a silicon vertex tracker for atsushi taketani 1. physics goal 2. structure of detector 3. status and...

18
A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

Upload: margaret-george

Post on 29-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

A Silicon Vertex Tracker for

Atsushi Taketani

1. Physics goal

2. Structure of detector

3. Status and plan

4. Expected performance

5. Summary

Page 2: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

PHENIX Vertex Group (86 Participants from 15 institutions)

M. Baker, R. Nouicer, R. Pak, A. Sukhanov, P. Steinberg, Z ChaiBrookhaven National Laboratory, Chemistry Department

Z. LiBrookhaven National Laboratory, Instrumentation Division

J.S. Haggerty, J.T. Mitchell, C.L. Woody, E. O’Brien, D. LynchBrookhaven National Laboratory, Physics Department

A.D. FrawleyFlorida State University

J. Crandall, J.C. Hill, J.G. Lajoie, C.A. Ogilvie, A. Lebedev, H. Pei, J. Rak, G.Skank, S. Skutnik, G. Sleege, G.Tuttle

Iowa State University, Ames, M. Tanaka

KEKN. Saito, M. Togawa, M. Wagner

Kyoto UniversityH.W. van Hecke, G.J. Kunde, D.M. Lee, M. J. Leitch, P.L. McGaughey, W.E. Sondheim

Los Alamos National LaboratoryT. Kawasaki, K. Fujiwara

Niigata UniversityT.C. Awes, M. Bobrek, C.L. Britton, W.L. Bryan, K.N. Castleberry, V. Cianciolo, Y.V. Efremenko,

K.F. Read, D.O. Silvermyr, P.W. Stankus, A.L. Wintenberg, G.R. YoungOak Ridge National Laboratory

Y. Akiba, J. Asai, H. En’yo, Y. Goto, J.M. Heuser, H. Kano, H. Ohnishi, V. Rykov, T. Tabaru, A. Taketani, K.Tanida, J. Tojo, Y. Onuki

RIKENS. Abeytunge, R. Averbeck, K. Boyle, A. Deshpande , A. Dion, A. Drees, T.K. Hemmick,

B.V. Jacak, C. Pancake, V.S. Pantuev, D. Walker Stony Brook University

B. Bassalleck, D.E. Fields, M. Malik, C. HagemannUniversity of New Mexico

O. Drapier, F. Fleuret, M.Gonin, R. G. de Cassagnac, A. Romana E. Tujuba Eole PolytechniqueK. Kruita, Y. InoueRikkyo Univesity

Page 3: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

Physics Goals

Heavy Ion program

• Potential enhancement of charm production.

• Open beauty production.• Flavor dependence of jet quen

ching and QCD energy loss.• Beauty and charm separation• Accurate charm reference for q

uarkonium.• Thermal dilepton radiation.• Upsilon spectroscopy, e+e- de

cay channel• -Jet correlation

Spin program

• Investigating nucleon spin structure by polarized proton-proton collider to utilize quark/gluon as probe, instead of DIS lepton.

• gluon polarization by using beauty / charm final state.

• gluon polarization by using + jet final state.

• Flavor decomposition by using W->e channel.

Open up new horizon!

Page 4: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

Charm and bottom identification by displaced vertex

Jet identification with larger acceptance

Physics GoalSpin ProgramHeavy Ion Program

b contribution ?

V2

Pt [GeV]

Glu

on P

olar

izat

ion

Page 5: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

NSAC recommendationOctober 7, 2004

Within a constant level of effort budget, the Subcommittee recommends that certain essential investments be made. These include:

Construction of the PHENIX Silicon Vertex Tracker and the STAR Time-of-Flight Barrel;

Participation in the LHC Heavy-Ion program; Investment in RHIC accelerator and detector R&D; Construction of the EBIS; Support at the present level for university and national

laboratory research; Provision for RHIC running time sufficient to preserve

the integrity of the Heavy-Ion and Spin Physics programs.

Page 6: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

Current PHENIXPioneering High Energy Nuclear Interaction eXperiment

PHENIX Detector1 Central Arm

e, g, Charged Hadrons detection |h|<0.35, Df=p

2, Muon Arm m detection 1.2<|h|<2.4, 2p in f

3, Forward detectors Luminosity Monitoring Centrality Local polarimetery

Good particle identification (But no direct b/c identification)

High Rate and High Detector granularity.

Limited geometrical coverage (Not 2in central region)

Si Vertex Tracker

Page 7: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

Requirements for Vertex Tracker

• High precision tracking for displaced vertex measurement. 40m displaced vertex resolution, c ~ 100m(D), ~400m(B)

• Large coverage tracking capability with momentum resolution (||<1.2 , and full azimuthally with /P ~ 5%P)

• High charged particle density ‘dN/d’ ~ 700 @=0• High Radiation Dose ~100KRad@10Years• High Luminosity @PP -> High rate readout• Low Material Budget <- avoid multiple scattering and photon c

onversion for electron measurement by outer detectors.

1232102 scm

Physics side

Environment side

Page 8: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

Structure Barrel region

• ||<1.2, almost 2 in

• Pixel sensor at inner 2 layers

• Strip sensors at outer 2 layers

Forward region

• 1.2<||<2.7, 2p in

• 4 layers of mini strip

(50 x 2000 to 11000 m)

• Trigger capable

Pixel

Strip

Poster by G.J.Kunde(#297)Poster by K.Fujiwara(#292)

D.E.Field (#290)R=2.5 and 5cm

R=10 and 14cm

Page 9: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

PIXEL (Sensor and Readout)

Pixel size( x z )   50 µm x 425 µmSensor Thickness 200umr = 1.36cm, z = 1.28 cm256 x 32 = 8192 channel / sensor4 sensor / chip4 chip / ladder

Readout by ALICE_LHCB1 chip

• Amp + Discriminator / channel

•Bump bonded( 2 dim. Soldering) to each pixel

•Running 10MHz clock ( RHIC 106nsec )

•Digital buffer for each channel > 4usec depth

•Trigger capability > FAST OR logic for each crossing

Used at NA60 (Rad hard)

Page 10: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

PIXEL readout

15μm

Al-Kapton Bus readout to minimize material (120micron pitch )

Page 11: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

256

32

Pilot module

4x parallel readout 128bit width bus

PHENIX Digital Pilot•ALICE chip is 32bit input/40MHz x 16bit output•New chip is 64bit input/40MHz x 32bit output

Ver.1 is running.

Ver.2 will come in Summer

PIXEL readout

Page 12: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

Strip layerSensor elements:

Pixels: 80 µm 1 mm, projective readout via

double metal XU/V “strips” of ~3 cm length.

Developed at BNL Instrumentation Gr.

Two strip-pixel arrays on a single-sided wafer of 500 µm thickness, with 384 + 384 channels on 3 x 3 cm2 area.

new design:

“lateral” SVX4 readout.

Made by Hamamatsu

Initial design:

“longitudinal” readout.

Made by SINTEF

Single sided

1+1 dimensional readout

( X and U direction)

3cm3cm sensor 2 / chip

768 X strip and 768 U strips/chip

Position resolution is 25m by test beam

Page 13: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

SVX4X2

“RC Chip”

SVX4U1

“RC Chip”

SVX4U4

“RC Chip”

SVX4X3

“RC Chip”

SVX4X1

“RC Chip”

SVX4X6

“RC Chip”

SVX4U6

“RC Chip”

SVX4U5

“RC Chip”

SVX4U3

“RC Chip”

SVX4U2

“RC Chip”

SVX4X4

“RC Chip”

SVX4X5

“RC Chip”

RCC

Control signal daisy-chain

Data signal daisy-chain

Power daisy-chain

SVX4X2

“RC Chip”

SVX4X2

“RC Chip”

SVX4U1

“RC Chip”

SVX4U1

“RC Chip”

SVX4U4

“RC Chip”

SVX4U4

“RC Chip”

SVX4X3

“RC Chip”

SVX4X3

“RC Chip”

SVX4X1

“RC Chip”

SVX4X1

“RC Chip”

SVX4X6

“RC Chip”

SVX4X6

“RC Chip”

SVX4U6

“RC Chip”

SVX4U6

“RC Chip”

SVX4U5

“RC Chip”

SVX4U5

“RC Chip”

SVX4U3

“RC Chip”

SVX4U3

“RC Chip”

SVX4U2

“RC Chip”

SVX4U2

“RC Chip”

SVX4X4

“RC Chip”

SVX4X4

“RC Chip”

SVX4X5

“RC Chip”

SVX4X5

“RC Chip”

RCC

Control signal daisy-chain

Data signal daisy-chain

Power daisy-chain

3cm 6cm sensor

SVX4 Readout chip

Developed by FNAL for TEVATRON RUN2b (Rad hard)8 bit ADC for each channel128 channel per chip

3 SVX ChipPacking factor is sameControl by onboard FPGA

Readout Test board (Testing now)

Strip Readout

Page 14: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

Schedule and status

• Pixel Readout test End of 2005• Strip Readout test Fall of 2005.• Structure design study Start now• Prototype ladder Early 2006• Production (Japan) Start in 2005 • Production (US) 2007• Installation complete 2009 (Possible early partial implementation)

• Total cost ~8M US$ (Japan, US, France)

Page 15: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

Expected Performance

Layer radius Sensor Occupancy

Layer 1 2.5 cm Pixel 0.53 %

Layer 2 5.0 cm Pixel 0.16%

Layer 3 10.0 cm Strip 4.5 % (x-strip)

4.7 % (u-strip)

Layer 4 14.0 cm Strip 2.5 % (x-strip)

2.7 % (u-strip)

Expected occupancy at Au-Au 200GeV most central event Distance to the Closest Approach [cm]

D0 decay

Collision Vertex

Page 16: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

Spin performance

Using only Photon information

parton X reconstruction by + Jet

Photon + 2VTX tracker

Great improvement with VTX

Page 17: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

Summary• PHENIX Silicon Vertex Tracker will open new

physics horizon for both Heavy Ion and Spin program of RHIC.

• There are two of inner pixel layers, two of outer strip layers and forward mini-strips

• Hardware R&D work is on going.• Completer installation in 2009 for RHIC

RUN9(2009/2010). • Plans underway for early partial implementation.

Related Posters

Forward Silicon G.J. Kunde (#297)

Pixel Layer K. Fujiwara(#292)

Strip Layer D.E. Field (#290)

Page 18: A Silicon Vertex Tracker for Atsushi Taketani 1. Physics goal 2. Structure of detector 3. Status and plan 4. Expected performance 5. Summary

VTX Layer R1 R2 R3 R4

Geometrical dimensions

R (cm) 2.5 5 10 14

z (cm) 21.8 21.8 31.8 38.2

Area (cm2) 280 560 1240 1600

Channel count Sensor sizeR z (cm2)

1.28 1.36(256 × 32 pixels)

3.43 × 6.36(384 × 2 strips)

Channel size 50 425 m2 80 m 3 cm(effective 80 1000 m2)

Sensors/ladder 2 8 5 6

Ladders 10 20 18 26

Sensors 160 320 90 144

Readout chips 160 320 1080 1728

Readout channels 1,310,720 2,621,440 138,240 221,184

Radiation length(X/X0)

Sensor 0.2% 0.5 %

Readout 0.16% 0.8 %

Bus 0.14%

Ladder & cooling 0.7% 0.7 %

Total 1.2% 2.0 %

Structure summary (Backup)