acknowledgements digital tomosynthesis for target localization · digital tomosynthesis for target...

23
1 Digital Tomosynthesis for Target Localization Fang-Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q-L Wu Duke University Medical Center AAPM 2009 Acknowledgements Duke Radiation Oncology faculty and staff Grant support from NIH-R21 CA 128368 Grant support from Varian Medical Systems, GE Health Systems Researchers from other institutions who kindly shared their slides Objectives To understand the technical challenges and clinical potential of using DTS for target localization in radiation therapy To understand the latest developments in DTS reconstruction and registration methods To understand the clinical feasibility and efficacy of kV DTS compared to kV CBCT To learn about the latest developments in MV DTS and brachytherapy DTS applications Outline DTS Imaging Fundamentals On-board kV DTS for Image Guided Radiation Therapy MV DTS Unique registration challenges Clinical localization studies (H&N, prostate, liver, breast) DTS for managing respiratory motion

Upload: others

Post on 15-May-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

1

Digital Tomosynthesis for Target Localization

Fang-Fang Yin, Devon Godfrey, Lei RenJacqueline Maurer, Jackie Q-L Wu

Duke University Medical Center

AAPM 2009

Acknowledgements

• Duke Radiation Oncology faculty and staff

• Grant support from NIH-R21 CA 128368

• Grant support from Varian Medical Systems, GE Health Systems

• Researchers from other institutions who kindly shared their slides

Objectives• To understand the technical challenges and

clinical potential of using DTS for target localization in radiation therapy

• To understand the latest developments in DTS reconstruction and registration methods

• To understand the clinical feasibility and efficacy of kV DTS compared to kV CBCT

• To learn about the latest developments in MV DTS and brachytherapy DTS applications

Outline• DTS Imaging Fundamentals

• On-board kV DTS for Image Guided Radiation Therapy

• MV DTS

• Unique registration challenges

• Clinical localization studies (H&N, prostate, liver, breast)

• DTS for managing respiratory motion

Page 2: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

2

Outline• Rapid Arc verification using DTS

• DTS-guided adaptive radiation therapy (ART)

• Applications in brachytherapy

• Alternative scan geometries

• Creating truly 3D volumetric DTS images using prior patient-specific 3D images

Radiograph DTS CBCT

• Limited rotation (e.g. 40o)

• Moderate depth resolution

• Good soft-tissue contrast

• Low dose (10% CBCT?)

• Fast ( <10 sec ) = breath-hold!

DTS Imaging Fundamentals

12345

Slice # 1

Slice # 2

Slice # 3

Slice # 4

Slice # 5

DTS Imaging Fundamentals

y

x

ωy

ωx

X-ray projection

Fourier Slice Theorem

Slice of object’s Fourier spectra

FT

DTS Image Characteristics

Page 3: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

3

y

x

ωy

ωx

θ

θ

Fourier Slice Theorem

X-ray projection

Slice of object’s Fourier spectra

FT

y

x

ωy

ωx

θ

θ

Fourier Slice Theorem

Series of x-ray

projections

Sampled region of Fourier domain

y

x

ωy

ωx

DTS scan angle θ

θ

Fourier Slice Theorem

DTS slice orientation

High resolution

Low resolution

• Pure x-frequencies fully sampled

• Pure y-frequencies not sampled at all

y

x

On-board DTS Resolution Characteristics

SuperiorSuperior--Inferior Inferior Rotation Axis (Rotation Axis (RRzz))

Ant-Post in coronal DTS

Sup-Inf in coronal DTS

DTS and RDTSDTS and RDTS

DJG1

Page 4: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

Slide 12

DJG1 Classic tradeoff! Decreased resolution in the plane-to-plane dimension means less dose is required to achieve equivalent image noise. This is one of the major advantages of DTS!Devon Godfrey, 7/16/2009

Page 5: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

4

DTS Image Characteristics

One benefit of reduced plane-to-plane resolution:

– less stochastic noise

Typical DTS / CBCT exposure ratio = ~1/5th (sagittal DTS) to ~1/10th (coronal DTS)

DTS requires less dose than CBCT!

Isocentric DTS point-spread function in the plane-to-plane dimension

Blessing et al AAPM 2006

IsocentricIsocentric DTS slice profile vs. scan angleDTS slice profile vs. scan angle

MITS (linear MITS (linear tomosynthesistomosynthesis geometry)geometry)

HWHM (slice thickness) HWHM (slice thickness) vsvs spatial frequencyspatial frequency

Godfrey et al, Medphys 2006

DTS Reconstruction Techniques• Filtered backprojection (e.g., Feldkamp)

• Iterative or direct frequency domain deblurring(e.g., MITS, or iterative restoration)

• Algebraic reconstruction (e.g., ART, SART)

• Statistical techniques (e.g., MLEM, TV-EM, etc.)

• Techniques using patient-specific prior 3D image data

For more info, see Dobbins and Godfrey, “Digital x-ray tomosynthesis: current state

of the art and clinical potential”, PMB (2003)

Page 6: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

5

IGRT with Onboard Imaging

KV source(KVS)

KV detector (KVD)

Portal imager (EPID, MVD)

Challenges for Onboard 2D Images

Challenges for Onboard CBCT

Sim CT

CBCTFree-breathing

CBCTBreath hold

13

2

Yin et al Sem Rad Onc 2006

Acquisition time (~40-60s)

Challenges for Onboard CBCT

Imaging dose

Page 7: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

6

Challenges for Onboard CBCT

Breast setup

Immobilization

Mechanical constraints

On-board Digital Tomosynthesis (DTS) for 3-D IGRT

CT CBCT

DTS

44o

360o

?

Reference DTS (RDTS) Images

FDK cone-beam reconstruction algorithm

Reference DTS (RDTS) slices

Simulated projections

Simulated point sources

Planning CT volume

Godfrey et al IJROBP 2006

Prostate

0o

44o

360o

DRR MVrad

RDTS DTS

CT CBCT

kVrad

Godfrey et al Godfrey et al IJROBP 2006IJROBP 2006

Page 8: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

7

MV DTS Imaging w/ EPID…

• E.g., Descovich et al (UCSF)

– Modified imaging beam line: (4.2 MV, low Z target, no flattening filter, 0.3 cGy/MU)

– Low dose MV DTS: • Examples: Lung (2 cGy), H&N (0.6 cGy),

Prostate (0.7 cGy)

Martina Descovich

U FSC

2009 AAPM

2D projections1 projection/deg

Limited gantry arc (20o-60o range)

Multiple tomograms

Cor

onal

Sagi

ttal

Megavoltage Cone Beam DT

DescovichDescovich et al et al AAPM 2009AAPM 2009

Martina Descovich

U FSC

2009 AAPM

Lung DT images

40 deg9 sec2.4 MU

200 deg45 sec12 MU

60 deg13.5 sec3.6 MU

20 deg4.5 sec1.2 MU

Dose, Time, Motion blurring

DescovichDescovich et al et al AAPM 2009AAPM 2009

DTS Registration Characteristics

• Can we register on-board DTS volumes directly to the planning CT data, or do we need to compute reference DTS volumes?

• How sensitive is DTS to slight translations and rotations?

Page 9: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

8

Evaluation of DTS reference volumes using 3D mutual information

• 3D Volume of interest (VOI) in a chest phantom(4 cm S-I, 10 cm R-L, 8cm A-P)

Sample coronal slice from VOI

• Computed 3D MI shared by CT-DTS and RDTS-DTS pairs for all six rigid-body translations and rotations

Godfrey et al Godfrey et al Med Phys July 2007Med Phys July 2007

• Simulated translations of reference CT spanning +/- 5mm & +/- 5o in each direction

• Measured 3D MI (DTS-CT & DTS-RDTS)– Does peak MI occur when the on-board DTS

data is correctly registered?– How quickly does MI fall off away from the

correct registration pose (how sensitive is the data to misregistration)?

DTS to RDTS: Effect of scan angle

-4 -2 0 2 4X-Translation (mm)

-4 -2 0 2 4 -4 -2 0 2 4

-4 -2 0 2 4 -4 -2 0 2 4-4 -2 0 2 4Nor

mal

ized

Mut

ual I

nfor

mat

ion

Y-Translation (mm) Z-Translation (mm)

X-Rotation (degrees) Y-Rotation (degrees) Z-Rotation (degrees)

1.0

0.8

1.0

0.8

1.0

0.8

1.0

0.8

1.0

0.8

1.0

0.8

RR--L AxisL Axis AA--P AxisP Axis SS--I AxisI Axis

DTS to RDTS vs.DTS to CT:

-4 -2 0 2 4X-Translation (mm)

-4 -2 0 2 4 -4 -2 0 2 4

-4 -2 0 2 4 -4 -2 0 2 4-4 -2 0 2 4Nor

mal

ized

Mut

ual I

nfor

mat

ion

Y-Translation (mm)

X-Rotation (degrees) Y-Rotation (degrees) Z-Rotation (degrees)

1.0

0.8

1.0

0.8

1.0

0.8

1.0

0.8

1.0

0.8

1.0

0.8

Z-Translation (mm)

RR--L AxisL Axis AA--P AxisP Axis SS--I AxisI Axis

Page 10: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

9

DRR

Ref. DTS

OBIImages

On-boardDTS

Calculate Correlation Coefficient and Mutual Information

Updatedθθθθ,ΦΦΦΦ, ΨΨΨΨ,δδδδx,δδδδy,δδδδz NO

Shift and RotationYES

Autoregistration Scheme Using DTS

Criteria for stopping loop

PlanningCT

Ren et alMed Phys 2008

Yan et alMed Phys 2007

Clinical Feasibility Studies

Localization using DTS

ReferenceDTS

On-boardDTS

Localization using CT

ReferenceCT

On-boardCBCT

Localization Accuracy(DTS – CBCT)

Isocenterdeviation

Onboard H & N DTS Imaging

Wu et al IJROBP 2007

DRR Onboard

R-DTS Onboard-DTS

R-CT Onboard-CBCT

H&N DTS Bony Localization

Wu et al IJROBP 2007

Pearson Correlation

0.950.8040o DTS Sagittal

0.940.7920o DTS Sagittal

0.950.8140o DTS Coronal

0.940.8120o DTS Coronal

3D CBCT2D Radiograph

3DCBCT-2DRad = 0.80

Page 11: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

10

H&N DTS Localization Accuracy (bony)

SD in parentheses. All values are in cm.

0.15 (0.08)0.16 (0.08)0.14 (0.08)0.16 (0.09)3D Vector

0.08 (0.06)0.08 (0.07)0.07 (0.06)0.09 (0.08)Lateral

0.08 (0.07)0.09 (0.07)0.06 (0.06)0.07 (0.07)Longitudinal

0.07 (0.07)0.07 (0.07)0.07 (0.07)0.08 (0.07)Vertical

40o DTS Coronal

20o DTS Coronal

40o DTS Sagittal

20o DTS Sagittal

Onboard Prostate DTS Imaging

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

DRR Onboard

R-DTS Onboard-DTS

R-CT Onboard-CBCTYoo et al IJROBP 2008

Localization Accuracy - Prostate

Mean difference between two methodsMean difference between two methods

0.29 ±±±± 0.170.18 ±±±± 0.113D Vector

0.17 ±±±± 0.170.11 ±±±± 0.12Ver

0.09 ±±±± 0.090.06 ±±±± 0.06Lng

0.15 ±±±± 0.140.08 ±±±± 0.07Lat

CBCT:Sag-DTSCBCT:Cor-DTS(cm)

Based on soft tissueBased on soft tissue

Yoo et al IJROBP 2008

Onboard Liver DTS Imaging

40-degree

20-degree

10-degree

Fuller et al ASTRO 2007

Page 12: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

11

Onboard Liver DTS Imaging

Wu et al ASTRO 2007, submitted to IJROBP 2009

0.03 (0.21)0.03 (0.31)Lateral

0.03 (0.28)0.04 (0.33)Longitudinal

0.09 (0.31)0.16 (0.35)Vertical

40o DTS Coronal

40o DTS Sagittal

SD in parentheses. All values are in cm.

Onboard Breast DTS Imaging

Coronal Sagittal Oblique

CBCT

DTS

Zhang et al IJROBP 2009

0.320.240.220.19 3D Vector

0.18 0.08 0.06 0.12 Vertical

0.21 0.10 0.12 0.12 Longitudinal

0.24 0.17 0.15 0.07 Lateral

Oblique DTS-CBCT

Oblique DTS-CBCT

SagittalDTS-CBCT

Coronal DTS-CBCT

Without Clips

With Surgical Clips

Onboard Breast DTS Imaging

Average Positioning Difference between DTS and CBCT (unit: cm)

Zhang et al IJROBP 2009

Managing Respiratory Motion using DTS

• Breath-hold verification prior to breath-hold treatment (reduced ITV)

• 4D verification prior to gated treatment

Page 13: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

12

Breath-hold vs. Free-breathing

Breath-hold RDTS Breath-hold DTS

Free-breathing DTS Free-breathing CBCT

Godfrey et al Godfrey et al IJROBP May 2006IJROBP May 2006

Breath-hold Planning CT

Free-breathing CBCT

Target surrogate shifted 2cm superior!

Unacceptable for breath-hold Tx setup

Breath-hold Reference DTS

Breath-hold On-board DTS

Target correctly located

Effective alternative for breath-hold Tx setup

Page 14: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

13

Liver Subject #2

Breath-hold RDTS Breath-hold DTSBreath-hold CT

Large low-contrast liver malignancy

Lung Subject #1

Free-breathing 45o DTS

Free-breathing 360o (CBCT)

Lung Subject #1

Breath-hold 45o DTS

Breath-hold 360o (CBCT)

Lung Subject #1

Breath-hold 45o DTS

Breath-hold 360o (CBCT)

Page 15: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

14

Lung Subject #2 (Breath-hold)

Sample 45o

DTS Slices

Lung Subject #2 (Breath-hold)

Sample 45o DTS slices

4D DTS

• Disadvantages of 4D CBCT– Scan Time

• Lu et al. (2007) 7 min– Imaging Dose

• Lu et al. (2007) 4.4 – 7.1 cGy– Streaking Artifacts

• Sonke et al. (2005) 50 – 80 Projections per Phase

Maurer et al Med Phys July 2008

56

Results: Patient Study

RadiographicMaurer et al

AAPM 2009. Scan data from Tinsu Pan (MD Anderson)

Page 16: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

15

57

Results: Patient Study

Radiographic 30o 4D DTSRadiographic 30o 4D DTSMaurer et al

AAPM 2009. Scan data from Tinsu Pan (MD Anderson)

58

Results: Patient Study

Radiographic 30o 4D DTS 200o CBCT

GRS = 0.75o/s FR = 7 fps Maurer et al AAPM 2009. Scan data from

Tinsu Pan (MD Anderson)

59

Summary

�Acquisition Time �0.65 to 1.52 minutes per 40o

�4D DTS Dose Relative to 3D CBCT!�0.17 to 0.51 per 40o

�4D DTS Allows On-Board Motion Analysis�Lower Dose than even 3D CBCT�Scan time similar to 3D CBCT

DTS for Rapid Arc Verification

• Collect DTS scans during rapid arc treatment?

• Use to monitor intrafraction motion

Page 17: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

16

61

330 , the fourth acquisition stop

°

CouchPatient

A-PL-RS-I

Center of Rotation(COR)

Reconstruction planes for the first acquisition

30 , the fifth acquisition stop

°

90 Initial kV tubeacquisition position

°

60 scan angle°

120 beam direction°

150 , the first acquisition stop

°210 , the second acquisition stop

°

60 scan angle°

Zhou et al AAPM 2009

DTS-guided online adaptive radiation therapy (ART)

• E.g., Mestrovic et al (PMB 2009):

→ kV DTS imaging while gantry is rotated to the next treatment angle, w/ simultaneous reconstruction

→ Auto-segmentation of anatomy

→ Adaptation of direct aperture optimization (DAO) plan. Adaptation of segment performed during delivery of previous segment.

�Total time added to treatment: 70 sec

63

Part III: Imaging + Adaptation + Delivery

Part IPart I: Accelerated : Accelerated AdaptationAdaptation

Part IIPart II: Adaptation + : Adaptation + Radiation DeliveryRadiation Delivery

Conclusion and Conclusion and Future WorkFuture Work

Part IIIPart III: Imaging + : Imaging + Adaptation + DeliveryAdaptation + Delivery

Treatment Plan Treatment Plan OptimizationOptimization

- Results:

SMALL DEFORMATION

MEDIUM DEFORMATION

LARGE DEFORMATION

Threshold for a clinically acceptable plan

Introduction Introduction to ARTto ART

Mestrovic et al PMB 2009

Brachytherapy DTS Applications

• Source/seed localization for real-time dose calculation

�T. Persons, “Three-dimensional tomosynthesisimage restoration for brachytherapy source localization,” Med Phys (2001).

�I. Tutal et al, “Tomosynthesis-based localization of radioactive seeds in prostate brachytherapy,” Med Phys (2003).

• Real-time volumetric imaging during brachytherapyprocedure (in-suite DTS)

� Wake Forest University group (Baydush, McKee, et al)

Page 18: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

17

65

L-Arm Rotation C-Arm Rotation

Gersh, McKee, King and Baydush

AAPM 2009

66

270o

0o

315o

40o

L-Arm Rotation

C-Arm Rotation

L-Arm Rotation

270o315o

0o

40o

C-Arm Rotation

Gersh, McKee, King and Baydush

AAPM 2009

Alternative Scan Geometries

• Improved sampling of frequency space = reduced DTS blur…

�E.g., Early 2000s in radiology:

�Simple: Linear tomosynthesis

� More Complex: Circular tomosynthesis

���� Possible problem: Shape of blurring function can mimic patient anatomy

68

Page 19: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

18

69Zhang, Yu

(UMD)

(John Boone)

Cine DTS with a multi-source array of carbon nanotube cathodes…

Alternative Scan Geometries

71 72

MaltzMaltz et al et al AAPM 2009AAPM 2009

Page 20: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

19

73

MaltzMaltz et al et al AAPM 2009AAPM 2009 74

Non-rigid deformation for Nanotube Stationary Tomosynthesis (NST)

(University of North Carolina)

NST at EI phase

NST at EE phase

Color Blend of EE and EI, showing large tumor motion (1.5cm)

displacement field

fluid flow registration

warp

tumor volume at EE(delineated on planning CT)

predicted tumor volume at EI shown on NST

Chang et al AAPM 2009Chang et al AAPM 2009

-- Poor axial view in traditional DTS

How can you identify volume in DTS?

CBCT DTS

Truly volumetric DTS imaging? DTS from prior 3D image data

CT-360o

CBCT:360o

CBCT:60o

DeformMap

RenRen et al et al Med Phys June 2008Med Phys June 2008

Page 21: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

20

DTS using deformation field map DTS using deformation field map from prior 3D image datafrom prior 3D image data

Based on two constraints, the DTS reconstructionproblem is converted into the following constrainedoptimization problem:

( )( ) ( ) YIDDTSPtsDE priornewD

=,..,min

The above constrained problem can be further converted into the following unconstrained optimization problem:

( )2

2new YDTSP)D(Emin −+∗µ

where µ is the relative weight of the bending energy.

RenRen et al et al Med Phys June 2008Med Phys June 2008

Prostate Patient DataPrior CBCT FBP based DTSnew (60°°°°) New CBCT

Axial view

Coronal view

Saggitalview

RenRen et al et al Med Phys June 2008Med Phys June 2008

Prostate Patient DataPrior CBCT Prior based DTSnew (60°°°°) New CBCT

Axial view

Coronal view

Saggitalview

RenRen et al et al Med Phys June 2008Med Phys June 2008

FBP based DTSnew (60°°°°)

Liver Patient DataPrior CBCT New CBCT

Axial view

Coronal view

Saggitalview

RenRen et al et al Med Phys June 2008Med Phys June 2008

Page 22: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

21

Liver Patient DataPrior CBCT Prior based DTSnew (60°°°°) New CBCT

Axial view

Coronal view

Saggitalview

RenRen et al et al Med Phys June 2008Med Phys June 2008 Head-and-neck Patient Data

Prior CBCT

FBP based DTSnew (60°°°°)

New CBCT

Axial view Coronal view Saggital view

RenRen et al et al Med Phys June 2008Med Phys June 2008

Head-and-neck Patient Data

Prior CBCT

Prior based DTSnew (60°°°°)

New CBCT

Axial view Coronal view Saggital view

RenRen et al et al Med Phys June 2008Med Phys June 2008

SummarySummary

• Digital tomosynthesis is a promising technology for onboard target localization as well as brachytherapy applications

• It offers substantial advantages for motion management (4-D and breathhold imaging)

• 3D volumetric DTS is feasible

• Further investigation on clinical efficacy is warranted

Page 23: Acknowledgements Digital Tomosynthesis for Target Localization · Digital Tomosynthesis for Target Localization Fang -Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q

22

Thank you for your attention