63306+01 0.1470E+01 0.20106+01 0.4300E+00 0,00006+00 0.0000E+00O.1350E+01 0.33906+01 0.73006+01 0.75806+01 0A820E÷01 0.1490E÷QI 0.3210E+01 0.11206.01 0.51006÷00 0.13806+010.72106+01 0.73706+01 0.7470E+01 O.7460E+01 0.58106÷01 0.1000E+000.00006+00 0.00006+00 0.000061-00 0.00006÷00 0.00006+00 0.0000E+00 0.0000E+00 0.00006.00 0.0000E+00 0.89006+000.58406+01 0.10056+02 0.9790E+01 0.81806*01 0.71506+01 0.58506.01 0.95006+00 0.1200E+00 0.00006+00 0.00006.000.14906+01 0.3190E+0l 0.85706+01 0.14606÷01 0.22806+01 0.SIOOE+00 0.12006+00 0.27006+00 0.22006+00 0.1330E+010.6970E+01 0.81906+01 0.76906+01 0.78106*01 0.2060E+01 0.12006+000.00006+00 O.0000E+00 0,00006+00 0.00006.00 0.00006.00 0.00006.00 0.00006+00 0.00006+00 0.19006+01 0.75706.010.92306+01 0.87506+01 0.68406+01 0.81706+01 0.67106.01 0.71506+01 0.49106+01 0.14306.-UI 0.20006-01 0.71006+000.63006.00 0.3580E+0I 0.57506.01 0.13006.00 0.70006+00 0.12006.01 0.6710E+01 0.52306+01 0.11596+02 0.7440E+010.72506+01 0.79706.01 0.72806+01 0.7100E+01 0.59306+01 0.50006+000.00006+00 0.00006÷00 0.00006.00 0.00006.00 o.oooóc+oo 0.00006+00 0.9000E-01 0.27106+01 0.79306+01 0.85106.010.94406.01 0.9890E+01 0.76106+01 0.36406+01 0.48506+01 0.7490E+01 0.62306+01 0.7160E+01 0.26006+01 0.29006+000.13306+01 0.60806.01 0.41006+01 0.17606+01 0.2050E+01 0.14006+00 0.1270E+01 0.37506+01 0.11116+02 0.9940E+010.11296+02 0.66606+01 0.70806+01 0.69906+01 0.66606+01 0.2800E+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0,0000E+00 0.35406.01 0.75206+01 0.55106+01 0.5050E+010.7230E+0I 0.67306+01 0.58706÷01 0.56706.01 0.58506.01 0.65506+01 0.68506.01 0.7730E+01 0.56006+01 0.19306.010.75906+01 0.60206+01 0.33506.01 0.30106.01 0.31306+01 0.11186+02 0.11166.02 0.14426+02 0.1650E+02 0.12646.020.96106+01 0.6490E’.Ol 0.10156+02 0.11766+02 0.14486+02 0.10606+010.00006+00 0.00006+00 0.00006÷00 0.00006+00 0.00006.00 0.58006*00 0.71106+01 0.8030E+01 0.60506+01 0.19106+010.24106+01 0.45106+01 0.43306÷01 0.57906+01 0.63606+01 0.71806.01 0.76806+01 0.756.OE+01 0.30806+01 0.83606+010.87106+01 0.46206+01 0.31706+01 0.2710E+01 0.60206+01 0.14606+02 0.22626+02 0.17096+02 0.14896+02 0.45406+010.44506+01 0.74106+01 0.78006+01 0.94006+01 0.11046+02 0.3700E+000.00006+00 0.0000E+00 0.0000E+00 0.00006.00 0.0000E+00 0.46906+01 0.86606+01 0.68406+01 0.74806+01 0.61106+010.4040E+0l 037406+01 0.45506+01 0.51706+01 0.58206+01 0.74606+01 0.7760E+0l 0.58906+01 0.28806+01 0.83606+010.92006.01 0,4940E+01 0.55606+01 0.2490E+01 0.40806+01 0.45406+01 0.21036+02 0.10346+02 0.74906+01 0.62206+010.4990E+0l 0.65306+01 0.10156+02 0.13676+02 0.11736+02 0.31006+000.00006.00 0.00006+00 0.00006.00 0.00006+00 0.12706*01 0.87306+01 0.8840E+01 0.56906.01 0.5470E+0l 0.44106+010.42106.01 0.34306+01 0.44206+01 0.60106+01 0.65506+01 0.71206+01 0.77706+01 0.66906+01 0.50906+01 0.44206+010.14106+01 0.79006+00 0.84306+01 0.13626+02 0.11436+02 0.2052E+02 0.17586+02 0.12606+02 0.56706+01 0.94806+010.6260E.0l 0.9390E+01 0.10886.02 0.10966+02 0.43906+01 0.40006+000.00006+00 0.00006.00 0.00006*00 0.00006+00 0.65406+01 0.8740E+0l 0.75206+01 0.38306.01 0.31606.01 0,4930E+010.4450E+0l 0.40206+01 0.49606+01 0.62206+01 0.64806+01 0.71906.01 0.6430E+01 0.70706.01 0.61606+01 0.39006+000.00006+00 0.58706+01 0.1468E+02 0.32916+02 0.33466.02 0.35386+02 0.17006+02 0.12206+02 0.10896+02 0.10886+020.9720E+0l 0.10946.02 0.91506+01 0.88906+01 0.42806.01 0.38006.00

6-13

Page 221: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

0.0000E+0O 0.0000E.00 0.0000E.0O 0 0000EtCO 08280E+01 O7330E+0i 0.4080E+01 02960E+01 0.3550E+0i 0.4830E+O103750E+0i 04930E+01 04690E+Ol 04750E+0i 0.6110E+0I 0OSOOE+0i 0.5920E+Qi 0.7i60E+Oi O7470E+0I 0.1870E+0i02500E+0l 0.7740E+01 0.2301E+02 03675E+02 0.3S14E+02 033.41E+02 03024E+02 0.2513E+02 0.1509E+02 01275E+0201OIOE+02 0.i194E.02 O.9200E+0l 0.7880E+0i 04880E+01 04100E+0000000E+00 0.0000E+00 00000E+00 0.9200E+00 O.1006E.02 0SIBOE+01 0.4210E+0I 02650E+01 03260E+0l 04420E+0i02980E+01 0.4550E+0l 0.2750E+01 04480E+0i 04090E+01 02700E+0l O.3540E+0I 0.7480E+0I 08590E+01 07040E+010.11SOE+01 03410E+01 0.2328E.02 0.3659E+02 03830E.02 04091E.02 0.3999E+02 0.3429E+02 o,2178E.02 o1758E+0201425E.02 01044E+02 09390E+0i 09710E+01 07400E+01 05900E+000.0000E+00 00000E+00 00000E.o0 08000€-Qi OSSSOE+01 O8870E+01 07340E+01 03i50E+01 09700E+00 0.4250E+Oi03230E+0i 0.4890E+0i 03650E+O1 0.3400E+0l 0.2790E+0i 0.3780E+0i 03960E.0i O7310E+01 0.8570E+01 0,3740E+0l03J330E+Oi 01050E+0i 02106E+02 03381E+02 0.3667E+02 03926E+02 03837E+02 02735E+02 0.2154E+02 O1&41E+0201370E+02 01020E+02 09920E+0i 0BSSOE+01 0S490E+0i 03800E+0000000E+00 0.0000C+00 00000E+0O 0i230E+0l 0.&880E+OI 09540E+01 0.9230E+Oi 06870E+0i 0.1500E+0i 02330E+Ol03340E+01 04920E+0l 0.3740E+01 04200E+0l 04140E+0i 04800€+0i O.7330E+01 07710E+Oi 0.8340E+0i 09280E+0i0.3810E+0i 0.ii42E+02 09190E+01 03423E+02 03855E+02 03714E+02 O.3481E+02 03369E+02 02524E+02 0.1906E+0201418E+02 06420E+C1 0.8490E+0i 06790E+0i 0,7090E+Oi 02100E+O00.0000E+00 00000E+00 00000E+00 0.4090E+01 0.B900E+01 09030E+01 089S0E+0i 0.7050E+0i 05310E+01 0.3580E+010.2500E+01 0.4450E+01 04900E.0l 035i0E+01 0.3250E+01 05890E+01 0.7270E.0I 0.7750E+01 07920E+0I 0.9170E+0i09040E+0i 0.7930E+01 0.1149E+02 03351E+02 0.3617E.02 o.WI9Ei02 o.3i46E+o2 oan3Eto2 02809E+02 o.issiE+o20_i 329E+02 0.9690E+01 09920E+0i 08850E+01 O7980E+0i 02800E+000.0000E+00 00000E+0O 00000E+00 02460E+0i 0.GG8OE+0I 08580E+0l 0S930E+Oi 0.9370E+Q1 08550E+0I 0.7840E+Oi0.7360E+0I 04030E+Oi 0.4050E+0l 0.2920E+01 O.4020E+Oi 0.SZSOE+01 0.6690E+0I 0.7520E+01 0.7590E+Oi 07860E+0I08560E÷Oi 05740E.Oi O.i247E+02 0SS9iE+02 0.3624E+02 03400E+02 0.3i89E02 03058E+02 O.2275E+02 0.1243E+020.i668E+02 0.1573E+02 0.1131 E+02 0BOSOE+Oi 05880E+0I 0G000E+000.0000E+00 00000E+00 0.0000E+0O 0.0000EtOC 04600E+00 0.5130E+0l 0.8490E+Ol 08660E+O1 O.8800E+0l 0BOSOE+Oi0.7570E+0i 06520E+0l 0.3ilOE+01 02300E+Oi 0.29OOE+Oi 02460E+0l 03790E+01 04580E+01 04380E+01 0i760E+Oi07000E+01 0.4OiOE+Oi 02380E+02 0.3314E+02 03442E+02 03402E+02 0.3649E+02 03057E+02 0.i934E+02 0i442E+020.i067E+02 05070E+01 0.6900E01 0.7490E+Oi 0SOBOE+Oi 03000E÷0000000E+00 00000E+00 00000E.00 0.0000E00 0.0000E+00 00000E+00 0.3430E+Oi 0.8380E+Oi 0.8790E+Oi 0.8830E+Oi0.8210E+Oi 0.8i20E+01 08030E+0l 04150E+Oi 02670E+Oi 0224sZE+Oi 0.2850E+0i 0.3890E+01 0.4790E0l 0.5350E+Oi0.3750E+Oi 02060E+Oi 02456E+02 03025E+02 03041E+02 0.3914E+02 O.3447E+02 0.2537E+02 01370E+02 O.iOGBE+020Bi2OE+Oi 0.iiO8E+02 0ii32E+02 0lOilE+02 02890E+Oi 0.2800E+0O00000E+00 00000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 00000E+0O 03370E+01 08390E+0l 0,8800E+Oi09060E+Oi 0.9050E+0i 08440E+0i 0.76i0E+0l 0.4460E+01 05920E’OI 0.3400E+0l 0.2020EfOi 0.1730E+01 03240E+0103250E+0l 04570EfOi 0iB4OE+02 O.2458E+02 0.2889E+02 03997E+02 0.3254E+02 02007E+02 0.8720E+0l 0.6530E+0l0.7960E+Oi 08430E+Oi 0.7230E+Oi O.7650Et0i 0.5280E+0l 0.S000E-0l0.0000E+0O 00000E.0O 00000E+O0 0.0000E+0O 00000E+00 00000E+00 0.0000E+00 0.0000E+00 02720E10i 0.7900E+O109020E+01 08930E+Oi 0.8750E+Oi 08760E+0I O.8960E+0I 08630E+01 0.8950EtOi 0.4690E+Oi 0i380E+Di 09700E+000.5580E+0l 05740E+Oi O.i250E+02 01993E+02 0.2221E+02 0.S6iOE+02 0.2649E+02 0.66.SOE+0I 0.9920E+0l 0.4690E+Oi022S0E+0l 04590E+Oi 07660E+01 0B1BOE+0I 0.2800E+01 00000E+0000000E+0O 0000OE+00 0.0000E+00 00000E+OO 00000E+00 00000E+00 0.0000E+0O 00000E+00 00000C+00 03300E+00OJliOE+Oi 0.8370E+Oi 0.8680E+0l 09030E+0I 09210E+Oi 0.iO7SE+02 0.i504E+02 01157E+02 03900E+Oi D7060E+Oi065i0E+0i 04i60E+Ui 0236iE+02 0.3442E+02 03009Et02 02575E+02 0iS63E+02 07960E+0l 0.iOOSE+02 09330E+Oi0.5570E+Oi 0.7820E+Oi 08i20E+0l 0.7670E+O1 0.1310E+01 0.0000E+0000000E+00 00000C.Qo O0000E+00 00000E+O0 00000E+00 O0000E+00 00000E+00 00000E+00 00000E+0O 0,0000E+000.i280E+Oi 06230E01 0.B000E+Oi 0BBSOE+Oi 09550E+Oi 0iOiQE+02 0.i039E+02 09730E+Oi O.8220E+Oi 0.8320E+Oi0.7090E+Oi 08880EfOi 0i234E402 0.i692E+02 0.i285E+02 O.1343E+02 0.ilB2E+02 01097Ef02 0.9670E+Oi 0.IOSBE+0208940E+Oi 0.8400E+Oi 0.7920E+01 0.5980E+Oi 0.1300E+Oi 00000E+000.00OOE+00 0.0000E+O0 00000E+O0 0.0000E+00 00000E.00 00000E+00 00000E+00 0,0000E+00 O0000E+00 0000OE.000.0000E+00 0O0OOE+00 03220E+0l 0.7570E+Oi 0.9IiOE+Oi 0.9480E+0l 08470E+Oi 0.7700E+01 0.8230E+Oi 0.7950E+Oi0.9270E+0i 08420E+0l 08870E+O1 0.iOB6E+02 08850E+Oi 0.9970E+Oi 0.Si9OE.01 0.7310EOi 0.1084E+02 08130E+Ol0.6830E+Oi 0.8170E+0l 03040E*-01 0.4650E+0l 02900E+00 &0000E+000.0000E+00 0.0000E÷00 00000E.00 0.0000E+00 0.0000E+00 00000E.0O 0.0000E+0O 0.0000E+0O 0.0000E+00 00000E+O000000E+00 00000E+00 02590E+0l 0.3570E+Qi 03310E+Oi 0.9020E+01 0.8730E+0I 0.9230E+Oi 0.9630E+0l 0.9i70E+Oi0.i282E+02 08510E+Oi 09270E+O1 0.lOliE+02 08720E+Oi 0.SOGOE+0l 0.1021E+02 0.7700E+Oi 01047E+02 08280E+OiO.6980E+0l 02630E+Oi 0.5790EiOi 0.i2SOE+Oi 00000E+0O 0.OE+0O0.0000E+00 00000E+00 0.0000E+00 O.0000E+00 0.0000E+OC 0.OccOE.00 0.0000E+00 000OOE+0O 0.0000E+00 00000E+000.0000E+00 00000E+00 00000E+00 0.0000E00 0.8000E-Oi 017106*01 028206*01 0.3720E*01 0.7760E+Oi 0.9090E+Oi0.12026*02 09350E+Oi 08360E+Oi 0.9060E+Oi 0.7420E+Oi 0.8i40E+Oi O.9OiOE+Oi 0.8430E+Oi 07860E+0l 08290E+0i0.7050E+0I 0.3570E+Oi 0.i500E+00 0.0000E+00 0.00006+00 0.0000E+000.0000E+00 0.00006*00 0.00006*00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.0000E+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.11006+00 0.17106+010.5360E+01 0.8760E+0l 0.8220E+Oi 0.8720E+Oi 0.8870E+01 0.8380E+Oi 0.56406+01 0.i3SOE+01 0.15706+01 0.75006+000.6600E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00o.0000E+oo 0.00006+00 0.0000E+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 O.0000E+0O 000006+00 0.00006+000.00006*00 0.0000E+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006*000.24006+00 0.42206+01 0.6470E+Oi 0.4810E+0I 0.3970E+0l 0.83006+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006+000.0000E+00 0.0000E+00 0.0000E+00 0.00006.00 0.0000E+00 0.0000E+000.00006+00 0.00006.00 0.0000E+00 0.0000E+00 0.00006+00 0,00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006.00 0.00006+00 0.0000E+00 0.00006.000.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E00 0.0000E+000.0000E+00 0.0000E+00 0.00006+00 0.00006.00 0.00006+00 0.00006*000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006.00 0.00006+00 0.00006+00 0,00006+00 0.00006+00 0.00006.000.00006+00 0.0000E+00 000006*00 000006+00 0.0000E+00 0.00006400 0.00006+00 0.0000E+00 0.00006+00 0.0000E+000.00006*00 0.00006.00 0.00006*00 0.00006+00 0.00006+00 0.00006+00 0.00006.00 0.00006.00 0.00006.00 0.00006+000.00006+00 0.00006*00 0.00006.00 0.00006*00 0.0000E+00 0.00006.00

1 018 0.0002139(10612.4) 0 70-83

E-1 4

Page 222: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

O0000E+OO O0000E+OO O0000E+CQ O.0000E.OO O0000E+OO C0000E+OO O.0000E+OO OOOCOEX Q0000E.QQ C000ZE+QQ

O0000E+OO O0000EtOO O0000E+OO O.0000E+OQ O.0000E+OO O.0000E+OO O0000E+OQ O0000E.W O0000Ei-OO O.0000E+CO

O,0000E+OO O.0000E.DO O.0000E.OQ OOOOOEOO O0000E.OO O.0000E+OO O0000E+OO o.QOooE. O.0000E.OO O0000€+OO

O0000E.DO O0000E+DO O.0000E+OO O.0000E+OO O.0000E+OO O.0000E+GO

O.0000EeOO O0000EtOO O.0000E+QO O.0000E+OO O.0000E+OO ODCOOE+OO O0000E+OQ O.0000&vo O0000t+DO O000ZE+OO

O.0000E+OO O0000E.OO O.0000E+OO O0000E+OO O.I000E-O1 O0000E+OO O0000E+OO O.OOOOE. O.0000E.OQ O0000E+OO

O0000E.OO O.0000E•OO O0000E+OO O.0000E+OO O0000E+OO O0000E+OO O.0000E+OO O.OOOO& O.OOcJOE+OO QO€+OO

O.0000E+OO O.OOOOEOO O.0000E+OO OOOOOE+ O0000E+OO O0000E+OO

OOOOCEOO O0000E.OQ O0000E+OO O0000E+QO O0000E+OO O.0000E+OO O.0000E+OO O0000C.W Q.0000E.OQ OOOOOE+OO

O000CE+OO O.0000E+OO O0000E+OO O1460E+O1 O6200E.OI O7150E+O1 O4370E+Ol O.2500E+Ot O.1990E+O1 O2000E-Ot

O0000E+QO O.0000E+OO O.0000E+OO O.0000E+OO O0000E+OO O.0000E+OO O0000E+OQ OOOOOE. O.0000E.OO O0000E+OO

O0000E+DO O.0000E+OO O0000EtOC O0000E-OC O0000E+OO O0000E+OO

O0000E.OO O0000E+OQ O0000E+OO O0000E+OO D.0000E+OO O.0000E+OO O.0000E+OO O.DOOOE. O0000E.OO O0000E+OO

O.0000E.OO O.180cJE+OO O.2230E+V1 O.7640E.O1 O8750E+O1 O87E.-Ol O.8750E+O1 O.8640C.O1 O7970E.O1 O.7560€+O1

O1690E.-O1 O0000E.OO O0000E+OO O.0000E.OO O0000E.OO O.0000E+OO O0000E+OO O.0000C.OD O.0000E.OO O.0000E+OO

O0000E.OQ O0000B.OO O.0000E+OO O0000E+OO O0000E.OO D.0000E+OO

O0000E.OO O.0000E+OO O0000E+CQ O.0000E*tO O0000E+OO O.0000E+OO O0000E+OO O0000E÷cO Q.0000E.Oo D0000E+OO

O.OOOCC+QO fl9+Q O8290E.O1 O,BSOQE+O1 OBB3OE+OI O9170E+Ol O8420E+Ol O.fl70E01 O7060E+O1 O732CE+Ol

Q.7620E+O1 O3270E+O1 OOCOCE+OO O0000E+OQ O0000E+CO O.0000E+OO O.0000E+OQ 00000€+OO O.0000E+OO O.0000E+OO

O.0000E+OC O0000E+OO O0000E+OO Q0000E+QG O0000E+QO O0000E+QO -

O0000E+OO O.0000E4OO O.0000E+OO OOOOOE+O C.0000E+OO Q0000E+8C D0000E+OO O.0000C-® O0000E.OO &0000C.OO

Q0000E+OO O4840E+O1 O8380C+O1 O8140E.-aI O8740E+Ol O6290E+C1 O.7140E+OI O7Y1OC+O1 O6SOOE+O1 O.6770E+O1

O7740E+Ol O.8730E+O1 O.3ogeE+O1 O4000E-O1 O.0000E+OO O0000E+OO O0000E.OO O.0000E-’X O.0000E+OO O0000E+OO

O0000E+OO O0000E+OO O.C000E+QO 0.0000E+0O 0.0000E+00 0.0000EtOO

0.0000E+0O 0.0000E+0O 0.0000E+00 Q0000E4-O0 00000E÷0O 0.0000E+CO 00000E.0O 0.O0OOE. 0.0000E+0O O.0000E+OO

0.0000E+00 O.5960E+01 0.8590E+0l O8830E+O1 07950E+O1 0.7220E+Ol 07220E+01 0.7390C-.O1 0.7260E+01 0.7100E+01

0.7660E+01 O.8380E.O1 0.8940E+0l 05190E.O1 07000E+O0 00000E+00 0.0000E+0O 0.0000€.W 0.0000E+0O 0.OCOOE+0O

0.0000E+00 0.0000E’-OO 0.0000E+OO 0.0000E+O0 0.0000E+00 0.0000E+0O

0.0000E+00 0.0000E1-0O 0.0000E.OQ 00000E.0O 0.0000E+0O 0.0000E+0O 0.0000E+0O O00O0E+ O0000E+QO 0.0000E+00

O.1200E+01 0.8130E+Ol O,8720E+0I 0.SISOE+Ql O.7SZOE+Ol 0.7670E+0l 0.7860E+O1 0.7590€.01 01340E+01 O7220C+OI

06350E+0l O.756CE0I 0.8720E+0l 0.fl4OE+01 0.5170E+01 G.118c’E÷Ol 00000E+0O 0MO00C 0.0000E+0O 0.0000E+0O

0.0000E+00 00000E+OO 0.0000E+0O Q0000E+O0 0.OciOOE+0Q 0.0000E+0O

00000E+00 00000E.O0 0.0000E+OO O0000E+O0 0.0000E+OO O.0000E+OO 0.0000E+0O O0OOOC-. 00000E+0O O.OOOOE+

0.3100E+00 0.7250E.Ol 0.9160E+Ol 0.9220E4-O1 07740E+0l 0.6540E+O1 06530E+Ol 03340E01 0.1082Et02 O8410E+O1

0.8020E+0l 07220E.Ol 0.7790E+01 O75OE+Ol 0.6630E+0l O.5800E+0l 01040E+0l 0.0000E.00 O.0000E+0O 0.0000E+00

O0000E+0C 0.0000E+O0 0.0000EtOO O.0000E+Q0 0.0000E+00 0.0000E+OO

0.0000E+0Q 0.0000E+OO 0.0000E+00 0.0000E+0O O.0000E+OO 0.0000E+0O 00000E+0O 0.0OO0E.- 0.0000E.0O 0.0000E+0O

0,0000E+0O 05130E.Q1 D9390E+Q1 0.9SZVEi-O1 07440E+01 G.6250E+0l 04020E-O1 0$S4OC.01 0.1526E.02 OlOO9E’42

0.7T7QE÷Ol 0.7920E.O1 0B0.40E+C1 O.7570E+01 0.6770E+01 06600E+0l 03370E+0l 0.0O0O&.- O.0000E+00 0.0000C+OO

0.0000E+00 0.0000E.0O 0.0000E+OO 0.0000E4-00 0.0000E+00 0.0000E+0O

0.0000E+00 0.0000E.-00 0.0000E+OO 0.0000E+00 0.0000E+0O 0.0000€.OO 00000E+0O 0ooooC.c 0.0000E.0O 0.0000E+O0

00000E+0V 0.4530E+0I 0S830E+0l 0.9940E+01 O8650E+C1 0.6830E+0i 0.2300E+01 0.1025€+ 0.1659E+02 0.1361E+02

0.7130E-f0l 0.6000E.O1 O.7860E+01 0.7370E+0l C.7510E+0l 06900E+0I 0.4900E+0l 0.2500&W 0.0000E+OO 00000E+0O

0.0000E+0O O,0000E+O0 00000E+0O O0000E+OO 0.0000E+O0 O.0000E+00

00000E+00 00000E.-0O 0.000OE+00 0.0000E.OO 0.0000E+00 00000E+0C 0.000OE+0O O.0000C+OD 0.0000E+00 00000E+00

00000E+00 02000E-OI 0J740E+01 01016E+02 0.9550E+OI 0.9700E-fOl O.1395E+02 0l709E 0.9180E+01 0.1LIBSE+02

01083E+02 0.6910E+01 0.8390E+0l 0.8480E+0l O.G97OE+O1 O7250t+Ol 0.8670E+O1 04530C+Ol O1300E+OO 00000C+OO

0OCc’OE.-OC 0.0000E+O0 0.0000E+0O 0.0000E+O0 0000DE+0O O0000E+00

0OOciOE+00 O.0000E.OO 0.0000E+00 00000E+0Q 0.0000E+0O 00000E÷O0 00000E+OO 0.0O0OE+ 0.0000E.00 00000E.OO

00000E+00 O.0000E+O0 O4910E+0l 0.1034E*02 09780E+01 O.1l07E+02 O1394E€02 0.l855&eZ O1013E+02 O.3580E+0I

0.1226E+02 06450E+OI 0.8?90E+0l 0.8390E+01 O6310E+01 07810E+0l 0.S8TOE+O1 OSSSOE+Q1 03530E+01 0.3200E+OO

0.0000E+0O O.0000E+OO 0.0000E-t0O 00000E+O0 O.0000E+OC O0000E+OO

OXI000E+00 0.0000E.OO 0.0000E+00 0.0000E÷0O 0.0O-OOE+00 00000E+OO 0.0000E+00 0.0O0OE+ 0.0000E+00 0.0000E+0O

00000E+0O 0,0000E.CO 0.1330Et01 0IOZ6E.02 0.9flQE+0l 01070E+02 0.ISSBE+02 0218t&-W O.1258E+02 0.8600E+O1

0.l396E+02 O7000E+01 0.2680E+Ol 05350E+01 O8050E+O1 O.6720E+C1 081 10E+O1 09420E.-O1 0.8950E+0l 0.41 IOE+O1

0.1200E+00 0.0000E+OO 0.0000E+00 0.0000E+O0 00000E+0O 0.0000€+0O

O0000E.00 00000E+0O O.0000Ei-O0 00000E.-O0 0.0000E+00 O0000E+00 00000E+00 O.0000C-.- 00000E+O0 0.0000E+OO

00000E+00 0.0000E+O0 0.3000E-0t 09460E+OI O.1012E+02 O109E+O2 0.1549E+02 02125E+02 0.S800E+01 07150C+O1

0.1592E+02 0.6230E.-01 O.7800E+OO 0.3flOE+0l 06870E+0l C6510E+0l 08230E+0l 01173E 0.1l25E+02 0,t360E+0l

05480E+0l O.3100E+O0 O000GE+0O O.0000EeVO 00000E+0O 0.0000E+OO

00000E+O0 0.0000E+00 0.0000E+0O 0.0000E+CO 0.0000E+0O 0.0000E+00 0.0000E+O0 0.000OE+ 00000E+0O 0.0000E+0O

00000E+00 0.0000E+0O 00000E.0o O8190E+O1 0.1105E+02 0.1138E+02 D.1782E+02 0.2270E. 0.1903E.02 0.1720E+0I

0.4240E+01 02350E+0l 0.IS4OE+0l 0.2420E.O1 O.7620E+Oi 07850E+0l 09280E+01 0.1102E.02 0.BS4OE+0l OSBSOE+01

O.7900E+0l 04140E+O1 00000E+0-0 Q0000E+V0 O0000E+00 00000E+0O

o.0000E+0O 00000E.-O0 o.c000E+0O 00000E-’OO 00000E+O0 000OOE0O 0000OE+00 0.0000C’-cc 0.0000E+O0 0.0000E+OO

00000E.OO 0.0000E+OO 00000E÷0O 08170E+01 01051E+02 0.1213E+02 OAGQZE+02 0.2258E-.W 0IY1SE.02 0.l16OE+01

O3560E+01 0.1593E+02 0.1365E+02 0.2070E+0l 07650E+01 06020E+0l 06280E01 0S530&’-01 OSISOEtOI O.8lSOEtOl

Q8250E+01 0.7650E.Ol 0.1420E+01 O.0000E+CO 0.0000EtOO O0000E+OO

O0000E+D0 00000E+OO 0.0OOOE+0O 00000E+00 O.0000E+00 D0000EtOG OM000E+00 0.0000E-QD O.0000E+OO 0.00DOE+00

0.0000EtOO O.0000E.0Q 0.5900E+00 0.96WE+O1 0.8300E+0l 0IIZIE+02 02139E02 &2281E.W 0.1605E+02 0.4500E+00

03870E+01 O5820E+01 O8200E+OI 0.5800E01 06110E+0l 01920E+OI O.1015E+02 0,5280€+V1 O.6750E+Ol 08750E+VI

0.BSSOE+01 07940E+O1 06650E+01 0.5700E+O0 00000E+00 O0000E+OO

OM000E+0O 0.0000E+OO 0.0000E+00 00000E+00 00000E+0O 0,0000E+0O O.00-OCE+0O 00000Et 0.0000E+00 O0000EOC

00000E+00 D0000EtCO 02320Et01 01019E02 0.9200E+Ol 01214E+02 01954E+02 0,2272E*02 O.1380E+02 02900E+00

Q.4120E+01 0.1798Et02 0.6340E+01 0BÔOOE+Ol 01780E+0I 06050E+01 0,6880E+0l Q.1750C01 03200E+01 0.7250E+01

0.9050E+01 0.8550E+0l 0.7940E+01 0.4670E+0l 00000E+0O C.0000E+0O

0.0000E+0O 00000E+0O O.0000E.0O 00000E-O0 00000E+OO 00000E+00 0OCOOE+00 000OOE’ 00000E+O0 00000E+0Q

0.0000EtOO 00000E+OO 0.5230E+01 09160Et01 0BBBOEtO1 0alocE.0* 08020E+01 O.I867E. 01SS1E+02 030506.01

E-1 5

Page 223: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

O1S7OE+Ol O.1414E.02 O.3380E.O1 O.6190E.Q1 b.8120E+O1 O7090E+O1 OSSIOE+O1 O4020E.Ol O3640E+O1 D79OOE+O1O.9190E+O1 O.8460E01 O7910E.Ol Q7680E+O1 O1180E+O1 O0000E+OOo0000E÷OO O0000E-OO O.0000E.OO O.0000E.OO O0000E.OC o.0000EOO O0000E+OO O0000E+OC O0000E+OO O.OOOOEOOO0000E+OO O.0000E+OO O.5320E.Ol Q.1072E+02 O6150E+O1 O4750E.O1 O.3540E+Ol O1854E+02 oi673E•02 O1441E.02O3840E+Ol O5080E.-O1 O1660E.D1 OIOOIE.02 O.7310E+O1 O.4910E.Ol O8740E+O1 O7280E+O1 O.4230E+O1 O.5850E+Q1O6190E+O1 O,80SOE+CI O,7440E+O1 O7510E+D1 O2520E+O1 O0000E+OOOOOOOEOO O.0000E+OO O0000E+DO O0000E+OO O0000E+OO O.0000E+OO O0000E+OV O0000E+OO O0000E.OO O0000E+OOO.0000E+OO O.1150E+Ol OIO1IE+02 O.9670E÷Ol O6980E+OI O6280E+Ol O5390E+Ol O1289E+02 O.1196E+02 O.2970E+O1OIISOE+Ol O5900E÷O1 O9220E.O1 O,Y080E+O1 O1417E+02 C.5420E+O1 O.4110E+Ol O.2420E+O1 O1730E+OI O3300E+O1O6160E+O1 O7590E.-OI D68SOE.O1 O7160E+O1 O.4660E+Ol O0000E+OOO.0000E+OG O.OOOOEOO O.0000E.OO C.0000E.OO U OOCOEOO O0000E+OO O.0000E+OO O.0000E+UO O.0000E+OO D.0000E+UODI000E+OO U.6360E.O1 O.1055E•02 O.1040E+02 O.6330E+O1 O.1470E.OI 02010E.O1 O4300E.OO O.O000E+OO U0000E+OQC1350E+O1 O.3390E+O1 O.7300E.O1 O.7580E.O1 O4820E+Ol O1490E÷O1 D.3210E+O1 O.1120E.O1 O.5100E+OO D1380E+O1O7210E+O1 O.7370E+O1 O.747OEOl O7450E+Ol O5810E+Ol OI000E+OOOOciOOE+OO O000c’€+OO O.0000E+DO O0000E+OO U0000E+OO O0000E.OO O0000E+OO O.0000E+OO O.0000E+OO O.89OOE+QOO.5640E+Ul O1005E-02 U.9790E.Ul O.8180E+O1 O.7ISOE+O1 OSBSDE.O1 O.9500E+OO O.1200E+OO O0000E+OO O.0000E+OOQ.1490E+U1 O.3190E+O1 O8570E.U1 O1460E+O1 O2280E+O1 O.SIOCE+OO OI200E+OO O.2700E+OO O.2200E.QO O.1330E+O1O6970E+Ol OOl9OEtOl D.7690E+UI O.7810E+Ol O2860E+Ol O1200E+OOO.0000E+cIO O0000E+OO O.0000E’OO O.0000E+OC O.0000E+DO O0000E+OO O.0000E+OO U,OtOOE+UO O.1900E+O1 01570E+D1U9230E+O1 OS75CE4-O1 O6840E+C1 O8170E+Ol O6710E+Ol U7150E+UI O4910E+O1 O.1430E+Ol D.2000E-O1 D7100E+OOO6300E+OO U,3580E+OI O.5750E+Ol O.1300E+OO O7000E+OO Q1200E+Ol O6710E+Ol O.5230E+Ol O.1159E+02 O.7440E+O1O7250E+Cl O7970C+O1 O.7280E+O1 O7100E+Ol O5930E+Ol OS000E+OOD.0000E.OO Q0000E+OC O.0000E.OO O0000E+OO U.0000E.OO Q.0000E+OO O.OE-O1 O.2710E+Ol D7930E+O1 O.BSIOE+O1O.9440E+O1 O9690E+O1 O7610E+Ol U3840E+O1 O.4850E+O1 O.7490E+O1 O.62t3OE+OI Q.7160E.Q1 O.2600E+Ql O29OOE+OOO.1330E+Ol U.6080E+OI O.4100E+Ol O.1760E+O1 O2050E+O1 01400E.-OO 01270E+O1 O.3750E.O1 OIII1E+02 O.9940E+O1O1129E+02 C.6660C+Ol O.7080E+Ol O.6990E+Cl U.6660E+O1 O2800E+OOO.OOOCEOO O0000E.-OO O.0000E+OO O0000E+OO O0000E+QO O0000E+OO O3SAeE+O1 D7520E+C1 O6510E+Ol O5050E+OlC.7230E+Ol O.6730E01 O5870E+Ol O5670E+O1 OSBSOE+UI OCSSOE.Ol O.6SSOE+UI O.7730E+Ol U.5600E+O1 01930E+O1O.7590E+U1 O6020E+Ol O,3350E+Ol O3010E+O1 O.3130E+Ol O1118E+02 OII1SE+02 O.1442E+02 O.1650E+02 D.1264E+02O.9610E+D1 O.6490E+O1 Q.1015E+02 O.1176E+02 O1448E+02 OI060E+O1O0000E+OO O.0000E+OO O.0000E+UO O.0000E+OU O0000E+OO O.5800E+OO O.7110E+Ol O.8030L+O1 O.6050E+O1 O.1910E+O1Q2410E+Ol O4510E+O1 O.4330E.Ol O5790Et01 O6360E+C1 O.7180E+O1 O7SatE+Ol O.7560E+Ol O.3080E*Ol O.8360E+OIO8710E+O1 O.4620E+Ol O3170E.O1 O.2710E.O1 O8020E+O1 O1460E.02 O2262E+02 O.1709E+02 O.1489E+02 O4540E+OIQ4450E+Ol O7410E1-Ol U7600E+O1 0S400E+O1 U.1104E.02 Q3700E+OQD.0000E+OO O.0000E00 O.0000E.OO OOODOE+OO O0000E.UO O.4690E+Ol OBS6OE+O1 O.6840E+OI O.7480E+O1 O.SIIOE+O1O4040E+O1 O3740E+O1 O.4550E+O1 O.5170E+Ol O.5820E+Ol O1460E+U1 O.T7GOE+O1 O.5890E+O1 O2860E+O1 O.8360E+O1O9200E+Ol C.4940E+V1 O.556E÷O1 O2490E+O1 O4080E+OI O.4540E+O1 O2103E.02 O.1034E+02 O.7490E+O1 O6220E+O1O.4990E+Ol O.6530E+C1 O1015E+02 O1387E+02 O1173E+02 o3100E+oOO0000E+OO O.0000E÷OO O0000E.OU O.0000E.OO U.1270E+O1 OBlaOEi-Gl O.$340E.O1 O5690E+Ol O.5470E.O1 OMIOE÷O104210E+Ol 0343OEi-01 O.4420E+0l U.6010E+01 U6550E+01 O7120E+O1 07770E+01 0.6690E+01 0.5090E+O1 04420E+010.1410E+0l 0.7900E.-OO 08430E+Ol O1362E+02 0.1143E+02 0.2052E+02 O,1758E+02 01260E+02 0.5670E÷O1 O,9480E+01O.6260E+01 0OS9OE+01 O1068E+02 0IOOSE+02 O.4390E+01 Q.4000E+0O00000E+O0 0.0000E+O0 O.0000E.0C 0,0000E+OO 0.6540E+01 0.8740E+0l 0,7520E+0l O.3830E+O1 O.3160E+O1 04930E+0104450E+01 04020C+01 0.4960E+0l 0.6220E+U1 O6480E+O1 0.7190E+Ol 06430E+01 0.7070E+01 O.6160E+01 0.3900E+00O0000E+00 0.5870E+0l 0.1468E÷02 03291E.02 03346E+02 O3538E+02 0.1700E.02 0.1220E+02 01089E÷02 01088E+02O.9720E+01 0.1094E+-02 0.QISOE+01 0BS9OE+01 0.428eE+01 D3800E+0OO.0000E+00 0.0000E÷0O 00000E+00 00000E+00 08280E+0l o7a3oE÷a1 04080E+0I 0.2960E+0l O3550E+O1 O.4830E+0103750E+01 O4930E.-01 04690E+0l 0.4750E+01 O6110E+0l 0.6300E’Ol O.5920E+01 02160E+01 O7470C+01 O.1670E+0l0.2500E+01 0.7740E+0l 02301E+02 03675E+02 O3814E+02 03341E+02 ow24E+02 02513E+02 0.ISOOE.02 O1275E+o201QSOE+02 O.1194C+02 09280E+Ol 0.7850E+O1 04880E+0l Q4100E+0OO000OED0 O.0000E00 O0000E+0O O9200E+00 0IOOCE+02 D.BISUE+01 0.4210E+01 0.2550E.0I O328DE+O1 U.4420E+O1O298DE+0l 0.4550E+01 O2750E+O1 O4480E+O1 U.4090E+01 0.2700E+O1 0,3540E+0l 0.7480E+0l O8590E+O1 O.7040E+O1OAIBOEtO1 03410E+01 02328E+02 03659E+02 0.3830E+02 0.4091E+02 0.3999E+02 0.3420E+02 O2178E+02 0.1758E+020.1425E+02 0.104-4E-02 O.9390E+01 0.9710E+0l O.740OE.O1 0.5900E+0O0.0000E+OO 00004D+OO O.0000E+QQ OS000E-Ol O8560E+0l 08870E+0l O.7340E+0l 0.3150E+O1 09700E+00 O4250E+O103230E+0l 04890E+01 O3650E+0l O,3400E+01 02790E+01 O3780E+0l O3960E+01 D.7310E+0l 08570E+O1 03740E+O1O3030E+0l 0.1050E-01 0.2106E+02 0.3381E+02 0.3667E+02 Q3926E+02 OSSZ7E+02 02735E+02 0.2154E+02 0.1641E+0201370E+02 O.1020E.02 O.9920E+Ol 08550E+O1 0.8490E+01 OSSJDOE+000,0000E+O0 0.0000E.-0Q 0.0000E•OO 01230E+0i O8880E+01 09540E+0l 03230E+01 O6870E+0l 01500E+01 O2330E+O1O3340E+01 U.4920E.0l 0.3740E+Q1 O.4200E+01 O.4140E+01 04800E+01 ofl3tE.o1 O7710E+01 O8340E+Ol 09280E+0lQ3610Et01 O.1142E+02 O9190E+Ol 03423E+02 O3655E.02 O3714E+02 03481E+02 O3359E+02 02524E+02 O1906E+02O1418E+02 O.6420€+0l O.849OEiOl 06790E+0l OJOGCE+0l 02100E+0OO0000E+OO O0000E00 00000L+00 0.409OE-D1 0.S900E+01 OQOSOEtCI 0.BSSOE+O1 07050E+01 O.5310E+O1 D.SSGOE+0102500E+0l 0.4450E’-Ol 0.4900E+01 O.3510E+01 O.3260E.0l 0580E+01 U7770E+0I 0T7soE+01 o7920E+o1 09170E+O10.9040E+0l 07930E+01 01149E+02 0,3351E+02 0.3617E+02 O3819E+02 03146E+02 0.3333E+02 O.2809E+02 01881E+0201329E+02 0969QC+01 O9920E+01 0.8850E+01 0.7980E+01 02800E+O000000E+00 O0000E+00 00000E.00 0.2460E+01 06SBOE+Ql 08580E+01 0BSSOE+O1 09376E+0l O.8550E+0l O7840E+0107380E+0l 04030E+Ol 04050E.Q1 O.2920E+O1 04020E+01 05320E+01 0669OE+O1 07520E.01 07590E+O1 07860E+OlO.8560E+01 O.5740E+01 O.1247E+02 0.3591E+02 0.824E+D2 O.3400E.02 0.3189E+02 03058E.02 Ofl7SE+02 0.1243E+0201SSBE•02 0.1573E-02 01131E+02 0.8050E+O1 O.S8SOE+01 0G000E+VO00000E+U0 0.0000E00 00000E.O0 O0000E+O0 0.4600E+00 051 30E.-01 08490E+0l 0.8860E+0I O8800E+O1 08080E+0l07570E+O1 O.6520E.-0l 0.3110Ei-Ol 0230OE+0l 0.2900E+O1 C2480E+O1 03790E+0l 0.4580E+01 O4380E+Ol 07760E+0107000E+01 04010€.O1 02380E+02 0.3314E+02 03442E+02 03402E+02 03649E+02 0.3057E+02 0.1934E+02 01442E+02D.1OG7E.02 05070E0I 0.6900E+O1 O7490E+O1 D.5080E+O1 O3000E4-0O0O00OE00 0.0000EO0 O0000E.D0 00000E+D0 00000E+00 O0000E.OO 03430E+Ul 08380E.01 08790E+C1 0BSSOE+0l08210E+0l O8120E+0l OSOSOEtO1 04150E+0l O2670E+0I O2240E+0l 02850E+Ol Q.3890E+01 O4790E+01 05350E+01Q.3750E+0I O2060E+01 02456E+02 0.3025E+02 0.3041E+02 O3914E+02 03M7E+02 0,2537E+02 O1370E+02 0.1068E+020.8120E+01 OI1OSE-02 01132E+02 01017E+02 O2890E+01 02800E+OO

E-1 6

Page 224: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 000006+00 &0000E+00 0.33706+01 0.83906+01 0.88006+01090606+01 0.90506+01 0.8440E+01 0.7610E+01 044806+01 0.59206+01 0.34006+01 0.20206+01 0.17306+01 0.3240E+O10.32506+01 0.45706+01 0.18406+02 0.24586+02 0.2889E+02 0.39976+02 0.3254E+02 0.20076+02 0.87206+01 0.65306+010.79606+01 0.9430E+0l 0.72306.01 O.7650E+01 0.52806+01 0.50006-010.00006+00 0.00006+00 0.00006+00 000006+00 0.00006+00 0.00006+00 0.00006+00 0.00006÷00 0.2720E+01 0.79006+010.9020E+0l 0.8930E+01 0.8750E+0I O.8760E+01 0,89606+01 0.86306+01 0.89506+01 0.46906+01 0.13806+01 0:97006+000.55806+01 0.5740E+0I 0.12506+02 0.19936+02 0.22216+02 0.36106+02 0.28496+02 0.6650E+01 0.99206+01 0.46906+010.22806+01 0.45906+01 0.76806+01 081806+01 0.28006+01 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 000006+00 0.00006+00 0.00006+00 0.00006+00 O.0000E+00 0.33006+000.7110E+0l 0.83706+01 0.86806+01 0.90306+01 0.92106+01 0.10756+02 0.15046+02 0.1157E+02 0.39006+01 0.70606+010.65106+01 0.41606+01 0.23616+02 0,3442E+02 0.30096+02 0.25756+02 0.16636+02 0,7950E+01 0.1008E+02 0.93306+010.5570E+0I 0,78206+01 0.81206+01 0.7670E+01 0.13106+01 0,00006+000.00006+00 0.0000E+00 0.0000E+O0 0,0000E+00 0.0000E+O0 0.00006+00 0.00006÷00 0.0000E+00 0.00006+00 0.00006+000.12806+01 0.62306+01 0.80006+01 0.88506+01 0,95506+01 0.10196+02 0.10396+02 0.97306+01 0.82206+01 0.83206+010.70906+01 O.8880E+0l 0.12346+02 0.169261-02 0.12856+02 0.13436+02 0.11626+02 0.10976+02 0.96706+01 0.10586+020.89406+01 0.84006+01 0.79206+01 0.59806+01 0.13006+01 0.0000E+000.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.0000Et00.00006+00 0.00006÷00 0,32206+01 0.75706+01 0.91106+01 0.9480E+0l 0.84706+01 0.77006+01 0.82306+01 0.79506+010.92706+01 0,84206+01 0.88706+01 0.10866+02 0.88506+01 0.99706+01 0.91906+01 0.73106+01 0.10846+02 0.81306+010.88306+01 0.81706+01 0.78406+01 0.46506+01 0.2900E+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0006+000.00006+00 0.00006+00 0.25906+01 0,35706+01 0.33106+01 0.90206+01 0.87306+01 0.92306+01 0.96306+01 0.91706+010.12826+02 0.8510E+0l 0.9270E+0l 0.10116+02 0.8720E+01 0.90606+01 0.10216+02 0.77006+01 0.10476+02 0.82806+010.6980E+0l 0.76306+01 0.57906+01 0.12606+01 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.0006+00.0000E+00 0,00006+00 0.00006+00 0.00006+00 0.80006-01 0.17106+01 0.2820E+01 0.37206+01 0.77606+01 0.90906+010.12026+02 0.93506+01 0.8360E+01 0.9080E+0l 0.7420E+0l 0.81406+01 0.90106+01 0.8430E+0l 0.78606+01 0.82906+010.7050E+0l 0,35706+01 0,15006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.0000E+00 0,0’OOCE+OO 0.00006+00 0.00006+00 0.00006÷00 0.00006+00 0.0000E+00 0.0000E+000.00006+00 0.00006+00 0.00006+00 0,0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.11006+00 0.17106+010.5360E+01 0.57606+01 0.82206+01 0.87206+01 0.88706+01 0.83806+01 0.56406+01 0.13806+01 0.15706+01 0.75006+000.66006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+000.00096+00 0.00006+00 0.0000E+00 0.00006+00 0.0006÷00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.0000&-00 0.0000E+00 0.00006+000.2400E+00 0.42206+01 0.64706+01 0.48106+01 0.39706+01 0.8300E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+000.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006÷00 0,00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+000.0000E+00 0.0000E+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006+00 0.0000E+00 0.0000E+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0,00006+00 0,00006+00

1 018 0.0002263(10612.4) 0 ‘84-90

0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.0000E+00 0,00006+00 0.0000E+00 0.00006+00 0.0000E+00 0,00006+00 0.00006+0 0.00006+00 0.00006+00 0.0000E+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.0000E+00 0.00006+00 0,00006+00 0.00006+00 0.00006+00 0.00006+00,00006+00 0.0000E+00 0.00006+00 0.00006+00 0,00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+0 0,00006+00 0,00006+00 0.I000E-0l 0.00006+00 0.00006+00 0.0000E+00 0.0006+00 0.00006+000.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.0006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.14806+01 0.62006+01 0,71506+01 0,43706+01 0.25006+01 0.19906+01 02000€-Cl0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+0’O 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.0006+00 0.00006+000.0000E+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.18006+00 0.2230E+0I 0.76406+01 0.87506+01 0.87006+01 0.87506+01 0.86406+01 0.79706+01 0.7560E+010.16906+01 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00’OOE+OO 0.00006+00 0.0’O’OOE+OO 0.0000E+00 0,00006+00 0.0006+00.00006+00 0.00006+00 0.0000E+00 0,00006+00 0.0000E+0’O 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.000’OE+OO 0.21906+01 0.8290E+0l 0.85006+01 0.88306+01 0.91706+01 0.84206+01 0.77706+01 0.70606+01 0.73206+010.76206+01 0.32706+01 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0,00006+00 0.00006+00 0.00006+00 0.0006+0 0.00006+000,00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0,48406+01 0,83806+01 0.87406+01 0.87406+01 0.82906+01 0.71406+01 0.77106+01 0.68006+01 0.67706+010.7740E+01 0.87306+01 0.3690E+0I 0.4006-Cl 000006+00 0.0000E+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+000.00006+00 0.0000E+00 0.00006+00 0.0000EtOO 0.0000E+00 0.00006+000.0000E+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00.00006+00 0.59606+01 0.85906+01 0.8830E+01 0.7950E+0l 0.72206+01 0.72206+01 0.73906+01 0.72606+01 0.7106+010.76606+01 0.83806+01 0.89406+01 0.51906+01 0.70006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+000.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+000.00006+00 0,0000E+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.0000E+00 0.00006+00 0.00006+000.12006+01 0.81306+01 0.87206+01 0.81606+01 0.78306+01 0.7670E+01 0.76606+01 0.75906+01 0.73406+01 0.72206+010.83806+01 0,75606+01 0.8720E+0l 0.77406+01 0.51706+01 0.11806+01 0.00006+00 0.0006+00 0.0000600 0.00006+000,00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E÷0

6-17

Page 225: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

O.0000E+OO O.0000E+OO G0000EtCO O0000E+OO O0000E+oo O.0000E.OQ O.0000E+OO OM000E+OO O0000E+OO O0000E+OOO.3100E+OQ Q725VE.Ol OOIÔOE+Ol O9220E+O1 O7740E+Q1 O6540E+O1 Q6530E+O1 O7340E+O1 Q.1082E+02 O8410E+O1D.8020E+O1 O7220E+O1 O7790E+Ol 075$OE+Ol O6630E.ol O5800E+O1 O1040E+C1 O0000E+OO O0000E+OO O0000E+OOO0000E+QO OQciOOE+OQ 0 0000E-00 00000E+00 O0000E+OQ O0000E+QQO0000E+00 O.0000E+OQ 00000E+00 00000E+00 00000E+0O 00000E+O0 00000E+0O 0 0000E+0O G.0000E+00 0.0000E’OQ0.000OE00 05lOE.O1 09390E+0l 09920E+Ol 07440E+OI 0.6200E+01 04020E+Ol O9540E+0I O.ISZ6E+02 0.1009E+020.7770E+O1 Q7920E+01 0S040E÷0l 07570E+0I O6770E+01 O.GCOQE.O1 O3370E+Ol 0 0000E+00 00000E+00 O0000E.0000000E+00 00000E+O0 00000E.00 00000E+00 0OcJOOE•0Q O0000E+00O.0O00E00 0.0000E•0Q 0 0000E.00 0.0000E.00 00000E+00 0.0000E+0O 0.0000E+00 0.0000E+00 0.0000E.00 00000E+0000000E.0Q 0.4530Et01 0.9530E.01 0.9940E+0l 0SSSOE.01 0.6830E+01 02300E+01 0.1025E+02 0.IBS9E+02 01361E+0207130E.01 O.6000E+01 0.7860E.01 07370E+01 07510E+01 O6900E+01 0.4900E.0l 0.2500E+0O 00000E.00 00000E+QQ0.0000E+00 O.0000E+00 0 0000E.00 00000E+00 00000E+00 00000E+0O00000E+00 0.0000E+O0 00000E÷00 00000E+00 00000E+00 00000E+00 00000E+00 0.0000E+O0 00000E.0Q 0.0000E+00O.0000E+00 OZ000E-QI 0.7740E4O1 0IOIBE+02 09550E+O1 09700Et01 0 1395E+02 OilO9E-e02 O9180E+0l 01086E+020.1083E+02 05910E+01 08390E-eC1 08480E+0I 0.6970E+01 O.7250E+01 08670E+01 04530E+O1 0.1300E4-O0 0.0000E+0000000E+O0 00000E+0O 0.0000C+00 0.0000Et00 0.0000E+00 00000E+000.0000E÷00 0.0000E+00 00000E+00 00000E+00 0.0000E.O0 00000E+00 00000E+O0 00000E+00 0.0000E+00 0.0000E+0000000E+00 00000E+00 04910E+01 01034E+02 09780E+0l 01107E+02 01394E+02 01855E+02 O.1013E+02 03580E+O1O1226E+02 0.6450E+0l 0.8790E+01 08390E+01 0.6310E+01 0.7810E+01 08670E.01 0BSSOE+Ol O3530E+01 0.3200E+0O00000E÷O0 00000E+0O 00000E+00 00000E+00 0.0000E+00 0.0000E.0000000E+00 O0000E+0O 00000E+00 00000E+00 0.0000E+00 00000E.00 00000E+O0 00000E+00 0.0000E+00 0.0000E+0000000E.0O 00000E+00 01330E+0l 0.IOS6E+02 09flOE+O1 0.1070E+02 0.ISSSE+02 02188E+02 0.1258E+02 08600E+010.1396E+02 07000E+01 02680E.0I 05350E+01 08050E+01 0.6720E+0l 0BIIOE+Cl 0.9420E+0l 0.8980E+Ol 0.4110E+0l0.1200C+0C 00000EtOO 00000E+O0 0,0000E+0O 00000E+00 00000E+0000000E+O0 00000E+O0 00000E+00 O0000E.00 00000E+00 00000E+0V Q0000E+00 00000E+O0 00000E.00 00000E+0000000E+00 Q0000E+0Q 0300CC-ti 09460E+0i 0.1012E4-02 0.1093E+02 01549E.02 &2i25E+02 0.S$OOE+D1 07150E+010.1592E+02 06230E+01 0.7BOOE+00 0.3770E+01 b6870E+0l 0.6510E+01 0B23tiE+0I 0tl73E+02 0.1125E+02 08360E+0105-480E+01 0.3100E+00 0.0000E+CC D.0000E+00 0.0000E+00 00000E+00000OOE+0O 00000E-f 00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E.00 00000E400 C0000E+00 00000E+00 00000E+0Q0.0000E+00 0.0000E+00 0.0000E+00 0.8190E+0i 0.IIOSE+02 C1138E+02 0.1782E+02 0.2270E+02 0.i903E+02 0.1720E+0l0.4240C+01 02350E+01 0.I840E+0l 0,2420E+0i 07620E+0I 07860E+0l 0.9280E+01 01102E+02 08840E.0l 0.8680E+0107900E+0l 0.4140E+01 0.0000E+00 00000E+00 0.0000E+00 0.0000E+O00.0000E+0C 0.0000E+00 00000E+00 00000E+00 00000E+00 00000E+00 00000E+00 0.0000E-*00 00000E+O0 0.0000E+000.0000Ei-00 0.0000E+00 00000C+00 0.8170E+0l 0t05iE+02 0.1213E+02 01993E4-02 O.2258E+02 0.17i8E+02 0.I160E+0i03560E+0l 0.1593E+02 01385E+02 02070E+0i 07650E+0l 06020E+01 0.BZSOE+01 09530E+01 0S1SOE+01 08750E+0108250E+Ot 0.7650E+01 0.1420E+0l 0.0000E+00 0.0000E.00 00000E+C00.0000E+00 O.0000E+00 00000E+00 00000E+00 00000E+00 0.0000E+O0 0.0000E+00 0.0000E+00 0.0000E+00 00000E+0O0.0000E+00 00000E+00 O5900E-f 00 0.9680E+0I 08800E+0l 0.1131E+02 0.2139El-02 022819+02 0.16059+02 045009+000.38709+01 0.58209+01 0.82006+01 0.5800E+01 0.61109+01 0.1920E+0I 0IOISE+02 0.52806+01 0.6750E+01 0.8750E+010,86506+01 0.79406+01 0.66509+01 0.57006+00 0.0000E+00 000009+000.00009+00 0.00009+00 0.00006+00 0.00006+00 0.00009+00 0.00009+00 0.00009+00 0.00009+00 0.00009+00 0.00009+000.00006+00 000009+00 0.23206+01 0.10196+02 0.9200E+01 0.12149+02 0.19546+02 0.22726+02 0.13809.02 0.29009+000.41206+01 0.17989+02 0.63409+01 0.86009+01 0.1780E.0I 0.60509+01 066509+01 0.17509+01 0.32009+01 0.72509+010.90506+0I 0.85506+01 0.79409+01 0.46709+01 0.00009+00 0.00009+000.00006+00 0.00006.00 0.00006+00 0.00009+00 0.00006+00 0.00009+00 0.00006+00 000009+00 0.0000E+00 0.00009+000.00009+00 0.00006.00 0.5230E+0l 0.9I80E+01 0.88809+01 0.81009+01 0.60206+01 0.18676+02 0.15819+02 0.30509+010A570E01 O.I414E+02 0.33809+01 0,61909+01 0,81206+01 0.70909+01 05810E+01 0.4020E+0I 0.3640E+0I 0.79009.010.91909+01 084609+01 0.79106+01 0.7680E+01 011609+01 0.0000E+000.00009+00 a0000E+00 0.00009+00 0.00009+00 0.0000E+00 0.00009+00 0.00009+00 0.00009+00 0.00009+00 0.0000E+0O0.00009+00 0.00006+00 0.8320E+0I 0.10729+02 0.6I50E+01 0.4750E+01 0.35409+01 0.18549+02 0.18739.02 0.14419+020.3640E+01 0.50809+01 0.1660E+01 0.100IE+02 0.7310C-0l 0.49106+01 0.87409+01 0.72809+01 0.42309.-al O.5650E+010.61909+01 0.80909+01 0.74406.-UI 0.75109+01 025206+01 0.00009+000.0000E+00 0.00006+00 0.00006+00 0.00009+00 0.0000E+00 0.00006+00 0.00009+00 0.00009+00 0.00006.00 0.00006+000.00009+00 0.11509+01 0.10116+02 096709+01 0.69606+01 0.62806+01 0.53906+01 0.12896+02 0.11969+02 0.29709+010.1160E+0l 0.59009+01 092206+01 0.70806+01 0.14176+02 0.54206+01 .4110E+0l 0.24209+01 0.17309.01 0.33006+010.61609+01 0.75909+01 0.66906+01 0.71606+01 0.46606+01 0.0000E+000.00009+00 0.00009+00 0.00006+00 0.00009+00 0.00006+00 0.00009+00 0.00006+00 0.00006+00 0.0000E00 0.00009+000.I000E+00 0.6360E+0I 0.1055E+02 0.1040E+02 0.63309+01 0.1470E+01 0.20109+01 043009+00 0.00006+00 0.0000E+000.13509+01 033909+01 0.73009+01 0.75809.0l 0.48206+01 0.14909+01 0.32106+01 0.11206+01 0.51009+00 0.13809+010.72106+01 0.7370E+01 0.74706+01 0.7460E+0i 0.58109+01 0.10009+000.00006+00 0.00009+00 0.00009.00 0.00009+00 000006+00 0.00009+00 0.00006+00 0.00006+00 0.00009+00 0.8900E+000.56409+01 0.10059+02 0.97909.01 0.8180E-e0l 0.7150E-0l 0.58509+01 0.95006.-00 0.12009.00 0.00009.00 0.00009+000.14906+01 0.3l909+01 0.85709+01 0.14606+01 0.22809+01 051009+00 0.12006+00 0.27006+00 0.2200E+00 0.I330E+0I0.69709.01 0.8I90E+0l 0.76909+01 0.76106.01 0.28609+01 0.I200E+000.00009+00 0.0000E+0O 0.00009+00 0.00006+00 0.00006+00 0.00006+00 0.00009.00 0.00006+00 0.19009+01 0.7570E+0l0.92309+01 0.87509+01 0.68409+01 0.81706+01 0.67109+01 0.71509+01 0,49109+01 0.14309+01 0.20009-tI 0.71009+000.63009+00 O.3580E+0l 0.5750E+0l 0.13006+00 0.70006+00 0.12009+01 0.671064-01 0.52309+01 0.11599+02 0.74409+010.72509+01 0.79709+01 072809+01 0.7100E+0I 0.59309.01 0.50009+000,00006+00 0.0000E+00 000006+00 0.0000E+00 0.00009+00 0,0000E+00 0.90009-01 027109+01 0.79309+01 0.85106+010.94409+01 0.96909+01 0.76106+01 0.3640E+0l 0.46509+01 0.7490E+0l 0.62309+01 0.71609+01 0.26009+01 0.29009+000.13309+01 0.60006+01 0.41009+01 0.17809+01 0.20509+01 0.1400E+00 0.1270E+01 0.37509+01 0.11119+02 0.99409+010.11296+02 0.68609+01 0.7080E+01 0.69906+01 0,6660E+01 0.28009+000.00006+00 0.0000E+00 0.00009.00 0.0000E+00 0.00009+00 0.0000E+00 0.354064-01 0.75209+01 0.85109+01 0.50509+010.72309+01 0.67309+01 0.58709+01 0.5670E+0l 0.56509+01 0.6550E+01 0.68506+01 0.77309+01 O.5600E+0I 0.19306+010.75909+01 0.60209.01 0.33509+01 0.30106+01 0.31306+01 0.11189+02 0.11166+02 0.1442E+02 0.1650E+02 0.12649+020.96109+01 0.64909+01 0.10159+02 0.1176E+02 0.14.489+02 0.10609+010,00009+00 0.00009+00 0,0000E+00 0.00009+00 0.0000E+00 0.58009+00 0.71109+01 0.80309+01 0.6050E+0l 0.19106+010.24109+01 0.4510E+0l 0.4330E+01 0.57909+01 0.63609+01 0.71809+0l 0.76809+01 0.7560E+0l 0.30606+01 0.83809+01

9-18

Page 226: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

0.BZIOE+01 0,4620E+01 0.3170E+0l O2710E+0l 0.8020E.01 0.1460E+02 02262E÷02 0.1709E+02 O.1489E-02 04540E+0l0.4-450E+01 0.7410E+01 07800E+01 09400E+OI 0.l104E.02 0.3700E.0O00000E+00 0,0000E.00 00000E+00 00000E+0Q 00000E+00 0.4690E1-O1 08680E+OI 0.6840E.0I 07480E+O1 06l10E+0l0.4040E+01 03740E+01 O.4550E+01 0.5170E+0l 05820E+01 07460€+0l 07760E.O1 05890E+OI 02880E+01 08360E+0l0,9200E+01 0,4940E+01 05580E+01 02490E+0l 0.4080E÷01 0.4540E+OI 02103E+02 0.1034E+02 0.7490E+Ol 0.6220E.0l0.4990E+0l 0.65a0E+0l Ol015E+02 0.1367E+02 0.1173E+02 03l00E+00 -

00000E.00 00000E+00 0.0000E+00 0.0000E+00 01270E+0t 0.8730-EtOl 0.8840E+Ol 0.5890E+01 05470E+01 0.4410E.0l0.4210E+0l 0.3430E+0I 0.4420E+01 06010E+01 0.6550E+01 0.7120E+0l 07770E+01 0.6890E+0l 0.50-0E+Ol 04420E+0101410E+0l O.7900E+00 0.S430E+01 0.l362E+02 0.1l43E+02 0.2052E+02 0.1758E+02 0.l280E+02 05670E+O1 09480E+O10.6260E+01 0,939-OE+0l 0.I086E+02 0.1096E+02 0.4390E+01 04000E+000.0OOOE00 0.0000E÷00 00000E+00 00000E+00 06540E-e0l 08740E+01 07520E+01 0.3830E.01 03160E+01 0.4930E+0l04450E+01 04020E+01 04960E+0l O.6220E+01 06480E+0l 07190E+01 06430E+0l 0.7070E+01 0.6160E+01 0.3900E+000.0000E+00 05$70E+O1 0.l468E+02 0.3291E+02 0.3346E+02 0.3538E+02 0.1700E.02 01220E+02 0.1089E.02 01068E+020.9720E+0l 0.1094E+02 0.9150E+01 08890E+01 0.4280E+0l 0.S600E.0O0.0000E+00 00000E÷00 0,0000E+00 0.0000E+00 O.8280E+01 O.7330E+0l 04080E÷0l 0.2960E+0I O.3550E-01 0.4830E.010.3750E+01 04930E+01 04690E+01 0.4750E÷0l 08l10E+01 0.6300E.0l O5920E+Ol O.7160E+01 07470E÷01 0.1670E+0lO.2500E+01 D.7740E+01 0.2301E+02 0.3675E+02 O.38l4E.02 o.n4lE.o2 o.3024E+02 0.2513E+02 o.lSogE+o2 o.1275E+020.IO9OE+02 0.1194E+02 0.9280E+Ol 0.7880E+01 0.4680E+0l 0.4100E+000.0000E+00 0.0000E+00 0.0000E+00 0.9200E+00 0.1006E+02 0.8180E+Ol 0.42l0Et01 0.2850E+0l 03280E+0l 0.4420E+010.2980E+0l 0.4550E+0l 0.2750E+01 0.4-480E+0l 0.4090E+01 0.2700E+01 03540E+01 0.7480E+O1 0.8590E-01 0.7040E+0l0.1 180E+01 O.3410E+01 0.2328E+02 0.3659E+02 0.3830E+02 0.4091E+02 0.3999E+02 0.3429E+02 021 78E+02 0.1756E+020.1425E+02 O.1044E+02 O.9390E+01 0S710E+Ol 0.7400E+01 0.S900E+000.0000E+0O O,0000E+0Q O0000E+00 0.B000E-0l 0.8560E+01 O.8870E+0l O7340E+Ql 0.3150E+0l 0.9700E+C0 0.4250E+010.3230E+0l O.4890E+01 0SSSOE+01 0.3400E01 0.2790E+0l 0.3780E+Ol 0.3960E+0I 0.7310E+0l 0.8570E+0t O.3740E+010.3030E+01 0.1OSOE+01 0.2106E+02 03381E+02 0.3887E+02 03926E+02 O.3837E+02 0.2735E+02 0.2154E+02 01641E+020.l370E+02 O.1020E+02 0.9920E+0I 0.8550E+0l 0.6490E01 0.3800E+000.0000E+00 O.0000E+00 00000E+00 01230E+01 0.8880E+01 0.9540E+01 0.92306+01 0.68706+01 0.15006+01 O.2330E+0I0.33406+01 0.49206+01 037406+01 042006+01 0.4140E+0l 0.48006+01 0.73306+01 0.7710E+0I 083406+01 0.9280E+010.38106+01 0.1142E+02 0.91906+01 034236+02 036556+02 0.37146+02 0.34816+02 0.33896+02 02524E+02 0.1906E+020.14186+02 0.6420E+01 0.84906+04 0.67906+01 0.70906+01 0.2400-6+000.0000E+00 000006+00 0.00006+00 0.40906+01 0.89006+01 0.90306+01 0.89806+01 0.70506+04 0.5310E+01 0.3560E+0l0.25006+01 0.4450E+01 0.49006+01 035106+01 032606+01 0.56906+01 0.72706+01 0.77506+01 0.7920E+01 0.9170E+010.9040E+01 0.79306+01 0.1149E+02 0.33516+02 0.3817E+02 0.3819E+02 0.3145E+02 0.3333E+02 028096+02 0.1881E+020. 1329E+02 0.96906+01 0.99206+01 0.88506+01 0.79806+01 0.28006+000.00006+00 0.00006+00 0.00006+00 0.2460E+0l 0.6680E+0l 0.85806.01 O.8930E+OI 0.9370E+01 085506+01 0.78406+010.73806+01 0.40306+01 0.40506+01 0.2920E+01 0.40206+01 0.5380E+01 0.8690E+01 0.75206+01 07590E+01 0.78806+010.8560E+0l 0.57406+01 01247E+02 0.3591E+02 0.38246+02 0.34006+02 0.3189E+02 0.3058E+02 0.22756+02 0.12436+020.1668E+02 0.1573E+02 0.11316+02 0.80506+01 058606+01 0.6000E+000.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.46006+00 0.51306+01 0.8490E+0l 0.88606+01 0.8800E+01 080806.010.75706+01 0.6520E+0l 0.31106+01 0.23006+01 0.290-06+01 0.24806+04 0.37906+01 0.45806+01 0.4380E+01 0.7760E+010.70006+01 0.40106+01 0.2380E+02 0.3314E+02 0.34-426+02 0.34026+02 0.3649E+02 0.30576+02 0.1934E+02 0.14426+020.10676+02 0.50706+01 0.69006+01 0.74906+01 0.50806+01 0.300-06+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.34306+01 0.63806+01 0.87906+01 0.8830E+010.8210E+0l 0.81206+01 080306+01 0.4150E+0l 0.2670E+01 0.22406+01 0.2850E+01 0.3890E+01 0.47906+01 053506+010.37506+01 0.2060E+0l 0.24586+02 0.30256+02 0.30446+02 0.39146+02 0.34476+02 0.2537E+02 0.13706+02 0.40666+020.8120E+01 0.11086+02 0.1132E+02 0.1017E+02 0.2890E+01 0.28006+000.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00-006+00 0.00006+00 0.00006+00 0.3370E+0l 0.83906+01 0.8800E+0I090606+01 0.90506+01 0.8440E+01 0.76106+01 0.44606+01 0.59206+04 0.3400E+01 0.2020E+01 0.17306+01 0.32406+01032506+01 0.45706+01 0.18406+02 0.24586+02 0.28896+02 0.39976+02 0.32546+02 0.2007E+02 0.8720E+01 0.65306+010.79606+01 0.94306+01 0.72306+04 0.7650E+0l 0.52806+04 0.50006-040.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.27206+01 0.79006+010.90206+01 089306+01 0.8750E+01 &8760E+0l 0.8960E+01 0.86306+01 0.89506+01 04690E+01 0.13806+04 0.970064-000.5580E÷01 0.57406+01 0.42506+02 0.49936+02 0.22216+02 0.36406+02 0.26496+02 0.66506+04 0.99206+01 &4690E+0I0.2280E+01 0.4590E+01 0.76606+01 0.81806+01 0.28006+01 0.00006+00&0000E+00 0.00006+00 0.0000E+00 O.0000E+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.33006+000.74106+01 0.8370E+0l 0.86806+01 0.90306+01 0.92406+01 0.10756+02 0.15046+02 0.14576+02 0.39006+01 0.70606+010.6510E+0l 0.41606+01 0.23616+02 0.34426+02 030096+02 0.25756+02 0.16636+02 0.79606+01 0.10086+02 03330E+010.55706+01 0.7820E+0l 0.81206+01 0.76706+01 0.13106+01 0.00006+000.0000E+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0,0000E+000.12806+01 0.6230E+01 0.80006+01 0.88506+01 0.95506+04 0.10196+02 0.10396+02 0.9730E+01 0.82206+01 0.83206+010.7090E+01 0.88806+01 0.1234E+02 0.16926+02 0.12856+02 0.13436+02 0.11626+02 0.10976+02 0.9670E+01 01058E+020.8940E+01 0.8400E+0l 0.79206+04 0.59806+01 0.13006+04 0.00006+000.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 OM000E+00 0.0000E+000.00006+00 0.00006+00 0.32206+01 0.75706+01 0.91106+01 0.94806+01 0.84706+04 0.7700E+01 0.82306+01 0.79506+010.92706+01 0.84206+01 0.8870E+0l 0.40866+02 0.88506+04 0.99706+01 0.91906+01 0.73106+01 0.10846+02 0.813OE+0l0.88306+01 0.81706+01 0.7840E+01 0.46506+01 0.29006+00 0.00006+000.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+000.00006+00 0.00006+00 0.2590E+0l 0.35706+01 0.3310E+01 0.90206+01 0.87306+04 0.9230E+0l 0.98306+01 0.9170E+010.12826+02 0.85106+01 0.9270E+01 0.10116+02 0.87206+01 0.90606+04 0.1021E+02 0.77006+04 0i047E+02 0.8280E+01

6-19

Page 227: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

O.0000E+OO OOODOE+OO O0000E+OC o,0000E+OO O.0000E+OO O.0000E+OO O,0000E+OO O.0000E+OO O0000E+OO O0000EtOCO0000E+OO O.0000E+OO O0000EtOC O0000E.OO O.0000E+OO O0000E+OO O0000E+OO O0000E+OO U0000E+OO O0000E+OCO.2400E+OO O4220E+O1 O.6470E+O1 O4810E+O1 O3970E+Ol O8300E+OC O0000E+OO O0000E+OO O0000E.OO O0000E+OOO0000E+OO O.0000E+OO O0000E+OO O0000E+OO O0000E+OO O0000E+OCO.0000E+OO O0000E+OO O.0000E+OO O0000E.OO O0000E+OQ Q0000E+OO O0000E+OO O.0000E+OO O,0000E+OO OOOOOEOOO.0000E+OO O.0000E+OO OOOOOEOO Q.0000E+OO O0000E+OO O.0000E.OQ Q0000E+OO O0000E+OO O.0000E+OO O0000E.OOO0000E.OQ O.0000E+DO O0000E+OO O.0000E+OO O0000E+OO O.0000E.GO O0000E+OO OOOOOE+OO O0000E+OO O.0000E+OOO.0000E+OO O0000E+OO O0000E+OO O0000E-.OO O0000EtOO O0000E+OOOOOOOEOO O0000E+OO O0000E.Oo O.0000E+OO C.0000E+OO O.0000E+OO O0000E+c’O O0000E+OQ O.0000E+OO O0000E+OOO,0000E+OO GOOc’OE.OO O.0000E+OO O,0000E+OO O.0000E+OO O,0000E+OO O0000E+OO O.0000E.OO 00000E+OO O0000E+OOO,0000E+OO O.000OE+OO O.0000E+OO CO000EtOC O0000E+OO O0000E+DO O.O000E÷OO O.0000E.OO O.0000E+OO O.0000E+OOO0000E+OO O.0000E+OO O0000E+OO O0000E+OO O.0000E+OO O0000E+OO

1 018 0000l80l(l0E124) 0 91-94

O.0000E+0O 0.0000E+O0 00000E+OO 0.0000E+0O 0,0000E+OO 00000E+00 0.0000E+00 00000E+O0 0.0000E+00 0.0000E+0O00000E+O0 0.0000E+O0 O0000E+O0 00000E+00 00000E+00 0.0000E+00 00000E+00 00000E+0O 0000CE+OO 00000E+00O.0000E+0O 0,0000E+O0 0.0000E+00 00000E+00 O,0000E+OO 00000E+Q0 00000E+GO 0.0000E+00 00000E+0O 00000E+0000000E+0O 00000E+0O 0.000OE+00 00000E+0O 00000E+OO O.0000E+0O00000E+0O 0.0000E+00 O.0000E.00 o0000E.OO 0.0000E+00 oooooE+oo o.o000E+oo 0.OCOOE+OO oooooc+oc o.ooooE.oo0.OOc’OE+OO 0.O0c-OE+D0 O.0000E+00 00000E+OO O.1000E-01 O.0000E+0O 0.0000E+0O 00000E+O0 O0000E÷0O 00000E+O000000E+OO 00000E+O0 0C000E+00 00000E.0O O.0000E+O0 o000oE.oo ooooo€+oo 0.QOOOE+O0 O0000E+O0 0.0000E+D000000E+00 O0000E+00 00000E+OO 00000E+O0 O.0000E+OO 0.0000E+0000000E+OO 00000E+00 00000E+0O 0.0000Ei-00 0000-OE+O0 0.0000E+0O O.0000E+0O QM000E+OO o.0000E-f 00 Q.0000E+oo0.0000E+0O 0.0000E+O0 O0000E+0O 0.1460E+01 0.620-OE+0l 0.7150E+01 0.4370E+0l 0.2500E+01 O1990E+0I O2000E-O100000E+00 000-QQE.OQ Q.0000E+OO Q0000E+0Q 0.0000E+OO O0000E+GO 0.0000E+00 O.0000E+00 00000E+0O 0.0000E+000.0000E+00 00000E+00 0.0000E.0O O.0000E+0O 00000E+0O 00000E+0000000E.0O 0.0000E+00 000OOE+00 00000E+00 0.0000E.00 0,0000E+OC 00O00EG0 0OCOOE+0O 0.0000E+0O 0.0000E+o00.0000E+00 0IBOOE+00 02230E+01 O7640E+0I 0.8750E+0I 08700E+01 0.8750E+0l 08640E.0l 0.7970E-fol 07560E+0101690E+O1 00000E+00 0.0000E+00 0.0000E+00 00000E÷00 0.0000E+00 0.0000E+00 0.0000E+00 0.000OE+00 00000E+000.0000E+00 00000E+0O 00000E+00 O0000E+00 0.0000E+00 0.0000E+000.0000E÷00 O0000E+00 00000E-00 0.0000E00 0,0000E+0O 00000E+00 0.0000E+00 0.0000E-*00 0.0000E÷00 00000E+000.0000E+00 0.2190E+0l 0.8290E+01 0.BSOOE+0l 0.8830E+01 09170E-e0l O8420E+0l 0.7770E+0l 0.7060E+0I 0.7320E+0l0.7620E+0l 0.3270E+01 0.0000E-00 00000E+00 00000E+00 00000E+00 00000E+00 0.0000E+00 0.0000E+00 00000E+0000000E+00 00000E+0O 0.0000E+00 0.0000E+00 00000E+00 00000E.0000000E+00 00000E+00 00000E+00 00000E+00 0.0000E+00 0.0000E+00 OS000E+00 0.0000E+00 0.0000E+00 00000E.000.0000E+00 04840E+01 08380E.01 0.8740E+01 0.8740E+01 0.8290E+01 0.7140E+01 0.T7IOE+01 06800E+01 06770E+010.7740E+0I 08730E+01 03690E+01 0.4000E-01 00000E00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+000.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O0000E+00 0.0000E+000.000-DE+00 0.0000E+00 00000E+00 0.0000E+00 00000E+00 00000E+0O 0.0000E+00 0.0000E+00 00000E+00 0.0000E+00OM000E+00 05960E+01 08590E+01 0S830E+0I 07950E+01 07220E+01 07220E+01 07390E+01 07260E+0I 0.7I00E+01O.7660E+01 0.8380E+0I 08940E+01 05190E+01 0.7000E+00 00000E+00 00000E+00 0.0000E+00 0.0000E+00 00000E+00O0000E+00 00000E00 OM000E+00 00000E÷00 00000E+00 00000E+0000000E+00 00000E+00 00000E+00 0.0000E+00 00000E+00 00000E+00 00000E+00 00000E÷00 00000E+00 00000E+0001200E+01 08130E+0l 08720E+0I 0.8160E+0I 0.7630E+01 07670E+01 0.7660E+01 0.7590E+0I 07340E+0l 0.7220E+010.8380E+0l 07560E-’Ol O8720E+01 01740E+0l 05170E+01 0IIBOE+0I 00000E+00 00000E+00 O000-OE+00 0.0000E+000.0000E+00 0.0000E+0O 00000E+00 0.0000E+00 00000E+00 00000E+000.0000E+00 00000E+0O 00000E+00 00000E+00 0.0000E+00 00000E+00 0.0000E.00 00000E+00 00000E+00 0.0000E+000.3100E÷00 07250E+01 09160E÷O1 09220E+0l 0.7740E+0I 06540E+0l 06530E+0I 0.7340E+01 0.1082E+02 08410E+0I0.8020E+0I 07220E+01 O7790E+0l 07580E+0l 06630E+01 O5800E+Ol 0.1040E+0i 0.0000E+00 0.0000E+00 0.0000E-.000.0000E+00 00-000E+00 00000E+00 0.0000E+00 00000E+00 00000E+000.0000E+00 0.0000E+00 00000E+00 00000E+00 0.0000E00 00000E+00 0.000-OEI-00 OS000E+0O 0.0000E+00 0.0000E+0000000E+00 0.5130E+0l 09390E+01 0.9920E+0l 0.7440E+0l 06260E+01 04020E+0l 0.9540E+0l 0.l526E02 0.1009E+02O.7770E+0l O.7920E+01 08040E+0l 0.7570E+0l 0.6770E+0l 0GGOOE+01 0.3370E+01 0.0000E-.-00 0.0000E+00 00000E00O0000E+0O O0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O0000E+00O.0000E+O0 0.0000Ef 00 0.0000E+00 0.0000E+0O 0.0000E+00 00000E+00 00000E+00 0.0000E+0O 0.0000E+00 O0000E+00O.0000E-’OO O.4530E+0l 0.9830E--0l O.9940E+0l 08650E+0l 0.6830E+01 Q.2300E+Q1 01025E+02 01659E.02 0.l3SIE+0201130E+0l 0.6000E+0l 0.7860E+0l 0.7370E+0l 0.7510E+01 06900E+0l 0.4900E+01 02500E+0O 0.0000E+00 00000E+00O0000E+00 00000E+00 0.0000E+00 0.0000E+0O 00000E+00 00000E+0000000E+00 0.0000E+00 0,0000E+00 0.0000E+00 0.0000E+00 00000E+00 00000E+00 00000E’OO 0.0000E+00 00000E+0000000E+00 02000E-01 0.7740E÷0l 01016E+02 09550E+0l 0.9700E+01 0.1395E+02 0.1709E.02 09180E-01 01086E+020.1083E+02 0.6910E+0l 0.8390E+0I 08480E+01 0.6970E+01 07250E+01 0,86?OE+01 0.4530E+01 0.1300E+00 00000E+000.0000E+00 00000E+00 00000E+00 0.0000E+00 0.0000E+00 00000E+000.0000E+00 00000E+00 0.0000E+00 00000E+00 00000E+00 00000E+00 0.0000E+00 00000E+00 0.0000E+00 00000E+0O0.0000E+00 00000E+00 0.49l0E+0l 01034E+02 09780E.0l 0.1107E+02 0.1394E-02 0.1855E-f 02 0IOISE+02 03580E+010.1226Ei-02 0.6450E+0l 08790E.0l 08390E+01 0.6310E+01 0.7810E.0l 0.8870E+01 0.8580E+01 03530E+0l 03200E.000.0000E+00 0.0000E+00 00000E+00 00000E+00 00000E÷0O 00000E.0000000E+O0 00000E+00 00000E+00 00000E+00 O0000E+00 0.0000E+00 00000E+00 00000E+00 00000E+00 0.0000E+000000-OE+00 0.0000E+00 01330EeOl 0IO3SE+02 09770E+0l 0.IOYOE+02 01558E.02 02188E+02 01258E+02 08800E+0l01396E+02 0700OE+01 0.2680E+0l Q.5350E1-0j 0.8050E.0l 0.6720E+01 0.8110E+0l 09420E.0l 08980E+01 04110E+0101200E+00 0.0000E÷00 00000E+00 00000E+00 00000E+00 0.0000E+0000000E+00 00000E+00 0.0000E+00 00000E.00 00000E.00 0.0000E+00 0.0000E-.0O 0.0000E+00 00000E+00 00000E+0000000Ee00 00000E+00 03000E-0I 0.9460E+01 O.1012E+02 0.1093E+02 0.1549E+02 02125E+02 0.5800E+0l 0.7150E+0l0.1592E+02 06230E+0l 0.7800E÷00 0.3770E.0l 0.6870E+0l 06510E÷01 08230E÷01 0.1173E+02 0.1125E+02 08360E+0l0.5480E+01 031 DOE-tOO 0.0000E+O0 00000E+O0 00000E00 0.0000E000.0000E+00 00000E+0O 0.0000E+00 00000E.OO 0.0000E+00 00000E+0O O0000E.D0 0.0000E+00 0.0000E+00 00000E+000.0000E+OO 0.0000E+O0 0.0000E+00 0.8190E+Ql 01105E-02 01138E+02 0.1782E+02 02270E+02 D.1903E+02 0.1720E+010.4240E+0l 0.2350E+01 0.1&40E+01 0242OE+01 0.7620E+0l 0.7860E+0l O.9280E+01 01102E.02 06840E+01 0.8680E.O107900E+01 04140E+01 0.0000E-t00 o0000E-too O.0000E+OO o.0000E÷OO

E-20

Page 228: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

O0000€+OQ O.0000E+OO OOOCOC.OO Q0000E+OO O0000E+OO O0000€+OO O0000E+OO O0000E.OO Q.0000E+OO O.0000E.-OOO0000€.OO O0000E.OO O0000E+OO O8170E+O1 OIDSIE+02 O.1213E+02 O.1993E+02 O2258E+02 O.I7ICE+02 O.1160E+O1O.3560E+O1 O1593E+02 O1365E+02 O2070E÷Ol O7650E+Ol O.6020E+Ol O8280E+O1 O9530E+O1 O8ISOE+O1 O.8750E+O1O.8250E+O1 O7650E+O1 Q.1420E+O1 O.0000E+OO O.0000E+OO O.0000E+OOO0000E.-OO O0000E+OO O0000E+OO O0000E÷OO O0000E+OO O,0000E+OO O0000E+OO O.0000E+OO OOCOE+QQ Q.0000E+OOO.0000E+OO O.0000E+OO O5900E+OO O9680E+Ol O.8800E+Ol O.1131E+C2 O.2139E÷02 0.2281E+02 0.1605E+02 0.4590E.O00.38706+01 0.58206+01 0.82006+01 0.5800E+0I 0.61106+01 0.19206+01 010156+02 0.52806+01 0.67506+01 0.81506+010,88506+01 0.79406+01 086506+01 0.57006÷00 0.00006+00 0.00006÷000.00006+00 0.00006+00 0.00006÷00 0.0000E.00 O.0000E+00 0.00006+00 0.0000E÷00 0.00006÷00 0.00006+00 0.00006÷000.00006+00 0.00006+00 0.23206+01 O.4019E+02 0.92006+01 0.12146+02 0.19546+02 022726+02 013806+02 0.29006.000.4120E+0I 017986+02 063406+01 0.86006+04 0.17806+04 0.60506+01 0.66806+01 0.17506+01 032006+01 0.72506+010.90506+01 085506+01 0.7940E+01 0.46706+01 0.00006+00 0.00006+00O,0000E+0O 0.00006÷00 0.00006+00 0.0000E+0O 0.00006+00 0.00006+00 0.00006÷00 0.00006÷00 0.00006÷00 0.00006÷000.00006÷00 0.0000E+O0 0.5230E+O1 0.91806+01 O.8860E+OI 0,81006+01 0.60206+01 0.48676+02 015816+02 0.30506.01015706+01 0.14I4E+02 033806+01 0.61906+01 O.8420E+O1 0.70906+01 0.58106+01 0.40206+04 0.36406+01 0.7900E÷O1O.9190E+O1 0.84806+01 0.79106+01 0.7680E+01 0.11606+01 0.00006+000.00006+00 0.00006+00 0.0000E÷0O 0.00006÷00 0.0000E+00 0.00006÷00 0.0000E+00 0.00006+00 0.00006+00 0.00006+000.00006÷00 0.00006+00 083206+01 0.10726+02 0.61506+01 0.47506+01 0.35406+04 0.1854E+02 018736+02 0.1441E+020.38406÷01 050806+01 0.16606+01 0.10016+02 023406+01 049106+01 087406+01 0.7280E+0I 0.42306+01 0.58506.010.61906÷01 0.80906+01 0.74406+01 0.75106+01 0.25206+04 0.00006÷000.00006.00 0.00006÷00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.0000E+00 0.00006+00 0.00006÷000.00006+00 0.11506+01 0.1OIIE+02 0.9670E+0l 069606+04 0.62806+01 0.53906+01 0.12896+02 0.11966+02 0.29706.010.41606+01 O.5900E+0l 0.92206÷01 0.70806+01 0.14176÷02 0.54206+01 0.41106+01 0.2420E+01 0.17306+01 0.33006÷010.61606+01 0.75906+01 0.6690E+O1 O.7160E+01 046606+04 0.00006+000.00006÷00 0.0000E+O0 0.00006÷00 0.00006+00 0.0000E+00 0.00006+00 0.00006+00 0.0000E+0O 0.00006+00 0.00006+000.10006÷00 0.63606+01 0.10556÷02 0.1040E+02 0.6330E+OI 0.1470E+0I 0.20I0E+0I 0.43006÷00 0.00006+00 0.00006+000.13506+04 0.3390E+0l 0.73006+01 0.75806+01 0.48206+01 014906+01 0.32106+01 O.1120E+0I 0.S100E+O0 013806+010.72106+01 0.7370E+01 0.74706+01 0.74606+01 0.58106+01 0.10006+000.00006÷00 0.00006+00 0.00006+00 0.0000E+0O 0.00006+00 O.0000E÷OO 0.0000E+O0 O.0000&-O0 0.00006+00 O.8900E+0O0.58406÷01 010056+02 0.97906÷01 0.81806+01 0.71506+01 058506÷01 0.95006+00 0.1200E+O0 0.00006+00 0.00006÷000.14906+01 031906+01 0.85706+01 014606+01 0.22806+01 0.51006+00 0.1200E+O0 0.2700E+OO 0.22006+00 0.1330E+010.6970E+01 081906+01 0.76906+01 078106+01 0.28606+01 042006+00O.00006i-oo 0.00006÷00 0.0000E÷00 0.0000E+0O 0.00006+00 0.00006+00 0.00006÷00 0.00006+00 0.19006+01 0.75706÷01092306+01 0.87506+01 068406+01 0.81706+01 0.67106+01 0.7150E+0I 0.49106+01 0.14306÷01 0.20006-04 0.74006+000.63006÷00 0.35806+01 0.57506+01 0.13006.00 0.7000E+00 0.1200E+0l 0.67106+01 0.52306+01 0.11596+02 0.74406÷0*0.72506÷01 0.79706+01 0.72806+01 0.71006+01 0.59306+01 0.50006+000.00006+00 0.00006+00 0.00006+00 0.0000E÷00 0.00006+00 0.0000E+00 0.90006.01 0.27106+01 0.79306+04 0.85106.010.94406÷04 0.9690E+0I 0.76106÷01 0.36406+01 0.48506+01 0.7490E+01 0.6230E+0I 0.7160E+01 0.2800E+01 0.2900E+000.1330E+01 0.60806+01 0.41006+01 0.1760E+01 0.20506+01 0.14006+00 0.1270E+0I 0.37506÷01 0.I111E÷02 0.99406+010.11296÷02 0.6660E+0I 0.70806÷01 0.6990E+0I 0.68606÷04 0.28006÷000.00006÷00 0.0000E÷00 0.00006+00 0.00006+00 0.00006+00 0.00006+00 0.3540E+01 0.75206.01 0.65106+01 0.50506+010.72306÷01 0.67306+01 0.58706+01 0.5670E÷01 0.58506÷01 0.65506+04 0.68506+01 0.77306+01 0.56006+01 0.19306÷010.75906÷01 0.6020E+0l 0.33506÷01 0.30106+01 0.31306÷01 0.11186+02 0.11186+02 0.14426+02 0.18506+02 0.12646+020.96106÷01 0.64906+01 0.10456+02 0.11766+02 0.1448E+02 0.10606+010.0000E+00 0.0000E÷00 0.00006÷00 0.0000E÷00 0.00006÷00 0.58006+00 0.71106+01 0.8030E+01 0.60506+01 0.19106÷010.24106+01 0.45106+01 0.43306÷01 0.57906+01 0.63606+04 0.71806+01 0.76806+01 0.75606+01 0.30806+04 0.8$60E÷010.8710E+01 0.46206+04 0.31706+01 0.27106+01 0.80206+01 0.14606+02 0.2282E+02 0.1709E÷02 0.44896+02 0.45406+010.44506+01 0.74106+01 0.78006+01 0.94006.04 0.1104E÷02 0.3700E+000.0000E’00 0.00006÷00 0.00006+00 0.00006÷00 0.00006+00 0.48906+01 0.86806+01 0.68406+04 0.74806+01 0.61106+010.40406+01 0.37406+04 0.45506+01 0.5170E÷01 0.58206.01 0.74606÷04 0.77606÷01 0.58906+04 0.28806+01 0.83606+010.92006÷01 0.49406+01 0.55606÷01 0.24906÷01 0.40806+01 0.45406+04 0.2103E+02 0.1034E÷02 0.74906+01 0.62206+010.49906+04 0.6530E+01 0.1OISE÷02 0.1387E÷02 0.11736+02 0.31006+000.00006÷00 0.00006+00 0.00006÷00 0.00006+00 0.42706+01 0.87306+01 0.8840E+0l 0.5690E+0l 0.5470E+0l 0.44106+010.42106+04 0.3430E÷0l 0.44206÷01 0.60106+01 0.65506+01 0.71206+01 0.77706+01 0.68906+01 0.50906÷01 0.44206+010.14106+01 0.79006+00 0.84306+04 0.13626÷02 0.11436+02 0.20526+02 0.1758E÷02 0.1280E÷02 0.56706+01 0.94806÷010.62606÷01 0.93906÷01 0.10886+02 0.1096E+02 0.43906+01 0.40006+000.00006÷00 0.00006+00 0.0000E÷00 0.00006+00 0.65406+01 0.8740’E+OI 0.75206+01 0.38306÷01 0.3160E+0l 0.49306÷010.44506+01 0.40206÷01 0.49606÷04 0.62206+01 0.64806+04 0.71906+04 0.64306+01 0.70706+01 0.61806+01 0.39006÷000.00006+00 0.58706+01 0.14686÷02 0.32916÷02 0.33466+02 0.35386+02 0.1700E÷02 0.12206+02 0.1089E+02 0.4088E+020.9720E÷0l 0.1094E+02 0.9150E+0l 0.8890E+0l 0.42806+01 0,38006+000.00006+00 0.00006+00 0.00006+00 0,00006÷00 0.82806+01 0.73306÷01 0.4080E+0l 0.2960E+01 0.3550E+0l 0.48306+010.37506÷01 0.49306+01 0.46906+04 0.4750E÷0l 0.61106+01 0.63006÷01 0.59206+01 0.7160E+01 0.7470E+01 0.18706+0*0.2500E+01 0.7740E+01 0.2301E+02 0.36756÷02 0.38446+02 0.33416+02 0.30246+02 0.25436÷02 0.1509E+02 0.42756.020.10906÷02 0.11946+02 0.92806+04 0.78806+01 0.48806+01 0.41006+000.00006+00 0.0000E+00 0.0000E÷00 0.9200E+00 0.1006E+02 0.81806+01 0.42106÷01 0.28506÷01 0.3280E+01 0.44206+040.29806+01 0.45506+01 0.27506+01 0.44806+01 0.4090E+01 0.2700E÷01 0.3540E÷0l 0.74806+01 0.85906+01 0.70406+010.41806+01 0.34406+01 0.2328E+02 0.36596÷02 0.38306+02 0.40916÷02 0.39996÷02 0.34296÷02 0.2178E+02 0.17586÷020.44256+02 0.10446+02 0.93906+01 0.97106+01 0.7400E+01 0.5900E+000.00006÷00 0.0000E÷00 0.00006÷00 0.80006-01 0.85606+01 0.88706+01 0.73406÷04 0.34506÷01 0.97006÷00 0.42506÷010.32306+04 0.48906+01 0.3650E÷01 0.34006+01 0.2790E+04 0.3780E÷0l 0.39606+01 0.73406+01 0.8570E+01 0.37406+010.30306+01 0.10506+04 0.21066÷02 0.3381E+02 0.36676÷02 0.39266+02 0.38376+02 0.27356+02 0.21546÷02 0.1641E+020.13706+02 0.1020E+02 0.9920E+0l 0.85506+01 0.8490E+04 0.38006÷000.00006+00 0.0000E÷00 0.00006÷00 0.1230E÷01 0.88806+01 0.95406+01 0.92306+04 0.68706+01 0.45006÷04 0.2330E÷0l

6-21

Page 229: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

09040E+01 0.7930E+01 01149E+Q2 O.3351E+02 0.3617E+02 0.3819E+02 0.3146E+02 0.3333E+02 0.2809E+02 0.1881E+020.1329E+02 0.9690E+01 0.9920E+01 0.8850E+01 0.7980€+01 0.2800E+0O00000E•00 0.0000E+00 0.0000E+0O 0.2460E+0l 06680E+0l 0.8SBDE+0l O.8930E+01 O9370E+0l 0.8550E+01 0.78.40Ee010.78OE+01 0.4030E+01 0.4050E+0l 02920E+01 04020E+01 0.S3SDE+ol 06890E+01 0.7520E+O1 0.7590E÷0l 0.7B60E.D10SSSDE+01 05740E+01 0.1247E+02 0.3591E+02 0.3624E+02 0.3400E+02 0.3189E+02 0.3CSSE+02 0.2275E+02 0.1243E+020.1668E+02 0.1573E+02 0.1 l31E+02 o.BOSOE.ol O.SSSOE+OI 0 G000E+0Q00000E+0O 00000E•OO G0000E.0O 0.0000E+00 04SCOE+0O 05130E+0l 0S490E+01 0.OOSOE+01 0.OBOOE+OI 0.8080E+010.7570E+01 0.6520E+01 0.3110E+01 o2300E.o1 o.zsco+oi 0.248oE+01 03790E+01 0.4580E+01 O,4380E.01 0.7760E+D1O.7000E+01 0.4010E+01 02360E.02 0.3314E+02 03442E+02 0.3402E+02 0.3649E+02 0.3057E+02 0.1934E+02 0.1442E+020.1067E.02 0.5070E.0l 0.6900E+0l 0.7490E+01 0 SOS8E.O1 0.3000E.0Q0.0000EtOG D0000EtOC 00000E+OO 0.0000E+00 00000E+0O D0000E+00 03430E+01 08380E+01 08790E+0I 08830E+0108210E’Ol 08120E.Ol 08030Ei01 0.4150EaOl O.2670E+01 0.2240E+01 02850E01 03890E.01 04790E+01 05350E+O103750E.01 OZOSOE.0l 02456E+02 0.3025E.02 03041E+02 0.3914E.02 O.3447E+02 0.2537E+02 01370E+02 0IOSSE.0208120E.0l 0I1OSE*02 01132E+02 0.1017E+02 0.2890E+O1 02800E+0O0.0000E+0O 00000E+0C 00000E+00 0.0000E.00 00000E+00 00O0E.0O 00000E+0O 0.3370E+0l 0.8390E+01 0.8800E.0109060E01 09050E01 08440E+0l 0.7610E+01 04460E+0l 0.5920E+0l 03400Et01 0.2020E’Ol 0.1730E+01 03240E+0l0.3250E.01 04570E+01 0.1B4OE+02 0.2458E+02 0.2889E+02 0.3997E+02 0.3254E+02 0.2007E+02 08720E+01 06530E.0l0,7960E+0l 09430E+01 0.7230E+0l 0.7650E+0l 0.5280E+01 OS000E-Ol00000E.00 0.0000E+0O 0.0000E+0O 0.0000E+00 0.0000E+0O 0.0000E+00 0.0000E+0O 0.0000E+00 02720E+01 07QOeE+0l09020E+0l 08930E+0I 0.8750E+0I 0.8760E+01 08960E+01 08630E+0l 0.8950E+0l 0.4690E+01 0.1380E+01 09700E+OQ0.5580E.O1 0.5740E+01 0.1250E+02 0.1993E+02 0.2221E÷02 0.3610E+02 0.2649E+02 0.5650E+01 0.9920E+O1 04690E+010.2280E+0I 04590E+01 0.7660E+01 0.8180E+0I 0.2800E+0I 00000E.0O00000E+0O 0.0000E+0O 0.0000E+0O 0.0000E+00 0.0000E+0O 00000E+00 00000E+00 0.0000E+00 0.0000E+00 03300E+0Q0.7110E.01 08370E+01 0.8680E+0l 0.9030E+Q1 0.9210C+0l 0.1075E.02 0.1504E+02 0.1157E+02 0.3900C+0I 0.7060E+010SSIOE+0l 0.416E+01 0.2361E+02 0.3442E+02 03009E+02 02575E+02 0.1663E+02 0.7960E+01 0.1008E+02 0.9330E.010.5570E.0l 07820E+01 08120E+01 0.7670E+01 0.1310C+01 00000E+0OO0000E+0O 00000E+00 0.0000E+00 0.000OE+0O 0.0000E.OO 00000E.0O 0.0000E.00 0.00OOE+00 0.00O0E0O 0.0000E+0Q

0.1280E+01 0.6230E+01 08000E+01 0.8850E+01 0.9550E+0l 01019Es02 0.1039E+02 09730E+01 0.8220E+0I 0.8320E+0107090E+O1 0BBSOE+01 0.1234E+02 0.1692E+02 0.1285E+02 01343E+02 0.1162E+02 0.1097E+02 09670E+01 0.1058E.0208940E+0l 0.8400E÷0l 07920E+0l 0.5980E+01 0.1300E+0l 0.0000E+0000000E+OO 00000E+0O 00000E+00 0.0000E+0O 0.0000E+0C 00000E+QQ 0.0000E+0O 0.0000E+00 00000E+00 0.0000E.O000000E+0O 0.0000E+00 03220E+01 0.7570E+0l O.9110E+0l 0.9480E+01 08470E+0l 0.7700E+0l 0S23flE+01 0.7950E+0l0.9270E+01 0B420E+0l O8870E+0l 0.1086E+02 08850E+O1 0.9970E+01 09190E+0l O.7310E+01 0.1084E÷02 0.8130E+0l08630E+0l 0.8170E+0l 0.7840E+01 0.4650E+01 0.2900E+0O 0.0000E+00O0000E+0O 00000E+0O 0.0000E+0O 0.0000E+0O 0.0000E+0O 00000E+0O 00000E+0O 0.0000E+0O 0.0000E+00 0.0000E+00

0.0000E+0O 0.0000E+00 0.2590E.0l 0.3570E+0l 0.3310C.0l 0.9020E+OI 0.5730E+0l 0.9230E+0l 0.9630E+0l 0.9170E+010,1282E+02 08510E+0l 0.9270E+01 0.1OIIE+02 0.8720E+0l 0.9060E.01 0.1021E+02 0.7700E+0l 0.1047E+02 08280E+010.6980E+0l 0.7630E+01 0.5790E+0I 0.1260E+Ol 0.0000E’OO 0.0000E.000,0000E+0O 00000E÷OO O.G000E+00 0.0000E+0O 0.0000E+00 0.0000E+OO 0.0000E+0O 0.0000E+00 0.0000E+00 0.0000E+0O

0.0000E÷0O 0.00OoE÷O 0.OOO0E+0 0.0000C+0O 0.8000E-Ol 0.1710E+01 0.2820E+01 0.3720E+01 0.7760E+01 0.9090E+010,1202E+02 0.9350E+0I 0.8360E+0I 09060E401 0.7420E+01 0.8140E+01 O.9010E+01 0S430E+01 0.7860E+0l 0.8290E+0l0.7050E+01 0.3570E÷O1 0.1500E+0O 0.0000E+0O 0.0000E+00 0.0000E+0Q0,0000E+0G 0.0000EtGO 0.0000E+00 0.0000E+00 0.0000E+0O 0.0000E+O0 0.0000E+0O 0.0000E+00 0.0000E+O0 00000E.0O0.0000E+0O 00000C.oO O.0000E+O0 0.G000E+00 0.0000E+00 0.0O0E•00 0.0000E+0O 0.0000E+00 0.IIOOE+0O 0.1710E+010.SS6OE÷0l 0.8760E+Ol O8220E+0l O.8720E+01 0.8870E+01 083B0E+01 0.5640E+01 0.1380E+0l 0.1570E+01 0.7500E+0O0.6600E.0O 00000C.0O 0.0000E+00 0.0000E+O0 0.0000E+0O 0.0000E+0O0.0000E.0O 0.0000E+oo 0.0000E+00 0.0000E.00 0.0000E+00 0.0000E+0O 0.0000E.0O 0.0cOOE+00 0.0000E÷0O 00000E+000.0000E.00 00000E+0O 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 00000E+00 0.0000E+00 O.0000E+00 00000E.0O0.2400E+00 04220E+01 0.6.470E+01 0.4810E+01 0.3970E+01 0.8300E+00 0D000E+O0 0.0000E+00 00000E+00 Q.000CE+000.0000E+0O 0.0000E+00 00000E+0O 0.0000E+00 00000E+00 0.0000E+0O0.0000E+0O 0.0000E+00 0.0000E+00 0.0000E+00 00000E.00 0.0000E.0O 0.0000E+00 0.0000E+00 0.0000E+0O 00000E+0Q00000E+0C 00000E+00 0.0000E+00 0.0000E+OC 00000E+0O 0.0000E+0O 0.0000E+00 0.000OE+00 0.0000E+00 0.0000E+0O0.0000E.0G 00000E+0O 0.0000E+00 0.0000E.00 0.0000E+0O 00000E.0O 00000E+0O 0.0000E+00 00000E+00 00000E+0O0.0000E+0O 00000E.0O 0.0000E+0O 0O0OtE+O0 0.0000E+OO 0.0000E+000.0000E+0O 00000E+00 0.0000E+00 0.0000E÷00 0.0000E+0O 00000E+00 00000E+00 0.0000E+0O 0 0000E÷00 00000E+000.0000E.0O Q.0000E+00 0.0000E+00 0.0000E+00 00000E.0O O0000EtOG 0.0000E.00 0.0000E00 0.00OOE00 0.0000E000.0000E+0O 00000E+00 0.0000E+0O 0.000OE+00 0.0OE+0O 0.0000E+00 0.0000E.00 0.0000E’OO 0.0000E+0C 00000E.O000000E+0O 00000E+00 0.0000E+0O 0.0000E+00 0.0000C+0O 0.0000E+00

-1 0

E-22

Page 230: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

APPENDIX F

Page 231: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

4.5

Observed —s— S0.01 8=0.05 —v--- 8=0.1 —e— 80.2 -e— 80.4

F-I

5

SHAFT I (State No.5253-01)Observed vs. Simulated Water Levels

4

— 3.5U)E

1.5

1

0.5

042 44 46 48 50 52 54 58 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 82 94

year

Page 232: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

900

800

700

.0(G

600a,>0I04-.

3500

400

SHAFT 2 (State No.5154-01)Observed vs. Simulated Water Levels

300

— Observed —.— S0.01

year

—e— S0.4

42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 82 94

-o- S=0.05 —v-- S=0.1 —.--- S=0.2

F-2

Page 233: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

1700

1600

1500

1400

1300

1200

1100

1000

900

SHAFT 3 BULKHEAD (State No.4953-02)

year

Observed vs. Simulated Water Levels

\

I

/C’,

Ea)

.0(a4C

I

a

4

a

\

---Wa-

—.——‘Ii

42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 82 94

— Observed —s-- S0.01 -a- S0.05 —v-- S0.1 —.--- S0.2 —e-- 80.4

Page 234: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

1100

1000

900

800

700

600

WELL I (State No.4853-02)Observed vs. Simulated Water Levels

0E

I42 44 46 46 54) 52 54 56 56 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 82 94

year

— Observed -a— S0.01 -o- S0.05 —— S0.1 —.-- S0.2 —a—- S0.4

F-4

Page 235: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

WELL 2 in shaft 3 (State No.4953-01)Observed vs. Simulated Water Levels

900

— Observed —.— S=0.01 -€-- S=0.05

year

-e--- 8=0.4

1700

1600

1500

0E140O

1300

0

1200

1100

1000

42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 82 94

—v--- S=0.1 —e— 5=0.2

F-S

Page 236: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

1400

1300

1200a)

.0Co

C1100

S

‘1o003

900

800

WELL 3 (State No.4954-01)Observed vs. Simulated Water Levels

year42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 82 94

— Observed —a— S0.01 - o - S0.05 —r— S’0.1 SO.2 —e— S0.4

Page 237: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

0E

1700

1200

1100

— Observed —a-- S=0.01

year

-a— S=0.2 —e-- S=0.4

1800

WELL 4 (State No.4952-02)Observed vs. Simulated Water Levels

1600

1500

1400

1300It

42 44 46 46 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 82 94

-o- S=0.05 —v-- S=0.1

F-’

Page 238: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

1300

1200

1100

1000

900

800

700

600

WELL 6 (State No.5054-02)Observed vs. Simulated Water Levels

year

— Observed —a-- S0.01 -c-- S0.05 —v--- SO.1 —.-- S=0.2 —e— S0.4

$

—a——a

U,

E

I/

I

— I a —

—aa

4

42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 88 88 90 82 94

F-9

Page 239: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

1600

WELL 5 (State No.4852-02)Observed vs. Simulated Water Levels

1400

-0- S=O.05

year

—t- S=O.2 —e-— S=0.4

2000

1900

1800

.0N

17O0

a,Ia,4-(U

1500

42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 82 94

— Observed —a— S=O.01 —..—- S=0.1

F-B

Page 240: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

U,Eii)

.0Cu

aC

4)>a)

ill(a

1000

600

— Observed —a— 8=0.01 - - S=0.05 —v-- S=0.1 —e-- S0.2 —e— S0.4

1100

WELL 9 (State No.4854-Cl)Observed vs. Simulated Water Levels

I

a

900

800 -

700

I -

tj;i

*

k At.

a

I

aU—’

— I I I P I I I I I I_I— I I I I I I I I I I I I I I

42 44 46 48 50 52 54 56 56 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 82 94year

F-I 0

Page 241: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

APPENDIX G

Page 242: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

SH

AF

TI

(Sta

teN

o.52

53-0

1)O

bse

rved

vs.

Tra

nsi

ent

Sim

ulat

edW

.L.

5-

4-

U) S a) .0

Obs

erve

dw

ater

leve

ls

2S

tora

geC

oeff

icie

ntS

=0.

01,

0.1,

&0.

4

1-’

-- t

0- 19

4220

0021

0022

0023

0024

0025

0026

0027

0028

0029

42ye

ar

Obs

erve

dS=

O.1

Page 243: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

1600

1550

1500

C’, E 0 > 0 .0

1450

(U 4 C

1400

a) I-. a) (U

1350

1300

1250

SH

AF

T3

BU

LK

HE

AD

(Sta

teN

o.49

53-0

2)O

bse

rved

vs.

Sim

ulat

edT

ransi

entW

i.

Bes

t-F

itC

alib

rati

onP

umpe

dat

‘42

-‘92

Ave

rage

Pum

page

Obs

erve

dw

ater

leve

ls

-if-

S=O

.4

S=

Sto

rag

eC

oeff

icie

nt

year

Page 244: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

900

850

U) E ci) 800

.0 (U C ‘3) > .9

750

I-. a) 4

-’ (U

700

650

WE

LL

I(S

tate

No.

4853

-02)

Ob

serv

edvs.

Sim

ulat

edT

ransi

ent

W.L

.

Bes

t-F

itC

alib

rati

onP

umpe

dat

42-9

2A

vera

geP

umpa

ge

Obs

erve

dw

ater

leve

ls

S=

Sto

rage

Coe

ffic

ient

S0

.4

year

Page 245: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

WE

LL

2in

shaf

t3

(Sta

teN

o.49

53-0

1)

15W

Obse

rved

vs.

Sim

ulat

edT

ransi

entW

I.

1500 I: 1400

ci) > 0) I a) Ct

1350

1300

1250

Bes

t-F

itC

alib

rati

onP

umpe

dat

42-9

2A

vera

geP

umpa

ge

Obs

erve

dw

ater

leve

ls

S=O

.4

S=

Sto

rage

Coe

ffic

ient

s=o.

1

year

Page 246: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

1200

1150

Cl) E C) 11

00

-D It 4 C a) > S10

50I a) It

1000

950

WE

LL

3(S

tate

No.

4954

-Cl)

Ob

serv

edv

s.S

imula

ted

Tra

nsi

ent

W.L

.

Bes

t-F

itC

alib

rati

onP

umpe

dat

‘42

-‘92

Ave

rage

Pum

page

Obs

erve

dw

ater

leve

ls

S=O

.4

S=

Sto

rage

Coe

ffic

ient

s=o.

1

year

Page 247: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

WE

LL

4(S

tate

No.

4952

-02)

Obse

rved

vs.

Sim

ula

ted

Tra

nsi

entW

I.

Bes

t-F

itC

alib

rati

onP

umpe

dat

‘42

-‘92

Ave

rage

Pum

page

Obs

erve

dw

ater

leve

ls

year

U) S a) > 0 .0 Ca C a) > ci) I a) 4- CU

1650

-

__

__

__

__

__

__

__

__

__

__

__

__

__

________________________

__

__

_________________________________________________

1600

1550

4!

1

1450

N.8=

0.1

1400

--

-_

__

_

_____

-

13

5O

..

....

.._nr-

2

SS

tora

geC

oeff

icie

nt

21(JO

2200

23(X

)2400

2b00

2/0

02000

29

42

Page 248: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

1750

1700

1650

0 E 11)

> 0 .01600

Ct

4 C

1560

a) I a)-S Cu

1500

1450

1400

1!

WE

LL

5(S

tate

No.

4852

-02)

Ob

serv

edvs

.S

imula

ted

Tra

nsi

ent

W.L

..

Bes

t-Fi

t Cal

ibra

tion

Pum

ped

at‘4

2:9

2A

vera

geP

umpa

ge

yea

r

Page 249: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

WE

LL

6(S

tate

No.

5054

-02)

Obse

rved

vs.

Sim

ula

ted

Tra

nsi

ent

W.L

.10

40

1020

1000

U, E a) > 2

980

Ct

C 960

ci) I- ci) Ct

940

920

900

Bes

t-n

tC

alib

rati

onP

umpe

dat

‘42

-‘92

Ave

rage

Pum

page

Obs

erve

dw

ater

leve

ls

S=Q

.4

S=

Sto

rag

eC

oeff

icie

nt

1ye

ar

Page 250: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

860

840

820

‘8

0o

a) > a) I- a) 4- (U

780

760

740

--

1-t

_____

WE

LL

9(S

tate

No.

4854

-01)

Ob

serv

edv

s.S

imula

ted

Tra

nsi

ent

W.L

.

Bes

t-F

itC

alib

rati

onP

umpe

dat

‘42

-92

Ave

rage

Pum

page

$=

Sto

rage

Coe

ffic

ient

S=O

.4

\s=

o.1

IniU

alw

ater

leve

l=

748

year

Page 251: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

APPENDIX H

Page 252: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 253: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 254: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 255: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 256: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

SHA

FT3

BU

LK

HE

AD

(Sta

teN

o.49

53-0

2)160

0- I 1

500

C) a) > a) I— a) Cu

14

00-

-0212830323436384042444648W

525456

5W60

626466687072747673808254

6688909294

mon

thly

(lat

est

peri

od13

/94)

H---

dyna

mic

stat

ic

Page 257: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

WE

LL

I(S

tate

No.

4853

-02)

90

0-

10%

-%

i--4r

---I

h.

CI

IIW

io cu

nJ>

Ui

IN1

C)

Iii

itli

iitp

i

F .1>

94

pl1

PI

It

Ii’

i4

III:

700

iiI

INI

Ct

INI

I

I,

it II‘N

60

0-

-o26

2fl

3234

3638

4042

4446

4850

5254

5658

6062

tWE

tTh8

—70

7274

7676

8082

8486

8890

92r

mon

thly

(lat

estp

erio

d13

/94)

[----dy

nam

icst

atic

Page 258: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

a Co C 0 Cu > a) 0) a) > U)I a) Cu

1600

WE

LL

2in

shaf

t3

(Sta

teN

o.49

53-0

1)

II

IIJI’j

1ItI

IiII

Vii

iiI

I

ill,

:

Ii

pI

.11

1

IIpp

::‘II

I

1300

2S28

303

234

36

384

042

444E

48

Wb2

b4W

bS80

b2b4

86

68

10(2

14

mon

thly

(lat

est

peri

od13

/94)

(6(8

80

82

8486

88

90

9294

I,

----

dyna

mic

stat

ic

III

II

III,

1400

* I;

Page 259: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

WEL

L3

(Sta

teN

o.49

54-0

1)12

00-

_____________________________________________________________________

L.h2±

° >9:

I‘II

’’1)

::—

IIV

I1—

.II

lil

U) 4—’

I4

11

CuII

900-

800-

-o2

12

83

03

23

43

63

84

042444648505254

5W58

6W62

646C

68

70

72

74

767

88

08

28

48

68

89

09

29

4

mon

thly

(lat

est

peri

od13

/94)

----

dyna

mic

stat

ic

Page 260: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

4 Co C 0 Cu > a) a) a) > a) a) Cu

---

-dy

nam

icst

atic

J

WE

LL

4(S

tate

No.

4952

-02)

S

A‘I

1700

-

1600

-

1500

1400

-4

1300

pN

II)

‘4

3234

363

844

)42

4446

48

b4J

b2S

5658

84)

8264

66

88

1012

14(6

1880

8284

8686

mon

thly

(lat

est

peri

od13

/94)

-n

9092

94

Page 261: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

WE

LL

5(S

tate

No.

4852

-02)

1600-

S‘IIi

•?“I1

I

I1

IIIItIIII

IIIF

V‘lb

II

11

cI

hg

.2:

.1_

V.

Ii

II

II

cuI

>I

IIl

la

Ei)

-I

>

1400

I-(1

)

IP

1300-

-o2

F!T

flV

23

43

63

84

04

24

44

64

85

05

2545656606264666670727476788082

g48

68

89

09

29

4m

onth

ly(l

ates

tpe

riod

13/9

4)

--

-

-dy

nam

icst

atic

1

Page 262: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 263: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 264: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table
Page 265: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Existing Wells, Historical Pumpage, and Water-Levels

There are twenty-four (24) wells with information helpful to the modeling effort. A newwell, Well 14 is currently under construction. The location of these wells are shown Figure 1, pg.2. These wells and their information relevant to producing a flow-model are listed in Table 13,

pg. 50, and Figures 17 through 30. Individual chloride information has been omitted to emphasize the flow-type nature of the model. Both water-levels and pumpage from these wells varytemporally according to seasonal and operational changes and are shown for each well and thecumulative pumpage in Figures 17 through 30- Magnified views of monthly water-levelresponses for each well can be found in Appendix H.

On an island-wide basis, Lana’i has a long record of both pumpage and water-level data.The historical record of pumpage and water-level data spans from 1926 to the present. Recordsfrom 1926 to 1939 and 1942 to 1985 were found on file at the USGS and records from 1988 to thepresent are found in CWRM files. Records for 1986 through 1987 were provided by LCo.

Aquifer hydraulic parameters are also listed in Table 13. The three (3) hydraulic parameters listed are hydraulic conductivity, K, transmissivity, T, and the storage coefficient, S. Theseparameters, their significance, and how they are obtained were discussed earlier and in moredetail. It is important to note that there are nine (9) estimates for K and T but only one (1) estimate for S. This highlights the fact that single-well pumping tests were the conditions underwhich the majority of these parameters were obtained. Therefore, for reasons outlined earlier,these values were obtained under less than ideal situations. Thus, errors are present it should beunderstood that the values in Table 13, pg. 50, are not absolute nor necessarily accurate. However, they do provide a reasonable range to begin the flow model parameter estimation process.Where possible, reported values were checked using pump analysis software (Geraghty, 1989).

The average T value from nine (9) high-level pump tests is 7.854 ft2/day. However, Tvalues are not accurately known because accurate high-level aquifer thicknesses, b, are unknownand vary between analyses.

The average K value from nine (9) high-level pump tests is 18.3 ft/day. Like T values, Kvalues are very rough approximations since b is unknown Typical values for K in basalt can range

from io to l0 fJday (Heath, 1982). Research by Sooros (1973) estimated the range for PearlHarbor flank flows between 7 to 8500 ft/day. For dike complexes outside of caldera regions onsoutheastern Oahu, Takasaki & Mink (1982) had estimated a range for K from 1 to 500 ft/day.Therefore, the average K is for Lana’i is consistent with values for dike complexes. However,several of these pump tests, specifically wells 1, 3, and 9 are known to have encountered flowboundaries. Therefore, K values are probably higher than those estimated from past pump tests.Also, K values were estimated by consultants assuming different aquifer thicknesses. Additionally, the pump test for Shaft 1 indicates a much higher K value for the basal regions of Lana’i.

Typical values for S range from 0.1 to 0.3 for unconfined aquifers. However, only one (1)estimate for S was made by Mink (1983) based on an observation well, T-2, data. S is importantfor transient model simulations only. As stated earlier, S could be 41 times for a lens type situation. However, since the high-level aquifer is not known to follow the Gyhben-Herzberg relationship, unknown lag-time considerations of transition zone movement, and transmissivity wouldhave to be modified as well, it is probable that 0.1 to 0.3 is a reasonable range.

49

Page 266: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Table 13. Existing Lana’i Wells

Initial InitialWater’ Bottom Historical

Y4W Level of Well Pumpage!Initially Elevation Elevation K T Water-

Well No Well Name UntIed (It nI) (ft mel) (ltfday) (Wlday) S Levels

4454-01 Manele ‘na 2.5 na na na na na

4552-01 Well 12 1990 5 -25 na na

4553-01 Well 13 1990 0 -25 na na

4555-01 Well 10 1989 208 208 na na

4852-01 MI-I Tunnel 1918 Dry 2,700 na na na na

4852-02 WellS 1950 1,570 1174 ‘°1S.4 B,4l2 na Figure 17

4852-03 USGS T-2 na na na i11.2 bt4355 b01

4853-01 Gay Tunnel 1920 Dry 1.920 na na na na

4853-02 Well 1 1945 818 -3 4.8 3,740 na Figure 18

4854-01 Well9 1990 ‘808 446 &3.2 2.670 na Figure 19

4952-01 WaiapaaTun. 1924 Dry 2.220 na na na na

4952-02 Well 4 1950 1,589 1149 t’%0 2,S63 na Figure 20

4953-01 We112 1946 1,544 903 na Figure 21

4953-02 Shaft3 195-4 t553 l,5lO na Figure22

4954-01 WellS 1950 h1124 851 6.1 t,te2,902 r.a Figure2a

4954-02 Well 8 1990 1,014 412 116.5 ‘9,900 na Figure 24

5053-01 LowerTunnel 1911 1,103 1103 na na na Figure 25

5053-02 UppcrTunnd 1911 1,500 1500 na na na Figure 26

5054-01 USGS T-3 1950 K1054 ground-928.6 na na na na

5054-02 We116 1986 1,005 600 ‘88.6 135,540 na Figure 27

5055-01 WelI7 1987 650 450 112 2,4OO na na

5149-01 GayWellA 1900 2 -44 na na na na

5154-01 Shaft 2 1938 735 479 na na na Figure 28

5253-01 Shaft 1 1936 2.4 1.4 45ci() m450000 na Figure 29

TOTALData 24wells na 22 20 9 9 1 Figure3O

AVERAGE na na in na nba r17 654 0.1 Figure 30

a ,io4 avafth let fbi wc4Neb. MWik (1983), .cobs Metitd & b =1 lnlIaJ head to bottom of wel (u=0.06 0 12).c,based on recovery dale & Vials method.d. Nance (1993), Jacob’s Method & b = lni waler-level above sea level.a, Probable boundary encoureredf.Updated from K. Takasaid x&/9x field Invesfigallon and resurveyed ground elevalion iriontatlon.g.based on Steams (1953 & 1959) length of tunnel behInd bulkhead Is 745.5 ftft based on Steams (1959).I. Pump test repod M&E PadlIc (1991), Mooffled Soroos Method.

J. b= water table to botlom of well.k. based on Slearrn (1959).I. Soroos Method (1973) moaled.m. Based on Theis equatIon afthoughThelrn Is more appropthte no observation, web (TaIcasakJ & Mitt, 1982): probably too high.

p. not lndufing results from Shaft 1 sInce fl Is a basai source.

Other Notes to Table 13K = estfrnated hydraulic cocflic*Mty from asirrng aquWer tNcloiesses and T resiSts

T= estknaled lrarsnlssndty from pump tea6= storage coetficleri.msl = mean sea level

50

Page 267: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Evapotranspiration (ET, ET, & ET0)

Evapotranspiration, El’, is the combination of evaporation and plant transpiration pro

cesses which return water to the atmosphere. It is important to understand that these two pro

cesses are very difficult to segregate (Todd, 1980). in this study, potential El’, or El’12, is very is

assumed to be the water which will evaporate from a properly operated Class A type pan. This, in

turn, identifies maximum El’,. It is also important to understand that many factors affect pan

evaporation, such as temperature, humidity, solar radiation, wind, and even the height of the pan

above the ground, but all these data are not available for Lana’i. It is important to note that the

error associated estimating evaporation from a Class A pan itself can be as much as ± 10%

(Ekern, & others, 1985, Shuttleworth, 1993). Aside from pan evaporation methods, hydrologists

commonly use the Penman Equation (Penman, 1948) to estimate the potential for evaporation

from the surface of water, exposed openly to the air, through aerodynamic and energy budget con

siderations. Chang (1968) noted that the Penman Equation only gives approximations of open

water evaporation and is also different than El’12 where vegetation type and height is important.

The same factors which affect El’, also affect actual El’, or El’0, but the influence of vegetative

type and density, root-zone depth, soil-moisture storage (SMS), and density of capillary tubes in

the soil are additional considerations. El’0 can be estimated as percentages of ETA,. Normally,

increases in all factors result in increased ET0 although it has been shown that some vegetative

cover can actually reduce El’0 such that it is significantly less than El’1. Pineapple has been

shown to reduce local El’0 by about 20% below ET12 (Ekern, 1960). However, El’0 can also

exceed measured pan evaporation, El’,. In optimum sugarcane cultivation conditions, sugarcane

water requirements may go as high as factors of 1.1 to 1.2 times pan evaporation (Chang, 1961;

Jones, 1980).

There is little direct pan evaporation data to estimate El’1, on Lana’i. State Report R74

(Ekern & Chang, 1985) identifies only one pan evaporation station, Station No. 687.00 at Lana’i

City, having a limited duration of data collection (1957-1958) with an average rate of 25.63 in.Iyr.This measured amount is quite low, especially knowing that over the open ocean the pan evapora

lion rate is approximately 80 in/yr. The lower temperature associated with the higher elevation of

Lanai City (>1500 ft. msl) is probably a major reason for this lower measurement According to

LCo. there is no additional data they have on file. Steams (1940) stated that it is obvious that tran

spiration requirements are not met on Lana’i except for the seven (7) square miles around

Lanaihale where the soil is muddy or damp for most of the year. Ostensibly, earlier overall El’

estimates were based on professional opinion.

Although pan evaporation data is limited, three (3) methods were considered to estimate

El’12 patterns. In both methods, it is assumed that El’12 is equal to pan evaporation. First, one

could use Ekern & Chang’s (1985) state-wide pan evaporation study conclusion that in areas

beneath tradewind orographic clouds evaporation ranges from 30 to 40% less than the oceanic

rate while in dry leeward areas evaporation was 30 to 40% more than the oceanic rate. These

rates could then be applied uniformly for areas above and below the 2000 ft. elevation, respec

tively. Secondly, monthly El’12IRF rations could be estimated and used in spatially consistent

manner like the first method. Thirdly, monthly El’12 ratios can be computed from the monthly per

centages of the total annual evaporation actually measured at L.ana’i City.

39

Page 268: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Of the three methods considered, the third approach of estimating monthly £7’,, percent

ages of total annual evaporation was considered the best method. Although a good rough esti

mate for the windward/leeward percentage of oceanic rate was not chosen because oceanic

rates around Lana’i have not been measured nor is this approach discretized enough both spatially

and temporally. Because ET isa function of aerodynamic and energy processes, not rainfall, the

method of ETJJRF is not a valid ratio estimation. instead, the annual total pan evaporation can be

broken down into its monthly values to incorporate the monthly variations of ET,,, which can then

be used with other monthly estimated parameter values with equation eq.(4), pg. 18. Although

the period of data is limited, the monthly pan data provides the most direct estimate of monthly

ET. This approach is summarized in Table 8.

October 2.67 0.10

November 1.00 0.04

December 1.50 0.06

ETaflfluj 25.63 1.00

a. unacusted monthly data from Station No. 687.00, Ekeni &

Chang,1985). (1/57 to 12157 period)b. ETpIETani,i;= Potential evapotranspiration to total annual

evapotranspiration ratio.

c. Forareas >2000 ft. elevation based on unadjusted data lrvmClass A pan

Table 8. Estimate of Monthly ETplErannua,RatiOS based on Pan Data(Soui: Ekem, 1964.)

Er,,

;rn7’(aJ

January

February

1.73

March

0.07

2.35 0.09

2.45 0.10

2.58 0.10April

May

June

July

August

September

2.18 0.09

2.07 0.08

2.64 0.10

2.35 0.09

2.11 0.08

40

Page 269: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

a. Aquifer is infinite.b. Aquifer is homogenous and isotropic.c. Position and nature of aquifer boundaries.d. Occurrence and nature of confining beds.e. Thickness of aquifer is known.f. Fluid is homogeneous.g. flow to well is uniform and horizontal only.h. Ideally, wells are fully, not partially, penetrating into the aquifer.i. Length of aquifer pump test period is adequate.j. Pumping rate is constant.k. Well losses vs. aquifer losses are known.1. Nominal vs. effective radius of well are known.

As stated earlier, one major assumption for this model is that the regional scale the aquiferis homogeneous and isoptropic. This assumption is almost certainly invalid at the local scaleassociated with aquifer pumping tests. With these caveats in mind it is quite evident that theeffective K, T, and S values can only be approximated and will be appropriate only for the gridand cell size used in this study.

For Lana’i and in the well information portion of this report, Table 13, pg. 50, lists theresults of field pumping test data which estimate the K, T, and S parameters. The average K of

nine (9) tests is 18.3 ft/day, the average T of nine (9) pump tests is 7,854 ft2/day, and S. based onone test, is 0.1. These parameters are discussed in more detail in the well information section ofthis report.

17

Page 270: A Numerical GroundWater Model for the Island of Lana’i, Hawaiifiles.hawaii.gov/dlnr/cwrm/publishedreports/CWRM-1.pdf · Table 1. Previous Hydrologic Studies on Lana’i, 3 Table

Water-budget Analysis

The goal of the water-budget analysis is to estimate how much water eventually reachesthe ground-waler table and becomes part of the ground-waler system. This estimate is commonlyknown as ground-waler recharge. What is not common is a universally accepted method for making this estimation (Anderson, & others, 1992). The general water-budget or mass-balance equation used to estimate recharge for this study was based on previous sludies (Thornthwait, 1955,Shade, 1995) through Equation eq.(4) as follows:

RF+FD+IR-DRO--ASMS-ET = R eq.(4)

where:

RF = Rainfall precipitation

FD = Fog-drip precipitation

JR = Irrigation return = 0 for this study.

DRO = Direct runoff

ASMS = Change in soil-moisture storage

ET = Evapotranspiration

R = Recharge

In reality, Equation eq.(4) is the same equation used in all other previous studies for estimating Lanai’s ground-water recharge, R. In earlier studies for Lana’i the terms for fog-drip, FD,irrigation, JR. and soil-moisture storage, /ISMS, terms were not considered; in other words theseparameters were set to zero (0). Later studies began to acknowledge the impact of FD on Lanai’s

ground-water R. This study considers the effects of both FD and ASMS but continues to ignoreIR effects because most of the island is unirrigated and pineapple receives little, if any, irrigation.

Differences between estimations of R were thus based on hydrologists’ differences in the

values assigned individual parameters in Equation eq.(4). However, all the previous parameter

estimations shared a significant commonality; parameter estimations were based on total annualaverages. This study’s parameter estimations are based on month-to-month variations to estimateannual averages.

The contemporary methodology, or Equation eq.(4), considers the difference between

potential evapotranspiration, ETA. vs. actual evapotranspiration, ET0, in conjunction with 1?SMS,

considerations whereas previous water-budget analyses did not. Basically, this considers theavailable water for evaporation. The transient time periods selected could be monthly or evendaily depending on the available data. Ultimately, using monthly averages for the given parameters while considering and including ASMS in the budget equation will result in a lower totalannual value of ETa. This is because at drier times of the year there is not enough soil-moisture

available to achieve the full ET which may otherwise be estimated at an evaporation pan station.

This is especially true during periods of drought when soil-moisture is extremely low for short

periods of time (State of Hawaii, 1991). Therefore, the contemporary approach yields greater R

values than those derived solely by annual averages.

is