a23_leitner et al (2006) lattice boltzmann model for pulsative blood flow in elastic vessels e&i

5
A Lattice Boltzmann Model for pulsative blood ow in elastic vessels D. Leitner, S. Wassertheurer, M. Hessinger, A. Holzinger Lattice Boltzmann Models (LBM) are widely used to solve uid mechanical problems in engineering applications. In this work a brief introduction of LBM is given an d a new boundary condition is proposed for the cardiovascula r domain to support elas tic walls in order to simulate blood ow in elastic vessels. The ow eld is calculated in two spatial dimensions revealing characteristic ow patterns and geometri cal cha nge s of thearter ial wa lls fordiffe ren t time de pen den t inp ut con tou rs of pressure and ow. For ste ady ow theresul ts are compar ed to thepredictions of themode l pro posedby Fun g whi ch is an ext ens ionof Poi se uil le’ s the ory . Forunstea dy owthe mod el wa s validated with the solution given by Womersley. The results are very promising for relevant Reynolds and Womersley numbers. Keywords: Lattice-Boltzmann Models; cellular automata; blood ow simulation; elasticity Ein Lattice-Boltzmann-Modell fu ¨ r pulsierenden Blut uss in elastischen Gefa ¨ ßen. Lattice-Boltzmann-Modelle (LBM) nden in der Stro ¨ mungsmechanik Verwendun g. In dieser Arbeit soll ein kurzer U ¨ berblic k u ¨ ber LBM  gegeben werden. Es wird eine neue Randbedingung vorgestellt, die es erlaubt, el astische Wa ¨ nde effek tiv fu ¨ r Blutusssimulationen zu modellieren. Dabei wird die Stro ¨ mung zweidimensional im Ort als auch u ¨ ber die Z eit berechnet, was charakteristische Flussprole sowie  geometrische Vera ¨ nderungen der Arterienwa ¨ nde fu ¨ r ve rschiedene Fluss- und Druckverha ¨ ltnisse aufzeigt. Fu ¨ r stetigen Fluss werden die Ergebnisse mit einem analytischen Modell von Fung verglichen, das auf die Theorie von Poiseuille zuru ¨ ckgeht. Fu ¨ r pulsierenden Fluss wurdedas Mod ell mitder Lo ¨ sun g vonWome rsl ey vali die rt.Die Ergebn issesind seh r zuf ried en ste llen d im Ber eic h derreleva nten Rey nol ds- und Womersley-Zahlen. Schlu ¨ sselwo ¨ rter: Lattice-Boltzmann-Modelle; zellula ¨ re Automaten; Blutusssimulation; Elastizita ¨ t 1. Introduction In the western industrial countries cardiovascular diseases are the most frequent cause of death. Therefore a lot of research is done to get a better understanding of the cardiovascular system (CVS). To simulate the CVS various models of different accuracy are used and often coupled together to describe the circulation on different spa- tial and temporal scales ( Leitner et al., 2005 ). In this work a LBM is used to simulate the blood ow in two spati al dimens ion s, sol ving the Nav ier -St ok es equ atio n with the Lat tice Bhatnagar-Gross-Krook (LBGK) method (Succi, 2001; Wolf-Gladrow, 2002). The main advantages of the LBGK method are that it is simple to implement and to parallize which enables an efcient computation. Further it is a bottom up approach. Thus the algorithm can be inter- prete d p hysic ally in every step, which make s th is meth od very intuitiv e. 2. The D2Q9 LBGK Model for blood ow simulation For simulating the ow eld we use a LBGK model ( Succi, 2001; Wolf-Gladrow, 2002) which is proved to be capable of dealing with pulsative ow within the range of Reynolds and Womersley number existing in large arteries (  Artoli et al., 2004; Artoli et al., 2003). The LBGK Model is based on a statistical description of a uid in terms of the Boltzmann equation. The Boltzmann equation with single relaxation time is given by @ f @ t þ   rf  ¼ 1 ðf   f eq Þ ð1Þ and is discretised in the spatial domain, in velocity space and in time, yielding f i ð  x þ c  e i t ; t þ t Þ f i ð  x ; t Þ¼ 1 ðf i ð  x ; t Þ f eq i  ð  x ; t ÞÞ ð2Þ where  c ¼  x =t ;  x  is the lattice grid spacing and  t  the time step. The particle distribution functions  f i  evolve on a regular grid and represent particles traveling on the link  e i  (Fig. 1), thus  f i ð  x ; t Þ refers to the particle distribution on the lattice node x  at time t  on the link c i . The equilibrium density distribution f eq ð  x ; t Þ depends solely on the density ð  x ; t Þ and the velocity uð  x ; t Þ of a lattice node x . The density originalarbeiten Fig. 1.  The velocity direc tion s in the D2Q9 LBGK model Leitner, Daniel, Dipl.-Ing., Wassertheurer,Siegfried, Mag., ARCS Seibers dorf Research GmbH, Div. Biomedical Engineering, 2444 Seibersdorf, Austria;  Hessinger, Michael, Dr., Holzinger, Andreas, Univ.-Doz. Ing. MMag. Dr., Medical University Graz, Auenbrugge rplatz 2=4, 8036 Graz, Austria (E-Mail: Siegfried.wa sserthe urer@ar csmed.a t) 152  |  heft 4.2006  e&i  elektrotechnik und infor mationstechnik

Upload: samuel-rodriguez-bernabeu

Post on 14-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A23_LEITNER Et Al (2006) Lattice Boltzmann Model for Pulsative Blood Flow in Elastic Vessels e&i

7/27/2019 A23_LEITNER Et Al (2006) Lattice Boltzmann Model for Pulsative Blood Flow in Elastic Vessels e&i

http://slidepdf.com/reader/full/a23leitner-et-al-2006-lattice-boltzmann-model-for-pulsative-blood-flow-in 1/4

A Lattice Boltzmann Model for pulsativeblood flow in elastic vesselsD. Leitner, S. Wassertheurer, M. Hessinger, A. Holzinger

Lattice Boltzmann Models (LBM) are widely used to solve fluid mechanical problems in engineering applications. In this work a brief

introduction of LBM is given and a new boundary condition is proposed for the cardiovascular domain to support elastic walls in order to

simulate blood flow in elastic vessels. The flow field is calculated in two spatial dimensions revealing characteristic flow patterns and

geometrical changes of thearterial walls fordifferent time dependent input contours of pressure and flow. For steady flow theresults are

compared to thepredictions of themodel proposedby Fung which is an extensionof Poiseuille’s theory. For unsteady flowthe model was

validated with the solution given by Womersley. The results are very promising for relevant Reynolds and Womersley numbers.

Keywords: Lattice-Boltzmann Models; cellular automata; blood flow simulation; elasticity

Ein Lattice-Boltzmann-Modell fur pulsierenden Blutfluss in elastischen Gefaßen.

Lattice-Boltzmann-Modelle (LBM) finden in der Stromungsmechanik Verwendung. In dieser Arbeit soll ein kurzer U ¨ berblick uber LBM 

 gegeben werden. Es wird eine neue Randbedingung vorgestellt, die es erlaubt, elastische Wande effektiv fur Blutflusssimulationen zu

modellieren. Dabei wird die Stromung zweidimensional im Ort als auch uber die Zeit berechnet, was charakteristische Flussprofile sowie

 geometrische Veranderungen der Arterienwande fur verschiedene Fluss- und Druckverhaltnisse aufzeigt. Fur stetigen Fluss werden die

Ergebnisse mit einem analytischen Modell von Fung verglichen, das auf die Theorie von Poiseuille zuruckgeht. Fur pulsierenden Fluss

wurdedas Modell mitder Losung vonWomersley validiert.Die Ergebnissesind sehr zufrieden stellend im Bereich derrelevanten Reynolds-

und Womersley-Zahlen.

Schlusselworter: Lattice-Boltzmann-Modelle; zellulare Automaten; Blutflusssimulation; Elastizitat 

1. Introduction

In the western industrial countries cardiovascular diseases are the

most frequent cause of death. Therefore a lot of research is done to

get a better understanding of the cardiovascular system (CVS). To

simulate the CVS various models of different accuracy are used and

often coupled together to describe the circulation on different spa-

tial and temporal scales (Leitner et al., 2005 ).

In this work a LBM is used to simulate the blood flow in two spatial

dimensions, solving the Navier-Stokes equation with the Lattice

Bhatnagar-Gross-Krook (LBGK) method (Succi, 2001; Wolf-Gladrow,

2002). The main advantages of the LBGK method are that it is simple

to implement and to parallize which enables an efficient computation.

Further it is a bottom up approach. Thus the algorithm can be inter-

preted physically in every step, which makes this method very intuitive.

2. The D2Q9 LBGK Model for blood flow simulation

For simulating the flow field we use a LBGK model (Succi, 2001;

Wolf-Gladrow, 2002) which is proved to be capable of dealing with

pulsative flow within the range of Reynolds and Womersley number

existing in large arteries ( Artoli et al., 2004; Artoli et al., 2003).

The LBGK Model is based on a statistical description of a fluid in

terms of the Boltzmann equation. The Boltzmann equation with

single relaxation time is given by

@ f 

@ t þ  Á rf  ¼ À 1

ðf À f eqÞ ð1Þ

and is discretised in the spatial domain, in velocity space and in time,

yielding

f i ð x þ c Á ei Át ; t þÁt Þ À f i ð x ; t Þ ¼ À 1

ðf i ð x ; t Þ À f eq

i ð x ; t ÞÞ ð2Þ

where c ¼Á x =Át ;Á x  is the lattice grid spacing and Át  the time

step. The particle distribution functions f i  evolve on a regular grid

and represent particles traveling on the link ei  (Fig. 1), thus f i ð x ; t Þrefers to the particle distribution on the lattice node x  at time t  on

the link c i .

The equilibrium density distribution f eqð x ; t Þ depends solely on the

density ð x ; t Þ and the velocity uð x ; t Þ of a lattice node x . The density

originalarbeiten

Fig. 1. The velocity directions in the D2Q9 LBGK model

Leitner, Daniel, Dipl.-Ing., Wassertheurer,Siegfried, Mag., ARCS Seibersdorf Research

GmbH, Div. Biomedical Engineering, 2444 Seibersdorf, Austria; Hessinger, Michael, Dr.,Holzinger, Andreas, Univ.-Doz. Ing. MMag. Dr., Medical University Graz,

Auenbruggerplatz 2=4, 8036 Graz, Austria (E-Mail: [email protected])

152 | heft 4.2006 e&i elektrotechnik und informationstechnik

Page 2: A23_LEITNER Et Al (2006) Lattice Boltzmann Model for Pulsative Blood Flow in Elastic Vessels e&i

7/27/2019 A23_LEITNER Et Al (2006) Lattice Boltzmann Model for Pulsative Blood Flow in Elastic Vessels e&i

http://slidepdf.com/reader/full/a23leitner-et-al-2006-lattice-boltzmann-model-for-pulsative-blood-flow-in 2/4

and the velocity u are obtained from the density distribution

function f i 

ð x ; t Þ ¼X

f i ð x ; t Þ; ð3Þ

ð x ; t Þuð x ; t Þ ¼Xi 

cei f i ð x ; t Þ: ð4Þ

For Á x ¼ Át  the equilibrium is defined as

f eqi 

ð;uÞ ¼

!i  þ 3!i ei  Á u þ 9

2!i ðei  Á uÞ2 À 3

2!i u Á u

ð5Þ

with the weight coefficients

!i  ¼4=9; i ¼ 01=9; i ¼ 1;2;3; 41=36; i ¼ 5;6;7; 8

:

8<: ð6Þ

The mass and momentum equations can be derived from the model

via multiscaling expansion as

 t þ r Á ðuÞ ¼ 0; ð7Þ

 ðuÞ t 

þ r Á ðuuÞ ¼ À r p þ  ðr2ðuÞþrðr Á ðuÞÞÞ ð8Þ

where p ¼ c 2 s is the pressure, c  s ¼ c = ffiffiffi

3p 

is the sound speed, and

 ¼ ð2 À 1Þc 2Át =6 is the kinematic viscosity. The mass and

momentum equations are exactly the same as the compressible

Navier-Stokes equation if the density variation is small enough. Thus

the compressible Navier-Stokes equation is recovered in the incom-

pressible limit. If the density fluctuation is assumed to be negligible

the incompressible Navier-Stokes equation can be derived directly

via the Chapman-Enskog procedure. Because of the expansion in

the velocity term the lattice Boltzmann method is only applicable to

low Mach number hydrodynamics.

3. A boundary condition for elastic walls

In blood flow simulation it is important to consider the compliance

of vessels. Therefore a boundary condition must be developed that

describes the movement of the vessel walls in dependence of pres-

sure. In (Fang et al., 2001) a method is proposed that parameterizes

the walls and uses a special treatment for curved boundaries. Thus

the simplicity of the LBGK method is partly lost. Therefore a simpler

approach is choosen in this work, which doesn’t need parameterized

walls but uses a cellular automat (CA) (Wolfram, 1994) to update

the walls in every time step. This enables a simple implementation in

two and three dimensions. Further the proposed method doesn’t

increase the complexity of the whole algorithm because it works

strictly locally like the LBGK method.

LBM and CAs are closely related. The only difference between the

two is that LBM have continuous state variables on their lattice

nodes, while CA have discrete state variables in their cells. Appro-

priate update rules for the elastic walls boundary condition should

therefore be strictly local and should have the same discretization in

time and the spatial domain as the LBGK Model. The boundary

conditions used by the LBGK are normally defined in a separate

lattice. This lattice can be interpreted as a CA with its own update

rules which interacts with the fluid dynamical model (Fig. 2).

For the update rules of the walls we assume that the vessel is

circular and deformation is axisymmetric and that the walls h are

thin compared to the radius r , i.e. h=r ( 1 and tethered in the

longitudinal direction. In this case we can use the circumferencel

tensile stress   to establish a connection between transmural pres-

sure pe, Young Modulus E  and radius r .

 peð x Þ ¼ 4

3

Eh

r 0ð x Þ

1 À r 0ð x Þr ð x ; t Þ

ð9Þ

The transmural pressure peð x Þ ¼  pð x Þ À p0, where p0 is the pressure

of the surroundings, can be derived locally by measuring the pres-

sure pð x Þ in the lattice nodes next to the vessel wall. The radius r 0ð x Þis the predefined vessel radius with transmural pressure 0.

Equation (9) can be used to determine a threshhold value t  x  for

every cell x in the CA. The value denotes the limit where a solid node

is displaced by sourrounding fluid. Thus to set up the CA properly

the distance from a cell x  to the centerline of the vessel (r 

ð x 

Þin

Eq. (9)), the Young Modulus E , the wall thickness h is needed.For the evolution rules of the CA describing the boundary condi-

tions the pressure pcað x ; t Þ of a node x  is needed. In case the node x 

is solid the pressure of the neighbouring fluid nodes are averaged.

 pcað x ; t Þ ¼  pð x ; t Þ; fluid node1#f 

P4i ¼1 pð x þ ei ; t Þ; solid node

ð10Þ

The value #f  is the number of fluid nodes sourrounding the solid

node x . The pressure pð x ; t Þ of a solid node is defined to be 0. Only

Fig. 2. The LBGK Model and the CA are discretized in the same spatial and temporal domain

originalarbeitenD. Leitner et al. A Lattice Boltzmann Model for pulsative blood flow in elastic vessels

heft 4.2006 | 153April 2006 | 123. Jahrgang

Page 3: A23_LEITNER Et Al (2006) Lattice Boltzmann Model for Pulsative Blood Flow in Elastic Vessels e&i

7/27/2019 A23_LEITNER Et Al (2006) Lattice Boltzmann Model for Pulsative Blood Flow in Elastic Vessels e&i

http://slidepdf.com/reader/full/a23leitner-et-al-2006-lattice-boltzmann-model-for-pulsative-blood-flow-in 3/4

the four neighbours of the Neumann neighbourhood are considered

(see Fig. 3).

Every node in the CA has a certain threshold value t  x  which is

determined from Eq. (9) which leads to the condition

 pcað x ; t Þ ¼ true; pcað x ; t Þ ! t  x 

false; pcað x ; t Þ<t  x :

ð11Þ

The update rule is divided into two steps. First the cell’s state is set to

‘fluid node’ if pcað x ; t Þ is true and set to ‘solid node’ if pcað x ; t Þ is

false. In the second step the following scheme is applied (Fig. 3). The

rules are chosen in a way that artefacts are reduced and holes (solid

nodes in fluid nodes or the other way around) are closed.

The LBM uses the cells of the CA as boundary conditions. For solid

cells the bounce back on link (BBL) boundary condition is used (see

(Succi, 2001)), for fluid nodes the normal LBGK evolution is applied

(Eq. (2)). When the LBM switches from ‘solid node’ to ‘fluid node’

the fluid node is set to f eq

ð;uÞ, where u is 0 and is determinedfrom the threshhold value t  x .

4. Grid refinement

In order to get good results with the method the resolution of the

lattice must be very high. To avoid lengthy computation times the

grid can be refined locally at the walls, while a coarser resolution is

chosen inside the fluid. The usual way to implement grid refinement

for LBM (see Fig. 4) is to keep the speed of sound constant on all grid

levels. This leads to a nested time stepping scheme (van Treeck et al.,

2005 ). For a detailed description of the procedure we refer to (Yu,

Mei, Shyy ). The CA calculating the boundary conditions must have

the same refinement of cells and nested time steps as the grid of the

LBM. The rules stay the same due to the simplicity of the Neumann

neighbourhood.An easier way of increasing the resolution without having the walls

parameterized (in this case curved boundaries could be used) is to use

the Fillipova-Hanel (FH) treatment in special cases. The FH treatment

has been examined in (Mei, Luo, Shyy, 1999). A simple update rule

has to be added to the CA supporting rotated walls (Fig. 5).

The new node type is treated as a ‘fluid node’ in the CA with the

update rules given in Fig. 3. This simple approach avoids turbulence

that could be caused by the edge and enables the usage of coarser

resolution without the need of parameterizing the walls.

5. Results

For steady flow a simulation in an elastic tube has been performed.

The tube has a length of 2 cm and radius of 0.225 cm at a trans-

mural pressure of 0. The velocity field is simulated in two dimensions

with a resolution of 400Ã70 lattice nodes, where one lattice node

equals 0.01 mm2. On the inlet and the outlet a pressure gradient of

1 mmHg is applied. The elastic boundaries evolve to a steady state

during, which leads to a state velocity field (Fig. 6).

For the analytical solution of the steady flow we assume a linear

pressure radius relationship:

r ð z Þ ¼ r 0 þ 1

2  pð z Þ; ð12Þ

where z  is distance from the inlet, r 0 is the radius when the trans-

mural pressure is 0 and   is a compliance constant. If we assume

Fig. 3. Rules of the boundary conditions CA, the given rules are

rotational symmetric

Fig. 4. Local regular grid refinement

Fig. 5. Special treatment of edges, the given rule is rotational

symmetric

Fig. 6. Velocity field in an elastic tube

originalarbeitenD. Leitner et al. A Lattice Boltzmann Model for pulsative blood flow in elastic vessels

154 | heft 4.2006 e&i elektrotechnik und informationstechnik

Page 4: A23_LEITNER Et Al (2006) Lattice Boltzmann Model for Pulsative Blood Flow in Elastic Vessels e&i

7/27/2019 A23_LEITNER Et Al (2006) Lattice Boltzmann Model for Pulsative Blood Flow in Elastic Vessels e&i

http://slidepdf.com/reader/full/a23leitner-et-al-2006-lattice-boltzmann-model-for-pulsative-blood-flow-in 4/4

that the flow is laminar the flow field will have a parabolic profile

(Hagen Poiseuille flow) and the flow rate Qð z Þ is consequently con-

stant for every z .

This assumption and Eq. (12) lead to the expression (see (Fung,

1984)):

r ð z Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr ðLÞ4 À r ð0Þ4Þ z 

Lþ r ð0Þ4:

4

r ð13Þ

The analytical result of the radius is compared to the simulation

result (see Fig. 7). Note that r ðLÞ and r ð0Þ are not predetermined

in the simulation but result from the applied pressure difference.

The lower Figures (8) illustrate the behaviour of the extended

LBGK method under transient pressure and flow conditions. The

calculated profiles show a good agreement to the solution proposed

by Womersley (Womersley, 1957 ). The reader may further notice

displacement of the vessel wall in respect to the pressure gradient.

This is represented by different vertical magnitudes of time depen-

dent zero velocities in horizontal direction.

6. Summary

A new boundary condition for LBM models is introduced describing

elastic walls. The model is tested for blood flow simulation with

compliant artery walls. The walls are not parameterized but are

updated with a CA. The rules of this new CA are chosen to avoid

artefacts and to fill holes in order to simulate the wall movement

without any parameterization. The current model was implemented

in two dimensions but the basic approach is very promising for three

dimensional application because of the easy handling of the bound-

aries in a separate grid. The LBM for blood flow is examined for

steady flow and shows good accordance with the exact solution.

References

Artoli, A. M., Hoeksta, A. G., Sloot, P. M. A. (2003): Simulation of a systolic cycle in a

realistic artery with the lattice boltzmann bgk method. Int. J. Mod. Phys. B, (17):

95–98.

Artoli, A. M., Kandhai, D., Hoefsloot, H. C. J., Hoekstra, A. G., Sloot, P. M. A. (2004):

Lattice bgk simulations of flow in a symmetric bifurcation. Future Gener. Comput. Syst.,

20 (6): 909–916.

Fang, H., Wang, Z., Lin, Z., Liu, M. (2001): Lattice Boltzmann method for simulating the

viscous flow in large distensible blood vessels. Phys. Rev. E..

Fung, Y. C. (1984): Circulation. Biomechanics.

Leitner, D., Kropf, J., Wassertheurer, S., Breitenecker, F. (2005): Lattice-Boltzmann-

Methode zur Simulation vom Stromungsverhalten in Arterien. In: U. Rude,

F. Hulsemann, M. Kowarschik (eds): 18th Symp. on Simulationtechnique ASIM 20 05,

Frontiers in Simulation, Erlangen, September 2005. SCS Publishing House: 768–774.

Mei, R., Luo, L.-S., Shyy, W. (1999): An accurate curved boundary treatment in the Lattice

Boltzmann method. Journal of Computational Physics, (155): 307–330.

Succi, S. (2001): The Lattice Boltzmann Equation for fluid dynamics and beyond. Oxford

University Press.

van Treeck, C., Rank, E., Krafczyk, M., Tolke, J., Nachtwey, B. (2005): Extension of a hybrid

thermal lbe scheme for large-eddy simulations of turbulent convective flows (submitted

to Computers and Fluids).

Wolf-Gladrow, D. A. (2002): Lattice-gas cellular automata and Lattice Boltzmann

Models – An introduction. Lecture Notes in Mathematics. Springer.

Wolfram, S. (1994): Cellular automata and complexity. Westview.

Womersley, J. R. (1957): Oscillatory flow in arteries: the constrained elastic tube as a

model of arterial flow and pulse transmission. Phys. Med. Biol.: 178–187.

Yu, D., Mei, R., Shyy, W.: Int. J. Numer. Methods Fluids, 39 (2).

Fig. 7. The theoretical values from r(z) in cm with the simulated values (circles)

Fig. 8. Transient velocity profiles at late (upper) and early (lower)

systole

originalarbeitenD. Leitner et al. A Lattice Boltzmann Model for pulsative blood flow in elastic vessels

heft 4.2006 | 155April 2006 | 123. Jahrgang