a study of indicator minerals for kimberlite, base - geology ontario

1

Upload: others

Post on 11-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Ontario Geological SurveyOpen File Report 6066

A Study of IndicatorMinerals for Kimberlite,Base Metals and Gold:Northern Superior Provinceof Ontario

2001

Page 2: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 3: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

ONTARIO GEOLOGICAL SURVEY

Open File Report 6066

A Study of Indicator Minerals for Kimberlite, Base Metals and Gold: NorthernSuperior Province of Ontario

by

D. Stone

2001

Parts of this publication may be quoted if credit is given. It is recommended thatreference to this publication be made in the following form:

Stone, D. 2001. A study of indicator minerals for kimberlite, base metals and gold:northern Superior Province of Ontario; Ontario Geological Survey, Open File Report6066, 140p.

e Queen’s Printer for Ontario, 2001

Page 4: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 5: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

iii

e Queen’s Printer for Ontario, 2001.

Open File Reports of the Ontario Geological Survey are available for viewing at the Mines Library in Sudbury, at theMines andMinerals InformationCentre in Toronto, and at the regionalMines andMinerals officewhose district includesthe area covered by the report (see below).

Copies can be purchased at Publication Sales and the office whose district includes the area covered by the report. Al-though a particular report may not be in stock at locations other than the Publication Sales office in Sudbury, they cangenerally be obtainedwithin 3working days.All telephone, fax, mail and e-mail orders should be directed to the Publica-tion Sales office in Sudbury. Use of VISA or MasterCard ensures the fastest possible service. Cheques or money ordersshould be made payable to the Minister of Finance.

Mines and Minerals Information Centre (MMIC) Tel: (416) 314-3800Macdonald Block, Room M2-17 1-800-665-4480(toll free inside Ontario)900 Bay St.Toronto, Ontario M7A 1C3

Mines Library Tel: (705) 670-5615933 Ramsey Lake Road, Level A3Sudbury, Ontario P3E 6B5

Publication Sales Tel: (705) 670-5691(local)933 Ramsey Lake Rd., Level A3 1-888-415-9845(toll-free)Sudbury, Ontario P3E 6B5 Fax: (705) 670-5770

E-mail: [email protected]

Regional Mines and Minerals Offices:

Kenora - Suite 104, 810 Robertson St., Kenora P9N 4J2

Kirkland Lake - 10 Government Rd. E., Kirkland Lake P2N 1A8

Red Lake - Box 324, Ontario Government Building, Red Lake P0V 2M0

Sault Ste. Marie - 70 Foster Dr., Ste. 200, Sault Ste. Marie P6A 6V8

Southern Ontario - P.O. Bag Service 43, Old Troy Rd., Tweed K0K 3J0

Sudbury - Level B3, 933 Ramsey Lake Rd., Sudbury P3E 6B5

Thunder Bay - Suite B002, 435 James St. S., Thunder Bay P7E 6S7

Timmins - Ontario Government Complex, P.O. Bag 3060, Hwy. 101 East, South Porcupine P0N 1H0

Toronto - MMIC, Macdonald Block, Room M2-17, 900 Bay St., Toronto M7A 1C3

This report has not received a technical edit. Discrepanciesmay occur for which the OntarioMinistry ofNorthernDevel-opment andMines does not assume any liability. Source references are included in the report andusers are urged to verifycritical information. Recommendations and statements of opinions expressed are those of the author or authors and arenot to be construed as statements of government policy.

If you wish to reproduce any of the text, tables or illustrations in this report, please write for permission to the TeamLeader, Publication Services, Ministry of Northern Development and Mines, 933 Ramsey Lake Road, Level B4,Sudbury, Ontario P3E 6B5.

Cette publication est disponible en anglais seulement.

Parts of this report may be quoted if credit is given. It is recommended that reference be made in the following form:

Stone, D. 2001. A study of indicator minerals for kimberlite, base metals and gold: northern Superior Province ofOntario; Ontario Geological Survey, Open File Report 6066, 140p.

Page 6: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 7: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

v

Contents

Abstract................................................................................................................................................................ xi

Introduction.......................................................................................................................................................... 1

Geology................................................................................................................................................................ 1

Quaternary Geology............................................................................................................................................. 3

Methods ............................................................................................................................................................... 3Material Sampling ....................................................................................................................................... 3Heavy Mineral Recovery and Analysis ....................................................................................................... 5

Gold ..................................................................................................................................................................... 6

Metamorphosed or Magmatic Massive Sulphide Indicator Minerals (MMSIMs®) ............................................. 7Background ................................................................................................................................................. 7Metamorphosed Magmatic Sulphide Indicator Minerals Data.................................................................... 9Mineral Chemistry....................................................................................................................................... 10

Gahnite................................................................................................................................................ 10Cr-diopside ......................................................................................................................................... 10

Anomalies Characteristic of Volcanogenic Massive Sulphide and Ni-Cu Mineralization.......................... 12

Kimberlite Indicator Minerals (KIMs)................................................................................................................. 13Grain Shapes ............................................................................................................................................... 14Particle Wear............................................................................................................................................... 16

Particle Wear in Kimberlite ................................................................................................................ 16Pre-Glacial Particle Wear and Weathering ......................................................................................... 17Particle Wear by Glacial Transport..................................................................................................... 18Particle Wear by the Movement of Water .......................................................................................... 19

An Assessment of Wear on Chromite Grains.............................................................................................. 19Mineral Chemistry....................................................................................................................................... 21

Chrome Diopside ................................................................................................................................ 22Olivine ................................................................................................................................................ 26Garnet ................................................................................................................................................. 27Ilmenite............................................................................................................................................... 28Chromite ............................................................................................................................................. 29

Implications for Kimberlite Exploration.............................................................................................................. 32

Conclusions.......................................................................................................................................................... 35

Acknowledgements.............................................................................................................................................. 36

References............................................................................................................................................................ 37

Metric Conversion Table ..................................................................................................................................... 140

Page 8: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 9: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

vii

FIGURES

1. Geology of the northern Superior area ........................................................................................................ 46

2. Quaternary geology of the northern Superior area ...................................................................................... 47

3. Hypothetical cross-section of the shoreline of a small northern lake .......................................................... 48

4. Regional distribution of gold grains, northern Superior area ...................................................................... 49

5. Distribution of gold grain sizes, northern Superior area.............................................................................. 50

6. Distribution of metamorphosed or magmatic massive sulphide indicator minerals, northern Superior area 51

7. Compositional fields of spinels from marbles (1), aluminous metasediments (2), pegmatites (3) andmetamorphosed massive sulphides (4) from Dunlop (2000) with superimposed data from the northernSuperior area ............................................................................................................................................... 52

8. (a) Classification of northern Superior clinopyroxenes on the wollastonite (WO)-enstatite (EN)-ferrosilite(FS) diagram of Morimoto (1986). (b) compositions of northern Superior clinopyroxenes on the Al2O3-Cr2O3-Na2O diagram of Morris et al. (unpublished) ................................................................................... 53

9. Distribution of kimberlite indicator minerals, northern Superior area ........................................................ 54

10. Distribution of kimberlite indicator minerals, Stull Lake area including data of Fedikow et al. (1998).This area is shown as the detail area in Figure 9 ......................................................................................... 55

11. Scanning electron microscope images of selected Cr-pyrope grains in sample 00DST108 from westernStull Lake .................................................................................................................................................... 56

12. Scanning electron microscope images of selected chromite grains from east and west of the Sachigomoraine........................................................................................................................................................ 57

13. (a to g) Variations in selected major oxides with CaO in clinopyroxenes of the northern Superior area.... 58

14. Distribution of Cr-diopside grains, northern Superior area ......................................................................... 60

15. CaO-NiO variations of olivine. (a) kimberlites of the Kirkland Lake area; (b) enlargement of part of (a);(c) kimberlites of the Attawapiskat area and (d) surficial materials of the northern Superior area ............. 61

16. Garnets of the northern Superior area. (a) CaO-Cr2O3 variations for discrimination of crustal and eclogiticgarnets from peridotitic garnets; (b) TiO2-Cr2O3 variations for distinction of Cr-poor megacrystic garnetsfrom lherzolitic garnets; (c) Cr2O3-CaO variations for separation of harzburgitic (G10) garnets fromlherzolitic (G9) garnets; (d) TiO2-FeO diagram for eclogitic and crustal garnets; (e) TiO2-Na2O diagramfor eclogitic garnets ..................................................................................................................................... 62

17. Distribution of G10 garnets, northern Superior area ................................................................................... 63

18. (a) ilmenite compositions from the northern Superior area shown in terms of ilmenite-hematite-geikieliteend-members; (b) Cr2O3-MgO relations of northern Superior ilmenites; (c) compositions of ilmenites fromthe Gravel and C14 pipes of the Kirkland Lake area; (c) compositions of ilmenites from the Alpha 1, Indiaand Yankee pipes of the Attawapiskat area................................................................................................. 64

19. Distribution of picro-ilmenite, northern Superior area ................................................................................ 65

20. Compositions of chromites from the northern Superior area. (a) Cr/(Cr+Al)-Fe2+/(Fe2++Mg) relations; (b)Fe3+/(Fe3++Cr+Al)-Fe2+/(Fe2++Mg) relations; (c) Cr2O3-MgO relations; (d) Cr2O3-TiO2 relations; (e) NiO-ZnO relations............................................................................................................................................... 66

21. Distribution of chromite, northern Superior area ........................................................................................ 67

Page 10: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 11: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

ix

TABLES*

1. Location and description of northern Superior samples .............................................................................. 68

2. Sample processing data ............................................................................................................................... 73

3. Summary of gold grain shapes .................................................................................................................... 77

4. Gold grain size and shape data .................................................................................................................... 82

5. Metamorphosed magmatic sulphide indicator minerals .............................................................................. 95

6. Kimberlite indicator mineral counts............................................................................................................ 98

7. Heavy mineral picking remarks................................................................................................................... 104

8. Compositions of MMSIM® and KIM grains in surficial materials and from known crustal rocks ............. 115

9. Indicator minerals associated with base metal mineralization, regional metamorphic terranes and non-mineralized mafic/ultramafic rocks............................................................................................................. 134

10. Summary of the shape, roundness and surface textures of kimberlite indicator grains in relation to thestages of particle wear ................................................................................................................................. 135

11. Chromite grain descriptions and inferred environments ............................................................................. 136

12. List of samples with chromite of possibly kimberlitic origin...................................................................... 139

*Tables are also available in digital format as Miscellaneous Report–Data 84 (MRD 84),available separately from this report.

Page 12: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 13: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

xi

Abstract

The northern Superior study area represents a geologic transect across three, fault boundedPrecambrian terranes at the margin of the Superior Province, 350 km north of Red Lake, Ontario.Two hundred and five samples of beach sand, modern alluvium, till and glaciofluvial andglaciolacustrine deposits were collected concurrent with bedrock mapping in the area from 1995to 2000. The samples were processed for heavy minerals (density >3.2), which were picked forgold grains and metamorphosed or magmatic massive sulphide indicator minerals (MMSIMs®*)and kimberlite indicator minerals (KIMs). Dense minerals including chromite, clinopyroxene andilmenite were also isolated from known bedrock sources including komatiite, gabbro dikes andmonzodioritic plutons of the sanukitoid suite for comparison with minerals found in surficialmaterials.

Beach sand is the dominant sampling medium and it was found that gold grains are very rarein beach sand compared to till. This probably occurs because gold grains are small, silt-sizeparticles and have been washed out of the coarse sandy fraction of beach materials by the actionof waves. Hence, with the exception of one anomaly discussed in the text, the gold grain datamay provide only limited guidance as to the occurrence of anomalous gold in bedrock.

Three principal types of anomalous MMSIMs® were observed including samples withabundant chalcopyrite, low Cr-diopside+Mn-epidote and chalcopyrite+Mn-epidote+Cr-grossular+arsenopyrite+gahnite. The chalcopyrite-only anomalies occur mainly in plutonic areasand appear to have originated from weak disseminations of sulphide in nearby bedrock, based onobservations at one sample site. Two samples of beach material in or near the western Stull Lakegreenstone belt have anomalous Cr-diopside+Mn-epidote. These samples also have large heavymineral concentrates indicating that the MMSIM® indicators have been at least partlyconcentrated in the sampled material by placer effects. None-the-less, the samples are derivedfrom an area where anomalous base metals are detected by soil geochemistry. The combined soiland indicator mineral results suggest that the western Stull Lake area may be mineralized. Onesample at Ponask Lake contains a multi-mineral assemblage of indicators (chalcopyrite+Mn-epidote+Cr-grossular+arsenopyrite+gahnite) and represents an attractive site to be examinedfurther for sulphide mineralization.

Clinopyroxene, olivine, Cr-pyrope and eclogitic garnet, ilmenite and chromite are mineralsthat can originate in kimberlite although in many instances these minerals can be derived fromother bedrock sources also. Standard and modified chemical discrimination techniques as well ascomparisons with minerals from known kimberlites and known crustal sources are used tosegregate various dense minerals according to a possible origin in kimberlite or other sources.The northern Superior area contains anomalous numbers of KIMs in comparison with many otherparts of the Superior Province. The KIMs appear to have originated mainly from lherzoliticsources and a lesser component of harzburgite.

Chromite is a reasonably widespread and tough mineral whose shape, roundness and surfacemarkings can be used to assess the amount of wear to which the grain has been subjected.Various stages of grain wear including within kimberlite, subglacial, aqueous and chemicalweathering can be distinguished in some instances and used to qualitatively assess the transporthistory of the grain. In contrast, Cr-pyrope is a brittle mineral that readily breaks into angularfragments whose shape does not accurately portray the amount of wear to which the grain hasbeen subjected.

*MMSIM is a registered trademark of Overburden Drilling Management Limited, Nepean, Ontario.

Page 14: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 15: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

xiii

Although KIMs are concentrated in beaches at Stull Lake, the grains are moderately wornand probably have been displaced southerly and southwesterly by the movement of separate lobesof ice. In eastern parts of the area, samples with anomalous KIMs show some alignment parallelto west-northwesterly-trending regional faults and terrane boundaries. A paleoarchean terrane atthe north margin of the Superior Province may represent a favourable area to be explored fordiamond-bearing kimberlites.

Page 16: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 17: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

A Study of Indicator Minerals for Kimberlite, Base Metals and Gold:Northern Superior Province of Ontario

D. Stone1

Ontario Geological SurveyOpen File Report 60662001

1Geoscientist, Precambrian Geoscience Section, Ontario Geological SurveyMinistry of Northern Development and Mines, Sudbury, Ontario, Canada, P3E [email protected]

Page 18: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 19: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

1

Introduction

The northern Superior area is situated approximately 350 km north of Red Lake, Ontario andincludes the community of Sachigo Lake near the Ontario-Manitoba border. The study areaextends northerly over a distance of 120 km and varies from 160 km wide in the south to 60 kmwide in the north. The bedrock geology of this area was mapped sequentially from 1995 to 2000(e.g. Stone and Hallé 2000) and represents a geologic transect of the northern Superior Provincein Ontario. The fieldwork was done collaboratively with mapping by Manitoba Industry Tradeand Mines (e.g. Corkery and Skulski 1998) as part of the Western Superior NATMAP initiative(Percival et al. 2000).

During the course of bedrock mapping, 205 samples of beach, till, modern alluvium andglaciolacustrine sediments were collected. The heavy mineral concentrates from these sampleswere analysed to assess the potential for gold, base metal and kimberlite mineralization. Resultsof 1995 to 1998 regional sampling were reported by Stone, Morris and Crabtree (1999) and adetailed study of gold grains in till in the area of the Sachigo River mine was reported by Stone,Hallé and Lange (2000). This report presents results of regional sampling in 1999 and 2000 aswell as an interpretation of the combined regional data sets from Ontario and adjacent Manitoba(e.g. Fedikow et al. 1998).

Geology

Bedrock geology of the northern Superior area is characterised by 4 west-northwesterly-trendingArchean greenstone belts at Sachigo, Stull, Ellard and Yelling lakes (Figure 1). The greenstonebelts are composed of primarily mafic metavolcanic rocks that originated as submarine lavaflows. All greenstone belts contain a lesser component of intermediate to felsic, commonlyfragmental metavolcanic rocks and clastic metasedimentary rocks and are variablymetamorphosed from greenschist to amphibolite facies. Mafic intrusive rocks represented bydikes, sills and stocks of diorite, gabbro and rare anorthositic gabbro intrude the supracrustalsequences in greenstone belts.

Komatiitic lava flows are mapped in the Sachigo belt but have not been identified in othergreenstone belts. The komatiites contain chromite and are a potential source for chromite insurficial materials. Chemical comparisons between chromite in komatiite and chromite insurficial materials are discussed later in this report. Late Archean, feldspar- and amphibole-phyric lavas of calc-alkaline to alkaline composition and associated coarse clasticmetasedimentary rocks occur in the Stull Lake greenstone belt. Alkaline lavas can containclinopyroxene (Dostal and Mueller 1992). Hence, the alkaline lavas at Stull Lake are a potentialsource of clinopyroxene in surficial materials although this mineral was not observed in exposedbedrock of the present area.

The greenstone belts are interspersed with broad felsic plutonic domains. Six suites of felsicplutonic rocks including the biotite tonalite, tonalite gneiss, hornblende tonalite to granite, biotitegranite, peraluminous (S-type) granite and sanukitoid suites are identified in the plutonic

Page 20: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

2

domains (Stone and Hallé 1997). Among these, the sanukitoid suite is of interest to the presentstudy because monzodioritic phases of this suite typically contain diopside, which is chemicallycompared to diopside grains found in surficial materials.

The northern Superior area is cut by major west-northwest striking faults that appear to havebeen active in the late Archean. These include the North and South Kenyon faults and the Stull-Wunnummin fault (Osmani and Stott 1988). In outcrop, the faults are represented by mylonite,cataclasite and strongly foliated rock that typically contain assemblages of greenschist faciesminerals (chlorite, sericite, albite, epidote and actinolite) and are cut by epidote-filled fractures.Although straight to curvilinear at a regional scale, the faults can be complexly branched andsplayed at a local scale. For example, the North and South Kenyon faults are possibly acomposite fault zone joined by several splays.

Nd-isotope and geochronologic studies (Skulski et al. 2000) indicate that the fault zonesmark the boundaries of three fundamental crustal blocks in the northern Superior area. Theseinclude the Munro Lake terrane south of the Stull-Wunnummin fault, the Oxford Lake-StullLake terrane between the Stull-Wunnummin and North Kenyon faults and the Northern Superiorsuperterrane north of the North Kenyon fault. The Munro Lake terrane comprises ca. 2.86 Gavolcanic and plutonic sequences that appear to have developed on the margin of the 3.0 Ga NorthCaribou microcontinent, which lies south of the present area. The Oxford Lake-Stull Laketerrane is a composite of ca. 2.8 Ga basalts and 2.7 Ga supracrustal and plutonic rocks that werethrust onto the margin of the Munro Lake terrrane. The Northern Superior superterrane islikewise a composite of 2.8 to 2.7 Ga plutonic and supracrustal sequences but is distinguished byNd model ages and zircon inheritance as old as 3.6 Ga. Skulski et al. (2000) interpreted theNorthern Superior superterrane as a recycled Paleoarchean crustal fragment that was tectonicallyamalgamated with the Oxford Lake-Stull Lake terrane at about 2.7 Ga.

Archean rocks are cut by north-northeast- and northwest-trending gabbro dikes tentativelycorrelated with the 1884 Ma Molson Swarm and 1267 Ma MacKenzie Swarm, respectively(OGS 1991). The compositions of clinopyroxene and ilmenite from these dikes are discussedlater in this report in relation to similar minerals in surficial materials. An unexposed ovalcarbonatite intrusion (Carb Lake Carbonatite Complex; Sage 1987) occurs north of McLeodLake (see Figure 1) and has a K-Ar biotite age of 1826±97 Ma. The carbonatite containsaccessory amphibole, mica, pyrochlore and synchysite (a rare-earth-element-bearing carbonate)but there is no evidence that it has contributed to the normal suite of heavy minerals (garnet,olivine, ilmenite, clinopyroxene and chromite) in surficial materials. Archean and Proterozoicrocks are overlain at the north side of the present area by Ordovician limestone of the HudsonBay Lowlands.

The Sachigo River Mine produced 1635 kg of gold from a narrow, high-grade vein in theeastern Ellard Lake greenstone belt (see Figure 1; Stone 2000) from 1938 to 1941 and representsthe only past-producing mine in the area. Gold mineralization has been delineated in shearedsupracrustal rocks associated with splays of the Stull-Wunnummin fault at Little Stull Lake andTwin Lakes, Manitoba (west of Stull Lake) by extensive drill programs (Richardson et al. 1996).Several gold showings are identified east of Stull Lake (see Figure 1) and typically consist ofquartz veins containing sulphide minerals associated with splays and sheared margins of the

Page 21: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

3

Stull-Wunnummin fault. Sphalerite, chalcopyrite and galena occur in sheared volcanic rocks atStull Lake and Ponask Lake.

Quaternary Geology

Limited information on the Quaternary geology of the area is provided by airphoto interpretationand regional-scale mapping of Bennett and Riley (1969), Dredge and Cowan (1989), Barnett(1992) and the present survey. Eastern parts of the area are blanketed by drumlinized tillinterspersed with west-southwest-trending eskers and lakes and extensive organic deposits in thenorth. Southward, the till plain is punctuated by the discontinuous Big Beaver House morainethat extends southeastward from Echoing Lake through the area of Bearskin Lake andAsipoquobah Lakes (Figure 2). Glaciolacustrine deposits are widespread in the area of LittleSachigo and Sachigo lakes. The direction of ice-flow interpreted from striae and drumlins iswest-southwest.

The Sachigo moraine is a broad (1 to 2 km-wide) somewhat sinuous ridge that extends norththrough the area (see glaciofluvial ice-contact deposits of Figure 2) locally attaining an elevation60 m above neighbouring lakes. This feature possibly represents an interlobate moraine west ofwhich a lobe of ice advanced southerly at a late stage in the glacial history of the area. West ofthe Sachigo moraine, bedrock is overlain by thin, locally drumlinized till and organic deposits.Here, striae are oriented southerly although rare outcrops show an earlier generation of west-southwest directed striae.

Methods

MATERIAL SAMPLING

Approximately 10 kg of material was collected from each of the 205 sample sites listed in Table1. The sampled material represents a variety of geologic media including beach sand, modernalluvium, till, glaciolacustrine and glaciofluvial deposits. Of the various media, beach sand wasmost commonly sampled because the beach material was easy to collect and provided a largeproportion of sand-sized particles for analysis. Sample 00DST108 (see Table 1) represents aunique situation where a 100 kg sample was taken from a beach shown by previous sampling tocontain anomalous numbers of kimberlite indicator minerals.

Many samples were collected from the margins of lakes. The shorelines of small northernlakes represent areas where surficial material such as till or glaciofluvial deposits are locallyeroded and sorted by the force of waves that are developed on the lake and subsequently impacton the shoreline. On a typical shoreline, impacting waves have sufficient energy to dislodge andtransport sand and silt into the lake leaving a “lag” of boulders within a zone extending more-or-less from the high water level to the low water level at the shoreline (Figure 3). Sand-sizeparticles tend to be concentrated among boulders at the low water level and extend as a thinwedge lakeward. Silt-size particles tend to be transported to deeper levels of the lake. Theconcentration of boulders at the shore of small lakes is also affected by the expansion and

Page 22: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

4

movement of lake-ice as it warms in late winter and drifts at the time of break-up. Theexpansion and movement of lake-ice displaces material onto the shore locally forming boulderridges at the high water mark. Although sand and silt may also be displaced onto the shore byice, these small particles do not stay on the shoreline but are moved back into the lake by waveaction in summer.

Many small northern lakes do not have beaches because there is insufficient sand-sizematerial to form a beach. In rare instances, large beaches composed of sand can be developedwhere the shorelines of large lakes abut against glaciofluvial deposits such as eskers and outwashplains that contain a high proportion of sand-size particles. A situation intermediate betweenthese extremes occurs locally where narrow, thin and commonly submerged beaches such as inFigure 3 are developed and are suitable for sampling. During low water conditions such as inlate summer, sand-beaches can be exposed and sampled at the shoreline but in most instancessamples of sand-sized particles are obtained by digging among boulders in water to 0.5 m depthat the shoreline.

A few samples of sandy modern alluvium were collected from sediment traps withinstreams. The sample sites include sand and gravel bars and areas of rapids where particles ofsand are locally concentrated in bedrock depressions and among boulders.

Till represents the second largest sampled medium (43 samples). Till was usually sampledfrom hand-dug pits (0.3 to 1.0 m depth) excavated into material accumulated in bedrockdepressions on outcrops or at the flanks of outcrops and the flanks of drumlins. Till in thenorthern Superior area is typically tan brown, silty and well compacted becoming reddish andunconsolidated where it is weathered such as where it forms a thin veneer on outcrops. Thepebble fraction contains from 30 to 50% limestone clasts and the remainder is a mix of clastsderived from Archean plutonic and supracrustal rocks. At most localities, till is capped by a thinlag of cobbles and organic material.

Glaciolacustrine deposits comprise grey variably massive to laminated silt and clay andwere generally avoided for indicator sampling due to the low proportion of contained sand-sizeparticles. Locally, glaciolacustrine sediments were sampled in areas where sandy seams wereobserved within the strata. The sample sites include eroded banks at the shorelines of lakes andrivers and pits dug to bedrock.

Glaciofluvial deposits such as eskers and to a lesser extent outwash fans developed oneskers were sampled typically in pits dug to depths of 1.0 m. Eskers are the only availablesource for sampling material in many areas of extensive muskeg. The moraines were avoided assampling sites due to the poorly constrained origin of the moraine material. Although drumlinsmay be in part glacial melt-out features, they appear to be composed of till and are consideredhave developed primarily during glacial advance.

Several types of bedrock material were sampled and crushed to 0.25 to 2.0 mm size forheavy mineral analyses so that comparisons can be made between the mineralogy of the bedrockand that of surficial material. Examples include carbonatite (sample 01DST01, which did notyield heavy minerals comparable to those found in kimberlite), Molson and MacKenzie dikes(samples 01DST02 and 01DST03 as sources of ilmenite and clinopyroxene), komatiite (sample

Page 23: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

5

01DST04: a source of chromite) and sanukitoid plutons (sample 01DST05: a source ofclinopyroxene).

HEAVY MINERAL RECOVERY AND ANALYSIS

Sample processing was done by Overburden Drilling Management Ltd. of Nepean, Ontario.Samples were disaggregated and screened after which the –2 mm fraction (“Table Feed” ofTable 2) is passed over a shaking table twice to produce a “table concentrate” of heavy minerals(“Concentrate Total” of Table 2). At the tabling stage, a preliminary count of gold grainsincluding size and shape determination was made. The “table concentrate” of samplescontaining gold identified at the preliminary stage was subsequently panned and examined undera microscope to provide a refined count of gold grains and description of grain shapes (seeTables 3 and 4). A concentrate of heavy minerals (HMC) having a specific gravity greater than3.2 was obtained by gravity settling of the “table concentrate” in methylene iodide. The HMCwas washed in oxalic acid and magnetic grains were subsequently removed. The non-magneticcomponent of the HMC (“Non-Mag” of Table 2) was sieved to 0.25, 0.5 and 1.0 mm fractions,which were further subdivided paramagnetically to provide small batches of grains for picking.

The components of the non-magnetic fraction of the heavy mineral concentrate wereexamined under a microscope by staff of Overburden Drilling Management Ltd. and indicatorgrains of metamorphosed or magmatic massive sulphide deposits (MMSIMs®) and kimberlite(KIMs) are counted and placed in capsules (Table 5 and Table 6). Mineral identification wasdone of the basis of physical characteristics of the mineral grains with resolution of moredifficult grains by analysis of the energy spectrum produced by an x-ray spectrometer on ascanning electron microscope. The heavy mineral picking remarks (Table 7) includeidentification of grains whose composition was verified by the scanning electron microscope.

Subsequent studies of mineral characteristics including the determination of mineralcompositions were done at the Geoscience Laboratory of the Ministry of Northern Developmentand Mines in Sudbury, Ontario. Representative MMSIMs® and KIMs were examined bybinocular microscope and the shape characteristics of chromite grains were studied andphotographed by scanning electron microscope.

The majority of KIMs and MMSIMs® identified by Overburden Drilling Management Ltd.as well as grains obtained from known occurrences of mafic dikes, sanukitoid plutons andkomatiite were mounted in epoxy and polished and analysed by microprobe. Mineralcompositions are listed in Table 8. The microprobe calibration routine and operating conditionsare summarised in the Standard Operating Procedures Manual and the Methods Manual for theAnalysis of Kimberlite Indicator Minerals of the Geoscience Laboratories, Sudbury, Ontario.

Page 24: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

6

Gold

Gold grain data is divided into two components comprising results of a detailed survey in thearea of the Sachigo River mine and results of the regional survey of the entire northern Superiorarea.

Results of the detailed survey are described by Stone, Hallé and Lange (2000) and are onlybriefly reviewed here for purposes of comparison with the regional data. A total of 50 samplesof till were collected from a 25 km2 area in vicinity of the Sachigo River Mine (see “Detail Area”of Figure 4). These samples yielded up to a maximum of 69 gold grains per 10 kg of materialwith a median value of 7 grains per sample. Only one sample contained no gold grains. Thelargest numbers of gold grains appear to be associated with an oval monzodiorite to tonalitepluton near the Sachigo River mine site. The survey failed to detect clear evidence of ananomalous “train” of gold grains dispersed by glaciers down-ice from the narrow, high-gradequartz vein that was the orebody of the Sachigo River mine.

Regional gold-grain data is summarized in Table 3 and Figure 4. Table 3 also includesresults of the detailed survey (samples 99DST03 to 99DST31 and 99DST103 to 99DST123).The shapes of gold grains are classified as pristine, modified or reshaped according to DiLabio(1990). Pristine grains are mainly smooth flakes with sharp edges whereas reshaped grains havethe form of rounded and infolded nuggets with pitted and striated surfaces. The transition frompristine grains through the intermediate “modified” stage to reshaped grains in till has beeninterpreted as the result of damage that gold grains incur as they are displaced by ice. Theshapes of gold grains in till have been used to infer the distances that the gold grains have beentransported from the place in bedrock where they originated (Averill 1988; DiLabio 1990).Pristine gold grains in till have potentially been transported a short distance from their bedrocksource whereas reshaped grains have probably been moved a greater distance.

In the regional survey, a total of 152 samples of material comprising mainly beach sand anda lesser component of till, glaciofluvial and glaciolacustrine deposits were collected. Among theregional samples, only five samples contain more than 5 gold grains (the largest number of goldgrains/sample is 18) and 102 samples contain no gold grains. The majority of gold grains areclassified as modified and reshaped.

The low numbers of gold grains found in the samples collected as part of the regional surveycontrasts sharply with the higher numbers of gold grains found in the detailed survey. Anexplanation for the disparate numbers of gold grains in the two surveys takes account of the sizeof gold grains in relation to the size of particles in the sampled material in each case. Thedimensions of 101 gold grains identified in the regional survey are listed in Table 4 where it canbe seen that most are reshaped flakes. The distribution of gold grain sizes (Figure 5) shows thatthe maximum dimension of most gold grains is in the range of 25 to 100 microns, which issubstantially smaller than the 250 to 2000 micron size of particles that are collected in samples ofbeach sand.

With reference to Figure 3, the majority of regional samples were taken from sandy materialin or near the boulder “lag” on the shores of small lakes. In most instances, this sandy material is

Page 25: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

7

derived by wave sorting of sand-size particles from silty till that is common in the region. Goldgrains in the till are not likely to be concentrated with the sand but have probably moved with thesilt fraction to deeper water (see Figure 3). Hence, by sampling sand at the shores of small lakes,gold grains have been selectively excluded because they are small and have been washed out ofthe sampled material. In contrast, till such as was sampled in the detailed area represents a bettermedium for gold studies because the particles within till have not been sorted and the numbers ofgold grains have been neither depleted nor enriched by the action of water.

In view of the above discussion, the distribution map of gold grains (see Figure 4) may be oflimited value as a guide for gold exploration. Of the five samples outside the detailed area thatcontain more than 5 grains of gold, four are derived from till. Likewise, till samples south ofStull Lake contain 1 to 5 gold grains. The apparently anomalous numbers of gold grains in thesesamples probably indicates that the sampled medium (till) contains a higher proportion of silt andsilt-size gold grains than other samples (beach, modern alluvium, glaciofluvial andglaciolacustrine material) rather than providing an indication of anomalous gold in nearbybedrock.

Sample 96DST202 from beach sand on a small island in Ponask Lake contains 18 goldgrains, of which 6 are reshaped, 6 are modified and 6 are pristine. Possibly, this sample can beconsidered anomalous in comparison with the majority of other samples and may provide anindication of gold in nearby bedrock.

Metamorphosed or Magmatic Massive SulphideIndicator Minerals (MMSIMs®)

BACKGROUND

MMSIMs® are a suite of heavy minerals commonly associated with metamorphosed or magmaticbase metal deposits and their alteration zones. Averill (2001) noted three main types of basemetal deposits including : 1) volcanosedimentary massive sulphide mineralization (volcanogenic,Sedex and Mississippi Valley sub-types); 2) skarn and greisen deposits; and 3) magmatic Ni-Cusulphide mineralization. Each has a suite of associated indicator minerals summarized in Table9. Among the types of base metal deposits, volcanogenic massive sulphide mineralization(VMS) and magmatic Ni-Cu sulphide mineralization (associated with either komatiites or mafic-ultramafic intrusions) are the most common varieties in the Superior Province (Fyon et al. 1992).

Archean volcanic-hosted Cu-Zn massive sulphide deposits are underlain by alteration zonesproduced by reaction of hydrothermal fluids with the volcanic footwall rocks. The alterationzones have the form of narrow pipes immediately underlying the massive sulphide deposits andbroad semiconformable alteration zones that occur over a larger area in the footwall. Morton andFranklin (1987) identified Noranda-Type and Mattabi-Type VMS deposits, each of which has adistinct assemblage of minerals associated with alteration pipes and semiconformable alterationzones. The minerals associated with VMS alteration pipes and zones are controlled by thecomposition of the hostrock, the depth of sea water at which the deposit formed and the

Page 26: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

8

temperature of circulating hydrothermal fluids and are representative of mainly greenschist tolower amphibolite facies assemblages (Morton and Franklin 1987; Gibson and Watkinson 1999).With a few exceptions, such as kyanite and phlogopite, the minerals in VMS alteration pipes andzones tend to be fine grained and are characterised by a specific gravity <3.2. Hence, they arenot readily detected by a study of heavy mineral concentrates in surficial materials (Averill2001).

The phase transformations associated with prograde metamorphism to mid and upperamphibolite facies have the effect of changing the mineralogy of VMS alteration zones andproducing coarse-grained and dense minerals (see column 2, Table 9). This suite of minerals(column 2 of Table 9) can be readily identified in heavy mineral concentrates and part or all ofthe suite can be used as an exploration guide for metamorphosed VMS deposits (Averill 2001).Although it is rare for all of the minerals of column 2 of Table 9 to be found in a single mineralconcentrate, a broad range of mineral species as well as a large number of indicator grains can betaken as a better indication of a VMS alteration zone than a small number of grains from a singlemineral species (Bajc and Crabtree 2001a; 2001b).

Some minerals indicative of the alteration zones of VMS deposits are also produced byhigh-grade metamorphism of supracrustal and plutonic rocks devoid of VMS deposits. Theseminerals, which are characteristic of amphibolite to granulite facies metamorphism are listed incolumn 6 of Table 9 and include sillimanite, kyanite, corundum, orthopyroxene, Mg-spinel,sapphirine and staurolite (Stone 1994). Partial suites of these minerals were identified ingranulite terranes of the Pikwitonei domain of northern Manitoba (Arima and Barnett 1984;Mezger, Bohlen and Hanson 1990) and the English River Subprovince (Pan, Fleet and Williams1994). As pointed out by Stone (1994) other high-grade metamorphic domains may occur in thewestern Superior Province but are currently undetected by bedrock mapping. Known andunknown metamorphic domains may shed dense mineral grains into surficial materials andcontribute to the suites of heavy minerals collected by this and similar surveys. In someinstances, mineral compositions, such as the amount of Zn in staurolite (Huston and Patterson1995) can be used to distinguish grains that are associated with mineralization (Zn-richstaurolite) from those that are associated with regional metamorphism (Zn-poor staurolite). Inthe majority of cases however, it may be impossible to know whether or not the minerals areassociated with mineralization. Hence, anomalies comprised solely of heavy minerals listed incolumn 6 of Table 9 need to be interpreted with caution because they can come from one or bothof VMS alteration zones and barren regional metamorphic domains.

Archean and Proterozoic magmatic Ni-Cu mineralization in and at the margins of theSuperior Province is hosted by mafic to ultramafic rocks of both intrusive and extrusive origin.The Thompson and Pipe 2 mines are typical of Ni-Cu mineralization within serpentinizedperidotite of the Thompson Nickel Belt of Manitoba (Peredery 1982). The Alexo and Langmuirdeposits in the Timmins area (Fyon et al. 1992) are examples of mineralization within komatiiticflows. The Thierry deposit at Pickle Lake (Patterson and Watkinson 1984) represents a highlydeformed Ni-Cu orebody associated with metagabbro. Experience has shown that a suite ofheavy minerals listed in column 3 of Table 9 that including pyroxenes, olivine, spinels,uvarovite, Cr-rutile, chalcopyrite, arsenides and alloys of platinum group elements is associatedwith Ni-Cu mineralization (Averill 2001). Hence, the occurrence of anomalous numbers of these

Page 27: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

9

minerals in heavy mineral concentrates of surficial materials can be used as an exploration guidefor magmatic Ni-Cu mineralization.

Certain mineral species indicative of magmatic Ni-Cu mineralization occur also in non-mineralized mafic to ultramafic rocks. Examples include olivine, orthopyroxene, clinopyroxeneand chromite (column 7; Table 9). Olivine, chromite and chrome-bearing clinopyroxene occurwidely in unaltered komatiite (Arndt, Naldrett and Pyke 1977; Nisbet et al. 1987) and ultramaficintrusive rocks such as in non-mineralized parts of the Sudbury Igneous Complex (e.g. Scribbins,Rae and Naldrett 1984). Anomalies in heavy mineral concentrates comprised solely of mineralspecies represented by column 7 of Table 9 need to be interpreted with caution because they canhave originated from one or both of Ni-Cu mineralization or barren mafic to ultramafic sources.

In certain instances, mineral compositions such as the Zn-content of chromite can be used todistinguish mineralized from non-mineralized environments. With some exceptions, chromitewithin mineralized komatiites have typically 1.0 to 3.0 wt % ZnO whereas chromite in non-mineralized komatiite has <1.0 wt % ZnO (Groves et al. 1977; Lesher 1989). The ZnO contentof chromite is also affected by the temperature of the magma in which the mineral grew and bymetamorphism and is discussed further in relation to the chemistry of chromite associated withkimberlite.

Zincian spinel (gahnite) is associated with metamorphosed volcanogenic massive sulphidemineralization and rare metal pegmatite mineralization (Morris et al. 1997; Dunlop 2000; Spryand Scott 1986). These authors produced a ternary (ZnO-MgO-FeO) diagram that is useful fordiscriminating the source of gahnite grains.

The composition of clinopyroxene grains can be used to provide insight on the possiblesource rock from which the grains originated. At the mineral picking stage of the present survey,a bright green colour and Cr2O3 > 1.25 wt % was used to distinguish Cr-diopsides of kimberliticorigin from pale green low Cr-diopside (Cr2O3 < 1.25 wt %) representative of magmatic Ni-Cumineralization (Averill 2001) and non-mineralized sources such as gabbro dikes and sanukitoidplutons. Further discrimination between these and other sources is provided by the Al2O3-Cr2O3-Na2O systematics of diopside.

METAMORPHOSED MAGMATIC SULPHIDE INDICATOR MINERALSDATA

MMSIM® data for the northern Superior Area is summarized in Table 5 and Figure 6. Duringthe time of this study, some evolution took place in terms of the species of MMSIM® mineralsthat are identified and the manner in which they are reported. For example, diopsides were notseparated into low-Cr and high-Cr varieties prior to 1996 and certain species of garnet such asspessartine and Cr-grossular seem to have been distinguished from other garnets in recent yearsmore than in former years. The overall reporting format of minerals changed after 1999 (seeTable 5) however column 1 of Table 5 gives a consistent sum of “prime” MMSIM® minerals,which is shown in Figure 6 for the 1995 to 2000 data.

Page 28: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

10

Present in many samples are a suite of minerals including kyanite, sillimanite, Mg-spinel,staurolite, orthopyroxene and crustal garnet and also present locally are trace amounts ofcorundum and sapphirine. Although the overall abundance of these minerals and their relativeproportions vary from place to place, they are none-the-less present in nearly all parts of thestudy area and may have originated from high-grade metamorphic rocks. Bedrock mapping hasnot identified high-grade (granulite) metamorphic domains in the present area so that an obvioussource for these minerals cannot be isolated. The generally widespread distribution of candidateminerals from a high-grade metamorphic source suggests that the source domain could compriseeither a large and distant place of origin (beyond the margins of this study area) or possibly aseries of small, scattered internal sources.

The data of Figure 6 illustrates the distribution of “prime” MMSIMs®, which largelyexcludes minerals of probable origin in unmineralized metamorphic domains. Three principaltypes of anomalous “prime” MMSIMs® are observed and include samples containing largenumbers of chalcopyrite grains, those containing low Cr-diopside and Mn-epidote and a samplewith a multi-mineral suite of indicators. These anomalies are discussed further after presentationof the mineral chemistry.

MINERAL CHEMISTRY

Although much can be gained by thorough analysis of MMISMs® , time constraints haverestricted the determination of mineral chemistry to gahnite and Cr-diopside. Analyses of theseminerals are listed in Table 8 together with analyses of kimberlite indicator minerals.

Gahnite

Gahnite occurs mainly in the Ponask-Stull Lakes area west of the Sachigo Moraine (6 grains)and to a lesser extent at the eastern margin of the area (3 grains). Five gahnite grains wereanalysed as shown in Table 8 and Figure 7 in terms of MgO-ZnO-FeO systematics. Theserepresent samples collected since 1998 mainly from the eastern part of the area. One grain is anMg-spinel and the remaining 4 grains are Zn-rich plotting in the field of pegmatitic spinels and inthe area of overlap between the fields of pegmatites, aluminous metasediments andmetamorphosed massive sulphide mineralization. Gahnite grains that are representative ofpegmatites are found in samples 00DST08 and 00DST09 at the east side of the study area.Unfortunately, gahnite grains from the Stull and Ponask Lakes area have not been analysed andtheir affinity is unknown.

Cr-diopside

Cr-diopside can be an indicator of magmatic Ni-Cu mineralization, kimberlite or unmineralizaedmafic to ultramafic rocks. Historically, the Cr-content of diopside has been used as adistinguishing factor with high Cr (>1.25 % - Averill 2001; >1.45% - Stevens and Dawson 1977)indicating a potentially diamondiferous kimberlitic source. Low-Cr diopside has been picked inthe present study as an MMSIM® indicator however the work of Stevens and Dawson and more

Page 29: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

11

recent work in Ontario (Sage 1996) shows that low-Cr diopside is also present in kimberlitessuch as at Kirkland Lake, Ontario. Morris et al. (2000) and Morris et al.(unpublished data)assembled an extensive database of clinopyroxene compositions. The clinopyroxenes arederived from sources that include kimberlitic xenocrysts, mantle nodules, mafic and ultramaficintrusive rocks and alkaline rocks. Preliminary analysis of the database showed that the Al2O3-Cr2O3-Na2O systematics of Cr-bearing diopside provides greater discrimination betweenkimberlitic and non-kimberlitic sources than Cr2O3 (Morris et al. 2000) and this method ofanalysis is adopted with some modification for the present study.

Cr-diopside analyses of Table 8 are plotted on the ternary diagram of Morimoto (1989) inFigure 8a together with clinopyroxene analyses from known crustal sources in the northernSuperior area. All grains are Mg-rich and plot in the fields of diopside and augite. A few Na-rich grains are classified as omphacite. Grains from known sources including komatiite,sanukitoid plutons and Molson and MacKenzie gabbro dikes plot in the augite field or Fe-richpart of the diopside field.

Cr-diopside analyses are plotted on the discrimination diagram of Morris et al. (2000 andunpublished data) in Figure 8b where at least two possible clusters of data are apparent. An ovalcluster of data (cluster 1) plots more-or-less in the lower centre of the diagram. Within thedatabase of Morris et al.(unpublished data), this field is characteristic of peridotitic pyroxenesalthough it is partly overlapped by pyroxenes from other sources including harzburgite andlherzolite xenoliths, lamproite and alnoite and syenite. Later, in the discussion of kimberliticindicators in this report it will be shown that the data of cluster 1 can be subdivided into twogroups (open circles and solid circles; Figure 8b) on the basis of absolute values of Na, Al andCr. Also, a smaller and somewhat linear cluster of Na-rich grains (cluster 2; Figure 8b) overlapsthe field of kimberlitic diopsides and is discussed later.

For the purposes of discussion of clinopyroxenes with a possible affinity to sulphidemineralization, the following is restricted to data from known sources and those grains insurficial materials that are shown by open circles in Figure 8b. Grains from known crustalsources, which include intermediate to mafic monzodiorite, diorite, gabbro and pyroxene gabbroare either Cr-depleted and plot at the extreme bottom of Figure 8b or else plot in the Na-poorpart of cluster 1. From this it is apparent that the surficial grains plotting within cluster 1 inFigure 8b need not necessarily be derived from an ultramafic source such as peridotite but canhave originated from a variety of intermediate to mafic (plagioclase-bearing) sources as well.

Among the grains that plot within cluster 1 of Figure 8b, those with less than about 32molecular wt% Na2O can have originated from mafic dikes including the Molson andMacKenzie swarms. Grains from the Na-rich end of cluster 1 of Figure 8b overlap thekimberlitic field. None-the-less, the dense central part of cluster 1 possibly defines a set of datathat is not explained by known bedrock sources in the northern Superior area or kimberlites fromthe database of Morris et al. (unpublished data). In view of the compositional similarity betweendata of cluster 1; Figure 8b and known peridotite sources, it is possible that some of theclinopyroxene grains within cluster 1; Figure 8b are derived from ultramafic rocks that may bemineralized.

Page 30: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

12

ANOMALIES CHARACTERISTIC OF VOLCANOGENIC MASSIVESULPHIDE AND NI-CU MINERALIZATION

There are few indications of skarn- or greisen-types of sulphide mineralization in the study area.Although forsteritic olivine has been identified, particularly in sample 00DST108, this mineralhas been interpreted as a kimberlite indicator rather than a skarn indicator.

Previously in this report, it was noted that the MMSIM® anomalies in the study areacomprise samples with large numbers of chalcopyrite grains, samples with abundant Cr-diopsideand Mn-epidote and a multi-mineral (chalcopyrite+Mn-epidote+Cr-grossular+arsenopyrite)suite. Chalcopyrite is an indicator mineral representative of all types of base metalmineralization (see Table 9) whereas Cr-diopside is associated with magmatic Ni-Cu typesulphide mineralization and Mn-epidote is an indicator of VMS-type mineralization.

The chalcopyrite anomalies occur in beach sand and one sample of till overlying bothplutonic and supracrustal rocks. In one instance (sample 98DST302; see Table 5), a possiblebedrock source is identified. Disseminated sulphide minerals and a slight rusty colour wereobserved in tonalite outcropping a few meters from the sample site suggesting that thechalcopyrite grains may have originated locally. Samples 97DST04, 99DST43 and 00DST103(see Table 5) were also taken close to bedrock of plutonic origin and the anomalous numbers ofchalcopyrite grains in these samples may have originated locally from weak disseminatedsulphide mineralization in the bedrock. In contrast, the chalcopyrite in sample 96DST100 (seeTable 5) at Ponask Lake is accompanied by Mn-epidote, Cr-grossular, arsenopyrite and a gahnitegrain. This suite of minerals is interpreted as an indicator of local VMS mineralization.

Two factors have possibly contributed to the concentration of Cr-diopside and Mn-epidotein the Stull and Pierce lakes area. The Cr-diopside grains of cluster 1 (open circles of Figure 8b)are widely distributed in the northern Superior area and are concentrated with Mn-epidote insamples 97DST05 at Stull Lake and in sample 97DST103 at Pierce Lake (see Table 5). On theone hand, the wide distribution of Cr-diopside of cluster 1 suggests that the grains haveoriginated from either a large and distant source or a series of small internal sources such asscattered ultramafic dikes. Samples 97DST05 and 97DST103 were taken from large beaches andthe samples have oversized concentrates (see Table 2). Hence, the dense minerals could be atleast partly concentrated in these samples by placer effects1 (Komar and Wang 1984) with theresult that the anomalies do not necessarily indicate proximity to a potential source of base metalmineralization.

On the other hand, samples 97DST05 and 97DST103 occur down-ice from the Little StullLake area of Manitoba where Fedikow et al. (1998) noted anomalous Ni, Cu and other basemetals in till and B-horizon soil. The chemical data of Fedikow et al. (1998) combined with themineralogical data of the present survey add support to the interpretation that samples 97DST05

1 Placer effects are the mechanical processes that cause dense minerals to be concentrated in a beach or alluvialplacer. Broadly, these include: 1) the wearing down and removal of soft or brittle minerals leaving a residuum ofresistant and commonly dense minerals and, 2) a complex interplay between the velocity and flow mechanisms ofwater with the size, shape and density of particles that typically causes larger, less dense minerals to be winnowedaway leaving a lag of finer, denser minerals in certain areas of a beach or stream bed.

Page 31: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

13

and 97DST103 are an indication of base metal sulphide mineralization more so than placerconcentrations of dense minerals. Further, samples 97DST05 and 97DST103 occur in or nearthe Stull Lake greenstone belt that is likely to be more prospective for VMS or magmatic Ni-Cumineralization than plutonic areas where many chalcopyrite anomalies occur. In summary,although dense indicator minerals have been concentrated on beaches to some extent by theaction of waves, soil geochemistry and regional geology indicate that the anomalies may beassociated with mineralization. The area extending south from Little Stull Lake through StullLake and the area of Ponask Lake is considered worthy of exploration for VMS and magmaticNi-Cu mineralization.

A final word on VMS potential concerns the low grade of metamorphism at Stull Lake. TheStull Lake greenstone belt is the largest greenstone belt in the area and contains diverselithology, regional shear zones, alteration zones and at least two significant base metaloccurrences (Stone and Hallé 2000). Although the Stull Lake greenstone belt may be consideredfavourable for VMS deposits from the perspective of bedrock geology, central parts of this beltare metamorphosed only to greenschist facies. This grade of metamorphism may be insufficientto generate a full spectrum of coarse, dense indicator minerals (e.g. column 2 of Table 9) in VMSalteration zones. Hence, the present MMSIM® survey may not provide a complete assessment ofVMS potential at Stull Lake. Further work, possibly involving geochemistry of till samples maybe useful.

Kimberlite Indicator Minerals (KIMs)

Kimberlite indicator minerals are discussed in terms of their distribution, the grain shapesincluding roundness and surface textures bearing on the type of wear to which the grains havebeen subjected and the mineral chemistry. Finally, the preceding information is summarizedwith reference to constraints on the place of origin of the grains.

Kimberlite indicator mineral counts are listed in Table 6 for the various species of mineralsand the size ranges of the particles. Picking remarks for the kimberlite indicators and other heavyminerals are shown in Table 7. There are anomalous numbers of kimberlite indicator minerals inthe northern Superior area. For example, excluding the bulk sample 00DST108, there are 245indicator grains obtained from 151 samples that were processed for KIMs. In comparison, Stone(1994) found 10 KIMs in 135 samples from the Berens River area, about 200 km south of thepresent area.

The distribution of raw KIM counts as determined by mineral picking and SEM verificationis shown for the entire area and a detail area around Stull Lake in Figures 9 and 10, respectively.Figure 10 also includes part of the data of Fedikow et al. (1998) in Manitoba, for comparison.

By focusing on samples with highly anomalous numbers of KIMs (more than 5 per sample),two basic trends can be seen in the data. East of the Sachigo moraine, a series of samplesincluding 00DST07, 99DST04, 98DST102, 00DST206 and 97DST105 define an anomaloustrend extending northwesterly from the area of Swan Lake through Ellard to McLeod Lake (seeFigure 9 and Table 6). West of the Sachigo moraine a series of samples including 96DST103,97DST103, 95DST208, 99DST48, 00DST108, 95DST121, 00DST16 and a sample of Fedikow

Page 32: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

14

et al. (1998) from west of Kistigan Lake define a northerly trend of anomalous KIMs extendingfrom Ponask and Pierce Lakes through Stull Lake and areas north of Stull Lake. A beachdeveloped from a drumlin at the shore of Richardson Arm of Stull Lake was sampled overconsecutive seasons (samples 95DST208, 99DST48 and 00DST108; see Table 6) andconsistently yielded anomalous KIM counts including 245 grains from 100 kg of material insample 00DST108.

In the majority of cases, the distribution of individual species of KIMs mimics thedistribution of all KIMs. This appears to be true for Cr-pyrope, ilmenite and chromite. Eclogiticgarnet, forsterite and Cr-diopside are slightly more abundant west of the Sachigo moraine thaneast of the moraine. Although widespread in all parts of the area, chromite may be somewhatmore abundant in the east such as in the area of Swan and Ellard lakes where it is common tofind one or two chromite grains in samples that have no other KIMs.

GRAIN SHAPES

Barrett (1980) summarized extensive earlier work and proposed that the shape of a rock particlecan be expressed in terms of three independent properties: form or shape, roundness and surfacetexture. Form includes aspects of elongation or flatness and sphericity of rock particles. Asimple classification based on the ratios of the 3 principal axes divides the shapes of clasts intospheres, discs, blades and rollers (see summary in Selley 1988). Roundness is measured as theratio of the average radius of corners of a grain to the radius of maximum inscribed circle. Theroundness of a grain can be expressed qualitatively as ranging from angular and subangular tosubrounded and rounded. Surface texture includes aspects of the markings on the grain caused bycontact with other rocks.

A principal goal of kimberlite indicator mineral surveys is to determine where the mineralscame from. In glaciated terrains, knowledge of the direction in which the indicator mineralshave been displaced by ice provides important guidance on where to search for the source of theminerals. This, combined with geophysical surveys to identify anomalies associated withkimberlite pipes and drilling has lead to the discovery of several kimberlite pipes in Ontario (e.g.Brummer, MacFayden and Pegg 1992a, 1992b; McClenaghan 1996).

In complexly glaciated terrain, such as this study area, which has been affected by multipleice flow directions, it is exceedingly difficult to reconstruct the transport history of indicatorminerals. One needs to know not only the directions but also the distances that minerals havebeen moved by the motion of various lobes of ice in order to provide even vague speculation asto the place from where they came. Further complexities arise in consideration of minerals thatoccur in glaciofluvial or glaciolacustrine deposits. These minerals may be displaced significantdistances within water that flowed from melting glaciers or moved along the shores of glaciallakes. Mineral grains that occur in modern rivers and beaches can be displaced by the movementof water down-river or along the shore of a lake (Sneed and Folk 1958; Fletcher and Loh 1996;Komar 1976) although in the case of small northern lakes, the distance of longshore-displacement may be negligible.

Page 33: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

15

Although knowledge of ice movement directions is paramount to speculating on the place oforigin for a mineral grain, some additional albeit vague information on the distance of transportand mechanism of transport can be gained from analysis of the surface characteristics of thegrain. Mineral grains that are displaced by the movement of ice and water are likely to bedamaged along the way. By careful study of the surface markings we can gain some insight as tohow far and by what means the mineral grain has moved (e.g. Krumbein 1941; McCandless1990).

Mineral grains with an original euhedral form and delicate facets are good because theseverity of damage caused by individual markings as well as the cumulative damage due to all ofthe markings incurred by the grain can be more readily assessed on a euhedral grain than on oneof rounded or irregular shape. Further, it is desirable to work with grains that are abundant andwidespread and whose shape can be reasonably estimated prior to displacement by ice and water.Among the various kimberlite indicator minerals, olivine and Cr-diopside of kimberlitic originare too rare in the study area to provide a statistically reliable basis for assessing transportmechanisms and transport distances from shape characteristics of the grains. The analysis ofshape characteristics of kimberlite indicator minerals is restricted, out of necessity, to pyrope,ilmenite and chromite in this instance.

The brittleness of mineral grains is an important factor affecting their use in grain shapestudies. Brittle minerals tend to readily break apart into angular fragments destroying thetransportation record, which is recorded in the shapes and decorated surfaces of the originalgrains. Several studies (e.g. Averill and McClenaghan 1994; Dredge, Ward and Kerr 1996)indicate that pyrope occurs mainly as angular fragments in the 0.25 to 0.5 mm range in till andglaciofluvial deposits. These observations are generally confirmed by careful picking thatproduced more than 50 grains of pyrope from the 100 kg sample 00DST108 of the present study.All of the pyrope grains, for which examples are shown in Figures 11b, d and f have freshangular surfaces and appear to represent fragments of larger grains. Close inspection showshowever that a few pyrope grains are partly bounded by rounded, pitted and striated surfacesdescribed below.

The pyrope grain in Figure 11a is highly rounded on one side and is bounded by a freshfracture on the other side. This grain appears to represent a particle that was originally bothround and spherical and was broken diagonally. The rounded surface of the pyrope grain isdecorated with curvilinear, circ-like pits and markings. The grain in Figure 11c is also roundedon one side and has been cleaved by a fairly straight fracture on the other side. Although thevisible surfaces of this grain are fresh conchoidal breaks, the rounded outline of part of this grainsuggests that it may comprise a fragment of a grain that originally had a spherical shape. Thepyrope grain in Figure 11e is almost completely bounded by fresh angular fractures except forone surface (shown by arrow) that appears to represent a segment of a curved surface that isfairly smoothly polished and locally pitted and striated. The curved surface may represent a partof the original surface of a spherical grain.

An overwhelming proportion of the pyrope grains in sample 00DST108 is angular. On theone hand, this observation could be interpreted as indicating that the sample was collected closeto the bedrock source of the grains because transport over long distances by ice or water wouldbe expected to produce rounded grains. A corollary of this interpretation holds that pyrope

Page 34: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

16

should be angular when it is liberated from kimberlite, which is inconsistent with roundedpyrope grains coated with kelophite in weathered kimberlite (Averill and McClenaghan 1994).On the other hand, abundant angular pyrope grains may indicate simply that pyrope is readilybroken into smaller pieces as it is transported. The more-or-less continuous production of freshgrains and grain surfaces would effectively erase the transportation record shown by progressiverounding and decorating of the surfaces of the original grain. The observation of a few grainswith rounded, pitted and scratched surfaces among the multitude of angular grains alludes to thelatter interpretation because it suggests that at least some pyrope grains were spherical early intheir evolution, either when they were liberated from the rock or due to part of their displacementon surface by ice and water. In summary, the available evidence suggests that pyrope behavesbrittley under the conditions found in glaciated terrain and the shape characteristics of a smallnumber of grains of this mineral may provide only limited information as to proximity to source.

PARTICLE WEAR

Kuenen (1956) defined 7 distinct mechanisms that contribute to the wear of particles in adynamic aqueous environment including: (1) splitting, the breaking into two or three parts ofroughly equal size. (2) Crushing, the pulverizing of particles, producing material of an entirelydifferent size class. (3) Chipping, the loss of small flakes from sharp edges. (4) Cracking(superficially), in which the principal parts remain in contact-for instance the forming of cone-shaped concussion cracks. (5) grinding in the sense of rubbing, usually with fine material asabrasive. (6) chemical attack (weathering and solution). (7) sandblasting effect. Thesemechanisms of wear are adopted for this study and are considered applicable with somemodifications to environments where grain wear can occur such as within a kimberlite diatremeand beneath glaciers.

Kimberlite indicator minerals can experience several types of particle wear at various stagesin their evolutionary path including displacement in a kimberlite diatreme, deformation related toweathering of the kimberlite and pre-glacial fluvial or marine activity, glacial advance,glaciofluvial and glaciolacustrine movement and post-glacial displacement in modern rivers andbeaches. In places such as the present area where material may have been overriden by lobes ofice that converged from different directions, several of the later stages of deformation can berepeated. Various stages of particle wear are summarized in Table 10 and discussed furtherbelow. Wear related to glacial and post-glacial activity is important to the goal of tracking thesource of indicator grains.

Particle Wear in Kimberlite

Kimberlite is a highly corrosive medium and the process of kimberlite emplacement is dynamicwith the result that crystals including diamond can be plastically deformed, resorbed, coated,etched and fractured while resident in the mantle or during xenolith disaggregation andkimberlite ascent and cooling (Robinson et al. 1989). As a result of resorption, primary diamondoctahedra are reduced in size and progressively rounded and decorated with surface pits, ruts andetches (Otter, McCallum and Gurney, 1991: McCallum et al 1991). The amount of resorptionhas been attributed to the length of time that a diamond has been broken out of a mantle xenolith

Page 35: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

17

and exposed to the corrosive kimberlite (Robinson et al 1989) with a longer time of exposureproducing greater resorption. The shape of garnet grains can be extensively modified inkimberlite due to development of kelyphite rims (Garvie and Robinson 1984; Dredge, Ward andKerr 1996) beneath which the garnet grain has a rounded form and pitted surface rather like anorange peel. Ilmenite is also susceptible to resorption, hydration and fracturing and can developrims of perovskite and leucoxene (Averill and McClenaghan 1994). Although chromite grainsfrom kimberlite also show evidence of rounding due to resorption (Averill and McClenaghan1994; Fipke, Gurney and Moore 1995), chromite appears to be a resistant mineral and in the caseof the present study, chromite grains show reasonably good preservation of their originaloctahedral form.

Mineral grains liberated from kimberlite tend to be spherical and variably rounded byresorption and development of mineral coatings but can also be extensively fractured (split)yielding an overall asymmetric shape. The cracks are thought to develop due to accumulation ofstresses caused by differential contraction between the crystal and supporting medium on cooling(Robinson et al. 1989). In some instances, fracture surfaces developed on mineral grains inkimberlite are weathered or altered (Garvie and Robinson 1984) and can be distinguished fromglacial induced fractures that tend to be fresh (Dredge Ward and Kerr 1996).

Pre-Glacial Particle Wear and Weathering

Averill and McClenaghan (1994) noted well-rounded and frosted garnets in mature Cretaceousquartz sands of the Moose River Basin. These grains, which were possibly derived locally fromJurassic alnoites (Reed and Sinclair 1991) or kimberlites have evidently undergone significantwear in an aqueous surface environment probably unrelated to glaciation. Heavy mineralstypically occur as thin sheets or laminae on active sand beaches and are moved in response tohigh shear stresses related to large eddies in the flow of water (Cheel and Middleton 1986). Therounded and non-fractured form of the heavy mineral grains is an indication that wear took placeby gentle grinding, cracking and chipping due to contact with other small particles over a longperiod of time as opposed to splitting and crushing from impact with larger clasts.

Although the disintegration of mineral grains by weathering can occur at any stage in theevolution of a grain, weathering is at least partly time-dependent and hence likely to besignificant during the long pre-glacial period. Mosig (1980) noted that olivine and Cr-diopsidewere susceptible to weathering in an arid Australian environment probably by alteration to soft,fine minerals such as serpentine and chlorite although these minerals may be less susceptible toweathering in a glaciated terrain (Afanasev, Varlamov and Garanin 1984; Averill andMcClenaghan 1994). In the present study, a few chromite grains with spherical outline andwhose surfaces are rough and marked by deep irregular and linear pits have possibly beenweathered by chemical etching of parts of the grain. The delicate surface features caused bypartial weathering of grains can be removed by dynamic particle wear and hence, the effects ofweathering particularly at an early stage can be readily destroyed.

Page 36: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

18

Particle Wear by Glacial Transport

Debris can be transported on top of a glacier (supraglacial) or within a glacier (englacial).Bolton (1970) defined supraglacial debris as coarse angular clasts that typically have fallen ontoa valley glacier from the rock walls at the side of the glacier. In the case of large continental icesheets that once covered the present area, supraglacial debris may represent a small amount ofthe material that is moved by a glacier.

Englacial debris can be further subdivided into material that is transported in a zone oftraction at the base of the glacier and material that is displaced to higher levels in the glacier. Inalpine glaciers, Bolton (1978) observed narrow (10-15 cm thick) basal transport zones that wereladen with clasts eroded from underlying bedrock. Particles are transported within the tractionzone by a combination of rotation and translation and are subjected to high stresses due tofrictional drag on the underlying bedrock and pinching of smaller clasts between larger clasts.Holmes (1960) and Bolton (1978) documented several shape characteristics and surface texturesunique to clasts deformed in the traction zone. Boulders of relatively massive rock such asgranite become rounded and their surfaces locally show striations gouged by asperities on theunderlying bedrock and other clasts. Although overall rounded in shape, the surfaces of bouldersin the zone of traction can also show small flat segments worn onto the surface by traction overbedrock during periods at which the clast maintained relatively stable attitudes. Large boulderspartly embedded in lodgement till at the base of a glacier can become asymmetrical due to themovement of debris-laden ice over the clast, which produces a smooth polished surface on topwhereas the lower part of the boulder remains rough and angular.

Small, round mineral grains are less likely than boulders to show striations, facets andasymmetry because small round grains are more susceptible to rotational strain and no part ofthem stays continuously in traction with the bedrock or other particles. Conchoidal fractures andirregular angled microtopography are characteristics of sand-sized particles that have beencrushed in the zone of traction beneath a glacier (Krinsley and Doornkamp 1973). Chromitegrains in till from the present study show fresh conchoidal breaks that appear to have originatedby cracking or crushing the grains between larger clasts, chipping of corners and plucking ofangular pieces bounded by intersecting cracks. These appear to be the dominant forms of grainwear for small particles in the basal zone of traction of glaciers.

Material can be shifted from the basal zone of traction to higher levels in an ice sheet by avariety of mechanisms principal of which is the displacement of thrust faults (Christianson andWhitaker 1976). Thrust faults within glaciers typically form a series of concave upward rampslinked to the décollement at the base of the glacier and verging toward the front of the glacier.Motion of the thrust faults displaces ice and debris from the base of the glacier forward andupward overriding the material in front. Once material is displaced up into the ice, it is removedfrom the zone of traction and can be transported large distances without significant wear.

Page 37: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

19

Particle Wear by the Movement of Water

Fairly extensive early experiments and field observations summarized by Krumbein (1941) andKuenen (1956) documented particle wear related to intensity and duration of transport in anaqueous environment. Particles tend to become smaller, spherical and more rounded typicallyfollowing exponential relations to the amount and vigour of transport. The size, form, roundnessand surface textures of abraded particles was also found to be affected by the initial size andangularity of the particles, the kind of rock, the type and violence of motion and the size andnumber of associated particles. Kuenen (1956) showed that particle wear on a sandy bottom ismuch less than on a pebbly stream bed and identified 7 mechanisms of particle wear (listedpreviously).

The experiments of Kuenen (1956) showed that crushing, chipping and surface crackingwere the dominant mechanisms of particle wear on a pebbly bed that approximates naturalstreams. In this environment, there is sufficient energy for small mineral grains to be crushed andcracked by the impact of larger grains and for sharp corners to be chipped by impact or rolling.In contrast, grinding and minor chipping were seen as the dominant mechanisms of particle wearon a sandy base, which may correspond with natural wear of particles that are rolled back andforth by wave action on a beach. Grinding is a very slow process that induces wear on thesurface of sand grains by the abrasive rubbing action of smaller particles such as silt. Krinsleyand Doornkamp (1973) noted V-shaped percussion pits and grooves on the surfaces of water-deposited quartz sand grains and concluded that the pits and grooves resulted from impacting ofgrains. The frosting observed on well-rounded grains in mature sediments is an indication thatmicro-cracking and related micro-chipping and plucking may also be components of particlewear on a beach composed of more-or-less same size particles.

AN ASSESSMENT OF WEAR ON CHROMITE GRAINS

Chromite was chosen as a kimberlite indicator mineral suitable for study of grain wear because itis reasonably widespread and evenly distributed in the northern Superior area. Chromite alsoshows good preservation of crystal faces from which the original shape of the grain can beinferred and hence, the cumulative amount of wear can be qualitatively assessed. Further,chromite grains appear to be tough and fracture resistant. Chromite grains show the accumulatedeffects of various stages of wear on their surfaces whereas grains of brittle minerals such aspyrope tend to break into fragments whose characteristics may misrepresent the history of thegrain.

Forty chromite grains from eighteen samples were examined and photographed by scanningelectron microscope. Approximately equal numbers of grains are derived from till and modernbeaches with a smaller number of grains from modern rivers, lacustrine deposits and material ofuncertain origin. The chromite grains can be further subdivided into groups representingsamples derived east of the Sachigo moraine and from west of the Sachigo moraine.

Table 11 provides a description of the chromite grains including their shape, roundness andsurface markings. Also included in Table 11 is an interpretation of the type of wear and the wearhistory for each grain with examples shown in Figure 12 and discussed below.

Page 38: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

20

All grains are worn with the effects of the most recent wear tending to obliterate the recordof earlier wear although in some instances more than one stage of wear can be recognized. Inthis context, the degree of wear at the early kimberlite stage is difficult to assess. Circular pitsand or ange peel texture locally on grain 00DST201 (Figure 12a) are possibly representative ofresorption at the kimberlite stage. Splitting of grains may also have occurred at a kimberlitestage and the general rounding of the chromite octahedra may be at least partly due to resorption.

A few chromite grains such as 00DST07 (1) and 00DST08 (2) (Figure 12b and Figure 12c)are remarkably rounded and pitted indicating extensive wear. Although these grains wereobtained from modern beaches, some wear on their surfaces could have taken place at akimberlitic stage or a pre-glacial stage possibly by prolonged wear on a beach or in a stream.Grain 00DST08 (2) is split by a conchoidal fracture attributable to glacial crushing and it appearsas if some of the rounding of the grain occurred prior to splitting and is therefore attributable toeither kimberlitic or pre-glacial aqueous wear. The pitted surface of the rounded chromite grainprovides evidence of wear by impacting in an aqueous environment and alludes to prolongedpre-glacial wear in water although it is also possible that the pitting developed very late at thebeach stage. In summary, chromite grain 00DST08 (2) (see Figure 12c) shows several stages ofwear including: a) kimberlitic resorption and/or prolonged pre-glacial impacting, grinding andcracking in water; b) sub-glacial crushing; and c) late aqueous wear. Not all chromite grainsshow evidence of prolonged early wear and this may be evidence of two populations of grainsincluding those that were extensively worn prior to glaciation and those that were not.

Evidence of weathering by chemical attack on chromite grains is limited. Grain 99DST37(1) (Figure 12d) from an unconsolidated, red weathered till is pitted and rough in outlineprobably indicating late weathering. Delicate surface features attributable to chemical attacksuch as pits and skeletal forms are likely to be removed by glacial or aqueous wear. Hence, therecord of pre-glacial weathering is likely to be obliterated.

By far the most severe, widespread and easily recognizable form of wear on chromite grainsis the conchoidal breaks and rough microtopography of grains attributable to subglacial crushing.In many instances, subglacial wear has reduced chromite grains to angular fragments and theevidence of this wear is best preserved in samples of till from both sides of the Sachigo moraine(e.g. grains 99DST36 (1) and 00DST210 (1) of Figure 12e and Figure 12f). An importantdistinction can be made between crushed grains from the east and west sides of the Sachigomoraine and is illustrated by the examples above. Chromite grain 99DST36 (1), which isaffected by the west-southwesterly ice advance on the east side of the moraine is angular due tosharp broken edges. In contrast, chromite grain 00DST210 (1), which is from till affected by thelobe of ice that pushed southerly west of the moraine, is sub-angular due to chipping, pitting andcracking of the grain edges. Although pitting is normally attributed to vigorous aqueous weardue to impacting of particles, the general blunting of conchoidally fractured edges possiblyresults from the extra component of deformation related to the southerly ice advance.

Chromite grains in beach samples tend to be more rounded than those in till due to cracking,chipping and minor grinding of crystal edges. Grain 00DST206 (5) (Figure 12g) from a beachsamples east of the Sachigo moraine is a subglacially crushed grain comparable to 99DST36 (1)except for more rounded edges. In this instance, blunting of conchoidally broken grain edges

Page 39: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

21

may be due to late subglacial rotational wear on the grain or due to rolling and impacting in anaqueous environment subsequent to the crushing stage.

Chromite grains from beaches and rivers west of the Sachigo moraine are slightly morerounded than those from till but also show the strongly chipped edges such as is observed ongrains from till (e.g. Figure 12f). For example, chromite grain 00DST108 (2) (Figure 12h) froma beach west of the Sachigo moraine is sub-rounded and shows chipped and pitted grain edges.Chipping of the sharp, conchoidally broken edges of grains seems to be unique to grains west ofthe Sachigo moraine and is possibly related to the extra component of subglacial deformation inthat area. As discussed previously, the area west of the Sachigo moraine was affected by a lobeof ice that moved southerly at a late stage in the glaciation of the area and locally overrodematerial that had been displaced west-southwesterly by the regional advance. Even though thesoutherly motion of the western ice lobe may have been part of the same overall glacial advanceas took place east of the Sachigo moraine, it none-the-less caused a second deformation event formaterial incorporated into or under the ice. In effect, chromite grains west of the Sachigomoraine have undergone two deformation events by glaciation. Possibly, sharp edges producedby sub-glacial crushing during the first (west-southwesterly) event have been subsequentlyblunted due to wear in the second (southerly) event. Grains from west of the moraine tend to bemore severely pitted than those on the east and this suggests that more vigorous aqueousimpacting of grains has occurred in the west than in the east. Although the cause of this extracomponent of wear is obscure, it is possible that the impacting took place in a glaciofluvialenvironment that prevailed between the ice lobes or is in some way unique to melting of thesecond ice lobe.

In summary, chromite grains west of the Sachigo moraine are more worn and have morestages of wear with the result that their displacement path is likely more complex than is the casefor eastern grains. Chromite grains in till east of the Sachigo moraine show fresh conchoidalbreaks that allude to displacement largely by the southwesterly ice advance without subsequentmotion in an aqueous or glacial environment. There is no reliable method of assessing thedistance of transport from the available data on grain shapes. In all cases, the effect of high-levelenglacial transport is unknown because grains show no record of any displacement that mighthave occurred at this stage.

MINERAL CHEMISTRY

Microprobe analyses of mineral grains that were picked as representative of the kimberlitic suiteare listed in Table 8 and are separated according to mineral species. Also listed are analyses ofMMSIM® minerals including gahnite and low-Cr diopside and analyses of minerals from knownbedrock sources. These include chromite from komatiite and pyroxene and ilmenite from maficdikes and sanukitoid intrusions, which are used for chemical comparison with the compositionsof minerals found in surficial materials.

The various species of kimberlite indicator minerals are discussed below with reference to aset of discrimination techniques and chemical variation diagrams that are modified from thoseused previously by the Ontario Geological Survey (e.g. Bajc and Crabtree 2000a, 2000b; Morriset al. 2000).

Page 40: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

22

Chrome Diopside

The composition of 238 Cr-diopside grains from surficial materials and from known bedrocksources in the northern Superior area are shown in Figure 8a and Figure 8b. Previously, it wasnoted that grains derived from heavy mineral concentrates of surficial materials fall into twoclusters (see Figure 8b). A small number of Cr-diopside grains are Cr2O3-depleted with lowAl2O3 and plot at the bottom of Figure 8b. Grains of cluster 1 occur widely in the northernSuperior area and seem to be derived from a variety of bedrock sources including intermediate tomafic rocks such as gabbro dikes and sanukitoid plutons for which clinopyroxene data isavailable. Cluster 1 also closely overlaps the field of Cr-diopside from peridotite in the databaseof Morris et al. (unpublished data). Later, it will be shown that a subset of cluster 1clinopyroxenes represented by solid circles, share certain geochemical characteristics withcluster 2 clinopyroxenes (see Figure 8b) and hence, are likely derived from ultramafic sourcesover a wide depth range rather than mafic sources at shallow depths.

Cluster 2 of Figure 8b comprises approximately 42 Cr-diopside grains that are Na-rich andoverlap the field of kimberlitic affinity. The grains of cluster 2 plot within the Mg-rich augiteand diopside fields of Figure 8a and 7 of the Na-rich grains are classified as omphacite.Clinopyroxenes from known sources including komatiite, sanukitoid plutons and dikes of theMolson and MacKenzie swarms are lower in Na and Cr than grains within cluster 2. It can beconcluded that cluster 2 grains are not derived from known crustal sources and must thereforereflect a bedrock source that has not been identified by bedrock mapping.

Further discrimination of the data can be done through a series of simple binary plots(Figure 13) where major elements are plotted against CaO. Calcium is chosen as a discriminatorbecause it is highly variable in clinopyroxene and is an important element in exchange and net-transfer reactions involving clinopyroxene. The majority of clinopyroxenes from cluster 1 ofFigure 8b are Na-depleted and plot in a band at the bottom of Figure 13a. In contrast, grainsfrom cluster 2 of Figure 8b are displaced to the right and plot within a diagonal band showingstrong Na-enrichment at low CaO in Figure 13a. Also plotting within the diagonal band are a fewgrains from cluster 1 (solid circles).

Grains of cluster 2 and those represented by solid circles from cluster 1 are characterized byincreased Na2O, Al2O3, TiO2 and to some extent Cr2O3 with decreasing CaO. SiO2 FeO andMgO remain constant or either increase or decrease slightly with decreasing CaO. Grains ofcluster 1 (open circles) have slightly decreasing Na2O, increasing MgO and no distinct variationin other elements with decreasing CaO (compare Figures 13a to g).

Diopside grains from surficial materials in cluster 1 (open circles; Figure 8b) have chemicalcharacteristics broadly similar to the intermediate to mafic rocks from known sources in thenorthern Superior area although the possibility of an ultramafic source cannot be excluded. Theknown rocks are gabbro, diorite and monzodiorite that contain plagioclase and orthopyroxene(augite in gabbro dikes and enstatite in monzodiorite) and do not contain garnet. It can bespeculated that the Ca and Na contents of clinopyroxene from these rocks are controlled byreactions between clinopyroxene and orthopyroxene or plagioclase. In contrast, the grains ofcluster 2 and those represented by solid circles of cluster 1 have Cr2O3-Al2O3-Na2O systematicssimilar to known kimberlites and hence are likely derived from crustal and mantle rocks over a

Page 41: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

23

broad depth range. The compositions of clinopyroxenes in cluster 2 are possibly controlled bypressure variations and reactions with minerals such as garnet, olivine and orthopyroxene but notplagioclase.

The trend of decreasing MgO with increasing CaO is the most notable feature in open-circleclinopyroxenes of cluster 1 (Figure 13d) and can be explained by the exchange reaction

CaMgSiO6 + Mg2Si2O6 = Mg2Si2O6 + CaMgSi2O6 (1). Cpx Opx Cpx Opx

Reaction (1) has been extensively used as a thermometer (see discussion of Carswell andGibb 1987) and proceeds from left to right with increasing temperature.

Ca, Na and Al in clinopyroxene can be controlled by reactions involving the breakdown ofplagioclase

CaAl2Si2O8 = CaAl2SiO6 + SiO2 (2) Anorthite Ca-tschermak Qtz

and

NaAlSi3O8 = NaAlSi2O6 + SiO2 (3). Albite Jadeite Qtz

Reactions (2) and (3) have been used as barometers (McCarthy and Patino Douce 1998;Hemmingway et al. 1981) and proceed from left to right with increasing pressure. Although Caincreases markedly within open-circle clinopyroxenes of cluster 1, Na and Al do not changeappreciably (see Figure 13a and Figure 13b) so that pressure-dependent reactions with feldspardo not seem to have played a major role in determining clinopyroxene compositions. The lack ofa pressure effect combined with antithetic Ca-Mg variation in open-circle clinopyroxenes ofFigures 8 and 13 are best explained by exchange of Ca and Mg between clinopyroxene andorthopyroxene and implies cooling of source rocks at high crustal levels.

In a garnet-lherzolite system, the Ca- and Al-contents of clinopyroxene can be controlled by3 reactions. These include reaction (1) above involving orthopyroxene and

CaMgSiO4 + Mg2Si2O6 = CaMgSi2O6 + Mg2SiO4 (4) in Olivine in Cpx in Cpx in Olivine

involving olivine, and

CaMgSi2O6 + CaAl2SiO6 = 2/3 Ca3Al2Si3O12 + 1/3 Mg3Al2Si3O12 (5) Diopside Ca-Tschermak Grossular Pyrope

involving grossular and pyrope components of garnet.

Page 42: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

24

Because MgO does not vary antithetically with CaO, it can be argued that reaction (1) hasnot significantly affected the compositions of clinopyroxene grains from cluster 2 (see Figure13d). Reaction (4) has been calibrated as a barometer (Kohler and Brey 1990; Finnerty 1986)and proceeds from left to right with increasing pressure. The amount of Ca that is liberated fromolivine is very small however (<1 wt%) so that reaction (4) is unlikely to affect clinopyroxenecompositions where the mineral is abundant.

Reaction (5) proceeds from left to right with increasing pressure and has the effect ofproducing less aluminous clinopyroxenes by reducing the Ca-Tschermak component (Nimis1998). Variation in the Al2O3 content of clinopyroxenes is evident in Figure 13b and is possiblyattributable to reaction (5). Clinopyroxenes of cluster 1 (half-filled squares) plot along a slopedline characterized by moderately increasing Al2O3 with decreasing CaO in Figure 13b. A subsetof cluster 2 shown by solid circles plots along a line with steeper slope to the right of the cluster1 data. The clinopyroxenes represented by half-filled squares and solid circles are thought tohave originated from ultramafic rocks on the basis of their elevated Na2O, Al2O3 and Cr2O3 (seeFigures 13a to c) however the half-filled squares have distinctly less Al2O3 than the solid circlesat a given value of CaO. This may be an indication that the clinopyroxenes represented by half-filled squares originated from a garnet-bearing assemblage such as garnet lherzolite and have lostaluminum to garnet through reaction (5). Clinopyroxenes represented by solid circles may haveoriginated from an ultramafic rock such as lherzolite that is devoid of garnet and in whichreaction (5) is inoperative.

Partial melting experiments done using piston cylinders in laboratories and summarized byMcCarthy and Patino Douce (1998) show that the Na and Al content of clinopyroxene increasessystematically with pressure. Monovalent Na+ can combine with the trivalent ions Al3+, Fe3+ andCr3+ and replace Mg2+ in the diopside molecule to form NaAlSi2O6 (jadeite), NaFe3+Si2O6(acmite) and kosmochlor ( = ureyite NaCrSi2O6). Cr can also be incorporated in the Tschermakmolecule as CaCrAlSiO6 or CaCr2SiO6 where Cr may occupy tetrahedral positions. Furtherexperiments by Vredevoogd and Forbes (1975) showed that the solubility of kosmochlor indiopside decreases with increasing pressure and is essentially absent at pressures greater than 45kbar so that at high pressures, Cr is present only in the Tschermak molecule.

Clinopyroxenes represented by half-filled squares show markedly increased Na2O and Al2O3coupled with decreasing CaO and MgO. Cr2O3 also increases to 2-3 wt % but drops to about 1wt % as CaO decreases below a value of about 20 wt %. This trend is consistent withprogressive replacement of the diopside end-member with jadeite, acmite and kosmochlor withincreased pressure. The number of atoms of Na is very nearly equal to the combined number ofAl, Fe and Cr atoms indicating that Fe and Cr are present as acmite and kosmochlor and that Cris not substituted in the Tschermak end-member. This implies that the clinopyroxenesequilibrated at pressures less than about 45 kbars (140 km depth). The drop in Cr2O3 for valuesof CaO less than 20 wt % may be the effect of decreasing substitution of kosmochlor in diopsideat high pressures.

Clinopyroxenes represented by solid circles show the same overall trend of increased Na2O,Al2O3 and Cr2O3 coupled with decreased CaO but the data is much more scattered. The scattereddata may be an indication of metasomatic alteration and possible Na-depletion of theclinopyroxene as the number of atoms of Na is consistently less than the combined number of Al

Page 43: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

25

and Cr atoms. Alternatively, some Al and Cr may occur in the Tschermak molecule where it isnot coupled with Na.

In summary, at least three groups of clinopyroxene grains can be distinguishedgeochemically. These include a large group of grains with low Na2O and which are correlatedwith known crustal sources including intermediate to mafic rocks of the sanukitoid suites andgabbro dikes of the Molson and MacKenzie swarms. Peridotitic rocks that are unrecognized bybedrock mapping may also be represented by this group. The remaining two groups show trendsof increasing Na2O and Al2O3 with decreasing CaO that can be attributed to highly variablepressures of equilibration. These groups are possibly representative of clinopyroxene grains thathave been brought to surface within kimberlite pipes from variably great depths in the lowercrust and mantle. One group of clinopyroxenes with kimberlitic affinity has lower Al2O3 thanthe other. The low-Al2O3 clinopyroxenes may have originated from a garnet-lherzolite system incontrast with a lherzolite system for the high-Al2O3 clinopyroxenes.

Clinopyroxenes of presumed kimberlitic affinity are identified in Table 8 and theirdistribution is shown in Figure 14. The kimberlitic clinopyroxenes are widely distributedalthough well represented in samples that contain anomalous numbers of other types ofkimberlite indicators such as in samples 97DST103 and 95DST208.

Finally, the pressure-sensitive substitution of jadeite and kosmochlor molecules into thediopside structure provides insight on the functionality of the diagram of Morris et al. (2000). Ina simple system where the amount of acmite substitution is negligible, clinopyroxene will take inmore Na, Al and Cr with increasing pressure in the form of jadeite (NaAlSi2O6) and kosmochlor(NaCrSi2O6) and the number of atoms of Na will be approximately equal to the combined total ofAl + Cr atoms. Hence, when clinopyroxenes that have equilibrated at variable depths arebrought to surface in a kimberlite pipe, they will have different absolute contents of Na, Al andCr but the ratio of Na:Al:Cr will be approximately constant with Na≈Al+Cr. This will cause theclinopyroxenes to plot within a diagonal band approximately 1/3 of the distance from theNa2O/62 apex on the Morris et al. diagram (see Figure 8b). Clinopyroxenes with a high jadeitecomponent will plot near the bottom of the band (close to the Al2O3/102-Na2O/62 join) and thosewith a high kosmochlor component will plot near the top of the band close to the Cr2O3/152-Na2O/62 join.

In view of the experimental work of Vredevoogd and Forbes (1975), the Morris et al.diagram would be expected to fail for clinopyroxenes equilibrated at very high pressure (>45kbars) where Cr is thought to enter the clinopyroxene structure as a Tschermak molecule and theabove stoichiometric relations break down. The present work provides an indication that theMorris et al. diagram is useful for garnet-bearing assemblages because grossular is needed tobuffer the amount of Al within the Tschermak component of clinopyroxene according to reaction(5). For example, the clinopyroxenes represented by solid circles in Figure 8b are possiblyderived from a garnet-absent assemblage and plot outside of the kimberlitic field due toenrichment in Al. Pre-screening of data with simple binary plots such as Figure 13 can help toidentify Al-enriched clinopyroxenes.

Page 44: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

26

Olivine

Twelve olivine grains were selected for analysis (see Table 8). Two grains come from sampleseast of the Sachigo moraine whereas the majority of grains are derived from the bulk sample00DST108 at Stull Lake. The olivine grains are MgO-rich with the component of the forsteriteend-member ranging between 85 and 92.

Although forsteritic olivine is a characteristic mineral in kimberlite, it is not unique tokimberlite and can occur in a range of ultramafic supracrustal and plutonic rocks (e.g. Arndt etal. 1977; Scribbins et al. 1984). Hence, it is necessary to consider other chemical parameters inan attempt to distinguish kimberlitic olivines from those of other sources.

Some insight into the conditions of formation of olivine in a garnet peridotite can be gainedfrom CaO-NiO systematics. Simkin and Smith (1970) and Finnerty (1986) showed that the Ca-content of olivine decreases inversely with the pressure at which they grew by reaction (4) citedpreviously. Accordingly, olivines formed at deep crustal levels ought to have lower Ca thanthose formed on or near surface. Cooling rates can also affect the amount of an incompatibleelement such as Ca that is incorporated in olivine. For example, komatiites have high Ca (>0.2wt %; Nisbet et al. 1987; Cattell and Arndt 1987) whereas olivine in large mafic intrusions suchas the Sudbury Igneous Complex have low Ca (>0.08 wt %; M. Moore, unpublished data).Although high-Ca in komatiite and low-Ca in the Sudbury Igneous Complex are consistent withthe above pressure relations, the Ca variations may also be attributable to much more rapidgrowth of olivine in komatiite than in the large intrusion.

Olivine exchanges Ni with chrome-pyrope garnet according to the reaction

Mg3Al2Si3O12 + Ni2SiO4 = Ni2MgAl2Si3O12 + Mg2SiO4 (6). Garnet olivine garnet olivine

Reaction (6) is temperature dependent with garnet taking in more Ni at high temperatures andhas been used as the basis for Ni-in-pyrope thermometers (Griffin et al. 1989; Canil 1994; Ryanand Griffin 1996). Hence, the Ni-content of olivine would be expected to increase with coolingas long as garnet is present although the change would be small because Ni is much moreabundant in olivine than in pyrope.

A kimberlite diatreme would be expected to incorporate olivine grains from a range ofdepths and the CaO-NiO variations in the olivine grains might provide a distinct signature forkimberlitic olivines. The CaO component of olivine that is controlled by reaction (4) ought toincrease systematically at shallower depths because clinopyroxene is stable over a broad depthrange. In contrast, garnet peridotites are stable only in deeper levels of the mantle. Hence, asuite of olivine grains derived from the deeper mantle might show a trend of increasing Ca andNi that reflect shallower and cooler levels in the garnet peridotite zone. However, above thegarnet peridotite zone, reaction (6) would be inoperative and the Ni content of olivine would becontrolled by other reactions involving silicate and sulphide mineral phases. In the event thatsulphide mineral phases are present (Guo, Griffin and O’Reilly 1999), Ni would be expected topartition into the sulphide minerals.

Page 45: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

27

A test of the above model can be made by examination of CaO-NiO variation in olivinefrom known kimberlites of Ontario using the data of Sage (1996, 2000a, 2000b). Olivine grainsfrom kimberlites of the Kirkland Lake swarm (Figures 15a, b) show wide variation in CaO andNiO. At low levels of CaO (<0.03 wt %), NiO increases slightly from about 0.35 to 0.4 wt%however at higher levels of CaO, the Ni content of olivine drops off abruptly to values <0.2 wt%(compare Figure 15b and Figure 15a). The trend of increasing NiO at low levels of CaO is whatwould be expected for olivine grains that equilibrated at various depths and temperatures in thegarnet peridotite zone. The trend of decreasing NiO at more elevated levels of CaO possiblyreflects olivine grains that equilibrated well above the garnet peridotite zone. Very high CaO(>1.0 wt%) may indicate rapid chilling of the kimberlitic magma at high crustal levels.

Olivine grains from kimberlites of the Attawapiskat swarm lack the high CaO that is evidentin some grains from the Kirkland Lake swarm and show variable NiO (Figure 15c). Althoughmost grains have from 0.3 to 0.4 wt % NiO at low CaO, some grains, particularly those from theIndia pipe have low levels of NiO (<.2 wt%) at low CaO. The highly scattered nature of the dataprevents drawing conclusions in terms of the above model except to note that the suite ofanalyses may represent grains drawn from a complex transitional area at the top of the garnetperidotite zone.

Olivine data from the northern Superior area include a few examples with very low NiOplotting near the origin of Figure 15d and 8 grains that have 0.35 to 0.4 wt % NiO at low CaOand show a trend of increasing NiO with CaO. Although the grains with very low Ni and low Caare unexplained, the compositions of the 8 olivine grains with higher NiO could reflect a rangeof depths and temperatures in the garnet peridotite zone. It must be emphasised that the dataprovides no indication of the means by which the grains were brought to surface although thecomparable CaO-NiO systematics with olivines from Ontario kimberlites suggests that akimberlitic source is possible for at least some of the olivine grains found in the sand from thenorthern Superior area.

Garnet

Heavy mineral concentrates typically contain a high proportion of crustal garnet that hasoriginated from metamorphosed supracrustal rocks including metasedimentary migmatites andmetavolcanic gneisses. A major goal of kimberlite prospecting is to distinguish the crustalgarnets from those that have originated at deeper levels in the crust and mantle and have beenbrought to surface in kimberlite diatremes.

Two principal sources of garnet from depth are recognized. These include garnet peridotiteand eclogite. Peridotitic garnets are composed mainly of the Cr-pyrope (Mg-rich) end-memberand can be recognized at the picking stage by a distinct purple to wine-red colour. Eclogiticgarnets tend to be orange and hence are difficult to distinguish from Fe-rich crustal garnets thatrange in colour from pink through red and orange.

Two hundred and sixteen garnets were analyzed by microprobe. These grains represent aselection that is somewhat biased toward purple and orange varieties of garnet. Preliminaryanalysis, summarized in Table 8, indicates that the analyzed garnets are composed of mainly

Page 46: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

28

pyrope and almandine end-member compositions. A few spessartine and grossular grainsincluding one uvarovite (Cr-grossular) were found. Whereas most purple and red garnets arecomposed of pyrope and almandine respectively, the compositions of orange garnets show abroad range of pyrope and almandine components with a somewhat elevated (about 20 %)grossular component.

Peridotitic garnets are readily distinguished from crustal and eclogitic garnets in terms ofCr2O3 (Figure 16a). In this instance, a separation at 0.5 wt % Cr2O3 divides the garnetpopulation into two approximately equal groups representative of the peridotitic and mixedcrustal/eclogitic sources. Garnets within peridotitic xenoliths have been studied extensively (e.g.Dawson and Stevens 1975) and can be further subdivided into groups corresponding withwherlite, lherzolite and harzburgite sources on the basis of decreasing CaO. Cr-poor megacrystsrepresent a fourth source of upper mantle garnet that is broadly comparable to lherzolitic sourcesand is characterized by garnet with <4.0 wt% Cr2O3 and > 0.4 wt % TiO2 (Schulze 1997).Diamonds from most economic deposits have associated garnets that are representative ofharzburgitic sources. The harzburgitic garnets are important indicators and can be recognized byCr2O3-CaO systematics (Dawson and Stephens 1975).

Cr-pyrope garnets from the northern Superior area appear to have originated mainly fromlherzolitic sources including Cr-poor megacrysts (Figure 16b). Ten grains fall in or near theharzburgitic or “G10” compositional field of Dawson and Stephens (Figure 16c) and are foundalmost exclusively west of the Sachigo moraine (Figure 17).

The second major group of garnets comprises those from eclogitic and crustal sources.Separation of these two types of garnet can be done on the basis of FeO content with eclogiticgarnets having <22 wt % FeO (Schulze 1997; Figure 16d). Care must be taken to excludespessartine and grossular garnets from the data as they will tend to plot with eclogites at thisstage. Eclogitic garnets from the northern Superior area are representative of Group II eclogites(McCandless and Gurney 1989) with low TiO2 and low Na2O (Figure 16e). In reviewing thecompositions of garnets from diamondiferous eclogites, McCandless and Gurney (1989) notedthat economic diamond deposits are associated with the Na-enriched garnets of the Group Ivariety. Group II eclogitic garnets of the present survey occur mainly west of the SachigoMoraine in the Pierce and Stull Lakes area with three grains having been identified east of themoraine at McLeod Lake.

Ilmenite

Ilmenite is a common mineral in Ontario kimberlites (Sage 1996, 2000a, 2000b). Kimberliticilmenite is typically Mg-rich (8.0 to 12.0 wt %) and Cr-rich (1.0 to 5.0 wt %) and in mostinstances can be readily distinguished from Mg- and Cr-depleted ilmenite that is representativeof crustal rocks. The composition of ilmenite is also widely used to estimate oxygen fugacity ofthe mantle and kimberlitic magmas (Haggerty and Tompkins 1983) and the potential fordiamonds to be preserved in kimberlite. Gurney and Moore (1993) proposed that ilmenite with alarge hematite component (low MgO) indicates oxidizing conditions and a low potential fordiamond preservation.

Page 47: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

29

Although Fipke, Gurney and Moore (1995) cited references to rare intergrowths andinclusions of ilmenite in diamond, the association of ilmenite with diamond is not common.Hence, ilmenite cannot be directly used to infer the presence of diamond unlike minerals such asG10 garnets, Group I eclogitic garnets and Mg-rich chromites that have a proven associationwith economic grades of diamond in known deposits. None-the-less, compositionallyrepresentative ilmenite grains in surficial materials can provide a useful prospecting guide tokimberlite.

Ilmenite grains from surficial materials of the northern Superior area are divided into Mg-rich (> 4.0 wt % MgO) and Mg-poor (< 4.0 wt % MgO) varieties in Table 8. Also listed areilmenite compositions from known crustal sources including gabbro dikes of the Molson andMacKenzie swarms and komatiites.

Two compositional groups of ilmenites from the northern Superior area are distinguished(Figure 18a and Figure 18b). The first group is depleted in MgO and Cr2O3 and is composedessentially of the ilmenite end-member molecule. Ilmenite grains from known crustal sourcesincluding gabbro dikes of the Molson and MacKenzie swarms and komatiite from the Ponask-Sachigo Lakes area fall into this group. Hence, it can be inferred that Mg- and Cr-depletedilmenite in surficial materials can be derived from crustal sources.

Ilmenite grains from group 2 contain 8.0 to 10.0 wt % MgO and 1.0 to 5.0 wt % Cr2O3(Figure 18b) and plot within the field of kimberlitic ilmenite defined by Haggerty and Tompkins(1983) in Figure 18a. Also shown for comparison in Figure 18c and Figure 18d are selectedilmenite compositions from kimberlites of the Kirkland Lake and Attawapiskat swarms (Sage1996, 2000a, 2000b). The kimberlitic ilmenites are virtually identical to the second group ofilmenites from surficial materials in terms of the proportions of ilmenite, geikielite and hematitemolecules as well as Cr-content. The kimberlitic ilmenites and group 2 ilmenites plot low in thekimberlitic field and the low content of Fe2O3 implies favourable conditions for diamondpreservation.

On the basis of the above comparison, it appears that the enriched ilmenites (group 2) foundin surficial materials of the northern Superior area may have originated from kimberlite. Likeother indicators, the potentially kimberlitic ilmenites are concentrated in beaches west of theSachigo moraine but also occur widely in a variety of materials east of the Sachigo moraine(Figure 19).

Chromite

Chromite represents one end-member composition in the spinel group of minerals and occurswidely in mafic to ultramafic rocks. The compositional variations between chromite and otherspinel group minerals have been used to infer the geological environment and magmaticconditions in which the minerals grew (see summary of Roeder 1994). For example, chromitecompositions have been used to estimate olivine compositions and magma temperatures in maficintrusions (Irvine 1965, 1967) and to subdivide intrusions according to tectonic setting (Dick andBullen 1984), to distinguish mineralized from non-mineralized komatiites (Groves et al. 1977)and to estimate the diamond potential of kimberlites (Fipke, Gurney and Moore 1995). Further

Page 48: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

30

work has shown however that the composition of chromite can be metamorphically altered(Barnes 2000) and that petrogenetic discrimination models based on chromite need to beinterpreted with caution (Power et al. 2000).

Mitchell (1986) subdivided kimberlitic spinels in an eight-component system MgCr2O4(magnesiochromite)-FeCr2O4 (chromite)-MgAl2O4 (spinel)-FeAl2O4 (hercynite)-Mg2TiO4(magnesian ulvospinel)-Fe2TiO4 (ulvospinel)-MgFe2O4 (magnesioferrite)-Fe3O4 (magnetite).Compositional variations between these end-members can be graphically illustrated by trendlines on 6-component prisms such as the reduced spinel prism (Haggerty 1975; Figure 20) inwhich the magnesioferrite and magnetite components are omitted.

Mitchell (1986) summarized research on spinel zonation and defined several trends in thecompositional variation of spinel group minerals that have crystallized in kimberlite. Spinelscrystallized according to magmatic trend 1 have compositions transitional between MgCr2O4 andFeCr2O4 at an early stage and evolve toward Mg2TiO4 -Fe2TiO4 at a late stage. This trend ismarked by increasing Ti, Fe3+/Fe2+ and total Fe and decreasing Cr at approximately constantFe2+/(Fe2++Mg) and is probably due to oxidation during crystallization of the kimberlitic melt(Roeder 1994). Ferrous iron is oxidized to ferric iron but the high Mg-content of the magmakeeps the Fe2+/(Fe2++Mg) ratio approximately constant. Magmatic trend 2 causes thecompositions of successively crystallized spinels to evolve from MgCr2O4-FeCr2O4 towardFeCr2O4 and subsequently to Fe2TiO4. This trend is marked by rapidly increasingFe2+/(Fe2++Mg) ratios at low Ti and high Cr/(Cr+Al) followed by a rapid increase in Ti at highFe2+/(Fe2++Mg).

In addition to spinels that have crystallized directly from the magma, kimberlites alsocontain xenocrystic spinels that have been incorporated as a result of the breakdown of wallrockxenoliths within the melt and have undergone variable reaction with the melt. These spinels arerepresentative of parts of the mantle through which the kimberlitic magma has traversed and, in ageneral sense are compositionally similar to the more primitive spinels that grew within thekimberlitic magma. These have low Ti and Fe3+ and variable Cr (Roeder 1994) with high-Crvarieties coming from harzburgite and dunite and low-Cr varieties derived from lherzolite.

Fipke, Gurney and Moore (1995) examined a large spinel database and defined simplegraphical procedures for distinguishing spinels associated with kimberlite as well asdiamondiferous kimberlite. These authors noted that some kimberlitic spinels (presumably thosethat crystallized late in the magmatic trends discussed above) have high TiO2. They used thisobservation to define a field of spinel compositions that is unique to kimberlite and lamproite ona graph of Cr2O3 vs. TiO2. Fipke, gurney and Moore (1995) also noted that spinels that occur asinclusions or intergrowths with diamond have very high Cr2O3 (>∼60 wt %) combined with highMgO (>9 wt %). A diamond inclusion field was defined on a Cr2O3-MgO plot and is useful fordistinguishing kimberlitic spinels that may be associated with diamond.

Ni-Zn systematics provide insight on temperature conditions under which spinelscrystallized. Griffin et al. (1993; 1994) calculated temperatures of garnet+spinel peridotitesusing the Ni-in-pyrope thermometer. They noted that the Zn content of chromite decreaseswhereas the Ni content of chromite increases with temperature. The Zn-content of chromitefollows a temperature-dependent exchange of this element with olivine. Ni relations are more

Page 49: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

31

complex involving temperature-dependent exchange between olivine and pyrope according toreaction (6) above as well as olivine and spinel. Hence, chromite with low Zn and high Ni ischaracteristic of high temperatures and the above authors calculated that xenocrystal chromitesfrom garnet+spinel peridotites of the diamond stability field ought to have Zn < 700 ppm and Ni> 600 ppm.

Amphibolite grade metamorphism tends to cause chromite to be depleted in Ni and enrichedin Zn (Barnes 2000) and the metamorphic enrichment of Zn tends to be somewhat greater thanthe depletion of Ni. Although it can be assumed that this effect should be minimal in kimberliticspinels that post-date regional Archean metamorphic events it is also possible that thecompositions of old non-kimberlitic spinels can be metamorphically transformed to appearkimberlitic. Generally, chromites with high Zn regardless of Ni content have probably formed orhave been metamorphosed near surface.

Zn and Ni are present in trace quantities in chromite and care must be exercised to ensurethat the detection limit of a conventional microprobe is sufficiently low to accurately measurethese elements. A further shortfall in applying the Ni-Zn systematics to detrital chromites is thatthe original mineral assemblage with which the grains equilibrated is not known and must beassumed. None-the-less chromites with low Zn and high Ni can be considered to have formedunder high temperatures characteristic of the source areas for kimberlitic magmas.

Chromite data from the northern Superior area are shown in Figures 20a to e. The detritalchromite grains are divided into two groups comprising those of possible kimberlitic origin (asdistinguished by chemical criteria discussed below and shown by solid circles) and those fromother or unknown and possibly mixed kimberlitic and crustal sources (open circles). Also shownfor comparison are 4 analyses of chromites from komatiite of the northern Superior area. Thefields of chromite compositions from Ontario kimberlites (Sage 1996, 2000a, 2000b) and fromnon-kimberlitic chromites of northwest Ontario are illustrated. The latter data of Watkinson andMainwaring (1982) represents sub-economic chromite deposits at Chrome Lake, Shebandowan-Loch Erne, Crystal Lake and Big Trout Lake.

Chromite compositions are conventionally shown in terms of ratios of Cr/(Cr+Al) andFe3+/(Fe3++Cr+Al) against Fe2+/(Fe2++Mg). The northern Superior chromites have highCr/(Cr+Al) (0.6 to 0.8) and low Fe3+/(Fe3++Cr+Al) (<0.2) with quite variable Fe2+/(Fe2++Mg).These plots (Figure 20a and Figure 20b) show considerable overlap between the compositions ofthe detrital grains and those in known kimberlites and crustal sources and hence, provide littlepower to discriminate the origin of the detrital grains.

In terms of Cr2O3-MgO systematics (Figure 20c) none of the northern Superior chromitesand very few chromites from Ontario kimberlites plot within the diamond stability field of Fipke,Gurney and Moore (1995). Griffin et al. (1994) noted that chromite inclusions within diamondshow much higher Cr2O3 than chromite on the surface of diamond grains or in peridotite adjacentto diamond. They reasoned that diamonds and included spinels are older and must have formedat higher temperatures than existed in the host peridotite at the time of kimberlite eruption.Hence, diamond inclusion spinels ought to be rare in kimberlites and the lack of these kinds ofspinels in a suite of samples should not be interpreted as indicating the absence of a kimberliticsource. The available evidence summarized by Griffin et al. (1994) suggests that Cr2O3

Page 50: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

32

increases with T and P in chromite. Thus, chromite with high Cr2O3 lying just below thediamond inclusion field (see Figure 20c) is most likely to have originated at depth and can beinterpreted to be of possible kimberlitic origin.

Most northern Superior chromites have less than 1 wt% TiO2 (Figure 20d) although a fewgrains have higher levels of TiO2 plotting within or near the field unique to kimberlite andlamproite. Evidently, these represent spinels that crystallized late in the evolution of kimberliticmagmas toward the end of magmatic trends 1 and 2 that are characterized by Ti enrichment.

ZnO and NiO are inversely correlated in northern Superior chromites (Figure 20e).Chromite from Ontario kimberlites shows a similar inverse relation between ZnO and NiO and islow in ZnO (<0.4 wt %) but somewhat variable in NiO up to 0.3 wt %. The low Zn is anindication of high temperatures of chromite formation whereas the variable NiO probablyreflects a high proportion of chromite that crystallized in the absence of pyrope at higher levelsin the lithosphere. A ZnO level of <0.4 wt % combined with a somewhat arbitrary cut-off of>0.15 wt % NiO can be used to infer a high temperature and possibly kimberlitic source forchromite. A subset of possibly kimberlitic spinels have compositions with <0.09 wt % ZnO and>0.75 wt % NiO representative of the diamond stability field in a spinel+garnet peridotite(Griffin et al. 1994).

Table 12 ia a summary of grain compositions that satisfy one or another of the three criteriaused to identify chromite of possible kimberlitic origin. The grains are shown by solid circles inFigure 20 and are identified by high Cr and Mg (near the diamond stability field of Figure 20c),high Ti (in or near the field unique to kimberlite or lamproite of Figure 20d) or high Ni with lowZn (Figure 20e). Very few grains satisfy all three criteria, which partly reflects the variableconditions of pressure, temperature and bulk composition at which spinels form or areincorporated into a kimberlite. It must be emphasised however that considerable overlap occursin spinel compositions from kimberlitic and non-kimberlitic sources and the above criteria doesnot uniquely differentiate between the sources.

Chromite of possible kimberlitic origin is distributed widely in the northern Superior area(Figure 21). Chromite grains occur at western Stull Lake and four grains are found in one sampleat Ponask Lake west of the Sachigo moraine. Chromite of possibly kimberlitic origin appears tooccur in a broad band south of the Kenyon faults east of the Sachigo moraine.

Implications for Kimberlite Exploration

The number of “raw” kimberlite indicator minerals whose distribution is shown in Figures 9 and10 have been reduced by chemical discrimination. The more chemically favourable kimberliteindicator minerals discussed in the text and shown in Figures 14, 17, 19 and 21 occur widely and,in total, show a similar distribution to the “raw” indicator minerals. Chrome diopside, G10garnet, eclogitic garnet and olivine tend to be concentrated west of the Sachigo moraine whereasilmenite and chromite occur everywhere possibly showing a slight concentration east of themoraine.

Page 51: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

33

West of the Sachigo moraine, samples with anomalous numbers of kimberlite indicatorminerals are scattered in a southerly direction through the Stull-Ponask lakes area parallel to thelatest direction of ice movement. Anomalous samples west of the Sachigo moraine including96DST103, 97DST103, 95DST208, 99DST48, 00DST108, 95DST121 and 00DST16 (see Table6) are taken from beach and river samples, some of which show evidence of placer concentrationof heavy minerals (large HMCs). The concentration of kimberlite indicator minerals in thesesamples may be at least partly due to placer effects. Further, 3 of these samples (95DST208,99DST48 and 00DST108) were taken from the same beach in consecutive seasons and cause thenumber of indicator minerals to be biased upward in the western Stull Lake area.

The surfaces of chromite grains in samples collected west of the Sachigo moraine aremoderately rounded and chipped. The rounding and chipping post dates crushing of grains bythe main glacial deformation event and possibly results from a second glacial deformation eventrelated to southerly advance of the western ice lobe and subsequent melting of this lobe.Although pyrope grains west of the Sachigo moraine are mostly angular, the angularity of pyropeprobably results from the brittle nature of the mineral and should not be interpreted as anindication of proximity to source.

East of the Sachigo moraine, kimberlite indicator minerals tend to be concentrated in a linearzone about 30 km southwest of the North Kenyon fault (Figure 9) that includes beaches atMcLeod Lake. The majority of chromite grains show effects of glacial crushing with somewhatless post-crushing abrasion than is apparent in chromite grains west of the moraine. A subset of3 chromite grains from east of the moraine are highly rounded and have probably had a morecomplex displacement path than the majority of chromite grains. It is encouraging to note thatthe only chromite grain that shows remnants of an orange-peel surface suggestive of akimberlitic origin (00DST201) is also distinguished by high Cr and Ni (compare data in Table 11and Table 12).

In summary, although the largest numbers of kimberlite indicator minerals are concentratedin the Stull-Ponask lakes area, the moderately worn surfaces of chromite grains and placerconcentration of dense minerals in some samples suggests that these grains have been displacedand sorted by movement of ice and water. The late, southerly ice advance and subsequentglaciofluvial activity may account for some of the extra component of wear and inherentdisplacement of grains on the west side of the Sachigo moraine. East of the Sachigo moraine,kimberlite indicator minerals tend to be concentrated in samples aligned perpendicular to thelatest ice advance. On the one hand, the alignment of indicator mineral-bearing samples suggeststhat the KIMs may have been concentrated in a glacial feature such as a terminal moraine orpaleo-beach developed perpendicular to the ice-movement direction. Inspection of airphotographs and field observations provide no clear evidence for this interpretation however. Onthe other hand, samples containing the largest numbers of indicator minerals are aligned parallelto regional faults and terrane boundaries. This alludes to an interpretation wherein the source orsources for kimberlite indicator minerals may be controlled by regional crustal structures.

The northern Superior superterrane lying north of the North Kenyon fault represents some ofthe oldest preserved crustal material in the Superior Province (Skulski et al. 2000). Old terranestend to have thick, cold mantle roots and hence provide a favourable environment in whichancient diamonds can be preserved to be picked up and brought to surface in young kimberlites

Page 52: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

34

(Hoffman 1990; Gurney, Helmstaedt and Moore 1993). Hence, the northern Superiorsuperterrane may provide an attractive area to be explored for diamondiferous kimberlite.

In comparison, Fedikow et al. (2001a, 2001b) summarized extensive sampling for kimberliteindicator minerals in the Knee Lake area of Manitoba, which lies approximately 150 km west-northwest of the study area. These authors noted anomalous numbers of kimberlite indicatorminerals in surficial materials at Knee Lake and concluded that the source of the indicators liesup-ice to the northeast. Possibly the indicator minerals at Knee Lake and those of the presentarea are derived from sources that are grossly associated with the northern Superior superterraneand its boundaries. Although the majority of kimberlite indicator minerals found during thisstudy occur south of the North Kenyon fault, a few grains occur northward within the northernSuperior superterrane. Further sampling north and northeast of the study area is required toconstrain bedrock sources of the indicator mineral grains.

Page 53: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

35

Conclusions

A variety of surficial materials comprising mainly beach sand and till were sampled concurrentwith bedrock mapping in the northern Superior area from 1995 to 2000. The samples wereprocessed for gold grains, metamorphosed magmatic sulphide indicator minerals (MMSIMs®)and kimberlite indicator minerals (KIMs).

A detailed study focused exclusively on till identified anomalous numbers of gold grains inthe area of the Sachigo River mine. In contrast, regional sampling produced very few goldgrains through most of the northern Superior area probably because the sampling medium waspredominantly sand-size beach material from which silt-size gold grains had been removed bywater action. Sample 96DST202 at Ponask Lake contains 18 gold grains and represents anisolated anomaly that is worthy of follow-up. Otherwise, it is concluded that till is a preferredmedium to be sampled for gold grain studies.

Samples containing anomalous MMSIMs® include those with chalcopyrite only, Mn-epidotewith Cr-diopside and chalcopyrite+Mn-epidote+Cr-grossular+arsenopyrite. The chalcopyrite-only samples typically occur in plutonic areas and these anomalies appear to represent theaccumulation of sulphide grains that have originated from weak disseminations in nearbyplutonic bedrock. Two samples of beach sand with anomalous numbers of Mn-epidote and Cr-diopside grains are characterized by oversized heavy mineral concentrates. It appears that theMMSIMs® have been concentrated together with other heavy minerals in these samples at leastpartly by placer effects although one sample (97DST05) occurs within an area of the westernStull Lake greenstone belt that is geologically favourable for mineralization. Sample 96DST100from Ponask Lake contains a multi-mineral suite of MMSIMs® (chalcopyrite+Mn-epidote+Cr-grossular+arsenopyrite) and appears to be an attractive anomaly, possibly associated withvolcanogenic massive sulphide mineralization.

Surficial materials of the northern Superior area contain anomalous numbers of kimberliteindicator minerals. The KIMs include Cr-diopside, forsterite, Cr-pyrope, low-Ti and Cralmandine-pyrope, ilmenite and chromite and appear to have originated from lherzolite andlesser components of harzburgite and eclogite. West of the Sachigo moraine, samples withanomalous KIMs are distributed in a southerly direction parallel to the latest ice-movementdirection. East of the Sachigo moraine, KIMs are scattered but show some alignment parallel tonorthwest-striking regional bedrock structures and perpendicular to the regional ice-movementdirection.

The surfaces of nearly all chromite grains show effects of sub-glacial crushing followed bychipping, cracking and grinding in a glacial or aqueous environment. A few grains are wellrounded and may represent a separate population of KIMs that were extensively worn inkimberlite or water prior to glaciation. Evidently, the KIMs have been displaced an unknownand probably significant distance by ice and water. East of the Sachigo moraine, ice hasdisplaced the grains southwesterly whereas west of the Sachigo moraine, more complex glacialdynamics prevailed and involved early southwesterly displacement followed by southerlymovement.

Page 54: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

36

The northern Superior superterrane, which lies north of the North Kenyon fault is one of theoldest (3.5 Ga) continental fragments in the Superior Province. Old continental masses can beunderlain by deep and cold roots of refractory mantle material within which diamonds can formand be preserved and subsequently brought to surface in kimberlite diatremes. The northernSuperior superterrane represents a favourable region to be explored for fertile kimberlites.

Acknowledgements

Jesse Hallé, Michael Lange, Peir Pufahl, Eddie Cull and other members of field crews providedvaluable assistance with sample collection and transportation in consecutive seasons. RemyHuneault and Stuart Averill gave many helpful comments on heavy mineral processing andinterpretations. The microprobe analyses were performed by Dave Crabtree and Sandra Pitre. Ithank Peter Barnett, Tom Morris, Andy Bajc and Dave Crabtree for many useful discussions ofQuaternary geology and mantle mineralogy. Tom Morris provided extensive unpublished dataon clinopyroxenes for comparison with this study. Steve Josey drew the diagrams. Themanuscript benefited from comments by Tom Morris, Jack Parker and Andy Bajc.

Page 55: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

37

References

Afanasev, V.P., Varlamov, V.A. and Garanin, V.K. 1984. The abrasion of minerals inkimberlites in relation to the conditions and distance of their transportation; Geologiya iGeofizika, v.25, p.119-125.

Arima, M. and Barnett, R.L. 1984. Sapphirine bearing granulites from Sipwesk Lake area of thelate Archean Pikwitonei granulite terrain, Manitoba, Canada; Contributions toMineralogy and Petrology, v.88, p.102-112.

Arndt, N.T., Naldrett, A.J. and Pyke, D.R. 1977. Komatiitic and iron-rich tholeiitic lavas ofMunro Township, northeast Ontario; Journal of Petrology, v.18, p.319-369.

Averill, S.A. 1988. Regional variations in the gold content of till in Canada; in Prospecting inAreas of Glaciated Terrain – 1988, D.R. MacDonald and K.A. Mills (ed.), CanadianInstitute of Mining and Metallurgy, p.271-284.

Averill, S.A. 2001. The application of heavy indicator mineralogy in mineral exploration withemphasis on base metal indicators in glaciated metamorphic and plutonic terranes; inDrift Exploration in Glaciated Terrain (M.B. McClenaghan, P.T. Bobrowsky, G.E.M.Hall and S.J. Cook eds.), Special Publication 185, Geochemistry. Exploration.Environment. Analysis; Association of Exploration Geochemists and The GeologicalSociety of London.

Averill, S.A. and McClenaghan, M.B. 1994. Distribution and character of kimberlite indicatorminerals in glacial sediments, C14 and Diamond Lake kimberlite pipes, Kirkland Lake,Ontario; Geological Survey of Canada, Open File Report 2819, 48p.

Bajc, A.F. and Crabtree, D.C. 2001a. Results of regional till sampling for kimberlite and basemetal indicator minerals, Peterlong-Radisson Lake area, northeastern Ontario; OntarioGeological Survey, Open File Report 6060, 65p.

2001b. Results of regional till sampling for kimberlite and base metal indicator minerals,Shebandowan greenstone belt, northwestern Ontario; Ontario Geological Survey, OpenFile Report 6064, 64p.

Barnes, S.J. 2000. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism; Journal of Petrology, v.41, p.388-409.

Barnett, P.J. 1992. Quaternary geology of Ontario; in Geology of Ontario, Ontario GeologicalSurvey, Special Volume 4, Part 2, p.1011-1090.

Barrett, P.J. 1980. The shape of rock particles, a critical review; Sedimentology, v.27, p.291-303.

Page 56: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

38

Bennett, G. and Riley, R.A. 1969. Operation Lingman Lake; Ontario Department of Mines,Miscellaneous Paper 27, 52p.

Bolton, G.S. 1970. On the origin and transport of englacial debris in Svalbard glaciers; Journal ofGlaciology, v.9, p.213-229.

1978. Boulder shapes and grain-size distributions of debris as indicators of transport pathsthrough a glacier and till genesis; Sedimentology, v.25, p.773-799.

Brummer, J.J., MacFayden, D.A. and Pegg, C.C. 1992a. Discovery of kimberlites in the KirklandLake area northern Ontario, Canada Part I: Early surveys and surficial geology;Exploration and Mining Geology, v.1, p.339-350.

1992b. Discovery of kimberlites in the Kirkland Lake area northern Ontario, Canada Part II:Kimberlite discoveries, sampling, diamond content, ages and emplacement; Explorationand Mining Geology, v.1, p.339-350.

Canil, D. 1994. An experimental calibration of the “Nickel in Garnet” geothermometer withapplications; Contributions to Mineralogy and Petrology, v.117, p.410-420.

Carswell, D.A. and Gibb, F.G.F. 1987. Evaluation of mineral thermometers and barometersapplicable to garnet lherzolite assemblages; Contributions to Mineralogy and Petrology,v.95, p.499-511.

Cattell, A. and Arndt, N. 1987. Low-and high-alumina komatiites from a Late Archaeansequence, Newton Township, Ontario; Contributions to Mineralogy and Petrology, v.97,p.218-227.

Cheel, R.J. and Middleton, G.V. 1985. Horizontal laminae formed under upper flow regimeplane bed conditions; Journal of Geology, v.94, p.489-504.

Christiansen, E.A. and Whitaker, S.H. 1976. Glacial Thrusting of Drift and Bedrock; in GlacialTill, R.F. Legget (ed.), Royal Society of Canada, Special Publication 12, p.121-132.

Corkery, M.T. and Skulski, T. 1998. Geology of the Little Stull Lake area; in Report ofActivities 1998, Manitoba Energy and Mines, p.111-118.

Dawson, J.B. and Stevens, W.E. 1975. Statistical classification of garnets from kimberlite andassociated xenoliths; Journal of Geology, v.83, p.589-607.

Dick, H.J.B. and Bullen, T. 1984. Chromian spinel as a petrogenetic indicator in abyssal andalpine-type peridotites and spatially associated lavas; Contributions to Mineralogy andPetrology, v.86, p.54-76.

Page 57: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

39

DiLabio, R.N.W. 1990. Classification and interpretation of the shapes and surface textures ofgold grains from till on the Canadian Shield; in Current Research, Part C, GeologicalSurvey of Canada, Paper 90-1C, p.323-329.

Dostal, J. and Mueller, W. 1992. Archean shoshonites from the Abitibi greenstone belt,Chibougamau (Québec, Canada): geochemistry and tectonic setting; Journal ofVolcanology and Geothermal Research, v.53, p.145-165.

Dredge, L.A. and Cowan, W.R. 1989. Quaternary geology of the south-western Canadian shield;in Chapter 3, Quaternary Geology of Canada and Greenland, Geological Survey ofCanada, Geology of Canada, no 1, p.214-249.

Dredge, L.A., Ward, B.C. and Kerr, D.E. 1996. Morphology and kelyphite preservation onglacially transported pyrope grains; in Searching for Diamonds in Canada, A.N.LeCheminant, D.G. Richardson, R.N.W. DiLabio and K.A. Richardson (eds.), GeologicalSurvey of Canada, Open File 3228, p.197-203.

Dunlop, S.D. 2000. Gahnite from Metamorphosed Massive Sulphide Deposits and Rare-ElementPegmatites: Development of Discriminators Based on Bedrock and Overburden Samples;Unpublished MSc Thesis, Laurentian University, Sudbury, 169p.

Fedikow, M.A.F., Nielson, E., Conley, G.G. and Matile, G.L.D. 1998. Operation Superior: MultimediaGeochemical Survey Results from the Edmund Lake and Sharpe Lake Greenstone Belts,Northern Superior Province, Manitoba; Manitoba Energy and Mines, Open File Report OF98-5,403p.

Fedikow, M.A.F., Nielsen, E., Conley, G.G. and Lenton, P.G. 2001a. Operation Superior:Kimberlite Indicator Mineral Survey Results (2000) for the Northern Half of the KneeLake Greenstone Belt, Northern Superior Province, Manitoba; Manitoba Industry Tradeand Mines, Geological Survey, Open File Report OF2001-5, 59p.

2001b. Operation Superior: Compilation of Kimberlite Indicator Mineral Survey Results(1996-2000); Manitoba Industry Trade and Mines, Geological Survey, Open File ReportOF2001-4, 60p.

Finnerty, A.A. 1986. Inflected mantle geotherms from xenoliths are real: Evidence from olivinebarometry; in Kimberlites and Related Rocks, J. Ross (ed.), v. 2, Geological Society ofAustralia, Special Publication 14, p.883-900.

Fipke, C.E., Gurney, J.J. and Moore, R.O. 1995. Diamond Exploration Techniques EmphasisingIndicator Mineral Geochemistry and Canadian Examples; Geological Survey of Canada,Bulletin 423, 86p.

Fletcher, W.K. and Loh, C.H. 1996. Transport equivalence of cassiterite and its application tostream sediment surveys for heavy minerals; Journal of Geochemical Exploration, v.56,p.47-57.

Page 58: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

40

Fyon, A.F., Breaks, F.W., Heather, K.B., Jackson, S.L., Muir, T.L., Stott, G.M. and Thurston,P.C. 1992. Metallogeny and metallic mineral deposits in the Superior Province ofOntario; in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 2,p.1091-1176.

Garvie, O.G. and Robinson, D.N. 1984. The formation of kelyphite and associated sub-kelyphiticand sculptured surfaces on pyrope from kimberlite; in Kimberlites I: Kimberlites andRelated Rocks, J. Kornprobst (ed.), Developments in Petrology 11a, Elsevier, New York,p.359-370.

Gibson, H.L. and Watkinson, D.H. 1999. An Archean subseafloor hydrothermal system, regionalsemiconformable alteration, and massive sulphide deposits, Noranda, Quebec, Canada; inExploration Tools for Volcanogenic Massive Sulphide Deposits, J. Franklin and H.L.Gibson (eds.), Geological Association of Canada, Short Course, p.3.1-3.16.

Griffin, W.L., Cousens, D.R., Ryan, C.G., Sie, S.H. and Suter, G.F. 1989. Ni in chrome pyropegarnets: a new geothermometer; Contributions to Mineralogy and Petrology, v.103,p.199-202.

Griffin, W.L., Sobolev, N.V., Ryan, C.G., Pokhilenko, N.P., Win, T.T. and Yefimova, E.S. 1993.Trace elements in garnets and chromites: Diamond formation in the Siberian lithosphere;Lithos, v.29, p.235-256.

Griffin, W.L., Ryan, C.G., Gurney, J.J., Sobolev, N.V. and Win, T.T. 1994. Chromitemacrocrysts in kimberlites and lamproites: geochemistry and origin; in Kimberlites,Related Rocks and Mantle Xenoliths, Volume 1, H.O.A. Meyer and O.H. Leonardos(eds.), Proceedings of the Fifth International Kimberlite Conference, Araxa′, Brazil,1991, CPRM-Special Publication 1/A, p.366-377.

Groves, D.I., Barrett, F.M., Binns, R.A. and McQueen, K.G. 1977. Spinel phases associated withmetamorphosed volcanic-type iron-nickel sulphide ores from western Australia;Economic Geology, v.72, p.1224-1244.

Guo, J., Griffin, W.L. and O’Reilly, S.Y. 1999. Geochemistry and origin of sulphide minerals inmantle xenoliths: Qilin, southeastern China; Journal of Petrology, v.40, p.1125-1149.

Gurney, J.J. and Moore, R.O. 1993. Geochemical correlations between kimberlitic indicatorminerals and diamonds; in Diamonds: Exploration, Sampling and Evaluation, Prospectorsand Developers Association, Toronto, Short Course, p.147-172.

Gurney, J.J., Helmstaedt, H. and Moore, R.O. 1993. A review of the use and application ofmantle mineral geochemistry in diamond exploration; Pure and Applied Chemistry, v.65,p. 423-2442.

Haggerty, S.E. 1975. The chemistry and genesis of opaque minerals in kimberlites; Physics andChemistry of the Earth; v.9, p.295-307.

Page 59: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

41

Haggerty, S.E. and Tompkins, L.A. 1983. Redox state of Earth’s upper mantle from kimberliticilmenites; Nature, v.302, p.295-300.

Hemmingway, B.C., Krupka, K.M. and Robie, R.A. 1981. Heat capacities of the alkali feldsparsbetween 350 and 1000K from differential scanning calorimetry, the thermodynamicfunctions of the alkali feldspars from 298.15 to 1400 K, and the reactionquartz+jadeite=analbite; American Mineralogist, v.66, p.1202-1215.

Hoffman, P.F. 1990. Geological constraints on the origin of the mantle root beneath theCanadian shield; Philosophical Transactions of the Royal Society of London, A331, p.67-76.

Holmes, C.D. 1960. Evolution of till-stone shapes, central New York; Bulletin of the GeologicalSociety of America, v.71, p.1645-1660.

Huston, D.L. and Patterson, D.J. 1995. Zincian staurolite in the Dry River South volcanic-hostedmassive sulphide deposit, northern Queensland, Australia: an assessment of its usefulnessin exploration; Applied Geochemistry, v.10, p.329-226.

Irvine, T.N. 1965. Chromian spinel as a petrogenetic indicator Part I. Theory; Canadian Journalof Earth Sciences, v.2, p.648-672.

1967. Chromian spinel as a petrogenetic indicator Part II. Petrologic applications; CanadianJournal of Earth Sciences, v.4, p.71-103.

Kohler, T.P. and Brey, G.P. 1990. Calcium exchange between olivine and clinopyroxenecalibrated as a geothermobarometer for natural peridotites from 2 to 60 kb withapplications; Geochimica et Cosmochimica Acta, v.54, p.2375-2388.

Komar, P.D. and Wang, C. 1984. Processes of selective grain transport and the formation ofplacers on beaches; Journal of Geology, v.92, p.637-655.

Komar, P.D. 1976. Evaluation of wave-generated longshore current velocities and sandtransportation rates on beaches; in Beach and Nearshore Sedimentation, R.A. Davis andR.L. Ethington (eds.), Society of Economic Paleontologists and Mineralogists, SpecialPublication 24, p. 48-53 .

Krinsley, D.H. and Doornkamp, J.C. 1973. Atlas of Quartz Sand Surface Textures; CambridgeUniversity Press, 91p.

Krumbein, W.C. 1941. The effects of abrasion on the size, shape and roundness of rockfragments; Journal of Geology, v. 49, p.482-520.

Kuenen, P.K. 1956. Experimental abrasion of pebbles 2. rolling by current; Journal of Geology,v.64, p.336-368.

Page 60: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

42

Lesher, C.M. 1989. Komatiite-Associated Nickel Sulphide Deposits; in Ore DepositionAssociated with Magmas, J.A. Whitney and J.M. Franklin (eds.), Reviews in EconomicGeology, v.4, p.45-101.

McCallum, M.E., Huntley, P.M., Falk, R.W. and Otter, M.L. 1991. Morphological, resorptionand etch feature trends of diamonds from kimberlite populations within the Colorado-Wyoming State Line District, USA; in Diamonds: Characterization, Genesis andExploration, H.O.A Meyer and O.H. Leonardos (eds.), Proceedings of the FifthInternational Kimberlite Conference, Araxa′, Brazil, p.32-50.

McCandless, T.E. 1990. Kimberlite xenocryst wear in high-energy fluvial systems: experimentalstudies; Journal of Geochemical Exploration, v.37, p.323-331.

McCandless, T.E. and Gurney, J.J. 1989. Sodium in garnet and potassium in clinopyroxene:criteria for classifying mantle eclogites; in Kimberlites and Related Rocks, Volume 2:Their Mantle/Crustal Setting, Diamond and Diamond Exploration, J. Ross (ed.),Blackwell, Carlton, Australia, p.827-832.

McCarthy, T.C. and Patino Douce, A.E. 1998. Empirical calibration of the silica-Ca-tschermak’s-anorthite (SCAn) geobarometer; Journal of Metamorphic Petrology, v.16,p.675-686.

McClenaghan, M.B. 1996. Geochemistry and indicator mineralogy of drift over kimberlite,Kirkland Lake, Ontario; in Searching for Diamonds in Canada, A.N. LeCheminant, D.G.Richardson, R.N.W. DiLabio and K.A. Richardson (eds.), Geological Survey of Canada,Open File 3328, p.213-218.

Mezger, K., Bohlen, S.R. and Hanson, G.N. 1990. Metamorphic history of the ArcheanPikwitonei granulite domain and the Cross Lake Subprovince, Superior Province,Manitoba, Canada; Journal of Petrology, v.31, p.483-517.

Mitchell, R.H. 1986. Kimberlites Mineralogy, Geochemistry, and Petrology, Plenum Press, NewYork, 442p.

Morimoto, N. 1989. Nomenclature of pyroxenes; Canadian Mineralogist, v.27, p.143-156.

Morris, T.F., Breaks, F.W., Averill, S.A., Crabtree, D.C. and McDonald, A. 1997. Gahnitecomposition: implications for base metal and rare-element exploration; ExplorationMining Geology, v.6, p.253-260.

Morris, T.F., Sage, R.P., Crabtree, D.C. and Pitre, S.A. 2000. Kimberlite, Base Metal, Gold andCarbonatite Exploration Targets, Derived from Overburden Heavy Mineral Data, KillalaLake Area, Northwestern Ontario; Ontario Geological Survey, Open File Report 6013,114p.

Page 61: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

43

Morton, R.L. and Franklin, J.M. 1987. Two-fold classification of Archean volcanic-associatedmassive sulphide deposits; Economic Geology, v.82, p.1057-1063.

Mosig, R.W. 1980. Morphology of indicator minerals as a guide to proximity of source;Publications of the Geology Department and Extension Service, University of WesternAustralia, v.5, p.81-88.

Nimis, P. 1998. Evaluation of diamond potential from the composition of peridotitic chromiandiopside; European Journal of Mineralogy, v.10, p.505-519.

Nisbet, E.G., Arndt, N.T., Bickle, M.J., Cameron, W.E., Chauvel, C., Cheadle, M., Hegner, E.,Kyser, T.K., Martin, A., Renner, R. and Roedder, E. 1987. Uniquely fresh 2.7 Gakomatiites from the Belingwe greenstone belt, Zimbabwe; Geology, v.15, p.1147-1150.

OGS 1991. Bedrock Geology of Ontario: Northern Sheet; Ontario Geological Survey Map 2541,scale 1:1 000 000.

Osmani, I.A. and Stott, G.M. 1988. Regional scale shear zones in the Sachigo Subprovince andtheir economic significance; in Summary of Field Work and Other Activities 1988,Ontario Geological Survey, Miscellaneous Paper 141, p.53-67.

Otter, M.L., McCallum, M.E. and Gurney, J.J. 1991. A physical characteristic of the Sloan(Colorado) diamonds using a comprehensive diamond description scheme; in Diamonds:Characterization, Genesis and Exploration, H.O.A Meyer and O.H. Leonardos (eds.),Proceedings of the Fifth International Kimberlite Conference, Araxa′, Brazil, p.15-31.

Pan, Y., Fleet, M.E. and Williams, H.R. 1994. Granulite-facies metamorphism in the QueticoSubprovince, north of Manitouwadge, Ontario; Canadian Journal of Earth Sciences, v.31,p.1427-1439.

Patterson, G.C. and Watkinson, D.H. 1984. The geology of the Thierry Cu-Ni Mine,northwestern Ontario; Canadian Mineralogist, v.22, p.3-11.

Percival, J.A. and 16 authors. 2000. An integrated view of western Superior crustal evolution:highlights of 2000 NATMAP Studies; in Summary of Field Work and Other Activities2000, Ontario Geological Survey, Open File Report 6032, p.13-1 to 13-17.

Peredery, W.V. 1982. Geology and nickel sulphide deposits of the Thompson Belt, Manitoba; inPrecambrian Sulphide Deposits, R.W. Hutchinson, C.D. Spence and J.M. Franklin (eds.),Geological Association of Canada, Special Paper 25, p.165-209.

Power, M.R., Pirrie, D., Andersen, J. and Wheeler, P.D. 2000. Testing the validity of chromespinel chemistry as a provenance and petrogenetic indicator; Geology, v.28, p.1027-1030.

Reed, L.E. and Sinclair, I.G.L. 1991. The search for kimberlite in the James Bay Lowlands ofOntario; Canadian Institute of Mining and Metallurgy, Bulletin, v.84, p.132-139.

Page 62: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

44

Richardson, J.D., Ostry, G., Weber, W. and Fogwill, D. 1996. Gold in Manitoba; ManitobaEnergy and Mines, Economic Geology Report ER86-1 (2nd edition), 144p.

Roeder, P. 1994. Chromite: from the fiery rain of chondrules to the Kilauea Iki lava lake;Canadian Mineralogist, v.32, p.729-746.

Robinson, D.N., Scott, J.A., Van Niekerk, A., and Anderson, V.G. 1989. The sequence of eventsreflected in the diamonds in some southern African kimberlites; in Kimberlites andRelated Rocks, Volume 2, J Ross (ed.), Geological Society of Australia, SpecialPublication 14, p.990-1000.

Ryan, C.G. and Griffin, W.L. 1996. Garnet geotherms: Pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks; Journal of Geophysical Research, v.101,p.5611-5625.

Sage, R.P. 1987. “Carb” Lake Carbonatite Complex, District of Kenora; Ontario GeologicalSurvey, Study 53, 42p.

1996. Kimberlites of the Lake Timiskaming Structural Zone; Ontario Geological Survey,Open File Report 5937, 435p.

2000a. Kimberlites of the Lake Timiskaming structural zone: Supplement; Ontario GeologicalSurvey, Open File Report 6018, 123p.

2000b. Kimberlites of the Attawapiskat Area, James Bay Lowlands, Northern Ontario; OntarioGeological Survey, Open File Reoprt 6019, 341p.

Scribbins, B.T., Rae, D.R. and Naldrett, A.J. 1984. Mafic and ultramafic inclusions in thesublayer of the Sudbury Igneous Complex; Canadian Mineralogist, v.22, p.67-75.

Schulze, D.J. 1997. The significance of eclogite and Cr-poor megacryst garnets in diamondexploration; Exploration and Mining Geology, v.6, p.349-366.

Selley, R.C. 1988. Applied Sedimentology; Academic Press, London, 446p.

Simkin, T. and Smith, J.V. 1970. Minor-element distribution in olivine; Journal of Geology,v.78. p.304-325.

Skulski, T., Corkery, M.T., Stone, D., Whalen, J.B. and Stern, R.A. 2000. Geological andgeochronological investigations in the Stull Lake-Edmund Lake greenstone belt andgranitoid rocks of the northwestern Superior Province; in Report of Activities 2000,Manitoba Industry Trade and Mines, p.117-128.

Sneed, E.D. and Folk, R. L. 1958. Pebbles in the lower Colorado River, Texas a study of particlemorphogenesis; Journal of Geology, v.66, p.114-150.

Page 63: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

45

Spry, P.G. and Scott, S.D. 1986. The stability of zincian spinels in sulphide systems and theirpotential as exploration guides for metamorphosed massive sulphide deposits; EconomicGeology, v.81, p.1446-1463.

Stevens, W.E. and Dawson, J.B. 1977. Statistical comparison between pyroxenes fromkimberlites and their associated xenoliths; Journal of Geology, v.85, p.433-449.

Stone, D. 1994. Heavy minerals and kimberlite indicators in sand and till, western Berens Riverarea, Ontario; in Summary of Field Work and Other Activities 1994, Ontario GeologicalSurvey, Miscellaneous Paper 163, p.11-26.

Stone, D. and Hallé, J. 1997. Geology of the Sachigo, Stull and Yelling Lakes area, an overview;in Summary of Field Work and Other Activities, Ontario Geological Survey,Miscellaneous Paper 168, p.67-71.

Stone, D. and Hallé, J. 2000. Geology of the Blackbear, Yelling and Stull Lake areas, NorthernSuperior Province, Ontario; in Summary of Field Work and Other Activities 2000,Ontario Geological Survey, Open File Report 6032, p.15-1 to 15-9.

Stone, D., Hallé, J. and Lange, M. 2000. The Distribution of Gold Grains in Till, Sachigo RiverMine, Northwest Ontario; Ontario Geological Survey, Open File Report 6015, 17p.

Stone, D., Morris, T. and Crabtree, D.C. 1999. Heavy Mineral Indicator Data Base derived fromOverburden for Kimberlite, Metamorphosed magmatic Sulphide Indicator Minerals andGold, Stull Lake area, Northwestern Ontario; Ontario Geological Survey, MiscellaneousRelease Data 45, 54p.

Vredevoogd, J.J. and Forbes, W.C. 1975. The system diopside-ureyite at 20 kb; Contributions toMineralogy and Petrology, v.52, p.147-156.

Watkinson, D.H. and Mainwaring, P.R. 1982. Potential for Chromite Deposits in Ontario;Ontario Geological Survey, Open File Report 5389, 142p.

Page 64: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 65: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 66: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 67: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 68: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 69: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 70: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 71: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 72: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 73: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 74: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 75: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 76: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 77: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 78: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 79: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 80: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 81: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 82: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 83: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 84: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 85: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 86: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Tabl

e 1:

Loca

tion

and

desc

riptio

n of

nor

ther

n Su

perio

r sam

ples

, 199

5-20

00Sa

mpl

e N

o A

rea

UTM

eas

tU

TM n

orth

Des

crip

tion

of s

ampl

ed m

ater

ial

* ind

icat

es a

dup

licat

e sa

mpl

e ta

ken

in 1

997

at th

e si

te o

f a 1

995

sam

ple

95D

ST02

2C

entra

l Stu

ll L

5255

0060

2770

0bl

ue/g

rey

carb

onat

e-ric

h til

l at .

5 to

.6 m

dep

th o

n be

droc

k95

DST

023

Rap

son

Bay

5307

0060

3130

0be

ach

sand

bet

wee

n co

bble

s95

DST

024

Rap

son

Bay

5336

0060

3180

0m

ediu

m to

coa

rse

beac

h sa

nd o

verly

ing

glac

iola

cust

rine

clay

95D

ST02

4b*

Rap

son

Bay

5336

0060

3180

0m

ediu

m-c

oars

e gr

aine

d be

ach

sand

ove

rlayi

ng g

laci

o-la

cust

rine

clay

95D

ST02

5E

Rap

son

Bay

5376

0060

2995

0be

ach

sand

95D

ST02

5b*

Rap

son

Bay

5367

0060

2995

0be

ach

sand

95D

ST02

6E

Rap

son

Bay

5381

0060

2785

0be

ach

sand

95D

ST02

7E

Cen

tral S

tull

5279

0060

2745

0be

ach

sand

95D

ST02

8S

Stul

l52

8500

6019

500

beac

h sa

nd95

DST

029

Stul

l Cam

psite

5270

0060

2520

0bl

ue-g

rey

clay

-till?

ben

eath

bea

ch o

n be

droc

k, .6

m d

epth

95D

ST03

0S

Stul

l L52

3950

6016

000

beac

h sa

nd95

DST

030*

Stul

l L52

3950

6016

000

beac

h sa

nd95

DST

120

Stul

l52

4300

6030

200

fine

to c

oars

e be

ach

sand

on

outc

rop

95D

ST12

0b*

Stul

l L52

4300

6030

200

coar

se S

and/

Gra

vel o

n be

droc

k am

ong

boul

ders

95D

ST12

1St

ull L

., en

tranc

e to

Mon

umen

t Bay

5202

0060

2750

0sa

nd w

ith c

obbl

es a

t wat

ers

edge

95D

ST12

1*

SW S

tull

5202

0060

2740

0ca

rbon

ate-

rich

pebb

ly ti

ll at

wat

er's

edg

e95

DST

122

N P

ierc

e La

ke50

3800

6013

200

sand

with

cob

bles

und

er 1

0 cm

wat

er95

DST

123

Mon

umen

t Bay

5159

0060

3060

0si

lty s

and

from

san

d sp

it95

DST

204

Rap

son

Bay

S53

4100

6023

300

med

ium

bea

ch s

and

.2 to

.3 m

dep

th95

DST

205

SE S

tull

Lake

5288

5060

2380

0be

ach

sand

95D

ST20

6N

E R

apso

n Ba

y53

8000

6030

900

beac

h sa

nd95

DST

207

S-C

entra

l Stu

ll52

4800

6023

800

beac

h sa

nd95

DST

207*

St

ull L

5248

0060

2380

0be

ach

sand

95D

ST20

8W

Ric

hard

son

Arm

5182

0060

2360

0be

ach

sand

ove

rlain

by

.3 m

of c

lay

and

hum

us95

DST

208*

SW

Stu

ll51

8200

6023

600

beac

h sa

nd o

verla

in b

y .3

m o

f cla

y an

d hu

mus

. Fi

ne s

and

at w

ater

's e

dge

in a

cut

ban

k95

DST

209

N S

tull

5255

0060

3450

0be

ach

sand

95D

ST20

9b*

Stul

l L52

6300

6034

000

beac

h sa

nd95

DST

210

N S

tull

5275

0060

3550

0be

ach

sand

96D

ST01

Wes

t Pon

ask

L51

9700

5984

700

coar

se g

rit a

mon

g bo

ulde

rs o

n be

droc

k at

sho

relin

e96

DST

02M

cHen

ry L

ake

5203

0059

9490

0be

ach

sand

am

ong

boul

ders

on

bedr

ock

at s

hore

line

96D

ST03

Pona

sk L

ake

5222

0059

8600

0co

arse

grit

am

ong

boul

ders

on

bedr

ock

at s

hore

line

96D

ST04

Sach

igo

Lake

5653

5059

5715

0be

ach

sand

96D

ST05

Sach

igo

Lake

5647

5059

6545

0be

ach

sand

96D

ST10

0Po

nask

Lak

e53

3000

5978

100

beac

h sa

nd a

mon

g bo

ulde

rs o

n be

droc

k at

sho

relin

e96

DST

101

Sach

igo

Lake

5518

0059

5540

0be

ach

sand

96D

ST10

2Li

ttle

Sach

igo

Lake

5599

0059

9970

0be

ach

sand

96D

ST10

3Li

ttle

Sach

igo

Lake

5542

0059

9650

0be

ach

sand

96D

ST20

1Po

nask

Lak

e52

6500

5982

300

beac

h sa

nd, c

entra

l Pon

ask

sout

h sh

ore

96D

ST20

2Po

nask

Lak

e52

8300

5981

100

beac

h sa

nd, c

entra

l Pon

ask

Lake

96D

ST20

3An

gicu

m B

ay, P

onas

k53

4100

5975

000

beac

h sa

nd97

DST

01W

Pie

rce

L49

0500

5996

100

coar

se s

and

amon

g bo

ulde

rs o

n gr

eens

tone

bed

rock

at w

aveb

ase

97D

ST02

SW P

ierc

e L

4957

0059

9420

0be

ach

sand

68

Page 87: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

No

Are

aU

TM e

ast

UTM

nor

thD

escr

iptio

n of

sam

pled

mat

eria

l97

DST

03Ye

lling

L57

5800

6079

900

beac

h on

flan

k of

esk

er97

DST

04R

iede

r L57

6200

6085

500

coar

se g

rit o

n be

droc

k at

wav

ebas

e97

DST

05W

Stu

ll L

5232

0060

3180

0be

ach

sand

97D

ST06

NW

of Y

ellin

g L

5691

0060

9290

0w

eath

ered

till

on b

edro

ck97

DST

07Li

ttle

Stul

l L51

8500

6046

000

blue

silt

y til

l on

bedr

ock

at W

estm

in g

old

trenc

h97

DST

08E

of Y

ellin

g L

5866

0060

8220

0re

d w

eath

ered

silt

y til

l on

bedr

ock

97D

ST09

E of

Yel

ling

L59

5900

6084

600

tan

silty

till

on b

edro

ck 0

.1 to

0.5

m d

epth

97D

ST10

0Pi

erce

L50

6000

5997

050

beac

h sa

nd97

DST

101

Pier

ce L

5069

0059

9490

0be

ach

sand

97D

ST10

2Pi

erce

L50

6200

5999

400

beac

h sa

nd97

DST

103

Pier

ce L

5081

0060

0660

0be

ach

sand

97D

ST10

4Pi

erce

L49

8100

6002

300

beac

h sa

nd97

DST

105

McL

eod

Lake

, wes

t sho

re56

5500

6058

500

beac

h sa

nd97

DST

106

E Ec

hoin

g L

5523

0060

4230

0be

ach

sand

97D

ST10

7E

Ney

L54

8800

6054

300

beac

h sa

nd97

DST

108

SW o

f Car

b L

5572

0060

6330

0es

ker s

and

97D

ST10

9SW

of C

arb

L55

6200

6060

600

eske

r gra

vel a

nd s

and

97D

ST11

0S

of T

win

L50

5800

6021

600

beac

h sa

nd98

DST

01El

lard

Lak

e57

0784

6046

657

beac

h sa

nd98

DST

02C

orki

ng L

6078

0060

4040

0be

ach

deve

lope

d on

dru

mlin

98D

ST03

NE

Ella

rd58

7700

6064

000

coar

se s

and

amon

g bo

ulde

rs o

n sh

orel

ine

98D

ST04

Pasq

uatc

hi R

5996

0060

6500

0re

d w

eath

ered

till

on b

edro

ck98

DST

05Sh

allo

w L

6072

0060

7140

0re

d w

eath

ered

till

on b

edro

ck98

DST

06W

Sha

llow

L60

0600

6074

700

red

wea

ther

ed ti

ll in

bed

rock

cre

vass

e98

DST

07N

of D

odso

n L

6221

0060

6580

0gr

ey-re

d w

eath

ered

unc

onso

lidat

ed ti

ll on

bed

rock

98D

ST08

NW

Sha

llow

L60

3500

6083

600

red

silty

till

on b

edro

ck98

DST

100

Gum

mer

L58

1120

6038

747

beac

h sa

nd98

DST

101

Lace

y L

5838

2460

3919

2be

ach

sand

98D

ST10

2W

Sel

len

L58

8200

6040

000

river

san

d98

DST

105

S C

hick

L

5925

0060

3910

0riv

er s

and

98D

ST30

0M

oore

son

L57

6261

6039

503

beac

h sa

nd98

DST

301

N E

llard

L57

4440

6047

257

beac

h sa

nd98

DST

302

Schm

idt L

6111

0060

3960

0be

ach

sand

98D

ST30

3E

Shal

low

L60

7202

6071

400

beac

h sa

nd98

DST

304

NE

of S

hallo

w L

6160

0060

8570

0be

ach

sand

99D

ST02

E. T

ambl

yn60

2440

6025

780

sand

with

bou

lder

s at

bea

ch d

evel

oped

on

edge

of d

rum

lin, 1

0% c

arbo

nate

peb

bles

99D

ST03

Sher

man

L60

1450

6039

600

tan

brow

n si

lty ti

ll (1

m) o

ver .

1m re

d sa

nd o

n be

droc

k99

DST

04Sh

erm

an L

6010

0060

3900

0ta

n br

own

silty

till

(3m

) on

bedr

ock

bene

ath

mus

keg

99D

ST05

W. S

herm

an59

8400

6038

200

tan

silty

till,

1m

dep

th o

n fla

nk o

f dru

mlin

99D

ST06

W. S

herm

an59

9100

6038

500

silty

till,

.5m

dee

p on

flan

k of

dru

mlin

99D

ST07

W. S

herm

an59

8800

6038

900

pebb

ly s

ilty

till,

1m d

epth

ben

eath

.4m

pea

t99

DST

08W

. She

rman

5997

0060

3880

0ta

n si

lty ti

ll be

neat

h m

uske

g99

DST

09W

. She

rman

5989

5060

3960

0tw

o la

yers

of t

an s

ilty

till s

epar

ated

by

.1m

org

anic

hor

izon

(.4m

and

.7m

dep

th) o

n be

droc

k99

DST

10W

. She

rman

5997

0060

3940

0ta

n si

lty ti

ll .6

m in

dry

mus

keg

69

Page 88: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

No

Are

aU

TM e

ast

UTM

nor

thD

escr

iptio

n of

sam

pled

mat

eria

l99

DST

11W

. She

rman

6007

0060

3860

0re

d sa

ndy

horiz

on in

gre

y si

lt on

ber

ock,

.5m

dep

th99

DST

12W

. She

rman

6002

0060

3925

0si

lty ti

ll, ta

n br

own,

1m

dep

th b

elow

.3m

, pea

t in

dry

mus

keg

on d

rum

lin. L

s, g

s &

gran

ite c

obbl

es o

bser

ved

99D

ST13

W. S

herm

an60

0600

6040

100

tan

silty

till

.7m

nea

r cre

st o

f dru

mlin

99D

ST14

W. S

herm

an60

0200

6040

300

grey

lim

ey b

each

dep

osit

30cm

und

er w

ater

am

ong

boul

ders

in s

mal

l lak

e99

DST

15W

. She

rman

5995

5060

4040

0ta

n si

lty ti

ll 1m

at d

own

ice

end

of d

rum

lin99

DST

17N

W S

herm

an60

0500

6041

200

tan

silty

till

.5m

ben

eath

.2m

red

oxid

ized

laye

r, w

ell-d

rain

ed a

t nos

e of

dru

mlin

99D

ST18

W. S

herm

an60

0850

6040

800

tan

pebb

ly ti

ll w

ith b

row

n ox

idiz

ed z

ones

.6m

in d

ry m

uske

g w

ith b

ould

ers

99D

ST19

Sher

man

L60

2950

6040

400

silty

gre

y be

ach

depo

sit 3

0cm

bel

ow w

ater

on

gree

nsto

ne b

edro

ck99

DST

20N

. She

rman

6033

0060

4100

0re

d si

lt w

ith g

ritty

hor

izon

2cm

abo

ve b

edro

ck .4

m d

epth

, mos

tly g

reen

ston

e cl

asts

99D

ST21

N. S

herm

an60

3100

6040

950

red-

grey

grit

ty s

ilt in

bed

rock

cre

vass

e .3

m d

epth

; peb

bles

of G

S, g

rani

te, L

S99

DST

22N

. She

rman

6027

0060

4090

0bl

ack

gritt

y ho

rizon

.8m

dep

th a

t int

erfa

ce o

f ove

rlyin

g pe

at w

ith u

nder

lyin

g si

lt? G

S, d

iorit

e, L

S, G

R c

last

s99

DST

23Fo

ster

L60

2800

6041

100

red

sand

y gr

it on

dio

rite

.3m

dep

th99

DST

24Fo

ster

L60

2400

6041

100

red

sand

y gr

it on

dio

rite

bene

ath

mus

keg

.4m

99D

ST25

N. S

herm

an60

2400

6040

900

grey

silt

y til

l .8m

on

bedr

ock

or la

rge

boul

der b

enea

th .5

m b

lack

mus

keg,

mix

of v

olca

nic,

LS,

dio

rite

clas

ts99

DST

26Fo

ster

L60

3050

6041

500

red

oxid

ized

till

on b

edro

ck in

cre

vass

e be

neat

h ov

ertu

rned

tree

, .3m

99D

ST27

S. F

oste

r L60

3050

6041

200

red

wea

ther

ed ti

ll on

bed

rock

in c

reva

sse

.4m

dep

th99

DST

28Sh

erm

an L

6021

5060

4050

0ve

ry s

ilty

lake

sed

imen

ts b

ehin

d ou

tcro

p .6

m +

2 s

coop

s sa

nd fr

om la

ke 3

0cm

dep

th99

DST

29E.

Fos

ter

6035

0060

4150

0re

d gr

itty

till i

n be

droc

k cr

evas

se b

enea

th o

vertu

rned

root

, .6m

99D

ST30

E. F

oste

r60

3700

6041

700

grey

, silt

y til

l ben

eath

.4m

pea

t nea

r out

crop

.5 to

1m

dep

th (2

pits

) LS

and

gree

nsto

ne c

last

s99

DST

31E.

Fos

ter

6033

0060

4165

0co

arse

grit

in n

arro

w b

edro

ck c

reva

sse

.8m

ben

eath

gre

y til

l and

org

anic

s99

DST

32S.

Dad

son

6274

0060

5660

0re

d w

eath

ered

till

on b

edro

ck .2

m99

DST

33N

. Sch

mid

t 61

5400

6050

200

red

wea

ther

ed ti

ll on

bed

rock

.2m

99D

ST34

Far N

. of S

herm

an L

6126

0060

6580

0re

d w

eath

ered

till

bene

ath

tree

root

on

bedr

ock

.2m

99D

ST35

Far N

. of S

herm

an60

6600

6062

100

red

wea

ther

ed ti

ll on

bed

rock

.2m

99D

ST36

SW M

esto

n57

9500

6017

700

red

wea

ther

ed ti

ll on

bed

rock

.2m

99D

ST37

N. I

gels

trom

5822

0060

1200

0re

d w

eath

ered

till

bene

ath

tree

root

on

bedr

ock

.2m

99D

ST38

Far N

. of S

herm

an60

8800

6059

800

red

wea

ther

ed ti

ll on

bed

rock

.2m

99D

ST39

E. o

f Sch

mid

t62

7000

6037

700

red

wea

ther

ed ti

ll .2

m99

DST

40S.

Stu

ll53

5200

6015

200

silty

till

bene

ath

tree

root

on

boul

ders

99D

ST41

S. S

tull

5181

0060

2140

0re

d pe

bbly

till

on b

edro

ck .4

m99

DST

42S.

Stu

ll51

6900

6018

300

grey

silt

with

a li

ttle

grit

on b

edro

ck .2

m99

DST

43S.

Stu

ll51

9700

6016

900

very

silt

y gr

ey ti

ll on

bed

rock

(gra

nite

peg

mat

ite)

99D

ST44

S. S

tull

5209

0060

1950

0re

d si

lty ti

ll .3

m99

DST

45S.

Stu

ll53

0600

6016

600

grey

silt

y be

ach

depo

sit a

mon

g bo

ulde

rs .2

m b

elow

wat

er99

DST

46S.

Stu

ll52

4300

6003

800

red

gritt

y til

l on

gran

ite b

edro

ck .3

m99

DST

47S.

Stu

ll51

9100

5987

00gr

ey s

ilty

till o

n pi

nk g

rani

te99

DST

48R

icha

rdso

n Ar

m51

8000

6023

500

beac

h sa

nd99

DST

49R

icha

rdso

n Ar

m51

9100

6023

300

beac

h sa

nd99

DST

50R

icha

rdso

n Ar

m52

0000

6022

800

beac

h sa

nd99

DST

100

W. W

ither

s58

3549

6024

299

sand

& g

rave

l off

tona

lite

outc

rop,

wes

t of N

E tre

ndin

g es

ker

99D

ST10

1E.

Mes

ton

L58

6106

6018

600

sand

on

shou

lder

of t

onal

ite o

/c, e

ast s

ide

of la

ke99

DST

102

S. K

at L

6253

5760

6489

2be

ach

sand

sou

th o

f gre

enst

one

sliv

er, n

ear g

rani

te o

/c99

DST

103

S. o

f She

rman

L60

1872

6038

654

silty

till

near

gre

enst

one

o/c,

hea

vy to

peb

bles

/sto

nes

(20%

)99

DST

104

S. o

f She

rman

L60

2050

6038

000

glac

ial s

ilty

till,

SW o

f im

v o/

c, 4

0% s

and

70

Page 89: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

No

Are

aU

TM e

ast

UTM

nor

thD

escr

iptio

n of

sam

pled

mat

eria

l99

DST

105

S. o

f She

rman

L60

3004

6039

060

silty

till

with

san

d (<

.5cm

), SW

of i

mv

o/c

99D

ST10

6S.

of S

herm

an L

6026

7860

3919

1til

l with

san

d SW

of i

nt. v

olc

outc

rop

99D

ST10

7N

W o

f She

rman

L59

9079

6042

425

silty

till

with

grit

(max

. siz

e <1

cm (2

0%)),

W o

f dru

mlin

s99

DST

108

NW

of S

herm

an L

5993

9260

4166

3si

lty ti

ll w

ith g

rit (m

ax. s

ize

<.5c

m (3

0%)),

from

dru

mlin

s99

DST

109

NW

of S

herm

an L

6001

0460

4175

7si

lty ti

ll w

ith <

.5cm

grit

, eas

t of d

rum

lin99

DST

110

NW

of S

herm

an L

6007

3660

4141

7si

lty ti

ll w

ith 4

5% s

and/

pebb

les/

ston

es, W

. sid

e of

NE

trend

ing

drum

lin99

DST

111

N. o

f She

rman

L60

1493

6041

963

silty

till,

S. o

f dru

mlin

, with

grit

99D

ST11

2N

. of S

herm

an L

6015

1260

4128

8si

lty ti

ll w

ith 3

0% s

and/

pebb

les,

und

erne

ath

cobb

le la

yer

99D

ST11

3N

. of S

herm

an L

6020

6660

4136

3si

lty ti

ll w

ith g

rit99

DST

114

N. o

f She

rman

L60

2225

6041

353

silty

till

with

grit

(<5m

m),

bene

ath

cobb

le la

yer

99D

ST11

5N

. of S

herm

an L

6024

4160

4177

5si

lty ti

ll fro

m b

enea

th c

obbl

e la

yer

99D

ST11

6N

. of S

herm

an L

6029

0160

4189

7si

lty ti

ll w

ith v

ery

coar

se s

and

& pe

bble

s (<

5cm

), fro

m b

enea

th b

ould

ers

99D

ST11

7N

. of S

herm

an L

6030

8960

4224

4si

lty ti

ll w

ith v

ery

coar

se g

rit (<

2cm

), be

neat

h co

bble

s99

DST

118

N. o

f She

rman

L60

2488

6041

569

silty

till

with

cla

sts

<5cm

from

und

erne

ath

smal

l cob

bles

99D

ST11

9N

. of S

herm

an L

6029

3960

4160

7si

lty ti

ll w

ith h

igh

% o

f mm

v co

bble

s, g

rit <

2cm

, S &

SW

of o

/c99

DST

120

N. o

f She

rman

L60

2066

6040

875

med

gra

ined

san

d, 1

-2m

m d

ia. -

unk

now

n or

igin

99D

ST12

1Fo

ster

L60

2627

6041

293

silty

till

bene

ath

ston

y/co

bbly

laye

r, S.

of m

v o/

c99

DST

122

Fost

er L

6026

5560

4132

0sa

ndy,

bro

wn,

wel

l-sor

ted

till,

off m

v o/

c, 5

m fr

. Pre

viou

s99

DST

123

Fost

er L

6030

2760

4168

2si

lty ti

ll w

ith g

rit <

1cm

, ben

eath

sto

ny 'd

eser

t pav

emen

t'99

DST

124

SW G

illera

n L

5349

4060

2119

6ve

ry c

oars

e gr

avel

& s

and

(som

e si

lt) o

ff gr

eens

tone

o/c

ver

y ne

ar z

inc

show

ing

99D

ST20

0S.

Tam

blyn

L59

6896

6020

400

coar

se g

rain

ed s

and

clos

e to

esk

er99

DST

201

S. In

dian

Cam

p L

6104

0060

3510

0be

ach

sand

clo

se to

esk

er, l

ays

betw

een

lake

and

Sac

higo

R.

99D

ST20

2E.

Sta

bles

L60

5300

6021

300

beac

h sa

nd, l

ays

betw

een

gran

itic

bedr

ock

(N) a

nd v

olca

nic

rock

(S)

99D

ST20

3S.

Sta

bles

L60

3290

6019

980

beac

h sa

nd c

lose

to e

sker

(lon

g st

retc

hed

beac

h at

sou

ther

n sh

ore,

ver

y th

ick)

99D

ST20

4C

hain

of L

akes

5912

4060

1339

0fin

e sh

ore

sedi

men

ts b

enea

th ra

pids

, bet

wee

n bo

ulde

rs (v

ery

thin

laye

r of a

ppro

x. 1

-2 c

m)

99D

ST20

5R

aft L

(SE

of D

adso

n L)

6123

0060

4613

0be

ach

sand

from

isol

ated

isla

nd a

ppro

x. c

entre

of l

ake

99D

ST20

6Sa

chig

o R

.61

6600

6037

700

beac

h al

ong

river

sho

re00

DST

01Sw

an L

k62

0200

6015

100

grey

silt

y ag

greg

ate

in e

sker

ridg

e on

isla

nd.

00D

ST02

Swan

Lk

6169

0060

1600

0co

arse

san

d on

bed

rock

00D

ST03

Swan

Lk

6271

0060

1280

0be

ach

sand

00D

ST04

Cam

psite

at B

lack

bear

Lk

5990

0060

0430

0co

arse

bea

ch s

and

00D

ST05

S Sw

an L

k61

6400

6007

200

river

san

d at

bea

ver d

am00

DST

06N

E Sw

an L

K62

1400

6017

050

beac

h sa

nd b

elow

wav

e ba

se00

DST

07S

Swan

Lk

6289

3460

1125

2be

ach

Sand

00D

ST08

S Sw

an L

k62

2081

6000

317

beac

h sa

nd fr

om ro

cky

beac

h de

posi

t00

DST

09S

Swan

Lk

6222

9559

9903

1be

ach

sand

from

rock

y be

ach

depo

sit

00D

ST10

S Bl

ackb

ear

5986

7159

9881

5be

ach

sand

am

ong

boul

ders

30c

m b

elow

wat

er00

DST

11S

Blac

kbea

r60

6500

5990

000

beac

h sa

nd a

mon

g bo

ulde

rs o

n riv

er b

ank

00D

ST12

S Bl

ackb

ear

5984

0059

9080

0re

d w

eath

ered

silt

y til

l on

gran

ite b

edro

ck ~

1m d

epth

00D

ST13

NE

Swan

LK

6286

0060

2880

0fin

e re

d sa

nd lo

ess

on s

ilty

till o

n be

droc

k00

DST

14N

Yel

ling

Lk57

8500

6106

800

coar

se ri

ver s

and

on b

edro

ck00

DST

15S

Car

b LK

5646

0060

6690

0gr

ey s

ilty

till w

ith a

few

peb

bles

~1m

dep

th b

enea

th o

rgan

ic la

yer

00D

ST16

Stul

l Riv

er53

4500

6084

950

coar

se s

and

to g

rave

l in

river

bed

00D

ST17

Stul

l Riv

er53

0000

6100

000

coar

se ri

ver s

and

was

hed

up o

n be

droc

k

71

Page 90: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

No

Are

aU

TM e

ast

UTM

nor

thD

escr

iptio

n of

sam

pled

mat

eria

l00

DST

18N

Wus

kutu

moo

Lk

5465

1461

0030

3gr

it w

ith o

rgan

ic s

oil o

n be

droc

k at

stre

am s

hore

, pro

babl

y w

ashe

d fro

m ti

ll on

hig

her r

iver

ban

k00

DST

100

E Sw

an L

k62

3112

6013

972

coar

se g

rave

l in

fine

dark

san

d (~

60%

) off

imv/

ss o

/c00

DST

101

SW S

wan

LK

6119

3760

0659

9co

arse

gra

vel t

o fin

e sa

nd in

bea

ch d

epos

it ve

ry n

ear t

o fe

lsic

plu

ton

00D

ST10

2N

Sw

an L

K91

2252

6015

552

fine

sand

in b

each

dep

osit

near

imv

o/c

00D

ST10

3SW

Bla

ckbe

ar L

k58

2005

5987

030

coar

se s

and

(sor

ted)

off

tona

lite

o/c

00D

ST10

4SE

Bla

ckbe

ar L

k60

1755

5996

375

grey

silt

y gl

acia

l till

rew

orke

d/ b

each

mod

ified

bou

lder

y sh

orel

ine

00D

ST10

5N

Raw

ley

Lk62

1782

6007

534

fine

sand

with

coa

rse

sand

and

peb

bles

dire

clty

off

plut

onic

gra

nite

00D

ST10

6Sa

chig

o R

iver

6178

9260

3735

6ve

ry fi

ne s

and

with

silt

in a

gla

cial

till

near

maf

ic m

etav

olca

nic

o/c

00D

ST10

7N

W S

wan

Lk

6087

8960

1890

8un

sorte

d, m

ostly

silt

-siz

ed ti

ll of

gla

cial

dru

mlin

00D

ST10

8a-e

Ric

hard

son

Arm

5179

3960

2352

1be

ach

sand

, w

ell s

orte

d ne

ar b

iotit

e to

nalit

e gn

eiss

o/c

00D

ST10

9W

Ric

hard

son

arm

5166

6160

2379

5gr

ey g

laci

al ti

ll ( f

rom

far e

ast s

ide

of d

rum

lin?)

, mos

tly s

ilty

with

<5m

m g

rit00

DST

110

Mon

umen

t Bay

51

9496

6027

139

coar

se a

ngul

ar-s

ub a

ngul

ar g

rave

l and

san

d of

f mm

v o/

c (s

ome

clay

)00

DST

111

Mon

umen

t Bay

51

8563

6027

251

sorte

d sa

nd a

nd g

rave

l fro

m d

epos

it ne

ar m

sed

o/c

00D

ST11

2M

onum

ent B

ay

5170

9060

2742

8sa

nd a

nd s

ome

grav

el d

irecl

ty o

ff m

sed

o/c

and

roun

ded

boul

der l

ag00

DST

200

SE B

lack

bear

Lk

6216

1159

8918

4til

l fro

m a

mon

g bo

ulde

rs n

ear r

iver

00D

ST20

1N

Bla

ckbe

ar R

iver

6301

5059

9875

0sa

nd fr

om g

laci

al d

rum

lin00

DST

202

Nam

aypo

ke L

k60

6548

6004

555

till o

n la

kesi

de00

DST

203

NW

Sw

an L

k62

0221

6024

127

sand

with

peb

bels

nea

r riv

ersi

de00

DST

204

N B

lack

bear

Lk

5991

6760

1242

2co

arse

san

d on

bed

rock

00D

ST20

5a-e

McL

eod

Lk56

4500

6058

500

beac

h sa

nd00

DST

206

E M

cLeo

d Lk

5650

0060

5740

0sa

nd o

n SE

sid

e of

lake

00D

ST20

7N

McL

eod

Lk56

6200

6060

300

till s

ampl

e on

rive

r ban

k00

DST

208

Cen

tral M

cLeo

d Lk

5649

0060

5850

0til

l sam

ple

from

isla

nd00

DST

210

W R

icha

rdso

n Ar

m52

0036

6025

080

till o

n do

wn-

ice

side

of o

utcr

op. C

lean

silt

y gr

it00

DST

211

NW

Ric

hard

son

Arm

5192

6860

2512

4til

l ben

eath

mus

keg

on b

edro

ck. C

lean

silt

y gr

it00

DST

212

NW

Ric

hard

son

Arm

5172

2660

2321

7til

l fro

m ri

se a

bove

rive

r. C

lean

gre

y si

lty g

rit.

00D

ST21

3N

W R

icha

rdso

n Ar

m51

7647

6024

073

trill

grey

, cle

an s

ilty

grit

00D

ST21

4N

W R

icha

rdso

n Ar

m51

8800

6025

000

till,

grey

.00

DST

215

NW

Ric

hard

son

Arm

5179

4560

2504

5si

lty ti

ll in

mus

keg

00D

ST21

6N

W R

icha

rdso

n Ar

m51

7333

6025

000

till f

rom

sid

e of

hill

from

an

anim

al h

ole

00D

ST40

0Se

Bla

ckbe

ar62

8212

5989

045

coar

se s

and

and

grav

el o

n bo

ulde

r bea

ch s

hore

line

No.

of s

ampl

es: b

each

=100

; till=

88; m

oder

n al

luvi

um=8

; gla

cio-

fluvi

al=7

; gla

cio-

lacu

strin

e=3

72

Page 91: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Table 2: Sample processing data

Sample WEIGHT (kgs) WET WEIGHT (gm)Number Bulk Table 10.00 Table Concentrate M.I. Non- Mag.

ReceivedSplit Mesh Feed Total Lights Mag.95DST022 15.45 15.45 2.90 12.55 600.10 563.50 30.30 6.3095DST023 10.85 10.85 3.50 7.35 445.80 440.80 4.10 0.9095DST024 11.65 11.65 4.10 7.55 468.60 408.00 57.30 3.3095DST024b 12.80 12.25 3.70 8.55 947.00 292.50 12.70 0.2095DST025 11.10 11.10 1.40 9.70 286.20 263.00 22.30 0.9095DST25b 9.45 9.00 0.75 8.25 761.20 321.50 25.60 0.1095DST026 3.25 3.25 0.00 3.25 359.40 276.20 80.60 80.5095DST027 8.80 8.80 2.75 6.05 698.50 648.80 37.00 12.7095DST028 13.65 13.65 5.55 8.10 744.80 714.40 29.00 1.4095DST029 13.20 13.20 2.20 9.90 639.30 583.70 45.00 10.6095DST030 8.95 8.95 0.20 8.75 557.60 454.50 91.90 11.2095DST30b 16.10 15.55 0.05 15.50 1053.50 523.80 15.70 0.2095DST120 12.95 12.95 4.25 8.70 909.40 820.90 87.10 1.4095DST120b 12.25 11.65 2.70 8.95 768.90 268.40 11.40 0.3095DST121 18.65 18.65 5.05 13.60 280.50 250.20 25.40 4.9095DST121b 11.75 11.15 0.90 10.25 943.10 203.90 19.70 0.9095DST122 9.75 9.75 2.45 7.30 575.00 523.20 39.60 12.2095DST123 12.75 12.75 0.00 12.75 600.10 568.00 29.30 2.8095DST204 11.60 11.60 1.50 10.10 823.90 813.00 10.70 0.2095DST205 10.90 10.90 0.00 10.90 792.60 787.40 5.10 0.1095DST206 9.30 9.30 0.90 8.40 636.80 634.10 2.60 0.1095DST207 14.30 13.75 0.80 12.95 965.10 298.40 46.50 0.5095DST208b 12.60 12.05 0.30 11.75 1092.80 579.50 156.10 3.3095DST209 9.60 9.60 0.00 9.60 510.20 497.40 12.50 0.3095DST209b 10.15 9.60 1.70 7.90 865.90 386.40 50.30 0.6095DST210 5.70 5.70 0.00 5.70 279.50 266.90 11.80 0.8096DST01 13.40 n/a 6.25 n/a 332.00 298.00 28.10 5.9096DST02 8.35 n/a 3.80 n/a 192.80 191.70 19.30 0.8096DST03 9.65 n/a 4.80 n/a 306.70 300.60 24.90 4.3096DST04 10.30 n/a 0.00 n/a 615.60 615.30 3.10 0.2096DST05 7.60 n/a 0.05 n/a 580.50 577.00 52.80 3.4096DST100 13.75 n/a 7.20 n/a 347.10 341.90 18.60 4.5096DST101 23.70 n/a 5.20 n/a 641.40 639.30 5.90 0.7096DST102 12.90 n/a 0.20 n/a 494.70 492.40 58.90 2.2096DST103 16.70 n/a 0.10 n/a 589.40 587.70 28.40 1.5096DST201 19.85 n/a 10.50 n/a 569.90 556.50 56.90 10.7096DST202 18.65 n/a 7.85 n/a 369.10 361.60 33.40 6.6096DST203 16.50 n/a 1.30 n/a 318.00 315.40 11.30 1.9097DST01 11.10 10.55 4.05 6.50 888.00 830.80 52.60 4.6097DST02 7.25 6.75 0.30 6.45 909.50 889.00 19.50 1.0097DST03 10.85 10.25 0.40 9.85 554.20 551.50 2.60 0.1097DST04 10.30 9.80 4.05 5.75 1024.90 875.00 129.50 20.4097DST05 9.00 8.40 0.40 8.00 1369.00 1270.00 98.10 0.9097DST06 17.50 16.50 4.30 12.20 941.80 899.50 27.80 14.5097DST07 17.20 16.55 5.60 10.95 823.60 773.70 39.50 10.4097DST08 12.55 12.05 1.80 10.25 781.30 741.60 34.40 5.3097DST09 15.45 14.85 2.95 11.90 770.00 737.20 26.70 6.1097DST100 11.30 10.70 0.25 10.45 1067.80 1042.10 25.70 0.1097DST101 10.40 9.90 0.10 9.80 942.50 908.00 33.30 1.2097DST102 14.75 14.10 0.30 13.80 1181.40 1143.20 37.80 0.4097DST103 12.15 11.55 0.05 11.50 1028.70 737.70 284.60 6.4097DST104 11.55 10.80 0.15 10.65 966.10 954.90 10.60 0.6097DST105 12.00 12.30 0.70 11.60 755.30 620.50 126.30 8.50

73

Page 92: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sample WEIGHT (kgs) WET WEIGHT (gm)Number Bulk Table 10.00 Table Concentrate M.I. Non- Mag.

ReceivedSplit Mesh Feed Total Lights Mag.97DST106 16.75 16.30 0.15 16.15 1306.00 1297.20 8.60 0.2097DST107 14.50 13.80 0.45 13.35 1070.50 1051.20 18.80 0.5097DST108 9.40 8.80 0.25 8.55 778.60 726.40 41.50 10.7097DST109 18.10 17.40 11.20 6.20 626.10 595.20 21.20 9.7097DST110 12.65 12.10 1.00 11.10 991.80 945.20 44.80 1.8098DST01 10.40 9.60 4.00 5.60 894.50 797.80 94.30 2.4098DST02 7.20 6.90 4.20 2.80 355.10 332.40 21.30 1.4098DST03 7.90 7.40 4.20 3.20 478.50 466.00 12.30 0.2098DST04 11.60 11.10 3.60 7.50 789.40 747.90 31.80 9.7098DST05 11.20 10.60 1.30 9.40 1069.30 1018.40 38.10 12.8098DST07 8.30 7.80 1.60 6.20 524.30 500.40 20.90 3.0098DST100 9.00 8.40 3.60 4.90 826.40 789.90 56.20 0.3098DST101 5.00 4.50 0.60 3.90 572.20 560.60 11.40 0.2098DST102 10.60 10.10 5.90 4.20 441.20 416.50 22.70 2.0098DST105 16.00 15.50 0.40 15.20 816.80 759.80 56.50 0.5098DST300 10.80 10.40 0.50 9.90 823.40 765.40 56.70 1.3098DST301 16.80 16.30 0.00 16.30 971.50 904.50 66.20 0.8098DST302 13.50 13.00 5.70 7.30 690.10 639.30 45.10 5.7098DST303 10.80 10.30 0.50 9.80 800.20 766.60 33.20 0.4098DST304 11.50 11.00 0.00 11.00 549.90 533.60 16.20 0.1099DST02 14.2 13.4 3.6 9.8 914.9 346.6 52.5 599DST03 9.5 0.7 8.8 641.9 626.5 12.5 2.999DST04 9.9 1.4 8.5 661.4 621.4 35.9 4.199DST05 9.6 1.4 8.2 659.5 626.7 25.2 7.699DST06 12.3 0.8 11.5 360.7 332.5 24.7 3.599DST07 9.4 1.5 7.9 303.1 289.9 9.6 3.699DST08 10.2 1.5 8.7 333.1 292.0 31.5 9.699DST09 9.8 1.6 8.2 376.7 350.3 20.3 6.199DST10 9.7 1.4 8.3 244.9 214.1 23.2 7.699DST11 9.0 0.7 8.3 397.1 336.9 51.2 9.099DST12 9.6 1.0 8.6 228.8 204.4 18.2 6.299DST13 9.6 0.9 8.7 376.7 348.6 22.5 5.699DST14 8.8 1.8 7.0 341.8 310.9 28.4 2.599DST15 9.6 1.8 7.8 291.1 266.0 20.4 4.799DST16 9.6 1.0 8.6 432.6 401.8 24.1 6.799DST17 9.1 1.1 8.0 373.6 346.3 21.1 6.299DST18 9.1 2.3 6.8 276.1 250.2 19.5 6.499DST19 9.0 0.9 8.1 317.4 301.4 13.5 2.599DST20 8.1 0.4 7.7 300.1 290.0 10.0 0.199DST21 9.0 0.8 8.2 232.4 213.9 15.7 2.899DST22 9.5 1.7 7.8 318.1 292.4 25.4 0.399DST23 8.0 0.4 7.6 373.7 360.6 12.8 0.399DST24 8.1 0.6 7.5 347.8 337.9 9.1 0.899DST25 8.4 1.0 7.4 264.2 247.4 14.9 1.999DST26 8.5 1.7 6.8 345.2 310.0 34.2 1.099DST27 9.2 2.3 6.9 243.3 207.6 31.4 4.399DST28 8.9 0.9 8.0 263.1 252.5 8.5 2.199DST29 7.8 0.7 7.1 324.7 302.5 20.6 1.699DST30 9.2 0.9 8.3 294.1 271.2 19.2 3.799DST31 9.2 2.8 6.4 320.2 305.1 10.5 4.699DST32 8.3 7.8 2.1 5.7 915.2 883.8 27.5 3.999DST33 8.5 8.1 0.7 7.4 826.9 813.6 9.1 4.299DST34 7.7 7.3 3.4 3.9 687.9 679.3 6.7 1.999DST35 7.4 7 1.3 5.7 596.6 589.7 5.1 1.899DST36 8.7 8.2 2.6 5.6 806.6 772.9 24.6 9.1

74

Page 93: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sample WEIGHT (kgs) WET WEIGHT (gm)Number Bulk Table 10.00 Table Concentrate M.I. Non- Mag.

ReceivedSplit Mesh Feed Total Lights Mag.99DST37 7 6.5 0.9 5.6 794.1 770.7 18.8 4.699DST38 9.2 8.8 3.1 5.7 1201.6 1161.7 32 7.999DST39 8 7.5 0.6 6.9 815.7 760.4 40.6 14.799DST40 7.5 7.1 1.9 5.2 753.8 693.5 57.9 2.499DST41 9.9 9.5 3.3 6.2 892.1 859.6 27.1 5.499DST42 10.5 10 0.5 9.5 690.8 677.8 9.7 3.399DST43 10.3 9.8 1.5 8.3 533.6 528.8 3.8 199DST44 10.5 10 3.1 6.9 918.1 891.8 21.7 4.699DST45 8.8 8.4 0.8 7.6 714.4 684.5 27.8 2.199DST46 10.5 10.2 1.5 8.7 732.4 703.8 23.8 4.899DST47 10 9.5 2.2 7.3 492.1 475.7 13.8 2.699DST48 10.7 10.3 0.5 9.8 750.3 712.1 35.5 2.799DST49 10.4 9.8 1.5 8.3 955.6 927.8 24.6 3.299DST50 10 9.6 1.2 8.4 654.6 609.1 39.7 5.899DST100 5.5 5.2 0.4 4.8 1046.5 712.7 333 0.899DST101 11.4 11 1.6 9.4 864.3 851.5 12.6 0.299DST102 11.5 11 0 11 1105.2 1099 6.1 0.199DST103 9.3 2.9 6.4 337.6 305.0 24.5 8.199DST104 9.7 0.9 8.8 373.4 317.5 41.9 14.099DST105 10.4 0.8 9.6 364.3 332.8 25.2 6.399DST106 8.6 0.6 8.0 390.5 358.9 27.3 4.399DST107 8.7 1.0 7.7 322.2 299.0 18.6 4.699DST108 9.1 0.7 8.4 299.2 277.3 17.3 4.699DST109 8.2 0.7 7.5 238.1 223.8 11.6 2.799DST110 10.1 1.3 8.8 314.5 278.8 26.9 8.899DST111 8.8 1.4 7.4 348.3 316.9 24.8 6.699DST112 7.9 0.8 7.1 307.2 284.9 20.0 2.399DST113 9.7 0.6 9.1 314.0 281.3 28.9 3.899DST114 9.2 1.1 8.1 296.1 266.5 23.1 6.599DST115 9.1 0.9 8.2 286.7 266.4 15.3 5.099DST116 9.1 1.1 8.0 261.0 233.4 21.1 6.599DST117 9.8 1.2 8.6 338.6 303.9 27.3 7.499DST118 7.4 1.4 6.0 355.1 332.7 21.0 1.499DST119 7.6 0.5 7.1 273.0 252.0 19.4 1.699DST120 8.1 1.8 6.3 341.2 337.6 3.1 0.599DST121 8.6 1.3 7.3 301.4 273.8 22.8 4.899DST122 9.5 1.7 7.8 313.4 295.5 17.6 0.399DST123 7.8 0.5 7.3 372.7 336.3 29.4 7.099DST124 11.9 11.4 5 6.4 721.3 665.3 54.9 1.199DST200 9.9 9.3 1.5 7.8 776 775.7 0.2 0.199DST201 11.7 11.2 0.9 10.3 845 822.9 21.7 0.499DST202 12.2 11.8 0.1 11.7 1080.8 1028.2 52.5 0.199DST203 13.1 12.5 0.1 12.4 995.8 966.6 28.6 0.699DST204 7.8 7.3 1 6.3 962.3 937.5 24.5 0.399DST205 11.9 11.5 7.1 4.4 532.8 519.9 7.8 5.199DST206 13.7 13.2 5.7 7.5 845.2 815 25.5 4.700DST01 11.7 11.3 1.4 9.9 499 471 20.8 7.200DST02 9.4 9.1 1.7 7.4 683.8 662.2 20.4 1.200DST03 9.4 9.1 0.8 8.3 755.4 665 82.9 7.500DST04 15 14.6 8 6.6 735.2 721.8 10.7 2.700DST05 10.7 10.3 5.9 4.4 434.4 399.4 25.4 9.600DST06 10.2 9.7 4.7 5 427.7 390.2 34.5 300DST07 12.4 12 5.8 6.2 508.8 447.1 57 4.700DST08 10.9 10.5 4.5 6 350.9 297.1 43.9 9.900DST09 8.9 8.6 3.1 5.5 327 276.8 47.3 2.9

75

Page 94: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sample WEIGHT (kgs) WET WEIGHT (gm)Number Bulk Table 10.00 Table Concentrate M.I. Non- Mag.

ReceivedSplit Mesh Feed Total Lights Mag.00DST10 10.7 10.2 3.8 6.4 347.4 288.4 57.3 1.700DST11 8.6 8.3 2.5 5.8 295.9 290.3 4.4 1.200DST12 9.5 9.1 1.7 7.4 553.8 514.7 30.4 8.700DST13 7.5 7.2 0.2 7 543.6 506.5 33.3 3.800DST14 11 10.6 3.7 6.9 461 433.1 25.1 2.800DST15 7.3 7 0.6 6.4 422.9 415.4 6.3 1.200DST16 12.7 12.2 7 5.2 205.8 174.8 29.9 1.100DST17 9.8 9.4 0.1 9.3 923.6 911.1 11.9 0.600DST18 7.4 7.2 2.5 4.7 222.5 192.4 25.9 4.200DST100 9.4 9 2.5 6.5 992.4 927.4 62.3 2.700DST101 9.9 9.5 1.8 7.7 464.2 396.3 67.3 0.600DST102 7.7 7.3 0.5 6.8 447.7 339 104.1 4.600DST103 7.7 7.4 1.3 6.1 647.8 519.4 123.5 4.900DST104 12.7 12.3 2.9 9.4 943.4 922 19.7 1.700DST105 8.2 8 1.7 6.3 334.9 289.6 29.1 16.200DST106 9.8 9.3 0.5 8.8 985.2 976.3 6.8 2.100DST107 9.2 8.9 1.4 7.5 323.5 297.5 20.3 5.7

00DST108a-e 79.9 79.5 0.9 78.6 2970.9 1817.4 267.2 193.100DST109 9.4 9.1 0.9 8.2 635.9 626.5 7.4 200DST110 13.2 12.7 2.6 10.1 910.4 855.1 46.4 8.900DST111 12 11.6 2.4 9.2 484 408.8 74 1.200DST112 10.1 9.8 3 6.8 375.9 345.4 29.4 1.100DST200 12.2 11.8 1.3 10.5 421.3 392.2 23.9 5.200DST201 10.5 10 0.8 9.2 329.3 262.3 54.9 12.100DST202 13.4 13 2.8 10.2 459.4 396.4 60.1 2.900DST203 12.4 12 2.7 9.3 345.4 314.8 26.8 3.800DST204 8.3 7.9 1.2 6.7 494.4 487.7 6.6 0.0600DST205a 19 18.6 0.2 18.4 974 720.1 228.6 25.300DST206 15.4 15 2.9 12.1 989.4 860.1 116.5 12.800DST207 12.3 11.9 4.2 7.7 411.2 370.3 40 0.900DST208 14.6 14.1 4.9 9.2 374.6 322.7 40.3 11.600DST210 11.4 11 0.7 10.3 195.4 156.9 30.8 7.700DST211 11.3 11 1.1 9.9 558.5 518.5 32.4 7.600DST212 13.2 12.9 1.8 11.1 327.6 283.3 35.4 8.900DST213 13.5 13.1 0.9 12.2 803.7 774.6 23.6 5.500DST214 11.7 11.2 1.2 10 201.5 170.1 24.8 6.600DST215 10.6 10.2 1.1 9.1 215.1 189.7 20.6 4.800DST216 12.2 11.7 1.4 10.3 251.6 201 42.5 8.100DST400 9.6 9.2 3.3 5.9 402.9 353 46.5 3.4

76

Page 95: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Table 3: Summary of gold grain shapes

Sample Number of Visible Gold Grains Non-Mag Calculated PPB Visible GoldNumber Total Reshaped Modified Pristine Wt. (gms) Total Reshaped Modified Pristine95DST022 1 1 0 0 30.3 70 70 0 095DST023 0 0 0 0 4.1 0 0 0 095DST024 0 0 0 0 57.3 0 0 0 095DST024b 0 0 0 0 34.2 0 0 0 095DST025 0 0 0 0 22.3 0 0 0 095DST025b 0 0 0 0 33.0 0 0 0 095DST026 0 0 0 0 80.6 0 0 0 095DST027 0 0 0 0 37.0 0 0 0 095DST028 0 0 0 0 29.0 0 0 0 095DST029 3 1 1 1 45.0 4 2 1 295DST030 0 0 0 0 91.9 0 0 0 095DST030b 0 0 0 0 62.0 0 0 0 095DST120 1 1 0 0 87.1 2 2 0 095DST120b 0 0 0 0 35.8 0 0 0 095DST121 5 0 2 3 25.4 47 0 17 3095DST121b 3 3 0 0 41.0 16 16 0 095DST122 3 0 2 1 39.6 16 0 14 295DST123 0 0 0 0 29.3 0 0 0 095DST204 0 0 0 0 10.7 0 0 0 095DST205 0 0 0 0 5.1 0 0 0 095DST206 0 0 0 0 2.6 0 0 0 095DST207b 0 0 0 0 51.8 0 0 0 095DST208b 0 0 0 0 47.0 0 0 0 095DST209 1 1 0 0 12.5 51 51 0 095DST209b 0 0 0 0 31.6 0 0 0 095DST210 0 0 0 0 11.8 0 0 0 096DST01 2 1 1 0 28.1 43 7 36 096DST02 0 0 0 0 19.3 0 0 0 0 96DST03 3 1 2 0 24.9 19 15 4 096DST04 0 0 0 0 3.1 0 0 0 096DST05 0 0 0 0 52.8 0 0 0 096DST100 1 1 0 0 18.6 20 20 0 096DST101 1 1 0 0 5.9 109 109 0 096DST102 2 0 2 0 58.9 13 0 13 096DST103 0 0 0 0 28.4 0 0 0 096DST201 0 0 0 0 56.9 0 0 0 096DST202 18 6 6 6 33.4 15 10 3 296DST203 0 0 0 0 11.3 0 0 0 097DST01 0 0 0 0 26.0 0 0 0 097DST02 0 0 0 0 25.8 0 0 0 097DST03 0 0 0 0 39.4 0 0 0 097DST04 0 0 0 0 23.0 0 0 0 097DST05 0 0 0 0 32.0 0 0 0 097DST06 1 1 0 0 48.8 13 13 0 097DST07 1 1 0 0 43.8 34 34 0 097DST08 0 0 0 0 41.0 0 0 0 097DST09 0 0 0 0 47.6 0 0 0 0

77

Page 96: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sample Number of Visible Gold Grains Non-Mag Calculated PPB Visible GoldNumber Total Reshaped Modified Pristine Wt. (gms) Total Reshaped Modified Pristine97DST100 0 0 0 0 41.8 0 0 0 097DST101 0 0 0 0 39.2 0 0 0 097DST102 0 0 0 0 55.2 0 0 0 097DST103 0 0 0 0 46.0 0 0 0 097DST104 0 0 0 0 42.6 0 0 0 097DST105 0 0 0 0 46.4 0 0 0 097DST106 0 0 0 0 64.6 0 0 0 097DST107 0 0 0 0 53.4 0 0 0 097DST108 0 0 0 0 34.2 0 0 0 097DST109 1 1 0 0 24.8 15 15 0 097DST110 0 0 0 0 44.4 0 0 0 098 DST01 1 0 1 0 94.3 1 0 1 098DST02 0 0 0 0 21.3 0 0 0 098DST03 0 0 0 0 12.3 0 0 0 098DST04 0 0 0 0 31.8 0 0 0 098DST05 6 5 1 0 38.1 4 1 2 098DST07 0 0 0 0 20.9 0 0 0 098DST100 0 0 0 0 56.2 0 0 0 098DST101 0 0 0 0 11.4 0 0 0 098DST102 0 0 0 0 22.7 0 0 0 098DST105 0 0 0 0 56.5 0 0 0 098DST300 0 0 0 0 56.7 0 0 0 098DST301 0 0 0 0 66.2 0 0 0 098DST302 0 0 0 0 45.1 0 0 0 098DST303 0 0 0 0 33.2 0 0 0 098DST304 0 0 0 0 16.2 0 0 0 099DST02 1 1 0 0 53.6 4 4 0 099DST03 7 5 2 0 12.5 257 248 8 099DST04 11 3 2 6 35.9 20 4 8 899DST05 11 9 1 1 25.2 22 21 0 199DST06 12 8 1 3 24.7 76 64 8 499DST07 4 2 1 1 9.6 15 11 1 399DST08 8 7 1 0 31.5 152 149 3 099DST09 18 7 2 9 20.3 81 57 5 1999DST10 8 6 2 0 23.2 20 12 9 099DST11 19 17 1 1 51.2 33 32 2 099DST12 3 2 0 1 18.2 15 15 0 099DST13 7 4 1 2 22.5 37 35 1 199DST14 3 2 1 0 28.4 10 10 0 099DST15 3 2 0 1 20.4 8 5 0 399DST16 4 3 0 1 24.1 32 30 0 299DST17 8 6 1 1 21.1 16 12 1 499DST18 9 9 0 0 19.5 16 16 0 099DST19 9 9 0 0 13.5 24 24 0 099DST20 69 3 9 57 10.0 613 54 46 51399DST21 1 1 0 0 15.7 5 5 0 099DST22 14 8 0 6 25.4 35 16 0 1999DST23 4 2 0 2 12.8 78 56 0 2199DST24 2 2 0 0 9.1 18 18 0 0

78

Page 97: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sample Number of Visible Gold Grains Non-Mag Calculated PPB Visible GoldNumber Total Reshaped Modified Pristine Wt. (gms) Total Reshaped Modified Pristine99DST25 10 5 4 1 14.9 99 24 74 199DST26 4 3 1 0 34.2 20 17 2 099DST27 12 9 2 1 31.4 21 20 1 199DST28 37 6 4 27 8.5 211 28 15 16899DST29 3 0 0 3 20.6 5 0 0 599DST30 10 6 1 3 19.2 78 51 4 2399DST31 1 0 1 0 10.5 2 0 2 099DST32 1 1 0 0 31.2 3 3 0 099DST33 3 3 0 0 32.4 8 8 0 099DST34 2 1 1 0 29.2 4 3 1 099DST35 3 3 0 0 28 11 11 0 099DST36 4 4 0 0 32.8 15 15 0 099DST37 8 7 1 0 26 17 17 0 099DST38 11 9 2 0 35.2 35 30 5 099DST39 17 14 2 1 30 174 164 4 699DST40 3 3 0 0 28.4 20 20 0 099DST41 3 1 0 2 38 2 1 0 199DST42 1 1 0 0 40 5 5 0 099DST43 0 0 0 0 39.2 0 0 0 099DST44 3 3 0 0 40 48 48 0 099DST45 1 0 1 0 33.6 6 0 6 099DST46 1 1 0 0 40.8 1 1 0 099DST47 2 2 0 0 38 15 15 0 099DST48 1 1 0 0 41.2 2 2 0 099DST49 0 0 0 0 39.2 0 0 0 099DST50 2 1 0 1 38.4 10 10 0 099DST100 0 0 0 0 20.8 0 0 0 099DST101 0 0 0 0 44 0 0 0 099DST102 0 0 0 0 44 0 0 0 099DST103 2 2 0 0 24.5 11 11 0 099DST104 1 1 0 0 41.9 2 2 0 099DST105 3 3 0 0 25.2 7 7 0 099DST106 9 8 0 1 27.3 33 32 0 199DST107 2 2 0 0 18.6 2 2 0 099DST108 3 1 2 0 17.3 14 0 14 099DST109 2 1 1 0 11.6 39 32 7 099DST110 7 3 4 0 26.9 13 9 5 099DST111 7 5 1 1 24.8 23 13 2 899DST112 9 7 2 0 20.0 59 58 2 099DST113 7 7 0 0 28.9 35 35 0 099DST114 3 2 1 0 23.1 2 1 1 099DST115 6 3 0 3 15.3 30 19 0 1199DST116 6 6 0 0 21.1 48 48 0 099DST117 10 9 0 1 27.3 32 30 0 299DST118 2 2 0 0 21.0 2 2 0 099DST119 8 3 0 5 19.4 23 5 0 1899DST120 7 5 0 2 3.1 510 476 0 3499DST121 0 0 0 0 22.8 0 0 0 099DST122 4 1 1 2 17.6 7 5 1 2

79

Page 98: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sample Number of Visible Gold Grains Non-Mag Calculated PPB Visible GoldNumber Total Reshaped Modified Pristine Wt. (gms) Total Reshaped Modified Pristine99DST123 4 4 0 0 29.4 12 12 0 099DST124 2 2 0 0 45.6 779 779 0 099DST200 0 0 0 0 37.2 0 0 0 099DST201 0 0 0 0 44.8 0 0 0 099DST202 0 0 0 0 47.2 0 0 0 099DST203 0 0 0 0 50 0 0 0 099DST204 0 0 0 0 29.2 0 0 0 099DST205 0 0 0 0 46 0 0 0 099DST206 0 0 0 0 52.8 0 0 0 000DST01 0 0 0 0 39.6 0 0 0 000DST02 0 0 0 0 29.6 0 0 0 000DST03 2 2 0 0 33.2 12 12 0 000DST04 0 0 0 0 26.4 0 0 0 000DST05 0 0 0 0 17.6 0 0 0 000DST06 0 0 0 0 20 0 0 0 000DST07 0 0 0 0 24.8 0 0 0 000DST08 0 0 0 0 24 0 0 0 000DST09 0 0 0 0 22 0 0 0 000DST10 0 0 0 0 25.6 0 0 0 000DST11 0 0 0 0 23.2 0 0 0 000DST12 0 0 0 0 29.6 0 0 0 000DST13 0 0 0 0 28 0 0 0 000DST14 0 0 0 0 27.6 0 0 0 000DST15 0 0 0 0 25.6 0 0 0 000DST16 0 0 0 0 20.8 0 0 0 000DST17 0 0 0 0 37.2 0 0 0 000DST18 0 0 0 0 18.8 0 0 0 000DST100 0 0 0 0 26 0 0 0 000DST101 0 0 0 0 30.8 0 0 0 000DST102 0 0 0 0 27.2 0 0 0 000DST103 0 0 0 0 24.4 0 0 0 000DST104 1 1 0 0 37.6 2 2 0 000DST105 0 0 0 0 25.2 0 0 0 000DST106 1 1 0 0 35.2 1 1 0 000DST107 0 0 0 0 30 0 0 0 000DST108a 1 1 0 0 67.2 6 6 0 000DST109 0 0 0 0 32.8 0 0 0 000DST110 0 0 0 0 40.4 0 0 0 000DST111 0 0 0 0 36.8 0 0 0 000DST112 4 3 1 0 27.2 126 123 3 000DST200 0 0 0 0 42 0 0 0 000DST201 3 3 0 0 36.8 8 8 0 000DST202 0 0 0 0 40.8 0 0 0 000DST203 0 0 0 0 37.2 0 0 0 000DST204 0 0 0 0 26.8 0 0 0 000DST205a 0 0 0 0 73.6 0 0 0 000DST206 1 1 0 0 48.4 4 4 0 000DST207 0 0 0 0 30.8 0 0 0 000DST208 1 1 0 0 36.8 10 10 0 0

80

Page 99: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sample Number of Visible Gold Grains Non-Mag Calculated PPB Visible GoldNumber Total Reshaped Modified Pristine Wt. (gms) Total Reshaped Modified Pristine00DST210 1 1 0 0 41.2 2 2 0 000DST211 0 0 0 0 39.6 0 0 0 000DST212 0 0 0 0 44.4 0 0 0 000DST213 0 0 0 0 48.8 0 0 0 000DST214 0 0 0 0 40 0 0 0 000DST215 5 5 0 0 36.4 17 17 0 000DST216 1 1 0 0 41.2 36 36 0 000DST400 0 0 0 0 23.6 0 0 0 0

Samples from the detailed survey in the area of the Sachigo River Mine are bolded (see Stone, Halle and Lange, 2000).

81

Page 100: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Tabl

e 4:

Gol

d gr

ain

size

and

sha

pe d

ata.

Sam

ple

Pann

edM

easu

rem

ent

Dia

met

er

N

UM

BE

R O

F G

RA

INS

RE

MA

RK

SN

umbe

rY

/N(M

icro

ns)

Thi

ckne

ss R

ESH

APE

D M

OD

IFIE

D P

RIS

TIN

ET

OT

AL

(Mic

rons

) T

P T

P

T P

95D

ST02

2N

50 x

175

22 C

11

TO

TA

L:

11

95D

ST02

3N

NO

VIS

IBLE

GO

LD

95D

ST02

4N

NO

VIS

IBLE

GO

LD

95D

ST02

4bN

NO

VIS

IBLE

GO

LD

95D

ST02

5N

NO

VIS

IBLE

GO

LD

95D

ST02

5bN

NO

VIS

IBLE

GO

LD

95D

ST02

6N

NO

VIS

IBLE

GO

LD

95D

ST02

7N

NO

VIS

IBLE

GO

LD

95D

ST02

8N

NO

VIS

IBLE

GO

LD

95D

ST02

9Y

25 x

25

5 C

11

No

Sulp

hide

s25

x 5

08

C1

12

TO

TA

L:

11

13

95D

ST03

0N

NO

VIS

IBLE

GO

LD

95D

ST30

bN

NO

VIS

IBLE

GO

LD

95D

ST12

0N

NO

VIS

IBLE

GO

LD

95D

ST12

0bN

NO

VIS

IBLE

GO

LD

82

Page 101: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pann

edM

easu

rem

ent

Dia

met

er

N

UM

BE

R O

F G

RA

INS

RE

MA

RK

SN

umbe

rY

/N(M

icro

ns)

Thi

ckne

ss R

ESH

APE

D M

OD

IFIE

D P

RIS

TIN

ET

OT

AL

(Mic

rons

) T

P T

P

T P

95D

ST12

1Y

15 x

254

C1

1N

o Su

lphi

des

15 x

50

7 C

11

25 x

100

13 C

11

50 x

75

13 C

11

2T

otal

:2

21

5

95D

ST12

1bY

25 x

50

8 C

11

50 x

50

10 C

11

50 x

75

13 C

11

TO

TA

L:

33

95D

ST12

2Y

25 x

50

8 C

11

25 x

100

13 C

11

50 x

50

10 C

11

TO

TA

L:

11

13

95D

ST12

3N

NO

VIS

IBLE

GO

LD

95D

ST20

4N

NO

VIS

IBLE

GO

LD

95D

ST20

5N

NO

VIS

IBLE

GO

LD

95D

ST20

6N

NO

VIS

IBLE

GO

LD

95D

ST20

7bN

NO

VIS

IBLE

GO

LD

95D

ST20

8bN

NO

VIS

IBLE

GO

LD

95D

ST20

9N

75 X

75

15 C

11

TO

TA

L:

11

95D

ST20

9bN

NO

VIS

IBLE

GO

LD

95D

ST21

0N

NO

VIS

IBLE

GO

LD

83

Page 102: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pann

edM

easu

rem

ent

Dia

met

er

N

UM

BE

R O

F G

RA

INS

RE

MA

RK

SN

umbe

rY

/N(M

icro

ns)

Thi

ckne

ss R

ESH

APE

D M

OD

IFIE

D P

RIS

TIN

ET

OT

AL

(Mic

rons

) T

P T

P

T P

96D

ST01

N50

X 5

010

C1

150

X 1

2518

C1

1T

OT

AL

:1

12

96D

ST02

NN

O V

ISIB

LE G

OLD

96D

ST03

N25

X 2

55

C1

125

X 5

08

C1

150

X 7

513

C1

1T

OT

AL

:1

23

96D

ST04

NN

O V

ISIB

LE G

OLD

96D

ST05

NN

O V

ISIB

LE G

OLD

96D

ST10

0N

50 X

75

13 C

11

TO

TA

L:

11

96D

ST10

1N

50 X

100

15 C

11

Tota

l1

1

96D

ST10

2N

50 X

75

13 C

22

TO

TA

L:

22

96

DST

103

NN

O V

ISIB

LE G

OLD

96D

ST20

1N

NO

VIS

IBLE

GO

LD

84

Page 103: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pann

edM

easu

rem

ent

Dia

met

er

N

UM

BE

R O

F G

RA

INS

RE

MA

RK

SN

umbe

rY

/N(M

icro

ns)

Thi

ckne

ss R

ESH

APE

D M

OD

IFIE

D P

RIS

TIN

ET

OT

AL

(Mic

rons

) T

P T

P

T P

96D

ST20

2Y

15 X

15

3 C

21

25

No

sulp

hide

s.15

X 2

54

C1

11

11

16

25 X

25

5 C

11

21

525

X 5

08

C1

150

X 5

010

C1

1T

OT

AL

:3

33

33

318

96

DST

203

NN

O V

ISIB

LE G

OLD

97D

ST01

NN

O V

ISIB

LE G

OLD

97D

ST02

NN

O V

ISIB

LE G

OLD

1 ba

ll of

mer

cury

(50µ

).

97D

ST03

NN

O V

ISIB

LE G

OLD

97D

ST04

NN

O V

ISIB

LE G

OLD

97D

ST05

NN

O V

ISIB

LE G

OLD

97D

ST06

N50

X 1

0015

C1

1T

OT

AL

:1

1 97

DST

07N

75 X

125

20 C

11

TO

TA

L:

11

97D

ST08

NN

O V

ISIB

LE G

OLD

97D

ST09

NN

O V

ISIB

LE G

OLD

97D

ST10

0N

NO

VIS

IBLE

GO

LD

97D

ST10

1N

NO

VIS

IBLE

GO

LD

85

Page 104: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pann

edM

easu

rem

ent

Dia

met

er

N

UM

BE

R O

F G

RA

INS

RE

MA

RK

SN

umbe

rY

/N(M

icro

ns)

Thi

ckne

ss R

ESH

APE

D M

OD

IFIE

D P

RIS

TIN

ET

OT

AL

(Mic

rons

) T

P T

P

T P

97D

ST10

2N

NO

VIS

IBLE

GO

LD

97D

ST10

3N

NO

VIS

IBLE

GO

LD

97D

ST10

4N

NO

VIS

IBLE

GO

LD

97D

ST10

5N

NO

VIS

IBLE

GO

LD

97D

ST10

6N

NO

VIS

IBLE

GO

LD

97D

ST10

7N

NO

VIS

IBLE

GO

LD

97D

ST10

8N

NO

VIS

IBLE

GO

LD

97D

ST10

9N

50 X

75

13 C

11

Tot

al:

11

97

DST

110

NN

O V

ISIB

LE G

OLD

98D

ST01

N15

X 5

07

C1

1T

otal

:1

1

98D

ST02

NN

O V

ISIB

LE G

OLD

98D

ST03

NN

O V

ISIB

LE G

OLD

98D

ST04

NN

O V

ISIB

LE G

OLD

98D

ST05

Y10

X 1

02

C3

3N

o su

lphi

des

25 X

25

5 C

22

25 X

50

8 C

11

Tot

al:

51

6

86

Page 105: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pann

edM

easu

rem

ent

Dia

met

er

N

UM

BE

R O

F G

RA

INS

RE

MA

RK

SN

umbe

rY

/N(M

icro

ns)

Thi

ckne

ss R

ESH

APE

D M

OD

IFIE

D P

RIS

TIN

ET

OT

AL

(Mic

rons

) T

P T

P

T P

98D

ST07

NN

O V

ISIB

LE G

OLD

98D

ST10

0N

NO

VIS

IBLE

GO

LD

98D

ST10

1N

NO

VIS

IBLE

GO

LD

98D

TS10

2N

NO

VIS

IBLE

GO

LD

98D

ST10

5N

NO

VIS

IBLE

GO

LD

98D

ST30

0N

NO

VIS

IBLE

GO

LD

98D

ST30

1N

NO

VIS

IBLE

GO

LD

98D

ST30

2N

NO

VIS

IBLE

GO

LD

98D

ST30

3N

NO

VIS

IBLE

GO

LD

98D

ST30

4N

NO

VIS

IBLE

GO

LD

99D

ST02

N25

X75

10C

11

tota

l:1

1

99D

ST03

Y15

X50

7C2

2no

sulp

hide

s25

X25

5C1

12

25X

508C

11

275

X17

525

C1

1to

tal:

41

2

7

99D

ST32

N25

X50

7.7C

11

tota

l:1

1

87

Page 106: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pann

edM

easu

rem

ent

Dia

met

er

N

UM

BE

R O

F G

RA

INS

RE

MA

RK

SN

umbe

rY

/N(M

icro

ns)

Thi

ckne

ss R

ESH

APE

D M

OD

IFIE

D P

RIS

TIN

ET

OT

AL

(Mic

rons

) T

P T

P

T P

99D

ST33

N15

X50

6.7C

11

25X2

55.

2C1

125

X75

10.3

C1

1to

tal:

33

99D

ST34

N25

X25

5.2C

11

25X5

07.

7C1

1to

tal:

11

2

99D

ST35

N25

X25

5.2C

11

25X5

07.

7C1

150

X50

10.3

C1

1to

tal:

33

99D

ST36

N15

X25

4.2C

11

25X2

55.

2C1

125

X50

7.7C

11

50X7

512

.7C

11

tota

l:4

4

99D

ST37

Y15

X25

4.2C

11

21

grai

n ci

nnab

ar.

25X2

55.

2C2

13

25X5

07.

7C2

225

X75

10.3

C1

1to

tal:

52

18

99D

ST38

Y25

X25

5.2C

22

No

sulp

hide

s.25

X50

7.7C

32

525

X75

10.3

C2

13

50X5

010

.3C

11

tota

l:8

12

11

88

Page 107: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pann

edM

easu

rem

ent

Dia

met

er

N

UM

BE

R O

F G

RA

INS

RE

MA

RK

SN

umbe

rY

/N(M

icro

ns)

Thi

ckne

ss R

ESH

APE

D M

OD

IFIE

D P

RIS

TIN

ET

OT

AL

(Mic

rons

) T

P T

P

T P

99D

ST39

Y15

X15

3.1C

11

No

sulp

hide

s.15

X50

6.7C

12

325

X25

5.2C

44

25X5

07.

7C1

125

X75

10.3

C1

150

X50

10.3

C1

21

450

X75

12.7

C1

150

X120

015

.2C

11

100X

150

24.7

C1

1to

tal:

95

21

17

99D

ST40

N50

X50

10.3

C3

3to

tal:

33

99D

ST41

N15

X15

3.2C

11

15X5

06.

7C1

125

X25

5.2C

11

tota

l:1

23

99D

ST42

N50

X50

10.3

C1

1to

tal:

11

99D

ST43

NN

O V

ISIB

LE G

OLD

99D

ST44

N15

X50

6.7C

11

50X7

512

.7C

11

100X

100

20C

11

tota

l:3

3

99D

ST45

N50

X50

10.3

C1

1to

tal:

11

99D

ST46

N15

X50

6.7C

11

tota

l:1

1

89

Page 108: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pann

edM

easu

rem

ent

Dia

met

er

N

UM

BE

R O

F G

RA

INS

RE

MA

RK

SN

umbe

rY

/N(M

icro

ns)

Thi

ckne

ss R

ESH

APE

D M

OD

IFIE

D P

RIS

TIN

ET

OT

AL

(Mic

rons

) T

P T

P

T P

99D

ST47

N50

X50

10.3

C1

150

X75

12.7

C1

1to

tal:

22

99D

ST48

N25

X50

7.7C

11

tota

l:1

1

99D

ST49

NN

O V

ISIB

LE G

OLD

99D

ST50

N15

X15

3.1C

11

50X7

512

.7C

11

tota

l:1

12

99D

ST10

0N

NO

VIS

IBLE

GO

LD

99D

ST10

1N

NO

VIS

IBLE

GO

LD

99D

ST10

2N

NO

VIS

IBLE

GO

LD

99D

ST12

4N

50X7

512

.7C

11

200X

300

75M

11

tota

l:2

2

99D

ST20

0N

NO

VIS

IBLE

GO

LD

99D

ST20

1N

NO

VIS

IBLE

GO

LD

99D

ST20

2N

NO

VIS

IBLE

GO

LD

99D

ST20

3N

NO

VIS

IBLE

GO

LD

99D

ST20

4N

NO

VIS

IBLE

GO

LD

99D

ST20

5N

NO

VIS

IBLE

GO

LD99

DST

206

NN

O V

ISIB

LE G

OLD

90

Page 109: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pann

ed

Dim

ensi

ons

(mic

rons

)N

umbe

r of V

isib

le G

old

Gra

ins

Num

ber

Y/N

Thic

knes

sR

esha

ped

Mod

ified

Pris

tine

Tota

l

00D

ST01

No

NO

VIS

IBLE

GO

LD

00D

ST02

No

NO

VIS

IBLE

GO

LD

00D

ST03

No

50X5

010

.25C

22

tota

l:2

2

00D

ST04

No

NO

VIS

IBLE

GO

LD

00D

ST05

No

NO

VIS

IBLE

GO

LD

00D

ST06

No

NO

VIS

IBLE

GO

LD

00D

ST07

No

NO

VIS

IBLE

GO

LD

00D

ST08

No

NO

VIS

IBLE

GO

LD

00D

ST09

No

NO

VIS

IBLE

GO

LD

00D

ST10

No

NO

VIS

IBLE

GO

LD

00D

ST11

No

NO

VIS

IBLE

GO

LD

00D

ST12

No

NO

VIS

IBLE

GO

LD

00D

ST13

No

NO

VIS

IBLE

GO

LD

00D

ST14

No

NO

VIS

IBLE

GO

LD

00D

ST15

No

NO

VIS

IBLE

GO

LD

00D

ST16

No

NO

VIS

IBLE

GO

LD

00D

ST17

No

NO

VIS

IBLE

GO

LD

91

Page 110: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pann

ed

Dim

ensi

ons

(mic

rons

)N

umbe

r of V

isib

le G

old

Gra

ins

Num

ber

Y/N

Thic

knes

sR

esha

ped

Mod

ified

Pris

tine

Tota

l00

DST

18N

oN

O V

ISIB

LE G

OLD

00D

ST10

0N

oN

O V

ISIB

LE G

OLD

00D

ST10

1N

oN

O V

ISIB

LE G

OLD

00D

ST10

2N

oN

O V

ISIB

LE G

OLD

00D

ST10

3N

oN

O V

ISIB

LE G

OLD

00D

ST10

4N

o25

X50

7.7C

11

tota

l:1

00D

ST10

5N

oN

O V

ISIB

LE G

OLD

00D

ST10

6N

o25

X25

5.2C

11

tota

l:1

00D

ST10

7N

oN

O V

ISIB

LE G

OLD

00D

ST10

8aN

o25

X50

12.7

C1

1to

tal:

11

00D

ST10

9N

oN

O V

ISIB

LE G

OLD

00D

ST11

0N

oN

O V

ISIB

LE G

OLD

00D

ST11

1N

oN

O V

ISIB

LE G

OLD

00D

ST11

2N

o25

X50

7.7C

11

250

X75

12.7

C1

110

0X15

024

.7C

11

tota

l:3

14

92

Page 111: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pann

ed

Dim

ensi

ons

(mic

rons

)N

umbe

r of V

isib

le G

old

Gra

ins

Num

ber

Y/N

Thic

knes

sR

esha

ped

Mod

ified

Pris

tine

Tota

l00

DST

200

No

NO

VIS

IBLE

GO

LD

00D

ST20

1N

o25

X25

5.2C

11

25X5

07.

7C1

150

X50

10.3

C1

1to

tal:

33

00D

ST20

2N

oN

O V

ISIB

LE G

OLD

00D

ST20

3N

oN

O V

ISIB

LE G

OLD

00D

ST20

4N

oN

O V

ISIB

LE G

OLD

00D

ST20

5aN

oN

O V

ISIB

LE G

OLD

00D

ST20

6N

o25

X75

10.3

C1

1to

tal:

11

00D

ST20

7N

oN

O V

ISIB

LE G

OLD

00D

ST20

8N

o50

X75

12.7

C1

1to

tal:

11

00D

ST21

0N

o25

X50

7.7C

11

tota

l:1

1

00D

ST21

1N

oN

O V

ISIB

LE G

OLD

00D

ST21

2N

oN

O V

ISIB

LE G

OLD

00D

ST21

3N

oN

O V

ISIB

LE G

OLD

00D

ST21

4N

oN

O V

ISIB

LE G

OLD

93

Page 112: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pann

ed

Dim

ensi

ons

(mic

rons

)N

umbe

r of V

isib

le G

old

Gra

ins

Num

ber

Y/N

Thic

knes

sR

esha

ped

Mod

ified

Pris

tine

Tota

l00

DST

215

No

25X2

55.

2C2

225

X75

10.3

C1

150

X50

10.3

C2

2to

tal:

55

00D

ST21

6N

o20

X75

201

1to

tal:

11

00D

ST40

0N

oN

O V

ISIB

LE G

OLD

C -

Thic

knes

s ca

lcul

ated

as

20%

of m

ean

diam

eter

for 1

00 m

icro

n si

ze.

As d

iam

eter

incr

ease

s, th

e ca

lcul

ated

thic

knes

s al

so in

crea

ses

but a

t a s

low

er ra

te.

M -

mea

sure

d th

ickn

ess;

T -

tabl

ing

stag

e gr

ain

shap

e de

term

inat

ion;

P -

pann

ing

stag

e gr

ain

shap

e de

term

inat

ion

94

Page 113: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Tabl

e 5:

Met

amor

phos

ed M

agm

atic

Sul

phid

e In

dica

tor M

iner

als

Mg/

Mn/

Al/C

r min

eral

sSu

lphi

de/A

rsen

ide

min

eral

s .2

5-.5

mm

Tota

l prim

e>1

am

p.8

-1 a

mp

<.8

amp

.8-1

am

p>1

am

pSa

mpl

eM

MSI

M g

rain

s%

Ky

% S

il%

Rt

Spin

elO

ther

% S

t%

Fay

% O

px%

Cr

%Sp

s%

Gth

% P

y%

Ccp

Oth

erLo

Cr d

iop

Oth

er95

DST

220

0.5

00

tr0

trtr

00

00

tr0

0n/

a95

DST

231

tr0

00

0tr

00

00

0tr

tr0

n/a

95D

ST24

10.

50

0tr

0tr

00

00

00

tr0

n/a

95D

ST25

0tr

00

tr0

tr0

00

00

00

0n/

a95

DST

260

00

00

0tr

00

00

00

00

n/a

95D

ST27

30.

50

0tr

0tr

0tr

00

tr0.

1tr

0n/

a95

DST

2818

0.5

00

tr0

trtr

tr0

00

50.

10

n/a

95D

ST29

00.

50

00

0tr

00

00

tr0

00

n/a

95D

ST30

81

0tr

tr0

tr0

tr0

00

trtr

0n/

a95

DST

120

50.

50

00

0tr

0tr

00

00.

2tr

0n/

a95

DST

121

20.

50

00

0tr

0tr

00

trtr

tr0

n/a

95D

ST12

21

10

00

0tr

trtr

00

00.

2tr

0n/

a95

DST

123

02

00

00

trtr

0.5

00

00

00

n/a

95D

ST20

40

tr0

00

0tr

00

00

tr0

00

n/a

95D

ST20

51

tr0

00

0tr

0tr

00

0tr

tr0

n/a

95D

ST20

61

tr0

00

0tr

0tr

00

tr0.

2tr

0n/

a95

DST

207

41

00

trtr

Pim

tr0

tr0

00

tr0

tr ru

byn/

a95

DST

208

122

00

trtr

Pim

tr0

tr0

00

trtr

0n/

a95

DST

209

30.

50

0tr

tr Sp

rtr

trtr

00

00

tr0

n/a

95D

ST21

01

tr0

00

0tr

0tr

00

trtr

tr0

n/a

96D

ST01

65

00

trtr

Tur

10

0.5

tr0

tr3

trtr

Apy

0tr

Cr-g

rs96

DST

025

40

0tr

01

0tr

00

03

0.1

00

96D

ST03

163

0tr

tr ga

hnite

05

00.

5tr

00

2tr

tr Ap

ytr

96D

ST04

00

00

00

00

tr0

01

00

00

96D

ST05

71

00

0tr

ruby

tr0

0.5

00

0tr

trtr

mol

ytr

tr Sp

r96

DST

100

420.

50

0tr

gahn

itetr

Pim

tr0

10

0tr

50.

5tr

Asp

0tr

Cr-g

rs96

DST

101

0tr

00

tr0

tr0

tr0

0tr

00

00

96D

ST10

26

2tr

0tr

tr Pi

mtr

01

00

0tr

tr0

trtr

And

96D

ST10

31

0.5

00

tr0

tr0

tr0

0tr

0tr

00

96D

ST20

120

20

0tr

00.

50

tr0

0tr

trtr

0tr

96D

ST20

25

0.5

00

00

tr0

trtr

01

trtr

0tr

96D

ST20

30

20

00

0tr

03

00

tr0

00

097

DST

0114

10

0tr

tr Pi

mtr

0tr

00

0tr

trtr

Loel

tr97

DST

021

1tr

0tr

0tr

01

00

0.5

00

0tr

97D

ST03

01

00

00

00

20

00.

5tr

00

097

DST

0429

tr0

00

0tr

0tr

00

010

trtr

mol

ytr

97D

ST05

442

tr0

trtr

Spr,

Pim

trtr

30

00

0tr

0tr

97D

ST06

710

0tr

tr0

20

0.5

00

31

00

tr97

DST

075

20

trtr

00.

50

20

00.

51

tr0

tr97

DST

081

30

01

0tr

01

00

50.

50

0tr

97D

ST09

75

0tr

trtr

ruby

0.5

03

00

6tr

tr0

tr97

DST

100

65

tr0

trtr

Pim

0.5

04

00

tr0

00

tr97

DST

101

154

trtr

trtr

Pim

tr0

30

0tr

trtr

tr m

oly

tr97

DST

102

195

tr0

tr ga

hnite

tr Pi

mtr

03

00

00

tr0

tr97

DST

103

585

tr0

tr ga

hnite

tr Pi

mtr

03

00

tr0

00

tr97

DST

104

21

tr0

00

tr0

10

00.

50

00

tr97

DST

105

173

0tr

trtr

Pim

10

trtr

0tr

trtr

0tr

97D

ST10

60

tr0

00

00

0tr

00

0tr

00

097

DST

107

10.

5tr

00

0tr

01

00

tr0

00

tr97

DST

108

151

0tr

trtr

ruby

tr0

3tr

0tr

00

0tr

97D

ST10

90

tr0

00

0tr

0tr

00

35

00

0

95

Page 114: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Mg/

Mn/

Al/C

r min

eral

sSu

lphi

de/A

rsen

ide

min

eral

s .2

5-.5

mm

Tota

l prim

e>1

am

p.8

-1 a

mp

<.8

amp

.8-1

am

p>1

am

pSa

mpl

eM

MSI

M g

rain

s%

Ky

% S

il%

Rt

Spin

elO

ther

% S

t%

Fay

% O

px%

Cr

% S

ps%

Gth

% P

y%

Ccp

Oth

erLo

Cr d

iop

Oth

er97

DST

110

45

00

trtr

Pim

tr0

10

0tr

00

0tr

98D

ST01

23

00

00

tr0

tr0

0tr

trtr

00

98D

ST02

61

00

0tr

ruby

tr0

tr0

00

2tr

0tr

98D

ST03

02

00

00

0.5

07

00

tr1

00

01

Fors

terit

e98

DST

043

tr0

tr0

0tr

01

trtr

64

tr0

098

DST

050

tr0

00

00

0tr

00

1tr

00

098

DST

070

tr0

0tr

0tr

trtr

00

50

00

098

DST

100

5tr

00

tr0

tr0

tr0

00

0.5

tr0

tr98

DST

101

01

00

00

trtr

10

00

tr0

00

98D

ST10

21

tr0

0tr

00

00

00

00

00

tr98

DST

105

1tr

00

00

tr0

10

00

trtr

00

98D

ST30

02

20

0tr

0tr

trtr

00

00

00

tr98

DST

301

33

00

trtr

ruby

tr0

00

00

trtr

tr m

oly

098

DST

302

84tr

00

tr0

tr0

20

00

50.

20

tr98

DST

303

42

00

trtr

ruby

10

50

00

0tr

tr C

r-grs

tr98

DST

304

43

00

00

trtr

30

00

0tr

0tr

99D

ST02

21

tr0

0tr

ruby

tr0

30

20

trtr

00

99D

ST04

21

trtr

00

00

00

tr0

00

0tr

99D

ST02

92

0.5

0tr

00

tr0

2tr

trtr

00

00

99D

ST32

12

trtr

tr0

tr0

50

14

10

00

99D

ST33

12

00

0tr

topa

ztr

0tr

0tr

tr0.

50

0tr

99D

ST34

11

10

00

tr0

30

tr10

50

00

99D

ST35

02

00

tr0

tr0

70

tr3

100

00

99D

ST36

21

0tr

00

tr0

5tr

42

tr0

00

99D

ST37

01

tr0

tr0

tr0

1tr

0.5

trtr

00

099

DST

386

2tr

trtr

0tr

07

01

3tr

00

tr99

DST

394

5tr

trtr

0tr

tr4

tr0.

51

tr0

00

99D

ST40

0tr

00

00

00

tr0

trtr

00

00

99D

ST41

0tr

00

00

00

10

trtr

tr0

00

99D

ST42

25

tr0

00

tr0

2tr

trtr

trtr

00

99D

ST43

563

tr0

00

tr0

15tr

tr1

tr15

00

99D

ST44

03

tr0

00

tr0

trtr

15tr

tr0

00

99D

ST45

81

tr0

tr0

tr0

3tr

trtr

4tr

tr m

oly

099

DST

460

1tr

00

0tr

01

03

3tr

00

099

DST

471

10

0tr

gahn

ite0

tr0

30

13

tr0

00

99D

ST48

11

00

00

tr0

10

trtr

00

tr m

oly

099

DST

492

tr0

0tr

gahn

ite0

tr0

tr0

trtr

trtr

00

99D

ST50

81

00

0tr

Pim

tr0

10

trtr

0tr

0tr

99D

ST10

04

tr0

00

0tr

00

00

04

tr0

099

DST

101

12tr

00

00

tr0

7tr

3tr

1tr

00

99D

ST10

23

10

0tr

gahn

ite0

tr0

350

0tr

00

0tr

99D

ST10

40

tr0

00

00

tr5

0tr

00.

30

00

99D

ST10

74

10

00

0tr

03

00

tr0

00

tr99

DST

124

21

0tr

00

tr0

tr0

trtr

0tr

00

99D

ST20

00

00

00

00

00

00

00

00

099

DST

201

31

00

trtr

Pim

tr0

200

trtr

00

0tr

99D

ST20

20

20

00

0tr

015

0tr

tr0

00

099

DST

203

02

00

00

tr0

150

trtr

00

00

99D

ST20

44

tr0

00

tr Pi

mtr

04

02

trtr

tr0

099

DST

205

02

0tr

00

tr0

30

trtr

trtr

00

99D

ST20

62

20

00

0tr

020

0tr

tr0

00

tr

96

Page 115: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sulp

hide

/Ars

enid

e m

iner

als

.25-

.5 m

mM

g/M

n/Al

/Cr m

iner

als

.25

- .5

mm

>1.0

am

p<1

. Am

p>1

.0 a

mp

>.8

amp

<.8

amp

Tota

l prim

eM

isc.

Prim

e M

MSI

Ms

Sam

ple

MM

SIM

gra

ins

% C

cp%

oth

er%

Py

% G

eo%

Spi

nel

% o

ther

% ru

tile

% K

y%

Sil

% S

t%

Sps

% O

px%

Cr

00D

ST01

20

00

02

pale

blu

e-gr

een

Tr lo

w-C

r-dio

psid

e (2

gr)

00.

50

Tr0

20

00D

ST02

10

0Tr

(5 g

r)Tr

0Tr

low

-Cr d

iops

ide

(1 g

r)0

0.5

0Tr

03

000

DST

031

Tr (1

gr)

0Tr

(5 g

r)0

00

0Tr

0Tr

05

000

DST

040

00

Tr (1

gr)

Tr0

00

Tr0

Tr0

20

00D

ST05

1Tr

(1 g

r)0

Tr (8

gr)

Tr0

00

0.5

0Tr

03

000

DST

062

Tr (2

gr)

0Tr

(7 g

r)Tr

00

00.

50

00

Tr0

00D

ST07

14Tr

(13

gr)

0Tr

(~30

gr)

Tr3

pink

Tr ru

by (1

gr)T

r low

-Cr d

iops

ide

0Tr

0Tr

Tr3

Tr (4

gr)

00D

ST08

14Tr

(10

gr)

0Tr

(~25

gr)

01

grn

gahn

ite; 3

blu

e-gr

een

spin

Tr lo

w-C

r dio

psid

e (2

gr)

0Tr

0Tr

0Tr

Tr (1

gr)

00D

ST09

17Tr

(11

gr)

Tr m

oly

(4)

0.5

(~10

0 gr

)0

1 gr

n ga

hnite

; 1 b

lue-

gree

n sp

inTr

low

-Cr d

iops

ide

(1 g

r)0

TrTr

TrTr

30

00D

ST10

3Tr

(3 g

r)0

Tr (7

gr)

01

pink

00

Tr0

0Tr

50

00D

ST11

00

05

(~20

0 gr

)0

00

00

00

00

000

DST

120

00

0.5

(~25

gr)

01

blue

-gre

en0

0Tr

TrTr

00

000

DST

130

00

00

00

02

0Tr

010

000

DST

144

Tr (2

gr)

0Tr

(5 g

r)Tr

1 pa

le b

lue

Tr ru

by c

orun

dum

(1 g

r); 1

Pim

02

0Tr

03

000

DST

150

00

Tr (~

10 g

r)2

1 pu

rple

00

20

00

30

00D

ST16

10

00

02

pink

, pal

e bl

ueTr

ruby

cor

undu

m (1

gr)

01

0Tr

02

Tr (6

gr)

00D

ST17

30

00

00

Tr P

im (2

) Tr l

ow-C

r dio

psid

e (1

)0

10

Tr0

30

00D

ST18

20

00

02

blue

-gre

en, c

olou

rless

Tr lo

w-C

r dio

psid

e (2

gr)

01

00

01

000

DST

100

3Tr

(2 g

r)0

Tr (2

gr)

Tr0

Tr lo

w-C

r dio

psid

e (1

gr)

00.

50

0Tr

1Tr

(1 g

r)00

DST

101

1tr

(1 g

r)0

Tr (1

0 gr

)0

00

0Tr

00

0Tr

000

DST

102

1Tr

(1 g

r)0

00

2 pi

nk0

00.

50

Tr0

10

00D

ST10

350

0.5

(~75

gr)

010

(~15

00 g

r)0

00

0Tr

00

00

000

DST

104

00

0Tr

(~15

gr)

Tr0

00

Tr0

0Tr

30

00D

ST10

50

00

1 (~

50 g

r)Tr

00

00

00

00

000

DST

106

00

00

Tr0

00

10

00

30

00D

ST10

70

00

Tr (~

15 g

r)Tr

00

01

00

03

000

DST

108a

15Tr

(8 g

r)Tr

mol

y (1

)0

02

blue

-gre

en, p

ale

blue

Tr S

pr (1

) Tr l

ow-C

r dio

p (5

)0

0.5

0Tr

13

Tr (1

gr)

00D

ST10

90

00

00.

50

00

TrTr

00

20

00D

ST11

00

00

00

2 pu

rple

, blu

e-gr

een

00

TrTr

Tr0

1Tr

(1 g

r)00

DST

111

00

00

02

pink

00

TrTr

Tr0

10

00D

ST11

23

Tr (2

gr)

0Tr

(~15

gr)

02

blue

-gre

en, p

ale

blue

Tr lo

w-C

r dio

psid

e (1

gr)

0Tr

0Tr

02

Tr (1

gr)

00D

ST20

00

00

0Tr

2 pa

le b

lue,

pur

ple

00

TrTr

0Tr

5Tr

(1 g

r)00

DST

201

10

0Tr

(~20

gr)

0.5

1 pu

rple

Tr lo

w-C

r dio

psid

e (1

gr)

0Tr

00

03

Tr (1

gr)

00D

ST20

26

Tr (5

gr)

0Tr

(~20

gr)

Tr2

blue

-gre

enTr

low

-Cr d

iops

ide

(1 g

r)0

Tr0

0Tr

2Tr

(1 g

r)00

DST

203

10

00

Tr1

blue

-gre

enTr

Mn-

epid

ote

(1 g

r)0

1Tr

Tr0

50

00D

ST20

40

00

Tr (2

gr)

01

pale

blu

e0

00

00

0Tr

000

DST

205a

40

00

02

pale

blu

e, p

ale

pink

1 gr

Spr

, 1 g

r rub

y, 2

low

-Cr d

iop

01

00

02

000

DST

206

25Tr

(20

gr)

0Tr

(~40

gr)

09

pale

pur

ple,

pal

e gr

een,

gre

y2

gr P

im, 1

gr r

uby,

2 lo

w-C

r dio

p0

Tr0

0.5

01

Tr (4

gr)

00D

ST20

79

Tr (7

gr)

tr m

oly

(1)

2 (~

300

gr)

00

Tr lo

w-C

r dio

psid

e (1

gr)

0Tr

00

00

000

DST

208

2Tr

(2 g

r)0

0Tr

00

00

00

00

000

DST

210

10

00

00

0Tr

(1 g

r)0

00

0Tr

000

DST

211

00

0Tr

(~15

gr)

Tr2

purp

le0

0Tr

TrTr

01

000

DST

212

00

00

00

00

Tr0

00

TrTr

(2 g

r)00

DST

213

00

00

Tr0

00

00

00

20

00D

ST21

40

00

0Tr

00

00

Tr0

02

000

DST

215

00

00

00

1 pe

rovs

kite

00

00

02

Tr00

DST

216

3Tr

(2 g

r)0

00

0Tr

low

-Cr d

iops

ide

(1 g

r)0

00

00

50

00D

ST40

07

Tr (5

gr)

00.

5 (~

100

gr)

03

pale

blu

eTr

low

-Cr d

iops

ide

(2 g

r)0

0.5

00

02

0

Not

es: M

iner

al a

bbre

viat

ions

are

from

Kre

tz (1

983)

; Lo

Cr d

iop

= lo

w-c

hrom

e di

opsi

de; P

im =

pie

mon

tite;

ruby

= ru

by c

orun

dum

; Cr-g

rs =

chr

ome

gros

sula

r; m

oly

= m

olyb

deni

te; L

oel =

loel

lingi

teKy

= k

yani

te; S

il =

sillim

anite

; Rt =

rutil

e; F

ay =

faya

lite;

Opx

= o

rthop

yrox

ene;

Cr =

chr

omite

; Sps

= s

pess

artin

e; G

th =

goe

thite

; Py

= py

rite;

Ccp

= c

halc

opyr

ite

Tr o

r tr n

orm

ally

indi

cate

s th

at fr

om 1

to 1

0 gr

ains

and

com

mon

ly 1

or 2

gra

ins

of th

e m

iner

al s

peci

es a

re o

bser

ved

in th

e co

ncen

trate

Tota

l Prim

e M

MSI

M g

rain

s in

dica

tes

the

tota

l num

ber o

f pic

ked

grai

ns o

f cha

lcop

yrite

, oth

er s

ulph

ides

suc

h as

mol

ybde

nite

, gah

nite

, Mn-

epid

ote,

ruby

cor

undu

m, l

ow C

r-dio

psid

e an

d re

d ru

tile.

97

Page 116: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Tabl

e 6:

Kim

berli

te in

dica

tor m

iner

al c

ount

s

1.0

to 2

.0 m

m0.

5 to

1.0

mm

0.2

5 to

0.5

mm

Sam

ple

Num

bGP

GO

DC

IMC

RFO

*G

PG

OD

CIM

CR

FO*

GP

GO

*D

CIM

*C

RFO

*To

tal K

IMs

Lo C

r Di

95D

ST02

2n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

00

n/d

n/a

0n/

a95

DST

023

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

95D

ST02

4n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

00

n/d

n/a

0n/

a95

DST

024b

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

95D

ST02

5n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

20

n/d

n/a

2n/

a95

DST

025b

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d1

0n/

dn/

a1

n/a

95D

ST02

6n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

00

n/d

n/a

0n/

a95

DST

027

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

95D

ST02

8n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

00

n/d

n/a

0n/

a95

DST

029

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

95D

ST03

0n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

21

n/d

n/a

3n/

a95

DST

30b

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

95D

ST12

0n/

dn/

dn/

dn/

dn/

d0

00

10

n/d

10

n/d

n/a

2n/

a95

DST

120b

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

95D

ST12

1n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

01

n/d

n/a

1n/

a95

DST

121b

n/d

n/d

n/d

n/d

n/d

00

00

6n/

d1

0n/

dn/

a7

n/a

95D

ST12

2n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

10

n/d

n/a

1n/

a95

DST

123

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

95D

ST20

4n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

00

n/d

n/a

0n/

a95

DST

205

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

95D

ST20

6n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

00

n/d

n/a

0n/

a95

DST

207b

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d3

0n/

dn/

a3

n/a

95D

ST20

8bn/

dn/

dn/

dn/

dn/

d0

00

00

n/d

82

n/d

n/a

10n/

a95

DST

209

n/d

n/d

n/d

n/d

n/d

10

00

0n/

d1

0n/

dn/

a2

n/a

95D

ST20

9bn/

dn/

dn/

dn/

dn/

d0

00

00

n/d

50

n/d

n/a

5n/

a95

DST

210

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

96D

ST01

00

00

00

00

01

n/d

10

n/d

n/a

2n/

a96

DST

020

00

00

00

01

0n/

d0

0n/

dn/

a1

n/a

96D

ST03

00

00

00

00

17

n/d

00

n/d

n/a

8n/

a96

DST

040

00

00

00

00

0n/

d0

0n/

dn/

a0

n/a

96D

ST05

00

00

00

00

00

n/d

10

n/d

n/a

1n/

a96

DST

100

00

00

00

00

00

n/d

00

n/d

n/a

0n/

a96

DST

101

00

00

00

00

00

n/d

00

n/d

n/a

0n/

a96

DST

102

00

00

01

00

00

n/d

00

n/d

n/a

1n/

a96

DST

103

00

00

00

00

00

n/d

00

n/d

n/a

0n/

a96

DST

201

00

00

00

00

10

n/d

10

n/d

n/a

2n/

a96

DST

202

00

00

00

00

00

n/d

00

n/d

n/a

0n/

a

98

Page 117: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

1.0

to 2

.0 m

m0.

5 to

1.0

mm

0.2

5 to

0.5

mm

Sam

ple

Num

bGP

GO

DC

IMC

RFO

*G

PG

OD

CIM

CR

FO*

GP

GO

*D

CIM

*C

RFO

*To

tal K

IMs

Lo C

r Di

96D

ST20

30

00

00

00

00

0n/

d0

0n/

dn/

a0

n/a

97D

ST01

n/d

n/d

n/d

n/d

n/d

00

01

0n/

d0

0n/

dn/

a1

n/a

97D

ST02

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d1

1n/

dn/

a2

n/a

97D

ST03

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

97D

ST04

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

97D

ST05

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d4

1n/

dn/

a5

n/a

97D

ST06

n/d

n/d

n/d

n/d

n/d

00

01

0n/

d0

0n/

dn/

a1

n/a

97D

ST07

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

1n/

dn/

a1

n/a

97D

ST08

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

97D

ST09

n/d

n/d

n/d

n/d

n/d

02

00

0n/

d0

0n/

dn/

a2

n/a

97D

ST10

0n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

31

n/d

n/a

4n/

a97

DST

101

n/d

n/d

n/d

n/d

n/d

02

03

0n/

d0

0n/

dn/

a5

n/a

97D

ST10

2n/

dn/

dn/

dn/

dn/

d0

10

10

n/d

20

n/d

n/a

4n/

a97

DST

103

n/d

n/d

n/d

n/d

n/d

60

06

1n/

d12

7n/

dn/

a32

n/a

97D

ST10

4n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

00

n/d

n/a

0n/

a97

DST

105

n/d

n/d

n/d

n/d

n/d

00

02

0n/

d12

0n/

dn/

a14

n/a

97D

ST10

6n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

00

n/d

n/a

0n/

a97

DST

107

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

97D

ST10

8n/

dn/

dn/

dn/

dn/

d0

00

00

n/d

10

n/d

n/a

1n/

a97

DST

109

n/d

n/d

n/d

n/d

n/d

00

00

0n/

d0

0n/

dn/

a0

n/a

97D

ST11

0n/

dn/

dn/

dn/

dn/

d0

10

00

n/d

00

n/d

n/a

1n/

a98

DST

010

00

00

0

00

00

00

00

n/a

0n/

a98

DST

020

00

00

00

00

10

00

0n/

a1

n/a

98D

ST03

00

00

00

00

00

10

00

n/a

1n/

a98

DST

040

00

10

00

01

00

00

1n/

a3

n/a

98D

ST05

00

00

00

00

00

00

10

n/a

1n/

a98

DST

070

00

00

00

00

00

00

0n/

a0

n/a

98D

ST10

00

00

00

00

00

00

20

0n/

a2

n/a

98D

ST10

10

00

00

00

00

00

00

0n/

a0

n/a

98D

ST10

20

00

00

00

02

10

21

1n/

a7

n/a

98D

ST10

50

00

00

00

00

00

02

0n/

a2

n/a

98D

ST30

00

00

00

00

00

10

12

0n/

a4

n/a

98D

ST30

10

00

00

00

00

00

12

0n/

a3

n/a

98D

ST30

20

00

10

0

00

00

00

00

n/a

1n/

a98

DST

303

00

00

00

00

00

01

00

n/a

1n/

a98

DST

304

00

00

0

00

00

00

00

0n/

a0

n/a

99D

ST02

00

00

00

00

00

00

00

01

00

10

99D

ST03

pick

ed fo

r Au

grai

ns o

nly

099

DST

040

00

00

00

00

21

01

00

20

06

1

99

Page 118: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

1.0

to 2

.0 m

m0.

5 to

1.0

mm

0.2

5 to

0.5

mm

Sam

ple

Num

bGP

GO

DC

IMC

RFO

*G

PG

OD

CIM

CR

FO*

GP

GO

*D

CIM

*C

RFO

*To

tal K

IMs

Lo C

r Di

99D

ST05

pick

ed fo

r Au

grai

ns o

nly

99D

ST06

pick

ed fo

r Au

grai

ns o

nly

99D

ST07

pick

ed fo

r Au

grai

ns o

nly

99D

ST08

pick

ed fo

r Au

grai

ns o

nly

99D

ST09

pick

ed fo

r Au

grai

ns o

nly

99D

ST10

pick

ed fo

r Au

grai

ns o

nly

99D

ST11

pick

ed fo

r Au

grai

ns o

nly

99D

ST12

pick

ed fo

r Au

grai

ns o

nly

99D

ST13

pick

ed fo

r Au

grai

ns o

nly

99D

ST14

pick

ed fo

r Au

grai

ns o

nly

99D

ST15

pick

ed fo

r Au

grai

ns o

nly

99D

ST16

pick

ed fo

r Au

grai

ns o

nly

99D

ST17

pick

ed fo

r Au

grai

ns o

nly

99D

ST18

pick

ed fo

r Au

grai

ns o

nly

99D

ST19

pick

ed fo

r Au

grai

ns o

nly

99D

ST20

pick

ed fo

r Au

grai

ns o

nly

99D

ST21

pick

ed fo

r Au

grai

ns o

nly

99D

ST22

pick

ed fo

r Au

grai

ns o

nly

99D

ST23

pick

ed fo

r Au

grai

ns o

nly

99D

ST24

pick

ed fo

r Au

grai

ns o

nly

99D

ST25

pick

ed fo

r Au

grai

ns o

nly

99D

ST26

pick

ed fo

r Au

grai

ns o

nly

99D

ST27

pick

ed fo

r Au

grai

ns o

nly

99D

ST28

pick

ed fo

r Au

grai

ns o

nly

99D

ST29

00

00

00

00

00

00

00

01

10

20

99D

ST30

pick

ed fo

r Au

grai

ns o

nly

99D

ST31

pick

ed fo

r Au

grai

ns o

nly

99D

ST32

00

00

00

00

00

00

00

00

00

00

99D

ST33

00

00

00

00

00

00

00

00

00

01

99D

ST34

00

00

00

00

00

00

00

00

00

00

99D

ST35

00

00

00

00

00

00

00

00

00

00

99D

ST36

00

00

00

00

00

00

00

00

10

10

99D

ST37

00

00

00

00

00

00

00

00

10

10

99D

ST38

00

00

00

00

00

00

00

00

00

02

99D

ST39

00

00

00

00

00

00

10

00

10

20

99D

ST40

00

00

00

00

00

00

00

00

00

00

99D

ST41

00

00

00

00

00

00

00

00

00

00

99D

ST42

00

00

00

00

01

00

01

00

20

40

99D

ST43

00

00

00

00

00

00

00

00

10

10

100

Page 119: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

1.0

to 2

.0 m

m0.

5 to

1.0

mm

0.2

5 to

0.5

mm

Sam

ple

Num

bGP

GO

DC

IMC

RFO

*G

PG

OD

CIM

CR

FO*

GP

GO

*D

CIM

*C

RFO

*To

tal K

IMs

Lo C

r Di

99D

ST44

00

00

00

00

00

00

10

00

20

30

99D

ST45

00

00

00

00

00

00

00

00

10

10

99D

ST46

00

00

00

00

00

00

00

00

00

00

99D

ST47

00

00

00

00

00

00

00

00

00

00

99D

ST48

00

00

00

00

02

00

100

00

00

120

99D

ST49

00

00

00

00

00

00

00

00

00

00

99D

ST50

00

00

00

00

00

00

00

00

00

02

99D

ST10

00

00

00

00

00

00

00

00

00

00

099

DST

101

00

00

00

00

00

00

00

00

20

20

99D

ST10

20

00

00

00

00

00

00

00

00

00

299

DST

103

pick

ed fo

r Au

grai

ns o

nly

99D

ST10

40

00

00

00

00

00

00

00

10

01

099

DST

105

pick

ed fo

r Au

grai

ns o

nly

99D

ST10

6pi

cked

for A

u gr

ains

onl

y99

DST

107

00

00

00

00

00

00

00

00

00

04

99D

ST10

8pi

cked

for A

u gr

ains

onl

y99

DST

109

pick

ed fo

r Au

grai

ns o

nly

99D

ST11

0pi

cked

for A

u gr

ains

onl

y99

DST

111

pick

ed fo

r Au

grai

ns o

nly

99D

ST11

2pi

cked

for A

u gr

ains

onl

y99

DST

113

pick

ed fo

r Au

grai

ns o

nly

99D

ST11

4pi

cked

for A

u gr

ains

onl

y99

DST

115

pick

ed fo

r Au

grai

ns o

nly

99D

ST11

6pi

cked

for A

u gr

ains

onl

y99

DST

117

pick

ed fo

r Au

grai

ns o

nly

99D

ST11

8pi

cked

for A

u gr

ains

onl

y99

DST

119

pick

ed fo

r Au

grai

ns o

nly

99D

ST12

0pi

cked

for A

u gr

ains

onl

y99

DST

121

pick

ed fo

r Au

grai

ns o

nly

99D

ST12

2pi

cked

for A

u gr

ains

onl

y99

DST

123

pick

ed fo

r Au

grai

ns o

nly

99D

ST12

40

00

00

00

00

10

01

00

00

02

099

DST

200

00

00

00

00

00

00

00

00

00

00

99D

ST20

10

00

00

00

00

00

01

00

00

01

199

DST

202

00

00

00

10

00

00

10

00

00

20

99D

ST20

30

00

00

00

00

00

00

00

00

00

099

DST

204

00

00

00

00

00

00

00

01

00

10

99D

ST20

50

00

00

00

00

00

00

00

00

00

099

DST

206

00

00

00

00

00

00

00

00

00

02

101

Page 120: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

1.0

to 2

.0 m

m0.

5 to

1.0

mm

0.2

5 to

0.5

mm

Sam

ple

Num

bGP

GO

DC

IMC

RFO

*G

PG

OD

CIM

CR

FO*

GP

GO

*D

CIM

*C

RFO

*To

tal K

IMs

Lo C

r Di

00D

ST01

00

00

00

00

00

00

10

00

00

12

00D

ST02

00

00

00

00

00

00

00

00

00

01

00D

ST03

00

00

00

00

00

00

00

00

00

00

00D

ST04

00

00

00

00

00

00

00

00

00

00

00D

ST05

00

00

00

00

00

00

00

00

00

00

00D

ST06

00

00

00

00

00

00

10

00

00

10

00D

ST07

00

00

00

00

00

00

10

01

40

51

00D

ST08

00

00

00

00

00

10

00

00

10

22

00D

ST09

00

00

00

00

00

00

00

00

00

01

00D

ST10

00

00

00

00

00

00

00

00

00

00

00D

ST11

00

00

00

00

00

00

00

00

00

00

00D

ST12

00

00

00

00

00

00

00

00

00

00

00D

ST13

00

00

00

00

00

00

00

00

00

00

00D

ST14

00

00

00

00

00

00

00

00

00

00

00D

ST15

00

00

00

00

00

00

00

00

00

00

00D

ST16

00

00

00

00

00

10

00

02

60

90

00D

ST17

00

00

00

00

00

00

10

00

00

11

00D

ST18

00

00

00

00

01

00

00

00

00

12

00D

ST10

00

00

00

00

00

01

00

00

01

02

100

DST

101

00

00

00

00

00

00

00

00

00

00

00D

ST10

20

00

00

00

00

00

00

00

00

00

000

DST

103

00

00

00

00

00

00

00

00

00

00

00D

ST10

40

00

00

00

00

00

00

00

00

00

000

DST

105

00

00

00

00

00

00

00

00

00

00

00D

ST10

60

00

00

00

00

00

00

00

00

00

000

DST

107

00

00

00

00

00

00

00

00

00

00

00D

ST10

8a- e

10

02

01

41

153

224

572

654

755

282

500

DST

109

00

00

00

00

00

00

00

00

00

00

00D

ST11

00

00

00

00

00

00

00

00

11

02

000

DST

111

00

00

00

00

00

00

00

00

00

00

00D

ST11

20

00

00

00

00

00

00

00

11

02

100

DST

200

00

00

00

00

00

01

00

00

10

20

00D

ST20

10

00

00

00

00

00

00

00

01

01

100

DST

202

00

00

00

00

00

00

00

10

10

21

00D

ST20

30

00

00

00

00

10

00

00

00

01

000

DST

204

00

00

00

00

00

00

00

00

00

00

00D

ST20

5a0

00

00

00

10

10

00

00

20

04

200

DST

206

00

00

00

00

01

10

20

02

41

112

00D

ST20

70

00

00

00

00

00

00

00

00

00

1

102

Page 121: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

1.0

to 2

.0 m

m0.

5 to

1.0

mm

0.2

5 to

0.5

mm

Sam

ple

Num

bGP

GO

DC

IMC

RFO

*G

PG

OD

CIM

CR

FO*

GP

GO

*D

CIM

*C

RFO

*To

tal K

IMs

Lo C

r Di

00D

ST20

80

00

00

00

00

00

00

00

00

00

000

DST

210

00

00

00

00

00

10

00

00

00

10

00D

ST21

10

00

00

00

00

01

00

00

00

01

000

DST

212

00

00

00

00

00

00

00

00

20

20

00D

ST21

30

00

00

00

00

00

00

00

00

00

000

DST

214

00

00

00

00

00

00

00

00

00

00

00D

ST21

50

00

00

00

00

00

00

00

00

00

000

DST

216

00

00

00

00

00

00

00

00

00

01

00D

ST40

00

00

00

00

00

00

00

00

00

00

2gr

and

tota

l52

7N

otes

: n/d

not

det

ecte

d; n

/a n

ot a

pplic

able

(the

con

cent

rate

was

not

exa

min

ed fo

r thi

s m

iner

al) *

den

otes

min

eral

s th

at w

ere

not r

igor

ousl

y pi

cked

.G

P-py

rope

gar

net,

GO

ecl

ogiti

c ga

rnet

, DC

chr

ome

diop

side

, IM

ilm

enite

, CR

chr

omite

, FO

fore

ster

ite, L

o C

r Di L

ow C

hrom

e D

iops

ide

103

Page 122: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Tab

le 7

: Hea

vy m

iner

al p

icki

ng r

emar

ks.

Sam

ple

Pick

ing

Rem

arks

Num

ber

95D

ST02

2Eq

ually

mix

ed g

reen

schi

st a

nd a

mph

ibol

ite fa

cies

supr

acru

stal

ass

embl

ages

. SEM

che

ck sp

inel

from

0.2

5-0.

5 m

m =

no

Zn

95D

ST02

3N

o re

mar

ks.

95D

ST02

4SE

M c

onfir

med

1 sp

lend

ant b

lack

IM c

andi

date

from

0.5

-1.0

mm

as p

icro

ilmen

ite (h

igh

Mg,

hig

h C

r).

95D

ST02

4bN

o re

mar

ks.

95D

ST02

5SE

M c

onfir

med

2 p

ale

purp

le fl

awle

ss G

P ca

ndid

ates

from

0.2

5-0.

5 as

G9

pyro

pe.

95D

ST02

5bA

lso

pick

ed 2

pal

e em

eral

d gr

een

low

/ver

y lo

w-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

95D

ST02

6V

ery

smal

l con

cent

rate

.

95D

ST02

7N

o re

mar

ks.

95D

ST02

8N

o re

mar

ks.

95D

ST02

9Pi

cked

3 p

ale

emer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

95D

ST03

0SE

M c

onfir

med

2 p

ale

purp

le fl

awle

ss G

P ca

ndid

ates

from

0.2

5-0.

5 as

G9

pyro

pe.

95D

ST03

0bPi

cked

3 p

ale

emer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

95D

ST12

0A

lso

pick

ed 1

pal

e em

eral

d gr

een

low

/ver

y lo

w-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

95D

ST12

1N

o re

mar

ks.

95D

ST12

1bA

lso

pick

ed 1

pal

e em

eral

d gr

een

low

/ver

y-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

95D

ST12

2N

o re

mar

ks.

104

Page 123: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pick

ing

Rem

arks

Num

ber

95D

ST12

3N

o re

mar

ks.

95D

ST20

4N

o re

mar

ks.

95D

ST20

5N

o re

mar

ks.

95D

ST20

6A

lso

pick

ed 3

pal

e em

eral

d gr

een

low

/ver

y lo

w-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

95D

ST20

7bA

lso

pick

ed 1

7 pa

le e

mer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

95D

ST20

8bA

lso

pick

ed 1

pal

e em

eral

d gr

een

low

/ver

y lo

w-C

r dio

psid

e fr

om 0

.5-1

.0 m

m fr

actio

n an

d 3

from

0.2

5-0.

5 m

m fr

actio

n.

95D

ST20

9SE

M c

heck

of 1

pal

e em

eral

d gr

een

grai

n fr

om 0

.25-

0.5

mm

= v

ery

low

Cr-

Dio

psid

e. O

ne o

f the

2 G

P fr

om 0

.25-

0.5

mm

is v

ery

wel

lro

unde

d, re

cycl

ed fr

om C

reta

ceou

s sed

imen

ts.

95D

ST20

9bA

lso

pick

ed 1

pal

e em

eral

d gr

een

low

/ver

y lo

w-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

95D

ST21

0N

o re

mar

ks.

96D

ST01

SEM

che

ck fr

om 0

.5-1

.0 m

m fr

actio

n: 1

bla

ck C

R c

andi

date

= 1

Cr.

SEM

che

cks f

rom

0.2

5-0.

5 m

m fr

actio

n: 1

pur

ple-

red

GP

cand

idat

e =

1 G

9 py

rope

; and

7 C

r can

dida

tes =

5 C

r, 1

titan

ite a

nd 1

tita

nom

agne

tite.

96D

ST02

SEM

che

cks f

rom

0.5

-1.0

mm

frac

tion:

4 IM

can

dida

tes =

1 IM

, 2 c

rust

al im

enite

and

1 h

ornb

lend

e.

96D

ST03

SEM

che

cks f

rom

0.5

-1.0

mm

frac

tion:

10

octa

hedr

al C

r can

dida

tes =

1 IM

, 7 C

r and

2 c

rust

al il

men

ite. S

EM c

heck

s fro

m 0

.25-

0.5

mm

frac

tion:

11 C

r can

dida

tes =

10

Cr (

1atta

ched

to e

nsta

tite)

and

1 c

rust

al il

men

ite +

bro

nzite

. Als

o pi

cked

4 p

ale

emer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

96D

ST04

No

rem

arks

.

96D

ST05

Als

o pi

cked

2 p

ale

emer

ald

gree

n lo

w-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

96D

ST10

0N

o re

mar

ks.

105

Page 124: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pick

ing

Rem

arks

Num

ber

96D

ST10

1N

o re

mar

ks.

96D

ST10

2SE

M c

heck

from

0.5

-1.0

mm

frac

tion:

1 Im

can

dida

te =

1 c

rust

al il

men

ite. A

lso

pick

ed 2

pal

e em

eral

d gr

een

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

mfr

actio

n.

96D

ST10

3N

o re

mar

ks.

96D

ST20

1SE

M c

heck

s fro

m 0

.5-1

.0 m

m fr

actio

n: 2

IM c

andi

date

s = 1

IM a

nd 1

cru

stal

ilm

enite

. Als

o pi

cked

2 p

ale

emer

ald

gree

n lo

w-C

r dio

psid

e fr

om0.

25-0

.5 m

m fr

actio

n.

96D

ST20

2Pi

cked

6 C

r and

1 p

ale

emer

ald

gree

n lo

w-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

96D

ST20

3N

o re

mar

ks.

97D

ST01

SEM

che

cks f

rom

0.5

-1.0

mm

frac

tion:

2 IM

ver

sus c

rust

al il

men

ite c

andi

date

s = 1

IM a

nd 1

cru

stal

ilm

enite

. SEM

che

ck fr

om 0

.25-

0.5

mm

fr

actio

n: 1

GP

vers

us sp

inel

can

dida

te =

1 sp

inel

. Pic

ked

1 pa

le e

mer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.5

-1.0

mm

frac

tion

and

2 fr

om

0.25

-0.5

mm

frac

tion.

97D

ST02

SEM

che

cks f

rom

0.2

5-0.

5 m

m fr

actio

n: 2

GP

vers

us a

lman

dine

can

dida

tes =

2 G

O (1

pyr

ope-

alm

andi

ne a

nd 1

Cr-

poor

meg

acry

st).

Als

o pi

cked

1 pa

le e

mer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

97D

ST03

No

rem

arks

.

97D

ST04

SEM

che

ck fr

om 0

.5-1

.0 m

m fr

actio

n: 1

GP

vers

us a

lman

dine

can

dida

te =

1 a

lman

dine

. Pic

ked

2 pa

le e

mer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

97D

ST05

Ove

rsiz

ed c

once

ntra

te. S

EM c

heck

from

0.5

-1.0

mm

frac

tion:

1 C

r ver

sus t

ourm

alin

e ca

ndid

ate

= 1

tour

mal

ine.

SEM

che

cks f

rom

0.2

5-0.

5 m

mfr

actio

n: 7

GO

ver

sus a

lman

dine

can

dida

tes =

1 G

P, 4

GO

(3 p

yrop

e-al

man

dine

and

1 C

r-po

or m

egac

ryst

) and

2 a

lman

dine

. Pic

ked

3 ad

ditio

nal

GP

from

0.2

5-0.

5 m

m fr

actio

n. A

lso

pick

ed 1

8 pa

le e

mer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

97D

ST06

SEM

che

cks f

rom

0.5

-1.0

mm

frac

tion:

4 IM

(wea

k M

gO) a

md

3 cr

usta

l ilm

enite

. Pic

ked

1 pa

le e

mer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.5-

1.0

mm

frac

tion

and

3 fr

om 0

.25-

0.5

mm

frac

tion.

106

Page 125: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pick

ing

Rem

arks

Num

ber

97D

ST07

SEM

che

ck fr

om 0

.5-1

.0 m

m fr

actio

n: 1

blu

e-pu

rple

GP

vers

us sp

inel

can

dida

te =

1 sp

inel

. Als

o pi

cked

3 p

ale

emer

ald

gree

n lo

w/v

ery

low

-Cr

diop

side

from

0.2

5-0.

5 m

m fr

actio

n.

97D

ST08

No

rem

arks

.

97D

ST09

SEM

che

cks f

rom

0.5

-1.0

mm

frac

tion:

4 G

O v

ersu

s alm

andi

ne c

andi

date

s = 2

GO

(pyr

ope-

alm

andi

ne),

1 al

man

dine

and

1 st

auro

lite;

and

2 IM

vers

us c

rust

al il

men

ite c

andi

date

s = 2

cru

stal

ilm

enite

. SEM

che

cks f

rom

0.2

5-0.

5 m

m fr

actio

n: 1

GO

ver

sus a

lman

dine

can

dida

te =

1 G

O (C

r-po

or m

egac

ryst

). Pi

cked

2 p

ale

emer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

97D

ST10

0SE

M c

heck

s fro

m 0

.25-

0.5

mm

frac

tion:

8 G

O v

ersu

s alm

andi

ne c

andi

date

s = 5

GO

(1 C

r-po

or m

egac

ryst

and

4 p

yrop

e-al

man

dine

) and

3

alm

andi

ne. A

lso

pick

ed 4

pal

e em

eral

d gr

een

low

/ver

y lo

w-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

97D

ST10

1SE

M c

heck

s fro

m 0

.5-1

.0 m

m fr

actio

n: 8

GO

ver

sus a

lman

dine

can

dida

tes =

2 G

O (p

yrop

e-al

man

dine

) and

6 a

lman

dine

; and

3 IM

ver

sus

crus

tal i

lmen

ite c

andi

date

s = 3

IM. S

EM c

heck

s fro

m 0

.25-

0.5

mm

frac

tion;

9 G

O v

ersu

s alm

andi

ne c

andi

date

s = 3

GO

(pyr

ope-

alm

andi

ne) a

nd6

alm

andi

ne. P

icke

d 5

pale

em

eral

d gr

een

low

/ver

y lo

w-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

97D

ST10

2SE

M c

heck

s fro

m 0

.25-

0.5

mm

frac

tion:

1 d

eep

purp

le-r

ed G

P ca

ndid

ate

= 1

Mn-

epid

ote;

and

11

GO

ver

sus a

lman

dine

can

dida

tes =

5 G

O (4

pyro

pe-a

lman

dine

and

1 C

r-po

or m

egac

ryst

), 3

epid

ote,

2 a

lman

dine

and

1 st

auro

lite.

Als

o pi

cked

11

pale

em

eral

d gr

een

low

/ver

y lo

w-C

rdi

opsi

de fr

om 0

.25-

0.5

mm

frac

tion.

97D

ST10

3O

vers

ized

con

cent

rate

. Pic

ked

100

g ou

t of a

tota

l of 2

36.3

g o

f 0.2

5-0.

5 m

m h

eavi

es. S

EM c

heck

s fro

m 0

.5-1

.0 m

m fr

actio

n: 1

tran

slus

cent

GP

cand

idat

e =

1 G

P; 1

col

ourle

ss o

livin

e ca

ndid

ate

= 1

oliv

ine

(for

ster

ite);

and

18 IM

ver

sus c

rust

al il

men

ite =

5 IM

, 1 C

r and

12

crus

tal i

lmen

ite.

Pick

ed 5

add

ition

al G

P an

d 1

addi

tiona

l IM

from

0.5

-1.0

mm

frac

tion.

SEM

che

cks f

rom

0.2

5-0.

5 m

m fr

actio

n: 4

GO

ver

sus a

lman

dine

ca

ndid

ates

= 3

GO

(2 p

yrop

e al

man

dine

and

1 C

r-po

or m

egac

ryst

) and

1 a

lman

dine

. Als

o pi

cked

29

pale

em

eral

d gr

een

low

/ver

y lo

w-C

rdi

opsi

de fr

om 0

.25-

0.5

mm

frac

tion.

97D

ST10

4Pi

cked

2 p

ale

emer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

97D

ST10

5SE

M c

heck

s fro

m 0

.25-

0.5

mm

frac

tion:

12

GO

ver

sus a

lman

dine

can

dida

tes =

4 G

O (3

pyr

ope-

alm

andi

ne a

nd 1

Cr-

poor

meg

acry

st) 7

alm

andi

ne a

nd 1

stau

rolit

e. A

lso

pick

ed 2

Cr a

nd 1

0 pa

le e

mer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

97D

ST10

6N

o re

mar

ks.

97D

ST10

7Pi

cked

1 p

ale

emer

ald

gree

n lo

w/v

ery

lo-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

107

Page 126: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pick

ing

Rem

arks

Num

ber

97D

ST10

8SE

M c

heck

s fro

m 0

.25-

0.5

mm

frac

tion:

2 p

ale

red-

purp

le G

P ve

rsus

alm

andi

ne c

andi

date

s = 1

GP

and

1 M

g al

man

dine

. Als

o pi

cked

4 p

ale

emer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

and

1 C

r fro

m 0

.25-

0.5

mm

frac

tion.

97D

ST10

9N

o re

mar

ks.

97D

ST11

0SE

M c

heck

s fro

m 0

.5-1

.0 m

m fr

actio

n: 1

GO

ver

sus a

lman

dine

can

dida

te =

1 G

O (p

yrop

e-al

man

dine

). Pi

cked

2 p

ale

emer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

98D

ST02

SEM

che

cks f

rom

0.5

-1.0

mm

frac

tion:

2 IM

ver

sus c

rust

al il

men

ite c

andi

date

s = 1

CR

and

1 c

rust

al il

men

ite. S

EM c

heck

s fro

m 0

.25-

0.5

mm

fr

actio

n: 1

GP

vers

us ru

by c

orun

dum

can

dida

te =

1 ru

by c

orun

dum

(pic

ked

as M

MSI

M).

Als

o pi

cked

1 p

ale

emer

ald

gree

n lo

w/v

ery

low

- Cr

diop

side

from

0.5

-1.0

mm

frac

tion

and

1 ot

her f

rom

0.2

5-0.

5 m

m fr

actio

n.

98D

ST03

SEM

che

ck fr

om 0

.5-1

.0 m

m fr

actio

n: 1

fors

terit

e ol

ivin

e ve

rsus

epi

dote

can

dida

te =

1 fo

rste

rite

oliv

ine.

SEM

che

ck fr

om 0

.25-

0.5

mm

fr

actio

n: 2

CR

ver

sus c

rust

al il

men

ite c

andi

date

s = 2

cru

stal

ilm

enite

.

98D

ST04

SEM

che

ck fr

om 1

.0-2

.0 m

m fr

actio

n: 1

IM v

ersu

s cru

stal

ilm

enite

can

dida

te =

1 IM

. SEM

che

cks f

rom

0.5

-1.0

mm

frac

tion:

3 IM

ver

sus c

rust

alilm

enite

can

dida

tes =

1 IM

and

2 ru

tile.

SEM

che

cks f

rom

0.2

5-0.

5 m

m fr

actio

n: 1

IM v

ersu

s cru

stal

ilm

enite

can

dida

te =

1 IM

; and

9 ro

unde

dse

mi-o

ctah

edra

l CR

can

dida

tes =

1 C

R, 4

Fe-

oxid

e, 3

tour

mal

ine

and

1 tit

anom

agne

tite.

98D

ST05

SEM

che

ck fr

om 0

.25-

0.5

mm

frac

tion:

1 D

C v

ersu

s Cr-

gros

sula

r can

dida

te =

1 D

C.

98D

ST07

SEM

che

ck fr

om 0

.25-

0.5

mm

frac

tion:

1 IM

ver

sus c

rust

al il

men

ite c

andi

date

= 1

IM.

98D

ST10

0SE

M c

heck

from

0.2

5-0.

5 m

m fr

actio

n: 3

GO

ver

sus a

lman

dine

can

dida

tes =

1 G

O (C

r-po

or m

egac

ryst

) and

2 a

lman

dine

. Als

o pi

cked

2 p

ale

emer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

98D

ST10

2SE

M c

heck

s fro

m 0

.5-1

.0 m

m fr

actio

n: 3

IM v

ersu

s cru

stal

ilm

enite

can

dida

tes =

2 IM

and

1 C

R. S

EM c

heck

from

0.2

5-0.

5 m

m fr

actio

n: 1

CR

vers

us c

rust

al il

men

ite c

andi

date

= 1

CR

. Als

o pi

cked

1 p

ale

emer

ald

gree

n lo

w/v

ery

low

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n. L

ost 1

GP

from

0.2

5-0.

5 m

m fr

actio

n.

98D

ST30

0A

lso

pick

ed 2

pal

e em

eral

d gr

een

low

/ver

y lo

w-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

98D

ST30

2SE

M c

heck

from

0.2

5-0.

5 m

m fr

actio

n: 1

IM v

ersu

s cru

stal

ilm

enite

can

dida

te =

1 c

rust

al il

men

ite. A

lso

pick

ed 1

pal

e em

eral

d gr

een

low

/ver

ylo

w-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

108

Page 127: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pick

ing

Rem

arks

Num

ber

98D

ST30

3A

lso

pick

ed 1

pal

e em

eral

d gr

een

low

/ver

y lo

w-C

r dio

psid

e fr

om 0

.25-

0.5

mm

frac

tion.

98D

ST30

4Pi

cked

3 p

ale

emer

ald

gree

n lo

w/v

ery

llow

-Cr d

iops

ide

from

0.2

5-0.

5 m

m fr

actio

n.

99D

ST01

No

KIM

rem

arks

.

99D

ST02

SEM

che

ck fr

om 0

.25-

0.5

mm

frac

tion:

1 C

R v

ersu

s cru

stal

ilm

enite

can

dida

te =

1 IM

.

99D

ST04

SEM

che

cks f

rom

0.5

-1.0

mm

frac

tion:

3 IM

ver

sus C

R c

andi

date

s = 2

IM a

nd 1

CR

. SE

M c

heck

s fro

m 0

.25-

0.5

mm

frac

tion:

6 IM

ver

sus

CR

can

dida

tes =

2 IM

and

4 c

rust

al il

men

ite.

99D

ST29

SEM

che

cks f

rom

0.2

5-0.

5 m

m fr

actio

n: 4

IM v

ersu

s CR

can

dida

tes =

1 IM

, 1 C

R, 1

cru

stal

ilm

enite

and

1 to

urm

alin

e.

99D

ST32

No

KIM

rem

arks

.

99D

ST33

SEM

che

ck fr

om 0

.25-

0.5

mm

frac

tion:

1G

P ve

rsus

zirc

on c

andi

date

= 1

zirc

on.

99D

ST34

No

KIM

rem

arks

.

99D

ST35

No

KIM

rem

arks

.

99D

ST36

No

KIM

rem

arks

.

99D

ST37

SEM

che

ck fr

om 0

.25

-0.5

mm

frac

tion:

1 C

R v

ersu

s cru

stal

ilm

enite

can

dida

te =

1 C

R.

99D

ST38

No

KIM

rem

arks

.

99D

ST39

SEM

che

ck fr

om 0

.25-

0.5

mm

frac

tion:

2 C

R v

ersu

s cru

stal

ilm

enite

can

dida

te=

1 C

R a

nd 1

cru

stal

ilm

enite

.

99D

ST40

No

KIM

rem

arks

.

99D

ST41

No

KIM

rem

arks

.

99D

ST42

SEM

che

ck fr

om 0

.5 to

1.0

mm

frac

tion:

1 IM

ver

sus c

rust

al il

men

ite c

andi

date

= 1

IM.

SEM

che

ck fr

om 0

.25-

0.5

mm

frac

tion:

1 G

O v

ersu

s alm

andi

ne c

andi

date

= 1

GO

(Cr-

poor

meg

acry

st). 10

9

Page 128: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pick

ing

Rem

arks

Num

ber

99D

ST43

No

KIM

rem

arks

.

99D

ST44

No

KIM

rem

arks

.

99D

ST45

No

KIM

rem

arks

.

99D

ST46

No

KIM

rem

arks

.

99D

ST47

No

KIM

rem

arks

.

99D

ST48

No

KIM

rem

arks

.

99D

ST49

No

KIM

rem

arks

.

99D

ST50

No

KIM

rem

arks

.

99D

ST10

0N

o K

IM re

mar

ks.

99D

ST10

1N

o K

IM re

mar

ks.

99D

ST10

2N

o K

IM re

mar

ks.

99D

ST10

4SE

M c

heck

s fro

m 0

.25-

0.5

mm

frac

tion:

3 IM

ver

sus c

rust

al il

men

ite c

andi

date

s = 1

IM a

nd 2

cru

stal

ilm

enite

.

99D

ST10

7N

o K

IM re

mar

ks.

99D

ST12

4N

o K

IM re

mar

ks.

99D

ST20

0N

o K

IM re

mar

ks.

99D

ST20

1N

o K

IM re

mar

ks.

99D

ST20

2N

o K

IM re

mar

ks.

110

Page 129: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pick

ing

Rem

arks

Num

ber

99D

ST20

3N

o K

IM re

mar

ks.

99D

ST20

4N

o K

IM re

mar

ks.

99D

ST20

5N

o K

IM re

mar

ks.

99D

ST20

6N

o K

IM re

mar

ks.

00D

ST01

No

KIM

rem

arks

.

00D

ST02

No

KIM

rem

arks

.

00D

ST03

No

KIM

rem

arks

.

00D

ST04

No

KIM

rem

arks

.

00D

ST05

No

KIM

rem

arks

.

00D

ST06

No

KIM

rem

arks

.

00D

ST07

SEM

che

cks f

rom

0.2

5-0.

5 m

m fr

actio

n: 2

CR

ver

sus c

rust

al il

men

ite c

andi

date

s = 2

CR

; and

2 IM

ver

sus c

rust

al il

men

ite c

andi

date

s =

1 IM

and

1 c

rust

al il

men

ite.

00D

ST08

SEM

che

ck fr

om 0

.5-1

.0 m

m fr

actio

n: 1

CR

ver

sus t

ourm

alin

e ca

ndid

ate

= 1

CR

. SE

M c

heck

from

0.2

5-0.

5 m

m fr

actio

n: 1

CR

ver

sus

tour

mal

ine

cand

idat

e =

1 C

R.

00D

ST09

No

KIM

rem

arks

.

00D

ST10

No

KIM

rem

arks

.

00D

ST11

No

KIM

rem

arks

.

00D

ST12

No

KIM

rem

arks

.

111

Page 130: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pick

ing

Rem

arks

Num

ber

00D

ST13

No

KIM

rem

arks

.

00D

ST14

No

KIM

rem

arks

.

00D

ST15

SEM

che

ck fr

om 0

.25-

0.5

mm

frac

tion:

1 IM

ver

sus c

rust

al il

men

ite c

andi

date

= 1

cru

stal

ilm

enite

.

00D

ST16

SEM

che

cks f

rom

0.2

5-0.

5 m

m fr

actio

n: 2

CR

ver

sus I

M c

andi

date

s = 2

IM.

00D

ST17

No

KIM

rem

arks

.

00D

ST18

SEM

che

cks f

rom

0.5

-1.0

mm

frac

tion:

3 IM

ver

sus c

rust

al il

men

ite c

andi

date

s = 1

IM a

nd 2

cru

stal

ilm

enite

.

00D

ST10

0SE

M c

heck

from

0.2

5-0.

5 m

m fr

actio

n: 1

CR

ver

sus T

i-and

radi

te c

andi

date

= 1

CR

.

00D

ST10

1SE

M c

heck

s fro

m 0

.25-

0.5

mm

frac

tion:

2 C

R v

ersu

s cru

stal

ilm

enite

can

dida

tes =

2 to

urm

alin

e.

00D

ST10

2SE

M c

heck

s fro

m 0

.25-

0.5

mm

frac

tion:

1 G

O v

ersu

s sta

urol

ite c

andi

date

= 1

stau

rolit

e; a

nd 2

CR

ver

sus t

ourm

lain

e ca

ndid

ates

= 2

tour

mal

ine.

00D

ST10

3N

o K

IM re

mar

ks.

00D

ST10

4N

o K

IM re

mar

ks.

00D

ST10

5N

o K

IM re

mar

ks.

00D

ST10

6N

o K

IM re

mar

ks.

00D

ST10

7N

o K

IM re

mar

ks.

00D

ST10

8aSE

M c

heck

s fro

m 0

.5-1

.0 m

m fr

actio

n: 1

GO

ver

sus g

ross

ular

can

dida

te =

1 g

ross

ular

; and

7 fo

rste

rite

vers

us d

iops

ide

cand

idat

es =

7

fors

terit

e. F

our 0

.25-

0.5

mm

GP

grai

ns h

ave

parti

al k

elyp

hite

rind

.

00D

ST10

9SE

M c

heck

from

0.2

5-0.

5 m

m fr

actio

n: 1

IM v

ersu

s cru

stal

ilm

enite

can

dida

te =

1 c

rust

al il

men

ite.

00D

ST11

0N

o K

IM re

mar

ks.

112

Page 131: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pick

ing

Rem

arks

Num

ber

00D

ST11

1N

o K

IM re

mar

ks.

00D

ST11

2SE

M c

heck

from

0.5

-1.0

mm

frac

tion:

1 IM

ver

sus c

rust

al il

men

ite c

andi

date

= 1

cru

stal

ilm

enite

. SE

M c

heck

s fro

m 0

.25-

0.5

mm

frac

tion:

6

IM v

ersu

s cru

stal

ilm

enite

can

dida

tes =

1 IM

and

5 c

rust

al il

men

ite.

00D

ST20

0SE

M c

heck

from

0.2

5-0.

5 m

m fr

actio

n: 1

CR

ver

sus c

rust

al il

men

ite c

andi

date

= 1

CR

.

00D

ST20

1SE

M c

heck

from

0.2

5-0.

5 m

m fr

actio

n: 1

CR

ver

sus c

rust

al il

men

ite c

andi

date

= 1

CR

.

00D

ST20

2SE

M c

heck

s fro

m 0

.5-1

.0 m

m fr

actio

n: 1

GO

ver

sus a

lman

dine

can

dida

te =

1 sp

essa

rtine

and

4 IM

ver

sus c

rust

al il

men

ite c

andi

date

s = 4

cru

stal

ilm

enite

.

00D

ST20

3SE

M c

heck

from

0.5

-1.0

mm

frac

tion:

1 IM

ver

sus c

rust

al il

men

ite c

andi

date

= 1

IM.

SEM

che

cks f

rom

0.2

5-0.

5 m

m fr

actio

n:

3 C

R v

ersu

s cru

stal

ilm

enite

can

dida

tes =

3 c

rust

al il

men

ite.

00D

ST20

4N

o K

IM re

mar

ks.

00D

ST20

5aSE

M c

heck

s fro

m 0

.5-1

.0 m

m fr

actio

n: 1

GO

ver

sus a

lman

dine

can

dida

te =

1 G

O (p

yrop

e-al

man

dine

); an

d 4

IM v

ersu

s cru

stal

ilm

enite

ca

ndid

ates

= 1

IM, 2

cru

stal

ilm

enite

and

1 ru

tile.

SEM

che

cks f

rom

0.2

5-0.

5 m

m fr

actio

n: 3

IM v

ersu

s cru

stal

ilm

enite

can

dida

tes=

2 IM

and

1 c

rust

al il

men

ite.

00D

ST20

6SE

M c

heck

s fro

m 0

.25-

0.5

mm

frac

tion:

1 G

P ve

rsus

ruby

cor

undu

m c

andi

date

= 1

GP;

2 G

O v

ersu

s sta

urol

ite c

andi

date

s = 1

stau

rolit

e an

d 1

alm

andi

ne; 3

IM v

ersu

s cru

stal

ilm

enite

can

dida

tes =

3 c

rust

al il

men

ite; a

nd 1

fors

terit

e ve

rsus

dio

psid

e ca

ndid

ate

=1

fors

terit

e.

00D

ST20

7N

o K

IM re

mar

ks.

00D

ST20

8N

o K

IM re

mar

ks.

00D

ST21

0SE

M c

heck

from

0.5

-1.0

mm

frac

tion:

1 IM

ver

sus c

rust

al il

men

ite c

andi

date

= 1

CR

. SEM

che

cks f

rom

0.2

5-0.

5 m

m fr

actio

n:

2 IM

ver

sus c

rust

al il

men

ite c

andi

date

s = 2

cru

stal

ilm

enite

.

00D

ST21

1N

o K

IM re

mar

ks.

113

Page 132: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Sam

ple

Pick

ing

Rem

arks

Num

ber

00D

ST21

2SE

M c

heck

s fro

m 0

.25-

0.5

mm

frac

tion:

6 C

R v

ersu

s tita

nom

agne

tite

cand

idat

es =

2 C

R a

nd 4

cru

stal

ilm

enite

.

00D

ST21

3N

o K

IM re

mar

ks.

00D

ST21

4SE

M c

heck

from

0.2

5-0.

5 m

m fr

actio

n: 1

fors

terit

e ve

rsus

dio

psid

e ca

ndid

ate

= 1

diop

side

.

00D

ST21

5SE

M c

heck

from

0.2

5-0.

5 m

m fr

actio

n: 1

CR

ver

sus p

erov

skite

can

dida

te =

1 p

erov

skite

.

00D

ST21

6N

o K

IM re

mar

ks.

00D

ST40

0SE

M c

heck

from

0.2

5-0.

5 m

m fr

actio

n: 1

CR

ver

sus c

rust

al il

men

ite c

andi

date

= 1

tour

mal

ine.

114

Page 133: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Tabl

e 8:

Min

eral

che

mis

try

of M

MSI

M a

nd K

IM g

rain

s in

sur

ficia

l mat

eria

l and

from

min

eral

s in

kn

own

rock

sou

rces

.

Sam

ple

SiO

2Ti

O2

Nb2

O5

Al2

O3

Cr2

O3

V2O

5M

gOM

nOFe

O*

NiO

ZnO

Tota

lFe2

O3

FeO

Tota

lG

ahni

tes

00-D

ST-0

8-01

0.04

0.00

0.00

56.4

90.

000.

001.

490.

156.

960.

0134

.63

99.7

60.

336.

6699

.79

00-D

ST-0

9-01

0.03

0.01

0.04

54.3

70.

000.

000.

010.

387.

750.

0136

.16

98.7

61.

196.

6898

.88

99-D

ST-3

9-03

0.04

0.00

0.04

55.9

40.

010.

002.

690.

298.

100.

0031

.85

98.9

71.

276.

9599

.09

99-D

ST-4

9-01

0.03

0.03

0.01

56.3

70.

000.

012.

210.

219.

950.

0130

.51

99.3

30.

859.

1899

.42

99-D

ST-1

02-0

10.

030.

020.

0067

.43

0.05

0.02

23.3

20.

158.

230.

000.

0299

.27

1.67

6.73

99.4

4

CR

-DIO

PSID

Epo

ssib

le g

arne

t-lhe

rzol

ite a

ffini

typo

ssib

le lh

erzo

lite

affin

ity

Cr-

Dio

psid

e, C

r 2O

3 wt %

Val

ues

> 1

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

95ds

t120

b-1d

i53

.02

0.19

2.62

1.35

18.1

218

.93

0.13

4.40

0.62

0.00

99.3

895

dst1

21b-

1di

53.6

90.

001.

201.

0116

.09

22.8

20.

093.

220.

710.

0098

.84

95ds

t207

b-4d

i53

.98

0.04

0.89

1.23

15.0

422

.86

0.18

4.38

0.92

0.00

99.5

295

dst2

07b-

6di

53.4

40.

351.

331.

2818

.01

19.5

30.

125.

140.

550.

0099

.74

95ds

t208

b-10

di54

.83

0.11

0.24

1.73

16.4

422

.58

0.05

2.34

1.35

0.01

99.6

895

dst2

08b-

16di

53.7

80.

111.

381.

0216

.37

22.8

20.

102.

970.

570.

0099

.11

95ds

t208

b-17

di54

.01

0.15

1.02

1.08

16.6

623

.34

0.06

2.43

0.76

0.00

99.5

095

dst2

08b-

19di

53.5

60.

200.

971.

2517

.54

21.2

70.

133.

990.

490.

0099

.40

95ds

t208

b-20

di53

.25

0.03

1.81

1.03

15.2

422

.61

0.20

4.44

0.71

0.00

99.3

395

dst2

08b-

23di

53.2

10.

051.

441.

1015

.32

23.0

90.

144.

240.

710.

0099

.28

95ds

t209

-8di

54.8

10.

331.

881.

0916

.31

19.6

20.

113.

141.

980.

0299

.30

95ds

t30-

28di

54.0

30.

031.

421.

4215

.87

22.6

40.

152.

940.

890.

0099

.39

95ds

t30b

-3di

52.8

00.

032.

421.

0615

.75

23.1

50.

133.

400.

530.

0099

.24

96ds

t03-

50di

52.2

30.

104.

261.

3314

.53

22.5

00.

103.

670.

910.

0099

.62

97ds

t01-

19di

53.3

10.

261.

261.

3417

.89

18.8

50.

135.

320.

630.

0199

.00

97ds

t02-

5di

54.8

90.

091.

083.

0115

.34

19.8

20.

082.

502.

440.

0199

.26

97ds

t04-

31di

52.8

20.

442.

081.

2217

.11

21.9

70.

113.

780.

260.

0099

.79

97ds

t05-

38di

54.8

90.

285.

031.

2814

.60

14.5

50.

134.

424.

070.

0199

.27

97ds

t05-

48di

53.2

60.

032.

441.

1516

.20

23.4

90.

092.

940.

550.

0010

0.15

97ds

t05-

52di

53.3

20.

351.

171.

2317

.47

20.2

90.

135.

230.

470.

0199

.67

97ds

t05-

55di

53.2

60.

371.

081.

0917

.36

20.6

30.

115.

170.

430.

0099

.50

97ds

t05-

56di

53.1

10.

421.

201.

3017

.30

20.7

10.

144.

730.

470.

0099

.39

97ds

t05-

57di

53.3

60.

261.

171.

1818

.01

19.5

50.

105.

370.

520.

0099

.52

97ds

t05-

58di

55.1

20.

295.

401.

0414

.90

13.5

80.

124.

604.

310.

0299

.36

97ds

t06-

14di

53.6

40.

001.

561.

0416

.22

21.2

60.

104.

270.

760.

0098

.86

97ds

t07-

6di

53.6

90.

181.

691.

0415

.32

22.7

80.

134.

230.

740.

0099

.80

115

Page 134: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Cr-

Dio

psid

e, C

r 2O

3 wt %

Val

ues

> 1

(Con

tinue

d)Sa

mpl

eSi

O2

TiO

2A

l2O

3C

r2O

3M

gOC

aOM

nOFe

ON

a2O

K2O

Tota

l97

dst0

8-2d

i53

.56

0.18

1.50

1.06

15.8

823

.16

0.13

3.47

0.65

0.00

99.5

897

dst0

8-8d

i53

.65

0.06

1.53

1.48

15.1

824

.03

0.06

3.07

0.72

0.00

99.7

797

dst1

00-2

3di

54.2

50.

101.

691.

0615

.56

21.8

20.

084.

151.

070.

0099

.78

97ds

t100

-24d

i53

.73

0.08

2.68

1.35

15.1

721

.69

0.07

3.08

1.44

0.00

99.3

097

dst1

02-3

3di

53.4

10.

311.

241.

1018

.45

17.0

90.

187.

270.

430.

0099

.47

97ds

t102

-40d

i53

.77

0.33

0.72

1.00

17.9

520

.14

0.12

5.09

0.42

0.00

99.5

397

dst1

02-4

1di

53.9

80.

071.

051.

4014

.26

22.6

20.

124.

681.

510.

0099

.69

97ds

t103

-108

di54

.79

0.19

0.85

2.33

15.7

020

.87

0.04

2.85

1.91

0.02

99.5

697

dst1

03-1

09di

54.7

10.

190.

601.

4015

.97

21.7

20.

073.

291.

640.

0099

.59

97ds

t103

-110

di55

.00

0.17

1.97

2.64

14.7

719

.98

0.02

2.54

2.76

0.00

99.8

697

dst1

03-7

9di

54.7

70.

140.

541.

5316

.09

21.8

30.

102.

911.

510.

0099

.43

97ds

t105

-68d

i52

.73

0.29

5.14

1.34

15.2

219

.65

0.17

3.71

1.85

0.00

100.

1098

dst0

5-dc

354

.41

0.04

3.02

2.21

15.1

320

.46

0.06

1.59

2.32

0.00

99.2

498

dst1

00-d

c453

.70

0.22

1.04

1.35

17.6

020

.89

0.12

3.98

0.54

0.00

99.4

498

dst1

05-d

c853

.07

0.27

6.64

1.42

12.9

219

.18

0.12

3.02

3.04

0.00

99.6

798

dst1

05-d

c952

.41

0.16

5.60

1.53

15.7

020

.35

0.09

2.55

1.39

0.01

99.7

798

dst3

00-d

c10

54.4

10.

321.

991.

5415

.57

19.3

40.

093.

432.

220.

0298

.94

98ds

t300

-dc1

154

.58

0.24

1.18

1.41

16.0

220

.77

0.10

3.23

1.75

0.02

99.3

098

dst3

00-d

c13

53.6

70.

091.

651.

0216

.24

22.7

90.

103.

790.

600.

0099

.95

98ds

t301

-dc1

453

.80

0.12

1.70

1.52

15.9

422

.84

0.11

2.59

0.93

0.00

99.5

598

dst3

03-d

c17

53.6

50.

131.

661.

1615

.85

22.7

20.

113.

480.

810.

0099

.56

98ds

t304

-dc1

853

.14

0.07

1.82

1.17

15.6

222

.72

0.24

3.94

0.58

0.00

99.2

998

dst3

04-d

c19

54.9

80.

246.

121.

0313

.63

13.8

60.

134.

754.

710.

0199

.46

99-D

ST-3

3-01

53.8

80.

061.

311.

0016

.01

23.1

60.

183.

740.

620.

0099

.96

01-D

ST-0

3-12

53.9

40.

311.

121.

0517

.74

20.7

30.

134.

960.

410.

0010

0.39

00-D

ST-1

8-02

53.1

10.

022.

321.

0615

.05

22.6

50.

274.

540.

750.

0099

.77

00-D

ST-4

00-0

253

.54

0.04

1.86

1.07

15.5

422

.81

0.16

4.21

0.69

0.00

99.9

100

-DST

-02-

0154

.19

0.10

1.47

1.07

15.4

022

.26

0.12

4.27

0.96

0.00

99.8

501

-DST

-02-

1552

.57

0.44

1.54

1.09

17.1

919

.07

0.17

6.76

0.39

0.00

99.2

201

-DST

-02-

2053

.20

0.43

1.48

1.12

17.3

119

.36

0.15

6.61

0.43

0.00

100.

0801

-DST

-03-

1353

.55

0.36

1.17

1.14

17.7

220

.74

0.13

4.73

0.43

0.00

99.9

601

-DST

-02-

1752

.41

0.44

1.68

1.18

17.0

419

.52

0.17

6.52

0.43

0.00

99.3

800

-DST

-17-

0253

.27

0.25

1.38

1.47

18.0

219

.05

0.13

5.21

0.61

0.00

99.3

900

-DST

-108

-a-0

155

.31

0.20

2.68

1.75

16.0

818

.75

0.10

3.11

2.32

0.03

100.

3200

-DST

-108

-bcd

e-25

54.7

30.

170.

581.

8516

.01

22.0

80.

072.

921.

580.

0110

0.01

95ds

t02-

1cpy

x51

.80

0.56

1.76

0.03

16.7

112

.32

0.35

14.8

30.

260.

0098

.61

95ds

t02-

7cpy

x51

.85

0.59

1.59

0.02

15.9

214

.72

0.36

14.5

40.

130.

0199

.72

95ds

t08-

1di

53.0

50.

152.

640.

9218

.27

18.8

30.

225.

440.

460.

0099

.98

95ds

t120

b-2d

i54

.39

0.00

0.97

0.56

17.0

723

.33

0.11

2.56

0.47

0.00

99.4

4

116

Page 135: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Cr-

Dio

psid

e, C

r 2O

3 wt %

Val

ues

< 1

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

95ds

t121

b-2d

i53

.75

0.06

1.62

0.73

16.3

723

.37

0.10

2.69

0.64

0.00

99.3

2C

r-D

iops

ide,

Cr 2

O3 w

t % V

alue

s <

1 (C

ontin

ued)

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

95ds

t203

-17d

i54

.78

0.14

0.61

0.27

16.1

922

.27

0.14

4.18

1.12

0.00

99.7

195

dst2

07b-

5di

53.5

60.

011.

380.

9416

.20

22.3

10.

124.

070.

730.

0099

.32

95ds

t208

b-11

di54

.40

0.00

0.60

0.38

15.6

324

.31

0.14

3.86

0.51

0.00

99.8

395

dst2

08b-

12di

54.0

80.

070.

700.

3115

.74

24.1

80.

133.

640.

590.

0099

.42

95ds

t208

b-13

di53

.77

0.08

1.57

0.26

15.7

322

.89

0.15

4.78

0.60

0.00

99.8

295

dst2

08b-

14di

54.4

30.

032.

470.

3115

.50

21.8

50.

073.

551.

370.

0099

.59

95ds

t208

b-15

di54

.43

0.05

0.86

0.40

16.4

922

.87

0.14

3.56

0.62

0.00

99.4

195

dst2

08b-

18di

53.9

20.

000.

930.

5815

.18

22.7

50.

204.

880.

850.

0199

.29

95ds

t208

b-21

di54

.11

0.07

0.62

0.81

15.6

623

.90

0.10

3.66

0.74

0.00

99.6

695

dst2

08b-

22di

54.1

50.

031.

210.

5215

.58

23.2

70.

184.

180.

650.

0099

.77

95ds

t208

b-24

di54

.23

0.00

1.37

0.84

16.2

722

.52

0.14

3.74

0.77

0.01

99.8

995

dst2

08b-

26di

54.4

00.

020.

700.

5516

.82

23.4

30.

212.

990.

430.

0099

.55

95ds

t208

b-27

di54

.33

0.01

0.68

0.46

15.5

824

.30

0.15

3.85

0.59

0.00

99.9

695

dst2

08b-

9di

53.6

00.

031.

740.

9915

.98

22.9

30.

133.

420.

730.

0199

.55

95ds

t209

b-6d

i53

.31

0.08

1.19

0.97

15.1

522

.31

0.12

4.85

0.83

0.00

98.8

195

dst2

09b-

7di

53.9

00.

071.

350.

6315

.97

23.4

00.

093.

460.

520.

0399

.42

95ds

t209

b-8d

i53

.31

0.09

1.65

0.85

15.7

523

.31

0.08

3.61

0.40

0.01

99.0

695

dst2

09b-

9di

54.0

20.

031.

600.

6816

.55

23.5

20.

082.

310.

600.

0099

.39

95ds

t25b

-2di

54.3

70.

030.

690.

2115

.24

23.8

80.

204.

960.

600.

0010

0.19

95ds

t25b

-3di

54.2

00.

050.

670.

2915

.77

24.0

90.

123.

620.

600.

0099

.43

95ds

t30b

-1di

54.2

00.

091.

060.

7516

.42

23.2

90.

043.

420.

630.

0099

.90

95ds

t30b

-2di

54.4

20.

001.

000.

7016

.58

23.0

80.

093.

140.

620.

0099

.64

96ds

t03-

49di

53.5

70.

051.

270.

6815

.54

22.9

60.

154.

370.

610.

0099

.19

96ds

t03-

51di

53.6

10.

191.

580.

7215

.95

23.4

00.

123.

670.

550.

0099

.80

96ds

t03-

52di

54.6

10.

050.

350.

6516

.49

22.8

60.

144.

050.

650.

0099

.85

96ds

t05-

7di

53.7

70.

071.

400.

5515

.89

22.8

30.

134.

190.

610.

0199

.44

96ds

t05-

8di

54.2

30.

081.

480.

4815

.70

21.8

90.

104.

141.

210.

0099

.31

96ds

t102

-11

54.2

40.

030.

810.

3515

.22

23.7

70.

164.

300.

790.

0099

.67

96ds

t102

-12

53.8

90.

001.

510.

6116

.35

22.9

50.

113.

540.

480.

0099

.44

96ds

t201

-17

54.4

10.

050.

000.

3615

.12

25.0

30.

334.

650.

250.

0010

0.19

96ds

t201

-18

53.5

90.

151.

150.

7717

.03

22.5

80.

123.

610.

350.

0099

.36

96ds

t202

-11

54.0

90.

071.

050.

8015

.99

22.7

10.

194.

410.

530.

0099

.84

97ds

t01-

20di

54.3

60.

060.

620.

5815

.31

23.2

50.

234.

880.

760.

0010

0.05

97ds

t01-

21di

54.5

10.

020.

920.

4316

.27

23.2

50.

193.

800.

530.

0099

.92

97ds

t02-

6di

54.1

90.

001.

080.

6816

.31

22.2

50.

134.

690.

550.

0099

.87

97ds

t04-

32di

54.1

10.

030.

970.

6617

.11

22.6

90.

103.

150.

520.

0099

.35

117

Page 136: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Cr-

Dio

psid

e, C

r 2O

3 wt %

Val

ues

< 1

(Con

tinue

d)Sa

mpl

eSi

O2

TiO

2A

l2O

3C

r2O

3M

gOC

aOM

nOFe

ON

a2O

K2O

Tota

l97

dst0

5-41

di52

.51

0.57

1.64

0.70

17.0

020

.10

0.14

6.10

0.43

0.00

99.2

097

dst0

5-42

di53

.89

0.07

1.63

0.50

15.8

022

.73

0.20

4.12

0.66

0.00

99.6

097

dst0

5-43

di54

.17

0.07

1.02

0.22

15.3

724

.16

0.12

4.18

0.60

0.00

99.9

197

dst0

5-44

di54

.39

0.06

1.28

0.41

17.6

219

.97

0.26

5.38

0.63

0.00

100.

0097

dst0

5-45

di53

.53

0.40

0.85

0.75

17.1

020

.72

0.14

5.70

0.40

0.00

99.5

897

dst0

5-46

di55

.04

0.23

3.24

0.95

16.2

917

.00

0.11

4.08

2.76

0.02

99.7

297

dst0

5-47

di54

.57

0.06

0.92

0.53

16.9

322

.42

0.14

3.87

0.60

0.00

100.

0397

dst0

5-49

di54

.30

0.08

0.91

0.91

16.5

623

.15

0.12

3.18

0.56

0.00

99.7

697

dst0

5-50

di53

.31

0.11

2.44

0.62

17.3

221

.98

0.09

3.70

0.35

0.01

99.9

097

dst0

5-51

di53

.63

0.17

1.59

0.94

16.9

022

.86

0.07

3.07

0.46

0.00

99.6

897

dst0

5-53

di53

.64

0.33

0.81

0.91

17.5

020

.63

0.12

4.93

0.45

0.00

99.3

297

dst0

5-54

di53

.79

0.08

1.44

0.75

15.9

323

.29

0.10

3.18

0.58

0.00

99.1

597

dst0

6-13

di53

.61

0.14

1.57

0.70

16.0

722

.78

0.14

4.17

0.57

0.00

99.7

497

dst0

6-15

di53

.97

0.00

1.52

0.59

15.8

823

.06

0.17

3.99

0.63

0.00

99.8

297

dst0

6-16

di54

.30

0.03

1.16

0.59

16.0

723

.28

0.11

3.49

0.63

0.00

99.6

697

dst0

7-5d

i54

.39

0.03

1.22

0.51

16.3

922

.48

0.14

4.44

0.58

0.00

100.

1897

dst0

7-7d

i53

.93

0.04

1.55

0.73

16.5

223

.62

0.12

2.91

0.44

0.00

99.8

797

dst0

9-15

di54

.51

0.04

1.04

0.93

16.7

022

.63

0.09

3.21

0.65

0.00

99.8

097

dst1

00-2

5di

54.3

40.

060.

590.

2316

.47

22.5

50.

174.

660.

460.

0199

.55

97ds

t100

-26d

i53

.27

0.12

2.17

0.98

16.0

123

.17

0.10

3.31

0.58

0.00

99.6

997

dst1

00-2

7di

54.3

70.

011.

120.

5716

.01

23.1

90.

103.

700.

620.

0099

.69

97ds

t101

-35d

i54

.41

0.04

0.55

0.58

15.7

123

.73

0.20

4.28

0.57

0.00

100.

0897

dst1

01-3

6di

54.1

00.

161.

440.

8617

.39

22.4

70.

052.

780.

520.

0199

.78

97ds

t101

-37d

i54

.11

0.06

1.29

0.56

16.2

623

.38

0.18

3.76

0.53

0.00

100.

1297

dst1

01-3

8di

53.4

80.

071.

480.

5916

.16

22.1

00.

154.

760.

500.

0199

.29

97ds

t101

-39d

i55

.33

0.33

6.33

0.61

13.0

914

.19

0.10

4.61

4.84

0.01

99.4

597

dst1

02-3

0di

54.1

00.

001.

400.

5816

.91

22.0

00.

183.

970.

530.

0099

.67

97ds

t102

-31d

i54

.05

0.03

1.28

0.80

15.8

722

.84

0.29

4.03

0.65

0.00

99.8

597

dst1

02-3

2di

54.3

00.

160.

880.

5116

.40

23.4

30.

143.

060.

810.

0099

.68

97ds

t102

-34d

i53

.03

0.33

1.28

0.59

17.3

319

.88

0.17

6.01

0.47

0.00

99.0

897

dst1

02-3

5di

53.1

40.

092.

240.

7915

.94

23.1

70.

123.

690.

470.

0099

.66

97ds

t102

-36d

i54

.32

0.08

0.69

0.72

16.2

622

.87

0.15

4.28

0.48

0.00

99.8

497

dst1

02-3

7di

54.0

10.

061.

760.

5316

.04

22.9

60.

153.

770.

720.

0099

.99

97ds

t102

-38d

i53

.35

0.41

0.94

0.93

17.2

720

.36

0.14

5.53

0.44

0.00

99.3

797

dst1

02-3

9di

54.3

50.

061.

510.

4016

.81

22.3

60.

124.

010.

670.

0010

0.29

97ds

t103

-100

di54

.67

0.07

1.04

0.35

17.9

320

.16

0.11

4.84

0.54

0.00

99.7

197

dst1

03-1

01di

54.3

50.

190.

680.

3518

.00

23.1

20.

093.

000.

220.

0010

0.00

97ds

t103

-102

di54

.36

0.12

0.59

0.47

17.7

222

.55

0.09

2.96

0.41

0.00

99.2

897

dst1

03-1

03di

54.7

70.

213.

590.

9016

.20

16.0

10.

114.

372.

900.

0199

.10

118

Page 137: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Cr-

Dio

psid

e, C

r 2O

3 wt %

Val

ues

< 1

(Con

tinue

d)Sa

mpl

eSi

O2

TiO

2A

l2O

3C

r2O

3M

gOC

aOM

nOFe

ON

a2O

K2O

Tota

l97

dst1

03-1

04di

54.4

10.

000.

760.

4915

.92

24.1

70.

153.

210.

560.

0099

.69

97ds

t103

-105

di53

.99

0.16

0.85

0.79

17.5

422

.13

0.13

3.51

0.36

0.00

99.4

797

dst1

03-1

07di

53.9

60.

111.

230.

7616

.20

22.6

40.

143.

930.

660.

0199

.63

97ds

t103

-80d

i53

.54

0.07

1.63

0.81

15.9

022

.95

0.16

4.02

0.53

0.00

99.6

197

dst1

03-8

1di

54.4

40.

050.

720.

3015

.90

23.7

70.

133.

560.

590.

0099

.45

97ds

t103

-82d

i53

.63

0.02

1.48

0.79

15.6

722

.95

0.15

3.87

0.68

0.00

99.2

497

dst1

03-8

3di

53.6

80.

141.

660.

5916

.30

23.6

00.

063.

250.

430.

0099

.70

97ds

t103

-84d

i53

.16

0.13

2.13

0.94

17.2

822

.22

0.08

3.33

0.47

0.00

99.7

397

dst1

03-8

5di

54.4

10.

021.

210.

4417

.02

23.6

50.

112.

710.

380.

0099

.97

97ds

t103

-86d

i53

.63

0.08

1.35

0.49

16.0

023

.16

0.11

4.13

0.43

0.00

99.3

997

dst1

03-8

7di

54.1

50.

111.

000.

6715

.40

23.8

30.

143.

910.

740.

0099

.95

97ds

t103

-88d

i54

.66

0.05

2.67

0.41

15.0

320

.73

0.09

4.53

1.72

0.00

99.8

997

dst1

03-8

9di

53.0

50.

151.

670.

8015

.24

22.3

30.

245.

060.

640.

0099

.16

97ds

t103

-90d

i54

.22

0.02

1.19

0.52

16.2

723

.25

0.14

3.71

0.57

0.00

99.9

097

dst1

03-9

1di

53.2

90.

061.

970.

4515

.32

22.5

90.

185.

390.

600.

0099

.85

97ds

t103

-93d

i52

.88

0.31

5.72

0.89

14.4

820

.58

0.11

2.68

2.14

0.01

99.7

997

dst1

03-9

4di

54.2

50.

080.

850.

3916

.76

23.2

30.

163.

460.

480.

0099

.66

97ds

t103

-95d

i54

.22

0.06

1.10

0.30

15.4

723

.71

0.15

4.04

0.73

0.00

99.8

097

dst1

03-9

6di

53.6

60.

031.

330.

4816

.65

22.2

20.

133.

850.

650.

0099

.00

97ds

t103

-97d

i54

.19

0.01

0.99

0.43

17.7

119

.80

0.12

6.34

0.39

0.00

99.9

897

dst1

03-9

8di

54.6

80.

010.

910.

5316

.66

23.0

30.

133.

590.

490.

0010

0.03

97ds

t103

-99d

i54

.44

0.01

0.97

0.55

16.3

423

.29

0.12

4.05

0.56

0.00

100.

3397

dst1

04-1

di54

.27

0.00

1.19

0.52

16.7

723

.50

0.12

3.22

0.33

0.00

99.9

297

dst1

04-2

di54

.17

0.07

0.99

0.77

17.5

422

.45

0.10

3.37

0.35

0.01

99.8

297

dst1

05-6

0di

54.0

30.

081.

180.

7516

.25

23.3

60.

113.

390.

610.

0199

.77

97ds

t105

-61d

i53

.41

0.19

1.78

0.76

15.7

123

.37

0.14

3.84

0.49

0.00

99.7

197

dst1

05-6

2di

53.9

60.

071.

220.

3816

.40

23.4

10.

133.

970.

350.

0099

.90

97ds

t105

-63d

i53

.29

0.06

1.16

0.46

16.0

120

.82

0.28

6.42

0.43

0.00

98.9

297

dst1

05-6

4di

53.3

30.

081.

430.

0016

.19

25.2

20.

033.

230.

110.

0199

.62

97ds

t105

-65d

i53

.69

0.04

1.84

0.80

16.8

521

.43

0.16

4.01

0.52

0.01

99.3

597

dst1

05-6

6di

53.6

20.

021.

720.

5616

.42

23.5

80.

153.

100.

370.

0099

.54

97ds

t105

-67d

i53

.66

0.13

1.19

0.69

15.6

322

.47

0.18

4.72

0.69

0.00

99.3

797

dst1

05-6

9di

53.6

90.

000.

910.

6014

.61

23.5

90.

405.

070.

680.

0099

.54

97ds

t107

-1di

53.7

30.

081.

430.

6915

.50

22.8

50.

154.

000.

740.

0099

.17

97ds

t108

-22d

i53

.99

0.00

1.40

0.82

16.0

723

.30

0.14

3.60

0.56

0.00

99.8

797

dst1

08-2

3di

53.5

50.

071.

950.

5116

.09

23.5

50.

113.

370.

450.

0099

.65

97ds

t108

-24d

i53

.40

0.02

1.43

0.86

16.0

522

.84

0.15

4.53

0.54

0.00

99.8

397

dst1

10-4

di54

.43

0.02

0.33

0.34

15.6

322

.53

0.13

4.57

1.12

0.00

99.1

097

dst1

10-5

di54

.13

0.04

0.89

0.70

16.4

723

.31

0.12

3.04

0.49

0.00

99.1

8

119

Page 138: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Cr-

Dio

psid

e, C

r 2O

3 wt %

Val

ues

< 1

(Con

tinue

d)Sa

mpl

eSi

O2

TiO

2A

l2O

3C

r2O

3M

gOC

aOM

nOFe

ON

a2O

K2O

Tota

l98

dst0

2-dc

154

.08

0.06

1.23

0.65

16.1

523

.21

0.10

3.38

0.54

0.00

99.4

098

dst0

2-dc

253

.95

0.05

1.78

0.73

15.7

522

.50

0.09

4.13

0.70

0.00

99.6

998

dst1

00-d

c553

.53

0.17

1.27

0.76

17.0

622

.84

0.10

2.76

0.56

0.00

99.0

698

dst1

02-d

c655

.07

0.19

6.06

0.93

14.5

013

.91

0.12

4.34

4.39

0.00

99.5

198

dst1

02-d

c754

.12

0.06

1.53

0.81

15.9

923

.13

0.14

4.14

0.70

0.00

100.

6298

dst3

00-d

c12

53.7

50.

081.

110.

8815

.20

23.7

70.

174.

020.

820.

0099

.81

98ds

t301

-dc1

554

.54

0.00

0.80

0.93

16.9

523

.03

0.09

2.53

0.59

0.00

99.4

698

dst3

02-d

c16

53.3

00.

102.

140.

7215

.94

21.2

80.

164.

750.

760.

0099

.16

98ds

t304

-dc2

054

.01

0.00

1.44

0.78

16.9

422

.57

0.10

2.85

0.62

0.00

99.3

301

-DST

-03-

1053

.66

0.16

0.49

0.00

15.1

322

.15

0.25

7.80

0.38

0.00

100.

0201

-DST

-05-

0852

.95

0.14

1.19

0.01

14.2

122

.78

0.31

7.30

0.58

0.01

99.4

701

-DST

-05-

0951

.79

0.62

2.38

0.02

13.7

721

.12

0.35

8.61

0.73

0.01

99.4

000

-DST

-12-

0152

.35

0.06

1.66

0.03

12.7

524

.62

0.09

8.86

0.14

0.01

100.

5601

-DST

-02-

0751

.04

0.88

2.31

0.03

15.1

016

.78

0.33

12.9

20.

280.

0099

.68

01-D

ST-0

2-10

50.9

40.

852.

610.

0315

.36

16.4

90.

3212

.82

0.29

0.00

99.7

001

-DST

-03-

0952

.43

0.35

2.47

0.03

16.8

117

.23

0.28

10.4

80.

240.

0010

0.31

01-D

ST-0

5-01

52.2

90.

692.

330.

0413

.75

21.4

00.

308.

650.

620.

0210

0.09

01-D

ST-0

5-02

51.8

30.

682.

520.

0414

.13

20.2

70.

299.

590.

540.

0099

.89

01-D

ST-0

2-13

52.1

20.

782.

250.

0615

.91

18.2

10.

239.

880.

400.

0099

.84

01-D

ST-0

5-03

51.6

20.

792.

890.

0613

.90

20.9

10.

268.

960.

580.

0099

.96

01-D

ST-0

5-05

51.2

20.

843.

280.

0713

.62

20.8

60.

269.

090.

620.

0299

.87

01-D

ST-0

5-04

51.3

10.

803.

280.

1113

.86

21.0

10.

248.

750.

640.

0099

.99

01-D

ST-0

3-06

52.3

50.

531.

620.

1416

.22

20.3

30.

197.

890.

450.

0099

.72

01-D

ST-0

4-08

51.4

90.

483.

260.

1917

.76

14.3

90.

3211

.34

0.16

0.01

99.3

900

-DST

-01-

0254

.63

0.05

0.70

0.19

16.0

424

.53

0.15

3.81

0.45

0.00

100.

5400

-DST

-01-

0155

.14

0.03

0.80

0.20

15.9

124

.36

0.12

3.54

0.52

0.00

100.

6001

-DST

-03-

0753

.72

0.43

1.15

0.20

16.7

220

.63

0.16

6.73

0.37

0.00

100.

1100

-DST

-216

-01

54.2

40.

010.

600.

2016

.39

24.4

80.

143.

310.

450.

0099

.82

00-D

ST-2

06-1

054

.33

0.04

0.41

0.25

15.7

924

.39

0.14

3.91

0.57

0.00

99.8

300

-DST

-100

-01

54.2

00.

020.

820.

2716

.35

24.3

40.

102.

920.

580.

0099

.60

00-D

ST-1

08-b

cde-

3253

.65

0.05

1.39

0.28

15.9

823

.53

0.14

4.27

0.44

0.00

99.7

300

-DST

-108

-bcd

e-28

53.6

70.

101.

020.

3516

.00

23.1

60.

185.

130.

460.

0110

0.07

01-D

ST-0

3-08

53.8

50.

411.

130.

3517

.04

21.1

90.

166.

330.

370.

0010

0.84

00-D

ST-1

08-b

cde-

2953

.84

0.06

2.43

0.37

15.7

822

.35

0.16

4.78

0.66

0.00

100.

4301

-DST

-05-

0652

.16

0.37

2.10

0.38

14.2

222

.54

0.25

6.93

0.63

0.02

99.5

900

-DST

-400

-01

54.4

40.

041.

410.

4016

.93

20.7

50.

155.

600.

570.

0010

0.29

00-D

ST-1

08-b

cde-

3454

.79

0.00

1.28

0.44

15.9

922

.92

0.25

4.24

0.76

0.00

100.

6501

-DST

-03-

1452

.73

0.54

1.58

0.48

17.2

020

.38

0.15

6.55

0.40

0.00

100.

0000

-DST

-201

-02

54.9

20.

070.

990.

4916

.59

23.6

90.

113.

400.

460.

0010

0.72

120

Page 139: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Cr D

iops

ide

Cr<

1.0

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

99-D

ST-3

8-01

54.2

00.

071.

320.

5316

.56

23.4

10.

153.

570.

430.

0010

0.24

00-D

ST-2

05A-

0354

.11

0.01

1.38

0.56

16.1

723

.11

0.15

3.78

0.59

0.00

99.8

600

-DST

-08-

0254

.54

0.12

1.38

0.59

16.4

723

.23

0.11

3.53

0.54

0.00

100.

5000

-DST

-207

-01

53.7

00.

051.

810.

6115

.61

22.6

60.

174.

350.

740.

0099

.70

00-D

ST-2

02-0

353

.16

0.05

1.27

0.63

15.0

122

.14

0.24

6.09

0.74

0.00

99.3

399

-DST

-206

-02

54.9

40.

030.

520.

6417

.28

23.6

60.

282.

350.

410.

0010

0.10

00-D

ST-0

7-07

53.9

90.

081.

160.

6516

.21

23.2

50.

163.

750.

530.

0099

.78

99-D

ST-2

06-0

154

.36

0.06

0.75

0.65

16.6

423

.52

0.14

3.29

0.52

0.00

99.9

300

-DST

-108

-bcd

e-33

54.4

80.

010.

780.

6515

.82

23.3

30.

234.

580.

560.

0010

0.44

99-D

ST-1

02-0

253

.85

0.05

1.08

0.66

15.9

523

.11

0.13

4.64

0.62

0.00

100.

1099

-DST

-201

-02

53.9

60.

111.

060.

6717

.66

22.6

00.

102.

940.

620.

0099

.71

00-D

ST-1

08-b

cde-

2655

.40

0.36

6.93

0.70

13.2

113

.97

0.10

4.70

5.07

0.01

100.

4499

-DST

-102

-03

52.6

70.

061.

980.

7014

.46

22.7

00.

216.

510.

660.

0099

.95

00-D

ST-1

08-b

cde-

3554

.13

0.02

1.07

0.70

16.5

422

.69

0.13

3.98

0.58

0.00

99.8

400

-DST

-108

-bcd

e-30

54.2

90.

021.

190.

7415

.78

22.9

90.

163.

830.

890.

0099

.88

01-D

ST-0

3-15

54.0

60.

290.

910.

7518

.36

20.2

00.

145.

250.

360.

0010

0.33

00-D

ST-1

8-01

54.2

40.

061.

220.

7716

.52

23.1

40.

083.

290.

650.

0199

.98

00-D

ST-0

8-03

53.5

80.

141.

300.

7817

.85

22.8

70.

083.

240.

140.

0099

.98

01-D

ST-0

2-19

52.8

70.

481.

280.

8116

.90

19.6

80.

186.

800.

370.

0099

.37

99-D

ST-3

8-02

53.8

00.

051.

170.

8716

.18

23.1

70.

183.

930.

500.

0099

.85

00-D

ST-1

12-0

254

.29

0.37

1.06

0.88

17.2

522

.78

0.13

2.87

0.58

0.01

100.

2000

-DST

-206

-09

54.1

40.

060.

960.

9014

.87

22.8

90.

164.

621.

110.

0099

.70

00-D

ST-2

05A-

0253

.44

0.10

1.04

0.90

16.2

721

.28

0.30

5.59

0.68

0.00

99.5

900

-DST

-202

-02

54.2

50.

051.

390.

9715

.87

22.4

20.

153.

970.

760.

0099

.82

01-D

ST-0

3-11

54.0

00.

320.

870.

9718

.27

19.8

40.

155.

140.

410.

0099

.95

00-D

ST-1

08-b

cde-

3154

.53

0.07

1.59

0.97

16.3

323

.00

0.11

3.16

0.73

0.00

100.

4901

-DST

-02-

1652

.77

0.59

1.82

0.98

16.2

020

.08

0.16

7.08

0.38

0.00

100.

0401

-DST

-02-

1852

.75

0.45

1.52

0.99

17.4

618

.63

0.16

7.00

0.40

0.00

99.3

6

121

Page 140: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

oliv

ine

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

CoO

NiO

Tota

lN

i ppm

97-D

ST-1

03-1

11-o

l40

.88

0.01

-0.

1049

.95

0.07

0.10

8.06

-0.

4099

.56

00-D

ST-1

08-b

cde-

3640

.95

0.02

0.00

0.02

50.6

50.

010.

128.

090.

010.

3610

0.24

2805

00-D

ST-1

08-b

cde-

3839

.82

0.01

0.00

0.00

45.9

20.

010.

1914

.32

0.01

0.05

100.

3136

100

-DST

-108

-bcd

e-39

40.3

30.

040.

020.

0248

.01

0.04

0.13

11.3

30.

020.

3810

0.32

2994

00-D

ST-1

08-b

cde-

4041

.27

0.00

0.00

0.00

49.7

20.

010.

179.

110.

020.

3410

0.65

2703

00-D

ST-1

08-b

cde-

4140

.56

0.03

0.01

0.02

50.8

30.

010.

128.

100.

020.

3710

0.04

2868

00-D

ST-1

08-b

cde-

4239

.89

0.00

0.00

0.00

46.1

60.

000.

1914

.38

0.01

0.04

100.

6830

600

-DST

-108

-bcd

e-43

39.4

20.

000.

000.

0146

.15

0.00

0.18

14.2

40.

020.

0510

0.07

377

00-D

ST-1

08-b

cde-

4440

.61

0.02

0.02

0.02

49.1

60.

050.

119.

640.

020.

3810

0.03

3018

00-D

ST-1

08-b

cde-

4539

.64

0.00

0.00

0.01

45.9

90.

010.

1814

.06

0.02

0.03

99.9

526

700

-DST

-200

-02

41.3

20.

030.

010.

0349

.56

0.02

0.13

9.53

0.03

0.31

100.

9624

2000

-DST

-206

-11

40.2

60.

050.

030.

0446

.92

0.05

0.16

12.5

10.

020.

3510

0.37

2735

CR

-PYR

OPE

GA

RN

ETS

Cr-

Pyro

pe G

arne

t, "G

10"

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

95ds

t208

b-1g

p41

.37

0.18

19.1

45.

9121

.05

3.62

0.41

7.43

0.06

0.00

99.1

697

dst0

5-28

gp41

.48

0.38

18.8

25.

7820

.31

4.46

0.40

7.73

0.08

0.00

99.4

397

dst1

02-2

2gp

41.2

10.

0116

.99

8.85

19.5

45.

020.

487.

670.

020.

0199

.79

97ds

t05-

30gp

41.2

50.

4117

.07

8.12

19.6

15.

450.

377.

220.

060.

0099

.55

97ds

t103

-64g

p42

.02

0.18

21.3

23.

0721

.26

4.16

0.38

7.67

0.05

0.00

100.

1097

dst1

05-3

7gp

41.8

60.

2919

.68

4.78

20.6

64.

610.

407.

830.

060.

0010

0.18

99-D

ST-4

4-01

41.4

80.

3118

.18

6.90

20.0

25.

100.

417.

610.

080.

0010

0.09

00-D

ST-1

08-b

cde-

1541

.73

0.43

20.5

82.

9920

.51

4.19

0.36

8.69

0.08

0.00

99.5

700

-DST

-108

-bcd

e-02

42.0

40.

0820

.43

4.84

22.2

13.

450.

376.

850.

050.

0010

0.33

00-D

ST-1

08-b

cde-

1941

.50

0.02

20.2

24.

9520

.32

4.63

0.57

8.12

0.03

0.00

100.

36C

r-Py

rope

Gar

net,

"G9"

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

95ds

t17-

1prp

41.3

90.

0718

.36

6.45

19.0

36.

090.

427.

890.

010.

0099

.69

95ds

t25-

2prp

41.7

60.

0121

.26

3.33

19.3

25.

300.

658.

420.

020.

0110

0.07

95ds

t25-

3prp

42.0

20.

0121

.29

3.37

19.7

05.

020.

548.

430.

020.

0010

0.41

95ds

t30-

26pr

p41

.85

0.13

20.7

23.

6920

.28

5.09

0.41

8.16

0.03

0.01

100.

3695

dst3

0-27

prp

42.1

20.

3520

.36

3.93

21.1

44.

790.

357.

140.

050.

0010

0.24

95ds

t120

-6pr

p41

.76

0.26

19.5

84.

9320

.10

5.04

0.39

7.74

0.05

0.00

99.8

595

dst1

21-3

prp

40.6

90.

0316

.50

8.96

16.5

28.

230.

468.

320.

010.

0099

.72

95ds

t122

-2pr

p41

.49

0.04

20.0

64.

7419

.60

5.20

0.46

8.13

0.01

0.01

99.7

495

dst2

09-5

prp

41.9

80.

1720

.79

3.28

20.3

34.

960.

357.

820.

030.

0199

.70

95ds

t209

-6pr

p40

.75

0.00

17.6

77.

6217

.11

7.15

0.56

8.41

0.00

0.00

99.2

795

dst2

09-7

prp

41.6

70.

0420

.21

4.29

20.0

84.

810.

488.

100.

040.

0099

.71

96ds

t01-

20pr

p41

.82

0.20

20.5

23.

8420

.36

4.83

0.38

7.64

0.03

0.00

99.6

3

122

Page 141: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Cr-

Pyro

pe G

arne

t, "G

9" (C

ontin

ued)

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

96ds

t05-

6prp

41.3

10.

1818

.97

5.80

19.2

45.

920.

427.

630.

030.

0099

.50

96ds

t102

-10p

rp41

.86

0.01

20.4

14.

5120

.42

4.67

0.48

7.65

0.03

0.01

100.

0696

dst2

01-1

6prp

41.6

60.

2418

.96

5.72

19.9

75.

440.

337.

460.

050.

0099

.84

97ds

t02-

3go

42.3

60.

4820

.76

3.08

21.6

04.

450.

256.

680.

040.

0099

.70

97ds

t05-

29gp

41.8

80.

1520

.01

4.27

20.1

35.

280.

407.

660.

030.

0099

.81

97ds

t05-

31gp

41.8

50.

3021

.02

3.02

20.8

44.

560.

377.

760.

060.

0099

.77

97ds

t100

-7gp

41.9

80.

5219

.98

3.50

20.6

85.

060.

337.

410.

050.

0099

.50

97ds

t100

-8gp

41.7

80.

2319

.95

4.65

20.5

84.

820.

417.

270.

050.

0199

.76

97ds

t100

-9gp

41.9

10.

3120

.34

3.87

20.1

84.

820.

368.

020.

030.

0099

.84

97ds

t102

-23g

p42

.08

0.16

19.8

24.

5721

.54

4.87

0.28

6.14

0.03

0.01

99.4

997

dst1

03-5

8gp

41.4

80.

0421

.01

3.32

17.7

25.

900.

5510

.22

0.01

0.00

100.

2597

dst1

03-5

9gp

41.3

20.

2619

.14

5.68

20.0

85.

090.

417.

220.

060.

0199

.28

97ds

t103

-60g

p41

.25

0.27

17.3

57.

5319

.22

5.65

0.41

7.98

0.05

0.00

99.7

397

dst1

03-6

1gp

41.2

20.

2917

.12

7.92

19.1

65.

920.

427.

670.

060.

0199

.79

97ds

t103

-62g

p41

.36

0.24

16.7

28.

2819

.62

6.02

0.31

6.68

0.02

0.00

99.2

597

dst1

03-6

3gp

41.8

60.

0321

.06

3.63

20.2

94.

510.

528.

210.

030.

0010

0.13

97ds

t103

-66g

p41

.16

0.05

21.5

22.

2617

.30

5.29

0.48

11.7

10.

010.

0099

.78

97ds

t103

-68g

p40

.70

0.48

15.3

79.

7117

.98

6.67

0.33

8.19

0.07

0.00

99.5

097

dst1

03-7

3gp

41.7

50.

0120

.95

3.62

19.6

45.

130.

558.

050.

020.

0199

.72

97ds

t103

-74g

p41

.67

0.45

20.1

63.

3220

.31

4.39

0.37

8.64

0.05

0.00

99.3

797

dst1

03-7

5gp

42.0

00.

6820

.10

2.94

20.8

84.

860.

287.

660.

060.

0099

.46

97ds

t103

-76g

p41

.59

0.37

19.0

64.

9919

.16

5.16

0.45

8.84

0.04

0.00

99.6

597

dst1

05-3

6gp

41.6

10.

2918

.74

5.88

19.7

95.

580.

367.

610.

060.

0099

.92

97ds

t105

-39g

p40

.62

0.06

17.9

97.

2417

.14

6.91

0.60

8.80

0.04

0.00

99.4

097

dst1

05-4

0gp

41.2

51.

0019

.71

2.58

18.8

65.

460.

4210

.16

0.13

0.00

99.5

997

dst1

05-4

3gp

41.7

40.

2519

.88

4.42

20.5

34.

860.

367.

310.

040.

0099

.39

97ds

t105

-44g

p41

.67

0.13

20.4

14.

3119

.92

4.68

0.50

8.33

0.03

0.00

99.9

797

dst1

05-4

5gp

41.4

10.

3719

.02

5.55

19.2

95.

370.

428.

940.

060.

0010

0.43

97ds

t105

-46g

p41

.34

0.09

19.1

16.

0519

.59

5.93

0.37

7.28

0.01

0.00

99.7

997

dst1

05-4

7gp

41.1

20.

3915

.94

9.38

19.1

46.

890.

336.

490.

020.

0099

.69

97ds

t108

-20g

p41

.44

0.69

18.8

94.

6020

.42

5.46

0.28

7.33

0.04

0.00

99.1

595

dst2

5b-1

gp41

.49

0.22

18.8

85.

7420

.13

5.21

0.42

7.36

0.05

0.00

99.5

095

dst2

07b-

1gp

41.7

50.

0520

.31

4.24

20.5

24.

590.

517.

460.

060.

0099

.49

95ds

t207

b-2g

p41

.58

0.22

19.1

45.

1619

.82

4.91

0.44

7.74

0.06

0.00

99.0

795

dst2

07b-

3gp

41.6

70.

0920

.46

4.27

20.2

35.

190.

417.

500.

030.

0099

.85

95ds

t208

b-2g

p41

.57

0.27

20.1

53.

8820

.07

4.95

0.47

8.16

0.04

0.01

99.5

795

dst2

08b-

3gp

41.2

70.

3419

.09

5.47

19.7

05.

300.

427.

830.

040.

0099

.45

95ds

t208

b-4g

p41

.56

0.02

21.1

23.

0418

.99

5.52

0.52

8.59

0.01

0.00

99.3

895

dst2

08b-

5gp

41.9

10.

2419

.90

3.70

21.3

04.

900.

236.

930.

010.

0199

.14

123

Page 142: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Cr-

Pyro

pe G

arne

t, "G

9" (C

ontin

ued)

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

95ds

t208

b-6g

p41

.12

0.27

18.4

15.

9319

.44

5.52

0.42

7.60

0.05

0.01

98.7

895

dst2

08b-

7gp

41.3

60.

1218

.71

6.00

19.8

25.

340.

417.

880.

020.

0099

.66

95ds

t208

b-8g

p41

.98

0.16

20.5

43.

8720

.54

4.49

0.38

7.68

0.04

0.00

99.6

895

dst2

09b-

1gp

41.4

70.

1820

.60

3.63

19.7

45.

000.

467.

970.

040.

0199

.08

95ds

t209

b-2g

p41

.66

0.01

19.2

05.

6920

.24

5.59

0.32

6.71

0.02

0.00

99.4

395

dst2

09b-

3gp

41.7

00.

0921

.38

2.67

19.1

14.

980.

509.

420.

030.

0099

.88

95ds

t209

b-5g

p42

.02

0.62

19.9

52.

9920

.41

5.32

0.28

8.22

0.04

0.01

99.8

498

dst1

00-g

p141

.42

0.17

19.7

14.

9320

.49

5.12

0.36

7.39

0.04

0.01

99.6

598

dst1

00-g

p241

.81

0.01

21.3

22.

9119

.21

5.68

0.58

8.44

0.01

0.01

99.9

998

dst1

02-g

p341

.48

0.39

18.7

65.

8520

.40

5.09

0.34

7.09

0.07

0.00

99.4

598

dst3

00-g

p442

.21

0.07

21.0

13.

2320

.57

4.70

0.32

7.94

0.04

0.00

100.

1098

dst3

01-g

p541

.39

0.18

18.3

06.

6919

.76

5.62

0.40

7.53

0.03

0.00

99.9

098

dst3

02-g

p641

.80

0.88

19.3

44.

4920

.88

5.27

0.29

6.86

0.08

0.01

99.8

9

Perid

otite

Gar

nets

(G9)

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

99-D

ST-3

9-01

41.5

20.

1618

.90

6.08

19.4

45.

880.

467.

830.

040.

0010

0.30

99-D

ST-4

8-02

41.6

00.

0221

.03

3.79

20.5

14.

680.

527.

850.

010.

0010

0.02

99-D

ST-4

8-03

41.4

10.

1919

.26

5.74

20.4

45.

180.

407.

000.

050.

0099

.66

99-D

ST-4

8-04

40.5

30.

5617

.03

7.75

18.6

76.

380.

468.

350.

050.

0099

.78

99-D

ST-4

8-05

41.6

00.

0919

.87

4.91

19.6

65.

220.

507.

940.

020.

0199

.81

99-D

ST-1

24-0

141

.02

0.08

16.9

88.

5018

.82

6.24

0.47

7.37

0.03

0.00

99.5

199

-DST

-201

-01

41.2

40.

1917

.46

8.23

19.7

25.

980.

447.

120.

040.

0110

0.40

00-D

ST-0

6-01

41.5

30.

2619

.74

4.89

20.6

14.

890.

407.

490.

050.

0199

.87

00-D

ST-0

7-01

41.6

80.

3818

.50

6.20

20.1

15.

400.

377.

820.

050.

0010

0.49

00-D

ST-1

7-01

40.9

70.

0419

.50

5.50

19.4

05.

910.

447.

920.

010.

0099

.69

00-D

ST-1

08-b

cde-

0141

.46

0.24

18.9

75.

8720

.13

5.23

0.43

7.69

0.05

0.00

100.

0600

-DST

-108

-bcd

e-03

41.3

30.

0317

.59

7.80

19.0

76.

670.

387.

210.

000.

0010

0.07

00-D

ST-1

08-b

cde-

0441

.34

0.13

19.1

26.

3220

.39

5.37

0.40

7.23

0.02

0.01

100.

3400

-DST

-108

-bcd

e-05

41.1

20.

0520

.48

4.58

19.5

75.

280.

538.

210.

020.

0099

.85

00-D

ST-1

08-b

cde-

0641

.75

0.01

21.1

43.

5520

.29

4.78

0.51

7.75

0.01

0.00

99.7

800

-DST

-108

-bcd

e-07

41.5

00.

0417

.92

6.92

20.2

65.

980.

367.

010.

010.

0099

.99

00-D

ST-1

08-b

cde-

0841

.50

0.16

20.7

63.

9020

.73

5.03

0.38

7.68

0.05

0.00

100.

1900

-DST

-108

-bcd

e-09

40.7

90.

0716

.83

8.65

18.5

86.

700.

477.

880.

020.

0099

.99

00-D

ST-1

08-b

cde-

1041

.48

0.00

21.5

93.

1120

.67

4.57

0.50

7.62

0.01

0.00

99.5

500

-DST

-108

-bcd

e-11

41.7

50.

4318

.61

5.82

19.6

75.

360.

528.

540.

070.

0010

0.78

00-D

ST-1

08-b

cde-

1241

.62

0.26

20.3

64.

2620

.41

4.81

0.39

8.02

0.06

0.00

100.

1900

-DST

-108

-bcd

e-13

41.3

60.

3920

.26

3.36

20.0

55.

060.

418.

530.

060.

0099

.47

00-D

ST-1

08-b

cde-

1641

.54

0.95

19.2

33.

2420

.05

5.45

0.35

9.08

0.05

0.00

99.9

5

124

Page 143: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Perid

otite

Gar

nets

(G9)

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

00-D

ST-1

08-b

cde-

1741

.81

0.48

20.4

13.

2720

.43

4.47

0.39

8.90

0.06

0.00

100.

2200

-DST

-108

-bcd

e-18

41.6

20.

2019

.52

5.34

19.8

55.

290.

438.

060.

020.

0010

0.33

00-D

ST-1

08-b

cde-

2041

.49

0.39

20.4

03.

9320

.77

4.52

0.40

7.72

0.06

0.00

99.6

700

-DST

-206

-01

41.3

10.

3820

.68

3.47

20.1

55.

050.

458.

750.

050.

0010

0.29

00-D

ST-2

06-0

241

.41

0.04

20.1

54.

4519

.45

5.63

0.44

8.07

0.00

0.00

99.6

5

Cr-

poor

Pyr

ope

Gar

net

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

95ds

t209

b-4g

p42

.05

0.14

22.1

11.

8920

.16

4.29

0.44

8.95

0.04

0.00

100.

0797

dst0

2-4g

o42

.40

0.45

22.7

10.

8621

.71

3.87

0.33

7.80

0.08

0.00

100.

2197

dst0

5-34

go41

.82

0.56

21.2

11.

9019

.95

4.23

0.46

9.27

0.15

0.01

99.5

497

dst1

03-6

7gp

42.1

10.

4821

.47

2.04

20.8

84.

450.

357.

950.

070.

0199

.81

97ds

t103

-72g

p41

.97

0.30

22.0

80.

8520

.24

3.96

0.38

9.82

0.10

0.01

99.7

397

dst1

00-1

2go

41.9

00.

4321

.42

1.38

19.7

14.

690.

3910

.16

0.05

0.01

100.

1398

dst1

00-g

o141

.96

0.35

21.4

81.

6820

.37

3.95

0.40

9.55

0.09

0.01

99.8

6

Gar

net -

Alm

andi

ne-P

yrop

e (p

ossi

bly

eclo

gitic

)G

roup

II e

clog

iteSa

mpl

eSi

O2

TiO

2A

l2O

3C

r2O

3M

gOC

aOM

nOFe

ON

a2O

K2O

Tota

l97

dst1

00-1

4go(

d)39

.01

0.22

21.7

10.

069.

206.

300.

6321

.99

0.01

0.00

99.1

397

dst1

01-2

0go

39.9

10.

0422

.44

0.01

11.3

16.

110.

4819

.88

0.01

0.01

100.

2197

dst1

01-2

1go

40.2

30.

1322

.29

0.03

11.5

67.

660.

3718

.32

0.00

0.01

100.

6097

dst1

01-2

2go

39.3

30.

1721

.67

0.05

8.74

8.10

0.46

21.8

30.

000.

0010

0.34

97ds

t101

-33a

lm39

.17

0.19

21.7

80.

007.

839.

380.

3421

.36

0.02

0.00

100.

0697

dst1

02-2

6go

39.7

50.

1422

.03

0.03

9.82

9.19

0.41

18.7

10.

000.

0010

0.09

97ds

t102

-27g

o40

.41

0.05

22.3

70.

0513

.25

5.90

0.56

17.1

80.

010.

0099

.78

97ds

t102

-29g

o40

.14

0.07

22.3

70.

0512

.33

6.82

0.41

17.5

80.

000.

0199

.78

97ds

t103

-69g

p40

.28

0.07

22.1

60.

2412

.35

8.11

0.44

16.5

60.

000.

0010

0.20

97ds

t103

-71g

p40

.40

0.15

22.4

80.

0713

.32

7.42

0.39

15.9

00.

000.

0010

0.15

97ds

t105

-41g

p39

.25

0.11

21.8

40.

029.

257.

650.

5121

.37

0.00

0.00

100.

0197

dst1

05-4

8go

40.1

40.

0722

.46

0.02

12.5

75.

700.

3118

.91

0.01

0.00

100.

2097

dst1

05-5

0go

40.5

40.

1122

.29

0.10

12.4

78.

040.

3915

.79

0.01

0.02

99.7

697

dst1

10-3

go39

.76

0.14

22.0

80.

0711

.14

7.61

0.39

18.6

30.

010.

0199

.83

Poss

ible

Ecl

ogite

Gar

net

99-D

ST-4

8-01

41.0

30.

0323

.34

0.00

15.6

98.

150.

1611

.74

0.00

0.00

100.

13G

arne

t - U

varo

vit e

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

96ds

t01-

16gr

s38

.49

0.80

15.2

37.

670.

0034

.06

1.24

2.54

0.00

0.01

100.

04

125

Page 144: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Cru

stal

Gar

net -

Gro

ssul

arSa

mpl

eSi

O2

TiO

2A

l2O

3C

r2O

3M

gOC

aOM

nOFe

ON

a2O

K2O

Tota

l96

dst1

00-4

9grs

38.8

80.

0629

.26

0.00

0.09

23.6

80.

355.

110.

010.

0197

.43

97ds

t102

-18a

lm39

.39

0.23

20.3

90.

010.

1232

.67

0.69

6.35

0.00

0.00

99.8

698

dst3

03-g

r140

.39

0.00

22.3

30.

000.

0936

.22

0.63

1.24

0.01

0.01

100.

93

Cru

stal

Gar

net -

Spe

sser

tine

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

95ds

t13-

6spe

ss36

.68

0.11

20.7

60.

001.

242.

4520

.60

18.7

20.

000.

0010

0.56

97ds

t100

-17a

lm37

.09

0.17

20.6

40.

000.

318.

5718

.31

15.0

60.

000.

0010

0.14

98ds

t04-

ss1

36.1

80.

0919

.30

0.00

1.41

1.53

28.4

412

.35

0.01

0.00

99.3

098

dst0

4-ss

235

.95

0.15

19.2

90.

000.

941.

3727

.83

13.3

20.

030.

0098

.88

Cru

stal

Gar

net -

Alm

andi

neSa

mpl

eSi

O2

TiO

2A

l2O

3C

r2O

3M

gOC

aOM

nOFe

ON

a2O

K2O

Tota

l95

dst0

2-11

spes

s37

.06

0.14

20.6

60.

011.

344.

0112

.53

24.6

20.

000.

0010

0.37

95ds

t02-

12sp

ess

37.3

10.

2020

.56

0.02

0.90

7.06

10.6

724

.10

0.00

0.00

100.

8195

dst0

2-13

spes

s36

.72

0.13

20.3

60.

011.

112.

477.

0032

.67

0.00

0.00

100.

4695

dst1

3-1s

pess

36.7

40.

0920

.55

0.03

1.95

1.68

8.78

30.4

20.

010.

0010

0.26

95ds

t13-

2spe

ss37

.03

0.22

20.6

60.

041.

725.

8610

.60

23.9

50.

000.

0010

0.08

95ds

t13-

3spe

ss36

.99

0.15

20.4

30.

332.

482.

8612

.80

24.0

80.

000.

0010

0.12

95ds

t13-

4spe

ss36

.43

0.20

20.3

40.

072.

271.

657.

8731

.00

0.01

0.00

99.8

495

dst1

3-5s

pess

37.5

00.

1620

.62

0.05

3.47

2.46

1.78

34.3

20.

010.

0010

0.38

95ds

t13-

7spe

ss36

.84

0.08

20.6

30.

022.

001.

647.

0832

.21

0.01

0.00

100.

5095

dst1

3-8s

pess

36.9

30.

0820

.52

0.00

2.41

2.28

6.65

31.6

10.

010.

0010

0.50

95ds

t13-

9spe

ss37

.63

0.06

21.1

60.

034.

122.

501.

7933

.48

0.01

0.00

100.

7895

dst1

3-10

spes

s37

.42

0.03

20.9

20.

033.

942.

261.

9034

.12

0.01

0.01

100.

6595

dst1

3-11

alm

36.8

70.

1020

.51

0.04

2.43

2.60

4.44

32.7

50.

010.

0199

.76

95ds

t13-

12al

m37

.12

0.06

20.9

60.

003.

161.

981.

6535

.36

0.01

0.00

100.

2995

dst1

3-13

alm

37.3

80.

1420

.86

0.04

3.84

2.06

1.81

34.3

30.

000.

0010

0.45

95ds

t13-

14al

m36

.78

0.08

20.6

30.

012.

432.

504.

6632

.96

0.01

0.00

100.

0795

dst1

3-15

alm

36.5

20.

2720

.51

0.03

1.61

2.96

11.9

626

.37

0.00

0.00

100.

2395

dst1

3-16

alm

37.0

30.

0720

.70

0.01

2.66

2.64

4.98

32.4

90.

000.

0010

0.58

95ds

t13-

17al

m37

.03

0.04

20.6

30.

013.

651.

482.

2534

.91

0.00

0.01

100.

0395

dst1

3-18

alm

37.1

60.

1020

.93

0.02

3.45

2.22

1.85

35.3

30.

010.

0110

1.08

95ds

t13-

19al

m36

.92

0.09

20.6

10.

052.

622.

013.

4934

.59

0.03

0.00

100.

4195

dst1

3-20

alm

37.2

70.

1020

.78

0.00

3.22

2.47

1.84

35.2

70.

020.

0010

0.96

95ds

t13-

21al

m37

.29

0.08

20.7

60.

043.

161.

612.

8034

.60

0.00

0.00

100.

3495

dst1

3-22

alm

36.9

40.

0820

.81

0.04

2.85

1.84

3.24

34.6

60.

010.

0010

0.47

95ds

t13-

23al

m37

.39

0.11

20.8

60.

033.

812.

111.

9134

.16

0.00

0.02

100.

4295

dst1

3-24

alm

37.3

90.

1220

.68

0.03

3.50

2.45

2.09

33.7

80.

000.

0010

0.04

126

Page 145: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Cru

stal

Gar

net -

Alm

andi

ne (C

ontin

ued)

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

95ds

t13-

25al

m37

.08

0.12

20.6

50.

032.

982.

342.

3734

.45

0.00

0.00

100.

0295

dst1

9-1a

lm36

.73

0.24

20.3

20.

031.

032.

577.

9931

.55

0.01

0.00

100.

4795

dst1

9-2a

lm36

.68

0.19

20.3

80.

051.

372.

345.

4334

.02

0.00

0.00

100.

4695

dst1

9-3a

lm36

.69

0.10

20.3

10.

011.

174.

338.

1229

.43

0.00

0.00

100.

1695

dst1

9-4a

lm36

.85

0.08

20.4

50.

031.

072.

536.

1933

.47

0.00

0.00

100.

6795

dst1

9-5a

lm36

.33

0.14

20.4

10.

031.

362.

047.

2232

.52

0.01

0.00

100.

0495

dst1

9-6a

lm36

.56

0.12

20.3

20.

041.

321.

897.

0532

.88

0.00

0.00

100.

1996

dst2

01-2

1prp

36.8

30.

0520

.81

0.04

2.53

2.19

7.40

30.0

50.

020.

0099

.93

96ds

t201

-22p

rp37

.04

0.10

20.8

90.

052.

153.

009.

4027

.71

0.00

0.00

100.

3497

dst0

2-2g

p39

.38

0.08

21.7

10.

017.

359.

570.

5222

.21

0.01

0.00

100.

8597

dst0

4-30

alm

37.2

50.

0320

.54

0.05

2.84

3.24

0.51

36.1

10.

020.

0010

0.60

97ds

t05-

32go

38.8

00.

0721

.34

0.00

6.30

7.48

0.87

25.3

10.

010.

0010

0.18

97ds

t05-

33go

38.3

50.

2020

.83

0.01

6.06

8.44

0.61

25.2

20.

000.

0099

.73

97ds

t09-

9go

39.1

20.

1421

.59

0.00

8.57

6.62

0.43

23.6

60.

010.

0010

0.14

97ds

t09-

10go

39.2

20.

0821

.81

0.01

8.91

6.51

0.55

23.0

70.

000.

0010

0.16

97ds

t09-

11go

39.4

00.

1021

.51

0.06

9.25

6.89

0.48

22.4

80.

000.

0010

0.16

97ds

t100

-10g

o39

.19

0.11

21.9

10.

007.

928.

270.

3922

.43

0.01

0.00

100.

2497

dst1

00-1

1go

39.0

80.

1821

.76

0.01

7.28

8.48

0.76

22.5

00.

050.

0010

0.10

97ds

t100

-14g

o39

.18

0.30

21.8

30.

059.

386.

410.

6322

.30

0.02

0.00

100.

1097

dst1

00-1

5alm

38.1

60.

0721

.25

0.00

3.94

5.91

1.12

30.5

70.

010.

0010

1.03

97ds

t100

-16a

lm36

.59

0.10

20.3

60.

000.

342.

6616

.79

23.6

50.

010.

0110

0.50

97ds

t100

-18a

lm36

.80

0.17

20.3

20.

010.

284.

6217

.56

20.2

70.

000.

0110

0.04

97ds

t100

-19a

lm37

.05

0.20

20.6

50.

040.

975.

469.

1926

.83

0.02

0.00

100.

4097

dst1

00-2

0alm

38.7

50.

0221

.51

0.02

8.87

2.16

2.31

26.6

60.

010.

0010

0.30

97ds

t100

-22a

lm(d

)37

.33

0.10

20.2

70.

001.

399.

851.

3229

.97

0.01

0.00

100.

2597

dst1

00-2

2alm

37.2

20.

0820

.11

0.00

1.42

9.68

1.28

30.3

80.

000.

0010

0.18

97ds

t101

-18g

o39

.12

0.11

21.6

90.

017.

658.

840.

5122

.61

0.02

0.01

100.

5897

dst1

01-1

9go

38.8

20.

2221

.82

0.04

8.11

5.78

0.31

25.4

10.

010.

0010

0.53

97ds

t101

-23a

lm36

.94

0.03

21.0

70.

003.

920.

864.

9432

.14

0.02

0.01

99.9

297

dst1

01-2

4alm

37.6

40.

0021

.14

0.01

5.58

0.52

2.10

33.2

00.

000.

0010

0.20

97ds

t101

-25a

lm38

.25

0.18

21.1

50.

015.

516.

540.

6228

.09

0.00

0.00

100.

3697

dst1

01-2

6alm

37.4

00.

0120

.96

0.04

4.15

2.14

0.49

35.2

00.

020.

0010

0.39

97ds

t101

-27a

lm37

.80

0.07

20.9

70.

023.

387.

331.

2329

.44

0.00

0.00

100.

2597

dst1

01-2

8alm

38.3

30.

1321

.00

0.01

4.23

9.15

1.26

25.9

30.

000.

0010

0.03

97ds

t101

-29a

lm38

.49

0.03

21.3

10.

217.

272.

570.

8529

.27

0.02

0.00

100.

0197

dst1

01-3

0alm

37.5

00.

0520

.57

0.02

2.25

7.44

1.26

31.2

60.

000.

0010

0.34

97ds

t101

-31a

lm38

.02

0.04

21.0

90.

036.

361.

351.

3531

.70

0.00

0.00

99.9

697

dst1

01-3

2alm

36.9

30.

0320

.65

0.02

2.55

3.65

0.69

35.3

70.

000.

0099

.87

97ds

t101

-34a

lm37

.15

0.04

20.3

40.

001.

356.

501.

2433

.55

0.03

0.00

100.

19

127

Page 146: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Cru

stal

Gar

net -

Alm

andi

ne (C

ontin

ued)

Sam

ple

SiO

2Ti

O2

Al2

O3

Cr2

O3

MgO

CaO

MnO

FeO

Na2

OK

2OTo

tal

97ds

t102

-24g

o39

.50

0.23

21.6

10.

079.

835.

820.

5322

.70

0.01

0.00

100.

2897

dst1

02-2

5go

39.2

70.

1121

.64

0.02

8.59

6.87

0.51

23.2

60.

020.

0010

0.29

97ds

t102

-28g

o38

.43

0.14

20.7

80.

017.

226.

270.

7826

.28

0.02

0.00

99.9

297

dst1

03-7

0gp

38.5

10.

0221

.61

0.07

8.68

1.66

2.15

27.3

80.

000.

0010

0.09

97ds

t103

-77g

p38

.32

0.01

21.5

90.

018.

001.

760.

3330

.02

0.01

0.00

100.

0697

dst1

03-7

8alm

38.2

20.

0121

.25

0.02

6.55

4.70

1.60

27.2

00.

000.

0099

.55

97ds

t105

-51g

o37

.59

0.04

21.0

60.

034.

512.

160.

9334

.32

0.01

0.00

100.

6697

dst1

05-5

2alm

38.2

80.

0120

.98

0.00

6.21

6.22

1.10

27.4

70.

000.

0010

0.27

97ds

t105

-53a

lm37

.81

0.05

21.1

00.

046.

531.

592.

3830

.34

0.02

0.01

99.8

797

dst1

05-5

4alm

37.9

70.

0021

.65

0.03

7.93

0.86

0.88

30.9

20.

010.

0010

0.24

97ds

t105

-56a

lm37

.98

0.00

21.2

00.

056.

711.

071.

0931

.67

0.02

0.01

99.8

097

dst1

05-5

7alm

38.1

20.

0821

.37

0.10

7.26

1.64

1.18

30.4

60.

000.

0010

0.21

97ds

t105

-58a

lm37

.79

0.02

21.0

20.

036.

202.

211.

6531

.00

0.01

0.00

99.9

397

dst1

08-2

1alm

36.9

60.

0320

.54

0.04

3.55

2.15

0.37

36.1

80.

010.

0099

.84

98ds

t100

-al2

36.7

00.

0020

.28

0.03

0.80

2.49

1.40

39.0

40.

000.

0010

0.75

98ds

t100

-al3

37.9

70.

0021

.13

0.04

5.31

2.94

1.88

31.4

20.

000.

0010

0.70

98ds

t303

-gr2

38.9

40.

0322

.00

0.01

9.56

1.04

0.51

28.4

60.

010.

0010

0.56

00-D

ST-1

08-b

cde-

1437

.08

0.04

20.4

70.

002.

463.

540.

1236

.55

0.00

0.00

100.

2700

-DST

-205

A-01

39.9

90.

1221

.72

0.07

10.8

65.

810.

5421

.02

0.00

0.00

100.

14C

HR

OM

ITE

Chr

omite

Uni

que

to L

ampr

oite

and

Kim

berli

tepo

ssib

ly k

imbe

rlitic

chr

omite

Sam

ple

SiO

2Ti

O2

Nb2

O5

Al2

O3

Cr2

O3

V2O

5M

gOM

nOFe

O*

NiO

ZnO

Tota

lFe2

O3

FeO

Tota

l96

dst0

3-42

c0.

063.

450.

0410

.16

44.8

80.

1311

.07

0.26

28.6

10.

190.

0998

.95

10.1

519

.48

99.9

7C

hrom

iteSa

mpl

eSi

O2

TiO

2N

b2O

5A

l2O

3C

r2O

3V2

O5

MgO

MnO

FeO

*N

iOZn

OTo

talF

e2O

3Fe

OTo

tal

96ds

t01-

21c

0.00

0.23

0.00

7.92

55.8

40.

186.

260.

5527

.55

0.13

0.15

98.8

04.

9223

.12

99.2

996

dst0

1-22

c0.

030.

590.

0117

.82

50.2

30.

229.

160.

4719

.74

0.03

1.37

99.6

60.

0019

.74

99.6

696

dst0

1-23

c0.

000.

340.

0014

.42

53.1

90.

1812

.27

0.23

18.9

90.

070.

0099

.69

3.50

15.8

410

0.04

96ds

t01-

24c

0.00

0.25

0.00

11.0

854

.59

0.15

5.12

0.13

28.1

60.

080.

1199

.67

2.31

26.0

899

.90

96ds

t01-

25c

0.03

0.31

0.01

15.6

852

.69

0.17

8.19

0.55

21.1

20.

020.

8499

.62

0.00

21.1

299

.62

96ds

t01-

26c

0.02

0.25

0.00

14.4

852

.97

0.15

7.53

0.46

23.1

60.

070.

4599

.54

0.99

22.2

699

.64

96ds

t03-

28c

0.00

0.50

0.02

17.1

651

.18

0.25

9.33

0.48

20.1

50.

000.

6499

.70

0.00

20.1

599

.70

96ds

t03-

29c

0.01

0.26

0.00

10.9

052

.04

0.25

3.76

0.33

31.4

90.

120.

5199

.68

4.18

27.7

310

0.09

96ds

t03-

30c

0.00

0.31

0.00

15.0

752

.39

0.24

7.32

0.67

21.9

80.

060.

6698

.70

0.00

21.9

898

.70

96ds

t03-

31c

0.02

0.29

0.00

9.62

53.7

60.

323.

460.

2831

.66

0.06

0.16

99.6

23.

4628

.54

99.9

796

dst0

3-32

c0.

030.

590.

0513

.34

51.3

70.

194.

080.

2129

.48

0.09

0.17

99.5

91.

3228

.29

99.7

296

dst0

3-33

c0.

000.

530.

0010

.24

51.3

20.

202.

950.

3133

.46

0.16

0.19

99.3

84.

7329

.21

99.8

596

dst0

3-34

c0.

000.

440.

0010

.61

51.6

90.

182.

710.

2933

.19

0.08

0.17

99.3

63.

9629

.63

99.7

696

dst0

3-35

c0.

010.

280.

0012

.53

55.8

60.

1811

.54

0.20

18.8

80.

130.

0999

.70

2.64

16.5

099

.97

128

Page 147: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Chr

omite

Sam

ple

SiO

2Ti

O2

Nb2

O5

Al2

O3

Cr2

O3

V2O

5M

gOM

nOFe

O*

NiO

ZnO

Tota

lFe2

O3

FeO

Tota

l96

dst0

3-36

c0.

020.

250.

018.

2855

.66

0.21

2.83

0.71

30.7

50.

050.

2198

.97

2.59

28.4

299

.23

96ds

t03-

37c

0.04

0.24

0.00

9.95

59.1

10.

197.

480.

7520

.94

0.03

0.67

99.4

00.

0020

.94

99.4

096

dst0

3-38

c0.

000.

650.

018.

4353

.30

0.16

2.90

2.34

30.7

90.

150.

2098

.94

4.34

26.8

899

.38

96ds

t03-

39c

0.00

0.45

0.06

12.0

953

.98

0.22

9.75

0.26

22.8

80.

120.

1599

.96

3.84

19.4

310

0.35

96ds

t03-

40c

0.01

0.49

0.05

17.6

350

.90

0.16

9.34

0.41

19.5

80.

000.

9799

.54

0.00

19.5

899

.54

96ds

t03-

41c

0.02

0.69

0.00

15.4

446

.11

0.24

2.59

0.33

33.8

50.

030.

3199

.61

3.31

30.8

799

.94

96ds

t03-

43c

0.02

0.25

0.08

13.5

953

.74

0.15

3.28

0.24

28.5

00.

100.

3710

0.33

0.00

28.5

010

0.33

96ds

t03-

44c

0.05

0.21

0.00

12.0

854

.74

0.09

7.50

0.25

24.0

60.

080.

0899

.14

1.98

22.2

799

.34

96ds

t202

-10c

0.01

0.26

0.00

13.3

452

.51

0.31

1.29

0.17

31.5

30.

030.

8010

0.25

0.00

31.5

310

0.25

96ds

t202

-5c

0.04

0.31

0.00

15.0

749

.03

0.21

2.78

0.19

31.1

60.

090.

4699

.33

1.32

29.9

799

.46

96ds

t202

-6c

0.01

0.49

0.02

13.7

647

.69

0.18

1.31

0.48

35.0

00.

090.

3899

.41

3.39

31.9

599

.75

96ds

t202

-7c

0.00

0.23

0.00

9.11

52.2

00.

172.

310.

4034

.49

0.08

0.14

99.1

25.

3629

.67

99.6

696

dst2

02-8

c0.

020.

320.

0315

.17

50.3

10.

191.

530.

2031

.44

0.07

0.66

99.9

30.

0031

.44

99.9

396

dst2

02-9

c0.

020.

460.

009.

3252

.21

0.21

0.69

0.30

35.1

40.

071.

0799

.50

3.71

31.8

199

.87

97ds

t103

-54

0.00

0.23

0.03

15.2

753

.71

0.14

13.2

40.

2816

.27

0.09

0.05

99.3

12.

4514

.07

99.5

697

dst1

05-3

40.

000.

210.

0110

.63

47.6

50.

176.

720.

4932

.84

0.15

0.05

98.9

310

.81

23.1

110

0.01

97ds

t105

-35

0.01

0.73

0.00

18.6

645

.23

0.15

10.0

60.

3723

.65

0.11

0.10

99.0

64.

3319

.75

99.5

097

dst1

08-1

90.

100.

130.

0054

.18

13.5

20.

1119

.01

0.09

11.3

40.

350.

0798

.90

0.25

11.1

198

.93

98ds

t02-

cr1

0.00

0.25

0.00

16.5

153

.84

0.10

14.5

10.

1613

.62

0.12

0.08

99.2

01.

5012

.27

99.3

598

dst0

4-cr

20.

000.

370.

009.

0246

.83

0.13

5.49

0.41

35.7

50.

160.

3198

.45

12.4

924

.50

99.7

098

dst1

02-c

r30.

000.

190.

0110

.09

56.5

10.

158.

450.

4923

.51

0.05

0.27

99.7

23.

5220

.35

100.

0898

dst1

02-c

r40.

000.

260.

0414

.03

49.6

30.

169.

950.

4824

.61

0.11

0.08

99.3

56.

4318

.83

100.

0098

dst3

00-c

r50.

000.

240.

0016

.64

53.1

60.

1113

.70

0.23

14.6

70.

090.

0498

.90

1.37

13.4

599

.03

98ds

t302

-13

0.00

4.73

0.00

20.8

135

.92

0.22

10.4

60.

2627

.33

0.21

0.12

100.

064.

2723

.49

100.

4999

-DST

-36-

010.

080.

180.

0016

.35

54.2

80.

1013

.92

0.21

14.6

10.

100.

0699

.87

1.35

13.4

010

0.01

99-D

ST-3

7-01

0.07

0.41

0.00

14.5

351

.67

0.19

9.93

0.31

22.2

00.

160.

0899

.55

3.23

19.3

099

.87

99-D

ST-3

9-02

0.07

0.17

0.03

22.9

542

.88

0.18

11.1

50.

3822

.00

0.10

0.18

100.

103.

7318

.64

100.

4799

-DST

-44-

020.

132.

700.

006.

8956

.53

0.10

13.1

00.

2819

.02

0.22

0.07

99.0

34.

3515

.10

99.4

799

-DST

-101

-02

0.13

0.30

0.00

11.9

051

.15

0.20

4.68

0.58

30.0

00.

150.

3799

.46

4.02

26.3

899

.86

00-D

ST-0

7-02

0.10

0.40

0.01

11.8

539

.02

0.47

0.31

0.94

44.8

70.

010.

6198

.58

13.2

232

.97

99.9

000

-DST

-07-

030.

060.

140.

0014

.19

52.8

20.

1510

.62

0.39

20.8

80.

140.

1699

.56

3.49

17.7

499

.90

00-D

ST-0

7-04

0.07

0.57

0.03

15.7

448

.61

0.19

8.68

0.30

25.4

20.

090.

0699

.76

4.05

21.7

710

0.16

00-D

ST-0

7-05

0.07

0.21

0.00

16.8

052

.85

0.12

13.9

80.

1915

.23

0.15

0.05

99.6

32.

1013

.34

99.8

400

-DST

-08-

040.

080.

320.

0113

.03

49.6

30.

162.

710.

7832

.32

0.09

0.30

99.4

33.

2929

.36

99.7

600

-DST

-16-

010.

060.

550.

0019

.20

42.7

40.

236.

580.

4529

.52

0.09

0.27

99.6

94.

8225

.18

100.

1800

-DST

-16-

020.

110.

440.

0015

.42

50.1

00.

1710

.69

0.21

22.3

50.

100.

0899

.67

4.23

18.5

410

0.10

00-D

ST-1

6-03

0.07

0.43

0.00

12.9

048

.41

0.22

5.35

0.36

30.9

50.

050.

1298

.87

5.54

25.9

799

.42

00-D

ST-1

6-04

0.16

0.34

0.00

16.9

147

.61

0.10

12.4

10.

1721

.42

0.18

0.05

99.3

56.

1015

.93

99.9

600

-DST

-16-

050.

090.

360.

0011

.73

55.4

30.

1910

.21

0.31

21.3

10.

100.

0899

.81

3.06

18.5

610

0.11

129

Page 148: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Chr

omite

con

tinue

dSa

mpl

eSi

O2

TiO

2N

b2O

5A

l2O

3C

r2O

3V2

O5

MgO

MnO

FeO

*N

iOZn

OTo

talF

e2O

3Fe

OTo

tal

00-D

ST-1

6-06

0.07

0.20

0.02

16.6

453

.46

0.15

13.3

60.

3314

.77

0.11

0.04

99.1

60.

8114

.05

99.2

400

-DST

-100

-02

0.09

0.23

0.00

17.6

850

.70

0.14

14.1

40.

2715

.88

0.14

0.06

99.3

33.

0513

.14

99.6

400

-DST

-108

-bcd

e-21

0.10

0.49

0.00

15.0

750

.77

0.24

10.6

60.

2022

.32

0.04

0.08

99.9

63.

8718

.83

100.

3500

-DST

-108

-bcd

e-22

0.05

0.23

0.00

22.8

746

.67

0.16

14.2

50.

2215

.49

0.10

0.06

100.

101.

5514

.09

100.

2600

-DST

-108

-bcd

e-24

0.11

0.36

0.01

15.7

249

.24

0.20

8.65

0.31

25.3

40.

060.

0610

0.04

3.98

21.7

610

0.44

00-D

ST-1

08-b

cde-

480.

080.

200.

0016

.67

49.9

00.

0911

.60

0.34

20.4

80.

130.

1299

.60

4.15

16.7

410

0.02

00-D

ST-1

10-0

10.

100.

420.

009.

1445

.64

0.07

5.03

0.40

37.1

10.

090.

2598

.25

13.0

325

.38

99.5

600

-DST

-200

-01

0.05

0.19

0.04

21.7

347

.01

0.17

13.4

30.

3216

.80

0.14

0.07

99.9

32.

0214

.98

100.

1300

-DST

-201

-01

0.24

0.59

0.00

33.0

534

.96

0.15

15.9

00.

1113

.48

0.25

0.04

98.7

40.

2613

.25

98.7

700

-DST

-202

-01

0.07

0.43

0.00

14.6

051

.66

0.20

10.9

50.

2121

.63

0.13

0.05

99.9

23.

9418

.08

100.

3100

-DST

-206

-03

0.10

0.23

0.06

21.4

942

.12

0.27

9.84

0.52

24.8

30.

130.

1199

.69

4.87

20.4

510

0.17

00-D

ST-2

06-0

40.

070.

130.

0119

.33

48.5

60.

2312

.75

0.23

18.3

60.

130.

0799

.88

2.87

15.7

710

0.17

00-D

ST-2

06-0

50.

070.

320.

0014

.49

49.5

60.

2010

.35

0.43

23.7

20.

100.

1099

.36

5.83

18.4

899

.94

00-D

ST-2

06-0

60.

060.

190.

0017

.04

52.6

70.

1514

.68

0.19

14.2

60.

120.

0499

.39

2.20

12.2

899

.61

00-D

ST-2

06-0

70.

050.

180.

0021

.56

46.5

90.

1513

.50

0.22

17.5

90.

110.

0710

0.01

2.95

14.9

310

0.31

00-D

ST-2

06-1

20.

080.

360.

0017

.20

49.8

00.

1212

.93

0.31

17.9

10.

130.

0398

.86

3.39

14.8

699

.20

00-D

ST-2

10-0

10.

061.

370.

003.

3954

.32

0.46

8.11

0.42

30.0

50.

140.

1298

.45

9.79

21.2

599

.43

01-D

ST-0

4-01

0.09

0.53

0.00

17.1

648

.53

0.18

8.14

1.04

23.1

40.

090.

5199

.40

1.89

21.4

499

.59

01-D

ST-0

4-02

0.08

0.49

0.06

15.8

551

.23

0.22

10.7

00.

9319

.86

0.10

0.38

99.9

02.

3217

.77

100.

1401

-DST

-04-

030.

090.

410.

0615

.56

52.3

20.

1811

.89

0.87

17.8

70.

090.

2999

.63

2.24

15.8

599

.86

01-D

ST-0

4-04

0.08

0.57

0.00

16.6

449

.87

0.22

10.4

90.

9920

.03

0.10

0.48

99.4

62.

3217

.94

99.6

9IL

MEN

ITE

Mg-

rich

Ilmen

ite (k

imbe

rlitic

affi

nity

, > 4

wt%

MgO

)Sa

mpl

eSi

O2

TiO

2N

b2O

5A

l2O

3C

r2O

3V2

O5

MgO

MnO

FeO

*N

iOZn

OTo

talF

e2O

3Fe

OTo

tali

lmen

itege

ikilit

ehe

mat

ite95

dst1

20-7

i0.

0250

.87

0.09

0.16

3.11

0.26

10.2

50.

2933

.68

0.14

0.02

98.9

06.

8027

.56

99.5

856

.38

37.3

66.

2595

dst2

4-5i

0.00

51.0

50.

150.

143.

910.

2910

.37

0.33

32.6

90.

150.

0099

.08

5.70

27.5

699

.65

56.7

238

.02

5.27

96ds

t02-

8i0.

0149

.45

0.12

0.07

2.56

0.20

8.56

0.34

37.5

00.

090.

0098

.91

9.17

29.2

599

.82

60.1

431

.37

8.49

96ds

t03-

45i

0.00

49.6

30.

190.

061.

770.

398.

280.

3238

.32

0.03

0.04

99.0

38.

9030

.31

99.9

261

.77

30.0

78.

1696

dst1

02-1

9i0.

0052

.59

0.31

0.16

2.31

0.20

11.2

20.

3132

.13

0.12

0.00

99.3

65.

1227

.53

99.8

855

.24

40.1

34.

6397

dst0

1-18

ilm0.

0151

.80

0.08

0.23

2.76

0.25

10.5

90.

2532

.77

0.10

0.03

98.8

85.

5027

.82

99.4

356

.59

38.3

85.

0397

dst0

6-9i

lm0.

0153

.19

0.05

0.21

0.17

0.02

9.76

0.35

34.8

90.

010.

0398

.70

5.28

30.1

499

.23

60.4

034

.85

4.75

97ds

t101

-15i

lm0.

0351

.10

0.08

0.15

3.52

0.26

10.5

50.

3032

.87

0.15

0.02

99.0

26.

3027

.20

99.6

555

.73

38.4

95.

7897

dst1

01-1

6ilm

0.01

52.2

20.

170.

124.

970.

1812

.09

0.37

29.1

00.

200.

0099

.46

4.19

25.3

399

.88

51.9

544

.19

3.87

97ds

t101

-17i

lm0.

0353

.09

0.11

0.26

2.42

0.28

10.7

70.

3032

.45

0.16

0.00

99.8

94.

1828

.69

100.

3157

.65

38.5

73.

7897

dst1

02-2

1ilm

0.00

51.3

50.

120.

372.

390.

289.

610.

3134

.23

0.09

0.00

98.7

35.

5529

.23

99.2

959

.82

35.0

65.

1297

dst1

03-5

1ilm

0.04

51.3

30.

130.

102.

100.

329.

740.

3334

.91

0.07

0.02

99.0

96.

4729

.09

99.7

458

.92

35.1

75.

9197

dst1

03-5

2ilm

0.00

50.8

60.

120.

193.

620.

3110

.64

0.34

32.7

70.

160.

0299

.03

6.56

26.8

799

.68

55.1

038

.87

6.04

97ds

t103

-53i

lm0.

0152

.28

0.26

0.17

2.29

0.29

11.2

10.

3131

.94

0.11

0.00

98.8

65.

0927

.36

99.3

755

.14

40.2

54.

6197

dst1

03-5

4ilm

0.04

46.7

00.

220.

042.

840.

427.

600.

3240

.33

0.05

0.00

98.5

612

.58

29.0

199

.82

60.2

028

.08

11.7

2

130

Page 149: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Mg-

rich

Ilmen

ite (k

imbe

rlitic

affi

nity

, > 4

wt%

MgO

)(Con

tinue

d)Sa

mpl

eSi

O2

TiO

2N

b2O

5A

l2O

3C

r2O

3V2

O5

MgO

MnO

FeO

*N

iOZn

OTo

talF

e2O

3Fe

OTo

tali

lmen

itege

ikilit

ehe

mat

ite97

dst1

03-5

5ilm

0.03

52.6

20.

090.

292.

150.

2510

.86

0.24

32.7

10.

120.

0599

.42

5.12

28.1

199

.93

56.4

638

.90

4.64

97ds

t103

-56i

lm0.

0150

.16

0.09

0.11

4.02

0.26

10.3

00.

3433

.35

0.16

0.00

98.8

07.

3026

.78

99.5

355

.30

37.9

16.

7997

dst1

05-3

3ilm

0.01

50.0

50.

170.

043.

470.

349.

850.

3834

.67

0.09

0.02

99.0

87.

7527

.69

99.8

656

.83

36.0

27.

1598

dst0

4-4i

lm0.

0152

.40

0.00

0.28

2.21

0.31

10.8

20.

2932

.46

0.13

0.05

98.9

65.

0927

.87

99.4

756

.38

38.9

94.

6398

dst0

4-5i

lm0.

0252

.51

0.07

0.26

2.17

0.27

10.8

70.

2832

.40

0.13

0.04

99.0

24.

9627

.94

99.5

156

.39

39.1

04.

5198

dst0

4-6i

lm0.

0252

.57

0.06

0.25

2.15

0.25

10.8

80.

2832

.52

0.12

0.00

99.1

15.

0327

.99

99.6

156

.35

39.0

64.

5898

dst0

7-7i

lm0.

0145

.27

0.16

0.14

1.05

0.61

6.14

0.25

44.8

10.

030.

0198

.48

15.7

730

.62

100.

0662

.94

22.4

914

.58

98ds

t102

-8ilm

0.00

51.9

90.

150.

202.

520.

2610

.76

0.27

32.7

90.

160.

0299

.12

5.64

27.7

199

.69

56.0

638

.80

5.14

98ds

t102

-9ilm

0.02

51.7

10.

080.

252.

890.

2610

.94

0.25

31.8

40.

100.

0298

.36

5.20

27.1

698

.88

55.4

339

.79

4.78

98ds

t302

-10i

lm0.

0051

.71

0.01

0.22

2.41

0.29

10.7

60.

2632

.98

0.12

0.00

98.7

56.

1827

.42

99.3

755

.53

38.8

45.

6399

-DST

-02-

010.

0449

.01

0.07

0.09

4.05

0.35

9.96

0.30

35.3

00.

100.

0299

.28

9.70

26.5

810

0.25

54.5

836

.46

8.96

99-D

ST-1

24-0

20.

0250

.04

0.13

0.10

4.36

0.28

10.4

60.

3733

.57

0.13

0.02

99.4

97.

9226

.45

100.

2854

.37

38.3

07.

3300

-DST

-07-

060.

0451

.67

0.13

0.13

2.32

0.28

11.5

90.

2832

.75

0.15

0.00

99.3

17.

4726

.02

100.

0652

.01

41.2

76.

7200

-DST

-16-

070.

0552

.23

0.12

0.15

2.39

0.21

10.8

70.

3633

.29

0.11

0.02

99.8

06.

3027

.62

100.

4355

.44

38.8

85.

6900

-DST

-16-

080.

0350

.91

0.12

0.15

3.65

0.31

10.8

80.

3233

.23

0.15

0.03

99.7

77.

4326

.55

100.

5153

.87

39.3

56.

7800

-DST

-108

-bcd

e-46

0.05

52.0

80.

270.

073.

740.

1911

.28

0.34

31.6

20.

150.

0199

.80

5.27

26.8

810

0.32

54.4

640

.74

4.80

00-D

ST-1

08-b

cde-

470.

0751

.93

0.02

0.16

2.77

0.27

10.7

90.

3533

.21

0.13

0.02

99.7

16.

3627

.49

100.

3555

.45

38.7

85.

7700

-DST

-108

-bcd

e-49

0.05

50.2

50.

110.

153.

430.

2110

.07

0.33

34.3

80.

100.

0299

.09

7.87

27.3

099

.88

55.9

636

.78

7.26

00-D

ST-1

08-b

cde-

500.

0651

.26

0.18

0.09

3.54

0.30

10.7

30.

3833

.36

0.12

0.03

100.

066.

8627

.19

100.

7455

.04

38.7

16.

2500

-DST

-108

-bcd

e-51

0.06

50.0

60.

470.

114.

190.

3410

.37

0.40

33.2

50.

120.

0199

.36

6.81

27.1

210

0.04

55.7

337

.97

6.30

00-D

ST-1

08-b

cde-

520.

0553

.26

0.08

0.20

2.40

0.20

11.8

90.

3231

.53

0.08

0.01

100.

005.

3126

.75

100.

5353

.15

42.1

04.

7500

-DST

-108

-bcd

e-53

0.07

51.5

40.

060.

184.

500.

2211

.63

0.37

30.9

00.

160.

0199

.64

5.90

25.5

910

0.23

52.2

642

.32

5.42

00-D

ST-1

08-b

cde-

540.

0150

.96

0.15

0.12

3.25

0.33

11.4

10.

3332

.70

0.12

0.01

99.4

17.

7425

.74

100.

1851

.95

41.0

37.

0200

-DST

-108

-bcd

e-55

0.05

51.1

90.

050.

133.

360.

2410

.62

0.37

33.8

50.

120.

0099

.97

7.50

27.1

010

0.72

54.8

538

.32

6.83

00-D

ST-1

08-b

cde-

560.

0550

.75

0.07

0.17

3.61

0.22

10.5

90.

2933

.68

0.15

0.00

99.5

87.

6426

.80

100.

3554

.58

38.4

27.

0000

-DST

-108

-bcd

e-57

0.04

53.2

10.

090.

392.

910.

1812

.59

0.33

29.9

80.

170.

0099

.88

5.15

25.3

410

0.40

50.6

044

.77

4.63

00-D

ST-1

08-b

cde-

580.

0451

.30

0.08

0.17

3.48

0.32

10.9

40.

3132

.84

0.15

0.02

99.6

36.

7126

.81

100.

3154

.35

39.5

36.

1200

-DST

-108

-bcd

e-59

0.04

53.3

00.

060.

172.

190.

1711

.86

0.31

31.2

60.

100.

0099

.47

5.01

26.7

599

.97

53.3

542

.16

4.50

00-D

ST-1

08-b

cde-

600.

0549

.39

0.17

0.10

3.88

0.33

9.66

0.35

35.4

20.

100.

0099

.44

8.79

27.5

010

0.32

56.5

035

.37

8.13

00-D

ST-1

08-b

cde-

610.

0350

.45

0.09

0.18

3.82

0.26

10.5

60.

3133

.52

0.15

0.02

99.3

97.

6726

.62

100.

1654

.45

38.4

97.

0600

-DST

-108

-bcd

e-62

0.04

49.1

60.

330.

053.

080.

319.

250.

4136

.62

0.10

0.01

99.3

59.

4728

.10

100.

3057

.54

33.7

48.

7300

-DST

-108

-bcd

e-63

0.03

51.0

60.

050.

313.

630.

2611

.12

0.30

32.3

70.

170.

0299

.32

6.97

26.1

010

0.02

53.2

040

.41

6.39

00-D

ST-1

08-b

cde-

640.

0650

.95

0.21

0.02

3.56

0.25

10.8

10.

3932

.98

0.15

0.00

99.3

86.

9826

.70

100.

0854

.37

39.2

46.

3900

-DST

-108

-bcd

e-65

0.00

53.3

90.

030.

182.

340.

2311

.63

0.36

31.5

10.

090.

0399

.79

4.77

27.2

210

0.27

54.3

441

.38

4.28

00-D

ST-1

12-0

10.

0351

.47

0.08

0.18

4.59

0.28

11.4

60.

3431

.02

0.17

0.01

99.6

45.

6625

.93

100.

2053

.03

41.7

65.

2100

-DST

-203

-01

0.04

51.4

40.

360.

102.

670.

3410

.00

0.38

34.7

50.

080.

0010

0.15

6.46

28.9

410

0.80

58.2

635

.89

5.85

00-D

ST-2

05A-

040.

0351

.96

0.16

0.19

3.06

0.31

11.1

10.

3532

.69

0.13

0.00

99.9

96.

1627

.15

100.

6054

.61

39.8

15.

5796

dst0

2-10

i0.

0037

.66

0.54

0.01

0.01

0.03

0.07

5.84

51.7

30.

020.

1896

.09

26.0

728

.27

98.7

170

.47

0.31

29.2

296

dst0

2-9i

0.02

49.7

60.

860.

000.

010.

000.

067.

4441

.12

0.03

0.06

99.3

63.

5037

.98

99.7

295

.77

0.27

3.96

131

Page 150: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Mg-

poor

Ilm

enite

(<4

wt %

MgO

)Sa

mpl

eSi

O2

TiO

2N

b2O

5A

l2O

3C

r2O

3V2

O5

MgO

MnO

FeO

*N

iOZn

OTo

talF

e2O

3Fe

OTo

tali

lmen

itege

ikilit

ehe

mat

ite96

dst0

3-46

i0.

0351

.76

0.03

0.02

0.00

0.11

0.13

2.70

45.5

30.

020.

0110

0.32

1.93

43.7

910

0.51

97.5

50.

521.

9396

dst0

3-47

i0.

0146

.83

0.22

0.02

0.00

0.00

0.08

4.69

46.5

80.

000.

0998

.51

10.2

237

.39

99.5

488

.75

0.34

10.9

196

dst1

02-1

3i0.

0152

.52

0.00

0.02

0.01

0.00

0.09

1.87

45.6

40.

000.

0310

0.17

0.52

45.1

610

0.22

99.1

20.

350.

5396

dst1

02-2

0i0.

0351

.23

0.43

0.00

0.00

0.00

0.04

9.53

38.3

40.

030.

1299

.76

1.81

36.7

199

.94

97.6

40.

192.

1797

dst0

1-17

ilm0.

0448

.81

0.46

0.02

0.00

0.00

0.05

3.23

46.2

20.

010.

0598

.90

5.77

41.0

399

.48

93.8

50.

205.

9497

dst0

6-10

ilm0.

0049

.69

0.03

0.01

0.04

0.18

0.04

0.23

49.0

70.

040.

0099

.32

4.91

44.6

699

.81

95.1

50.

154.

7097

dst0

6-11

ilm0.

0149

.57

0.06

0.01

0.02

0.03

0.02

1.28

49.2

50.

000.

0210

0.27

6.59

43.3

310

0.93

93.5

60.

086.

3797

dst0

6-12

ilm0.

0247

.79

0.03

0.04

0.08

0.32

1.25

0.36

49.4

30.

000.

0499

.33

9.46

40.9

110

0.28

86.3

14.

708.

9997

dst0

9-7i

lm0.

0646

.50

0.19

0.01

0.01

0.13

1.04

0.38

50.1

50.

010.

0198

.50

11.2

240

.05

99.6

285

.29

3.95

10.7

797

dst0

9-8i

lm0.

0445

.85

0.07

0.03

0.00

0.10

0.11

5.87

46.4

50.

030.

0898

.63

12.4

135

.28

99.8

785

.91

0.48

13.6

197

dst1

03-4

1ilm

0.03

51.9

30.

180.

000.

050.

200.

090.

4747

.03

0.00

0.02

100.

000.

4746

.61

100.

0499

.19

0.34

0.47

97ds

t103

-42i

lm0.

0251

.02

0.01

0.06

0.01

0.04

1.91

0.75

45.4

40.

020.

0099

.29

4.04

41.8

099

.69

88.8

97.

243.

8897

dst1

03-4

3ilm

0.00

43.7

90.

120.

030.

030.

041.

540.

8450

.90

0.04

0.00

97.3

316

.65

35.9

398

.99

77.8

55.

9416

.21

97ds

t103

-44i

lm0.

0550

.93

0.04

0.05

0.00

0.04

0.05

1.13

46.9

40.

040.

0599

.33

2.53

44.6

699

.58

97.3

10.

192.

5097

dst1

03-4

5ilm

0.01

46.9

90.

030.

050.

020.

030.

091.

5350

.17

0.02

0.03

98.9

510

.65

40.5

910

0.02

89.1

30.

3510

.52

97ds

t103

-46i

lm0.

0049

.64

0.07

0.02

0.02

0.01

0.11

4.97

44.2

90.

000.

0399

.15

5.32

39.4

999

.68

93.8

10.

475.

7297

dst1

03-4

7ilm

0.03

49.3

20.

040.

010.

020.

060.

383.

6546

.41

0.00

0.02

99.9

56.

9740

.14

100.

6591

.32

1.54

7.14

97ds

t103

-48i

lm0.

0150

.36

0.00

0.00

0.00

0.00

0.17

8.73

40.0

70.

030.

0599

.43

4.45

36.0

799

.88

94.0

10.

795.

2097

dst1

03-4

9ilm

0.00

48.1

70.

020.

020.

010.

120.

092.

5048

.44

0.03

0.04

99.4

48.

5140

.78

100.

2991

.08

0.36

8.57

97ds

t103

-50i

lm0.

0346

.08

0.13

0.02

0.15

0.17

0.16

0.70

51.4

10.

000.

0298

.88

11.7

340

.86

100.

0588

.04

0.61

11.3

597

dst1

05-3

2ilm

0.02

49.9

20.

040.

000.

000.

070.

033.

3046

.21

0.00

0.00

99.6

05.

0441

.68

100.

1094

.72

0.12

5.16

98ds

t02-

1ilm

0.00

49.3

00.

100.

040.

000.

040.

391.

7147

.95

0.00

0.04

99.5

86.

5742

.04

100.

2492

.01

1.52

6.47

98ds

t302

-11i

lm0.

0251

.63

0.00

0.02

0.02

0.00

0.08

2.69

45.2

20.

000.

0399

.70

1.85

43.5

599

.89

97.8

10.

321.

87C

rust

al Il

men

ites

Sam

ple

SiO

2Ti

O2

Nb2

O5

Al2

O3

Cr2

O3

V2O

5M

gOM

nOFe

O*

NiO

ZnO

Tota

lFe2

O3

FeO

Tota

lilm

enite

geik

ilite

hem

atite

99-D

ST-4

4-03

0.06

49.8

60.

000.

000.

030.

120.

054.

3445

.18

0.00

0.02

99.6

85.

1140

.58

100.

1994

.42

0.22

5.35

99-D

ST-1

01-0

10.

0347

.81

0.02

0.03

0.01

0.09

0.63

0.88

49.3

30.

000.

0298

.84

9.08

41.1

699

.75

88.7

82.

418.

8101

-DST

-02-

010.

0448

.87

0.03

0.02

0.04

0.23

0.09

2.02

47.6

70.

010.

0299

.03

6.12

42.1

699

.64

93.5

50.

346.

1101

-DST

-02-

020.

0248

.57

0.02

0.02

0.02

0.19

0.10

1.85

48.7

40.

010.

0299

.57

7.55

41.9

410

0.32

92.1

40.

397.

4701

-DST

-02-

030.

0447

.15

0.00

0.00

0.04

0.22

0.09

2.05

49.3

40.

020.

0098

.95

9.79

40.5

399

.93

89.8

80.

369.

7701

-DST

-02-

040.

0247

.44

0.03

0.00

0.02

0.17

0.10

1.85

49.0

70.

010.

0098

.71

9.04

40.9

399

.62

90.6

00.

399.

0001

-DST

-02-

050.

0350

.24

0.21

0.03

0.00

0.02

0.02

1.92

47.2

60.

010.

0099

.73

4.20

43.4

810

0.15

95.7

50.

084.

1701

-DST

-03-

010.

0452

.74

0.04

0.02

0.01

0.00

0.13

3.65

43.9

70.

020.

0010

0.63

0.44

43.5

810

0.67

99.0

40.

510.

4501

-DST

-03-

020.

0346

.95

0.02

0.01

0.01

0.11

0.16

2.93

48.7

90.

000.

0099

.01

10.6

539

.20

100.

0888

.54

0.64

10.8

201

-DST

-03-

030.

0347

.75

0.18

0.01

0.03

0.00

0.13

2.79

48.0

70.

010.

0099

.01

8.86

40.1

099

.89

90.4

90.

518.

9901

-DST

-03-

040.

0348

.07

0.14

0.03

0.06

0.04

0.11

2.95

47.5

60.

020.

0299

.04

8.10

40.2

699

.85

91.2

90.

448.

2701

-DST

-03-

050.

0348

.35

0.12

0.01

0.10

0.08

0.04

3.30

47.8

70.

010.

0299

.94

8.37

40.3

310

0.78

91.3

10.

168.

5301

-DST

-04-

050.

0452

.77

0.00

0.02

0.02

0.00

0.39

2.56

44.3

40.

020.

0110

0.16

0.17

44.1

810

0.18

98.2

61.

560.

1701

-DST

-04-

060.

1552

.09

0.00

0.01

0.04

0.00

0.49

2.35

44.4

50.

040.

0299

.63

0.83

43.7

199

.72

97.2

21.

950.

83

132

Page 151: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Cru

stal

Ilm

enite

sSa

mpl

eSi

O2

TiO

2N

b2O

5A

l2O

3C

r2O

3V2

O5

MgO

MnO

FeO

*N

iOZn

OTo

talF

e2O

3Fe

OTo

tali

lmen

itege

ikilit

ehe

mat

ite01

-DST

-04-

070.

1452

.11

0.00

0.00

0.00

0.03

0.53

2.41

44.7

70.

040.

0110

0.01

1.25

43.6

510

0.14

96.6

82.

071.

2400

-DST

-206

-08

0.02

52.2

40.

000.

030.

100.

330.

340.

2846

.80

0.01

0.02

100.

150.

2046

.62

100.

1798

.55

1.26

0.19

133

Page 152: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

Table 9: Indicator minerals associated with base metal mineralization (after Averill, 2001),regional metamorphic terrains and non-mineralized mafic/ultramafic rocks. Shaded areas indicatemineral species presence.

1 2 3 4 5 6 7

Indicator Mineral MVMS Ni-Cu Skarn Greisen

Amphibolite to

granulite

metamorphism

Non mineralized mafic and ultramafic

rockssillimanitekyanitecorundumorthopyroxeneMg-spinelsapphirinestauroliteanthophyllitetourmalinedumortieriteMn-epidotespessartinegahnitefranklinitewillemiteCr-rutilebaritechalcopyritecinnibarloellingitenative goldhercyniteolivinelow-Cr diopsidechromiteuvaroviterammelsbergitesperrylitePGE alloysforsteriteknebelitevesuvianitejohannsenitegrossularscheelitetopazfluoritecassiteritewolframite

134

Page 153: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

135

Table 10: Summary of the shape, roundness and surface texture of kimberlite indicator grains in relation tostages of particle wear.Stage of particle wear Shape (Form) Roundness Surface TextureWithin Kimberlite Generally spherical or

asymmetric wherefractured

Variably angular in thecase of preserved crystalfaces or fractured grainsto rounded depending onamount of resorption

Variable from raresmooth crystal faces topitted, matte, fracturedand colloform surfaceson resorbed or coatedgrains.Fracture surfaces mayshow alteration orcoating

Weathering Spherical, skeletal,bladed to irregular

Overall outline isrounded

Pitted, etched, fibrous,rough or exfoliated

Pre-glacial wear(aqueous or eolian)

Spherical Sub-rounded to roundeddepending on amount ofwear

Mico-cracked, frosted,chipped

Sub-glacial Spherical, disc, bladeand asymmetric

Angular to sub-angular Fresh conchoidal breaks,irregularmicrotopography,striated, chipped,plucked and showingwear facets

Englacial (high level) No change in shape No change in roundness No change in surfacetexture

Fluvial (glaciofluvialand modern river)

Spherical Sub-rounded to rounded V-shaped percussionmarks, chipped,microfractured

Lacustrine(glaciolacustrine andmodern beach)

Spherical Sub-rounded to rounded Micro-cracked, frosted,chipped

Page 154: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

136

Table 11: Chromite grain descriptions and inferred environment. Samples from east of the Sachigomoraine are in normal text, samples from west of the Sachigo moraine are in italics.Sample Medium Description Interpretation99DST36

(1)Till An angular fragment with fresh

conchoidal breaks and rough micro-topography; possibly some remnantcrystal faces

Subglacial crushing

99DST37(1)

Weatheredtill

A spherical, sub-rounded, chippedgrain showing original crystal form,strongly pitted and rough surface

Subglacial chipping and chemicalattack

99DST39(1)

Till Angular blade, fresh conchoidalbreaks, irregular topography

Subglacial crushing

99DST39(2)

Till Spherical, sub-angular, possiblystriated with irregular topography andchipped, blunted edges

Subglacial crushing, chipping andtraction and possibly some grindingthat alludes to fluvial activity

00DST100(1)

Till Sub-angular, tapered platy grainfragment with fresh conchoidalbreaks and irregular topography

Subglacial crushing and chipping

00DST100(2)

Till Angular tapered platy grain fragment,fresh conchoidal breaks, chips andirregular topography

Subglacial crushing and chipping

00DST200 Till Spherical, sub-angular grain withfresh conchoidal breaks and roughtopography

Subglacial crushing and chipping

00DST201 Drumlin Spherical, sub-rounded locallypolished grain with some originalcrystal faces shows old conchoidalchips, circular pits and orange peeltexture

The orange peel texture and pits maybe resorption features from thekimberlite phase followed by chippingat a subglacial stage. The polish maybe due to ice or water; ice is favouredsince the polish seems to be only onone side.

00DST202 Till Spherical sub-rounded grain with flatsurfaces probably representing crystalfaces, rough pitted surface with earlyconchoidal breaks

Subglacial crushing followed byweathering

00DST206(1)

Beach Spherical, sub-rounded grain withsmooth wavy surfaces and chippedblunted edges

Subglacial crushing with possibleexfoliation due to weathering followedby chipping and grinding at anaqueous stage

00DST206(2)

Beach A spherical, sub-rounded grainshowing some crystal faces, localconchoidal breaks and roughtopography with rounded bluntededges

Subglacial crushing followed bychipping and grinding of edges at anaqueous stage

00DST206(3)

Beach Spherical, sub-angular grain withconchoidal breaks and roughtopography, chipped, blunted edges

Subglacial crushing followed bychipping and grinding at an aqueousstage

00DST206(4)

Beach Spherical, sub-angular grain withsome original crystal faces, localconchoidal breaks and roughtopography and chipped edges

Subglacial crushing followed bychipping

00DST206(5)

Beach Spherical sub-rounded grain, possiblysome original crystal faces,conchoidal breaks, rough topography,chipped blunted edges

Subglacial crushing followed bychipping of edges

Page 155: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

137

00DST07(1)

Beach Spherical to platy well-rounded grainwith remnants of crystal faces, roughpitted surface

Resorption in kimberlite and/orprolonged chipping, cracking andgrinding at an aqueous stage

00DST07(2)

Beach Sub-angular blade with remnantcrystal faces, conchoidal breaks andlocal rough topography, chippededges

Subglacial crushing followed bychipping and possibly grinding at anaqueous stage

00DST07(3)

Beach Spherical sub-rounded grain withlocal polish and local conchoidalbreaks, chipped edges

Subglacial crushing followed bychipping and possibly grinding. Partof the grain is smooth polished andwell rounded like grain 1 and mayindicate wear by aqueous grindingprior to the glacial stage

00DST07(4)

Beach Spherical sub-angular grain withconchoidal breaks, rough topographyand blunted chipped edges

Subglacial crushing followed bychipping and possibly grinding

00DST08(1)

Beach Spherical sub-rounded grain showingremnant crystal faces, early curvedbreaks and chips, rough surface withpits and some flakes

Early subglacial crushing followed byaqueous impacting, chipping andprobably weathering

00DST08(2)

Beach Spherical well rounded grain withrough pitted surface split by aconchoidal fracture with chippededges

Possibly a grain like 00DST07 (1) withprolonged kimberlitic and/or aqueouswear followed by subglacial splittingand late stage chipping and grinding

99DST101(1)

Sand onbedrock

Rounded triangular blade withremnant crystal faces, old conchoidalbreaks, straight and polygonal cracksand extensively chipped and groundedges

Early subglacial crushing followed bychipping and grinding at an aqueousstage and possibly some weathering

99DST101(2)

Sand onbedrock

Spherical angular grain withremnants of an early rounded smoothsurface, extensive conchoidal brokensurfaces and minor chipped edges

Possibly prolonged aqueous wearfollowed by subglacial crushing andminor chipping

00DST210(1)

Till Tapered sub-angular fragmentshowing conchoidal breaks and roughtexture and moderate chipping andpitting of edges

Subglacial crushing followed byintense chipping and pitting possiblyin active stream and/or second glacialdeformation event

00DST211(1)

Till Spherical sub-rounded grain withconchoidal breaks and roughtopography with chipped and locallypitted edges

Subglacial crushing followed bychipping and pitting

99DST44(1)

Till Well preserved crystal form withearly conchoidal breaks followed byrounding chipping, pitting andcracking of edges

Subglacial crushing and flakingfollowed by impacting and grinding

99DST44(2)

Till Spherical, sub-rounded grain withearly conchoidal breaks and rounded,chipped edges, possibly striated

Subglacial crushing followed bychipping

99DST42(1)

Lacustrinesilt with

sand

Spherical sub-rounded grain withconchoidal breaks, curved, possiblyexfoliation cracks and chipped,blunted edges

Subglacial crushing, chipping, andimpacting at an aqueous stage andpossible weathering

99DST42(2)

Lacustrinesilt with

sand

Spherical sub-rounded grain withconchoidal breaks, rough topographyand possible striations and

Subglacial crushing and possibletraction followed by aqueous chipping,impacting and grinding

Page 156: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

138

extensively chipped and pitted edges00DST110

(1)Gravel Spherical rounded grain with old

conchoidal breaks and extensivechipping, pitting an d rubbing ofedges

Subglacial crushing followed byextensive aqueous wear

00DST16(1)

River sand Spherical, sub-angular fragment withconchoidal breaks, rough topographyand chipped edges

Subglacial crushing with aqueouschipping

00DST16(2)

River sand Spherical, sub-rounded grain withpreserved crystal outline, earlyconchoidal breaks followed byextensive chipping, pitting andrubbing of edges

Minor subglacial crushing followed byaqueous wear and possible weathering

00DST16(3)

River sand Well preserved crystal outline withchipped and pitted edges and surfaces

Aqueous wear and possible weathering

00DST16(4)

River sand Tapered angular slab with conchoidalbreaks and minor chipped edges anda possible cracked original crystalface

Subglacial crushing and minorchipping

00DST16(5)

River sand Well preserved crystal outline withminor early conchoidal breaks andextensively chipped, cracked andpitted edges

Minor subglacial crushing followed byaqueous wear

00DST16(6)

River sand Tapered angular fragment withconchoidal breaks, rough topographyand chipped and flaked edges

Subglacial crushing and minorchipping

00DST108(1)

Beach ondrumlin

Spherical sub-rounded grain withconchoidal breaks, rough topographyand chipped and pitted edges

Subglacial crushing followed byaqueous wear

00DST108(2)

Beach ondrumlin

Spherical sub-rounded grain withpreserved crystal faces, earlyconchoidal breaks and extensivelychipped, cracked and pitted edges

Minor subglacial crushing followed byvigorous impacting and chipping inwater and/or a second glacialdeformation event

00DST108(3)

Beach ondrumlin

Well preserved crystal outline withchipped, flaked and pitted surfaces

Aqueous wear and possibly weathering

00DST108(4)

Beach ondrumlin

Spherical sub-rounded fragment withearly conchoidal breaks andextensively pitted and chipped edges

Subglacial crushing followed byaqueous wear

00DST108(5)

Beach ondrumlin

Well preserved crystal outline withchipped, pitted and cracked edges

Aqueous wear and possible weathering

Page 157: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

139

Table 12: List of samples with chromite of possibly kimberlitic origin.High Cr and Mg High Cr and Ti High Ni and low Zn96DST01-21c

96DST03-3396DST03-35c96DST03-37 96DST03-37

96DST03-3896DST03-42 96DST03-42

97DST105-3497DST108-19 97DST108-1998DST02-cr1

98DST04-cr298DST302-13

98DST102-cr399DST36-40

99DST37-4199DST44-43 99DST44-43 99DST44-43

99DST101-cr200DST07-48

00DST16-05 00DST16-5300DST108-5800DST201-01 00DST201-0100DST206-06

00DST210-01

Page 158: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

140

Metric Conversion Table

Conversion from SI to Imperial Conversion from Imperial to SI

SI Unit Multiplied by Gives Imperial Unit Multiplied by Gives

LENGTH1 mm 0.039 37 inches 1 inch 25.4 mm1 cm 0.393 70 inches 1 inch 2.54 cm1 m 3.280 84 feet 1 foot 0.304 8 m1 m 0.049 709 chains 1 chain 20.116 8 m1 km 0.621 371 miles (statute) 1 mile (statute) 1.609 344 km

AREA1 cm@ 0.155 0 square inches 1 square inch 6.451 6 cm@1 m@ 10.763 9 square feet 1 square foot 0.092 903 04 m@1 km@ 0.386 10 square miles 1 square mile 2.589 988 km@1 ha 2.471 054 acres 1 acre 0.404 685 6 ha

VOLUME1 cm# 0.061 023 cubic inches 1 cubic inch 16.387 064 cm#1 m# 35.314 7 cubic feet 1 cubic foot 0.028 316 85 m#1 m# 1.307 951 cubic yards 1 cubic yard 0.764 554 86 m#

CAPACITY1 L 1.759 755 pints 1 pint 0.568 261 L1 L 0.879 877 quarts 1 quart 1.136 522 L1 L 0.219 969 gallons 1 gallon 4.546 090 L

MASS1 g 0.035 273 962 ounces (avdp) 1 ounce (avdp) 28.349 523 g1 g 0.032 150 747 ounces (troy) 1 ounce (troy) 31.103 476 8 g1 kg 2.204 622 6 pounds (avdp) 1 pound (avdp) 0.453 592 37 kg1 kg 0.001 102 3 tons (short) 1 ton (short) 907.184 74 kg1 t 1.102 311 3 tons (short) 1 ton (short) 0.907 184 74 t1 kg 0.000 984 21 tons (long) 1 ton (long) 1016.046 908 8 kg1 t 0.984 206 5 tons (long) 1 ton (long) 1.016 046 90 t

CONCENTRATION1 g/t 0.029 166 6 ounce (troy)/ 1 ounce (troy)/ 34.285 714 2 g/t

ton (short) ton (short)1 g/t 0.583 333 33 pennyweights/ 1 pennyweight/ 1.714 285 7 g/t

ton (short) ton (short)

OTHER USEFUL CONVERSION FACTORS

Multiplied by1 ounce (troy) per ton (short) 31.103 477 grams per ton (short)1 gram per ton (short) 0.032 151 ounces (troy) per ton (short)1 ounce (troy) per ton (short) 20.0 pennyweights per ton (short)1 pennyweight per ton (short) 0.05 ounces (troy) per ton (short)

Note:Conversion factorswhich are in boldtype areexact. Theconversion factorshave been taken fromor havebeenderived from factors given in theMetric PracticeGuide for the CanadianMining andMetallurgical Industries, pub-lished by the Mining Association of Canada in co-operation with the Coal Association of Canada.

Page 159: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario
Page 160: A Study of Indicator Minerals for Kimberlite, Base - Geology Ontario

ISSN 0826--9580ISBN 0--7794--1742--9