adquisicion sismica 3d_1

127
esources Ltd. Presenta Ofrecido por Norman M. Cooper, P.Geoph Julio,2004 Muico \-

Upload: walther-didier-aguilar-contreras

Post on 08-Apr-2016

37 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Adquisicion Sismica 3D_1

esources Ltd.

Presenta

Ofrecido porNorman M. Cooper, P.Geoph

Julio,2004

Muico

\-

Page 2: Adquisicion Sismica 3D_1

P

Norsran

Presldente,

por

M. Cooper, P.Geoph.

Muetagh Regourceg lrtd.

\-,

Page 3: Adquisicion Sismica 3D_1

\-

s,F Overview of 3D Method

NORM COOPERMUSTAGH RESOURCES LTD.

#v

(

Basics of Seismic Operations

) ) l

\-

Page 4: Adquisicion Sismica 3D_1

Single Shot - 2-D Record

nff$Trrn*nilnÍxr,,lfln'n,,rr¡ItI¡tttrrrIrrr,,1.,r.,r..,.r....-.......

The Need for 3D Seismic

Page 5: Adquisicion Sismica 3D_1

2-D Seismic,

rSparse control - may miss anomaly

rCross-line and Out-of-Plan e effects

rVelocity analysis only along line of section

rlncomplete Migration

Swath Shooting

. a . a . a ' a . a . a . a . a . a . a . a . a . a . a . a . a . a . a . a . a . a . a . a . a . a

-l-y*l} *f:ths9irBetter control - every second line "Free"

oGood for LINEAR features

oVelocity analysis stil l only good along

line of section

olnterpolated migration

Page 6: Adquisicion Sismica 3D_1

3-D Metho{.

rComplete subsurface imaging

rCoupled Statics solutions - better structure

oFull velocity analysis accounting for dip

r3-D migration - "Focused" view ofsubsurface

oBetter S/N ratio due to de-emphasis of

Page 7: Adquisicion Sismica 3D_1

The Need for Large 3D's

The Cost of 2-D

High Rcs 500 50 t0 SS h a l l o w 6 8 0 2 0 3 4 8 , 5

P¡ leo U/C 960 12 80 t0D - 3 t . t 0 0 t r 1 0 0 1 2 . 5

D e e p 2 0 0 0 2 0 1 0 0 t 2 . 5Footh i l l s .1000 . t0 foo t2 .5

¡7 ,500$6,500ss ,500s5,000$ 5 , 0 0 0

¡30,000

Play Of&ct Fo td Sourcc CDp Cor t!¡ lntenel SLc (pcrkm)

Page 8: Adquisicion Sismica 3D_1

The Cost of 3-D

t l l gh Rcr 500 20 100 5 t700,000Sha l low 700 l0 200 15 S. t0 ,000

Pafeo U/C 1000 14 210 20 $24,000D - 3 1 4 0 0 1 8 2 9 0 2 5 $ r E , 0 0 0

D e e p 2 0 0 0 2 0 4 0 0 3 0 5 1 2 . 0 0 0Poo i ¡ ¡ l l ! __ , , f000 l0 l t lo 40 ¡ 100 58 ,000

Pl ¡y O lÉca Fo ld l in ¡ B io Cora

Typu (dcp th) ' / t Spec ing S ize ( rq km)

2-D Activity in Canada in 1997

r about30,000 km of2-D recorded

o utilizing approx. 200 crew monthsaveraging 200 channels per crew

. average cost 95,000 per km

o Total expenditure about 9150,000,000

trii¡

g¡'rF3-D Activity in Canada in 1997

r about 1200 3-D programs recorded(approx. 24,000 square km)

r util izing approx. 350 crew monthsaveraging 1200 channels per crew

. average cost $350,000 per program

r Total expenditure about

Page 9: Adquisicion Sismica 3D_1

2-D Results in Canada in 1997

r 1 wel l per 10 km of 2-D seismic3000 wells drilled on 2-D ?

$50,000 per wel l

. completion rate of perhaps 60%

r only moderate economics for mostcompletions

3-D Results in Canada in 1997

o 1 well per 3 sq km of 3-D seismic8000 wells drilled on 3-D ?

$52,500 per wello completion rate of perhaps 80o/o

o improved economics for mostcompletions

A reminder about subsurface coverase

TCDP I¿tarwal

\..-,

Page 10: Adquisicion Sismica 3D_1

A 3-D program contains receiver lines . . .

A 3-D program also contains source l ines .

Page 11: Adquisicion Sismica 3D_1

An example of an Orthogonal 3D grid. . .

Page 12: Adquisicion Sismica 3D_1

3D Survey with the Bin Grid Superimposed

v

Page 13: Adquisicion Sismica 3D_1

*

v

Page 14: Adquisicion Sismica 3D_1

t

Statistical Measures of TracesContributing to a Common Bin

r Fold is the total count of all traceswhose midpoints fal lwi thin a bin.

I Offset Distribution measures thevariety of the separation of theindividual source-receiver pairs creatingtraces within a bin.

r Azimuth Distribution measures thenment of the source receiver

Superposition Principleo

2@

J@

0

Types of Noise

* Time variant

* Offset variant

* Source variant

* Receiver variant

Noise = f 1t,r,=,r¡

Page 15: Adquisicion Sismica 3D_1
Page 16: Adquisicion Sismica 3D_1
Page 17: Adquisicion Sismica 3D_1
Page 18: Adquisicion Sismica 3D_1
Page 19: Adquisicion Sismica 3D_1
Page 20: Adquisicion Sismica 3D_1
Page 21: Adquisicion Sismica 3D_1
Page 22: Adquisicion Sismica 3D_1
Page 23: Adquisicion Sismica 3D_1
Page 24: Adquisicion Sismica 3D_1
Page 25: Adquisicion Sismica 3D_1
Page 26: Adquisicion Sismica 3D_1
Page 27: Adquisicion Sismica 3D_1

How is Fold Determined ?

o The Fold is built by overlapping areas ofsubsurface coverage.

r The overlap is a function of the subsurfacearea of the patch and the size of the jumpsfrom salvo to salvo (in the in-line direction)and from swath to swath(in the cross-linedirection)

r Let's review the subsurface patch . . .

Page 28: Adquisicion Sismica 3D_1

Offset Limited 3-D Fold

r Usually, we can only use certainsource-receiver offsets. Any traces

generated from longer offsets will bediscarded in processing.

o We generally try to design our recordingpatch as a square or rectanglelarge enough to encompass theMaximum Useable Offset.

How is Fold Determined ?

r Therefore the ln-Line Fold will be:patch heiqht

2 x source line spacingrAnd the Gross-Line Fold will be:

oatch width2 x receiver line spacing

r The Nominal Fold of the 3D will be theproduct of the In-Line and Cross-Line Fold

Nominal 3-D Fold

r The product is:oatch heiqht x patch width

2 x S L x 2 x R LWhere SL is the source line spacingand RL is the receiver line spacing

r O r :patch area

4 x S L x R L

ffifÁ

Page 29: Adquisicion Sismica 3D_1

\-'

Page 30: Adquisicion Sismica 3D_1

,\_,

Page 31: Adquisicion Sismica 3D_1
Page 32: Adquisicion Sismica 3D_1

U

Page 33: Adquisicion Sismica 3D_1

I

\-.

Page 34: Adquisicion Sismica 3D_1

Calculation of 3-D Fold

r The rectangular fold will be:

Surface Patch Area

Page 35: Adquisicion Sismica 3D_1

Calculation of 2-D Fold( CDP redundancy )

o Subsurface coverage is l/2 of sur face coverage. f requency of shoot¡ng is Group Interval d iv ided

by Source Interval

rFo ld = #Traces X Group ln teña l2 Source Interval

Or:

r Fold = Maximum Useable OffsetSource Interval

2-D Design versus 3-D Design

l Source interval drives the cost of 2-D:

Source Interval = *$"tg-ueslreq t,olo

r Grid density drives the cost of 3-D:

Clean Record - Tilley Area

Page 36: Adquisicion Sismica 3D_1

2-D Design - Example 1

Assume desired fold of 24Assume useable offsets to 1200 m

Sourcelnterval - ry = 50m

Or 20 shots per km

3-D Design - Example I

Assume desired fold of 15Assume useable offsets to 1200 m

For SL=RL = 275 m

Page 37: Adquisicion Sismica 3D_1

2-D Design - Example 2

Assume desired fold of 24Assume useable offsets to 800 m

Sourcelnterval * # - 33.3m

Or 30 shots per km

3-D Design - Example 2

Assume desired fold of 15Assume useable offsets to 800 m

For SL=RL = 183 mOr 29.9 boxes per sq km

Summary of Data examples"R" for design=

"R" for processing =

Desired Fold =2-D Si =

DensitY =Processed Fold =

Des¡red Fold =3-D Line Spacing =

DensitY =

Processed Fold =

12001200

2450.0020.0024;00

800800

2433.3330.0024.00

1 5183

29.8415.00

Page 38: Adquisicion Sismica 3D_1

2-D Design - Example 3

Assume source interval of 50 metersAssume useable offsets to 800 m

F o l d - # - 1 6

Or 213 of expected fold for

3-D Design - Example 3

Assume SL = RL = 275 mAssume useable offsets to 800 m

Or 419 of expected fold

Summary of Data examples"R" for design= 800 1200"R" for processing = 1200 800

Desired Fold =2-D Si =

DensitY =Processed Fold =

Desired Fold =3-D Line Spacing =

DensitY =Processed Fold =

Page 39: Adquisicion Sismica 3D_1

"R ' fo rdes¡gn= 800 i 1

"R" for processing = 1200 800

Dés¡rEd Fold =

2-D S¡=DensitY =

Processed Fold =

Des¡red Fold =3.D Line Spacing =

DensltY =

Process€d Fold =

cost factor = 1.50 0.872-D fold factor= 1.50 , 0,97

S/Nfactor- 1,22 0.92

cost factor = 2.25 0,/t03-D fold factor = 2,26 0,¡14

fastor =

24 2433.33 50.0030.00 20.0036.00 16.00

1 5 1 5183 275

29.t¡1 13,2033.75 3;67

Line Spacing

Avo id : SL /RL = 1 .0S L / R L > 2 . 0S L / R L < 0 . 5

A Typical2-D Field Monitor

Page 40: Adquisicion Sismica 3D_1

A Typical 2-D Field Monitor

3D Naturally Emphasizes Far Offsets

3-D Patch

2-DSpread

Page 41: Adquisicion Sismica 3D_1

Narrow Aperfure Patches

o Often, our patch is not sufficienfly wideto record all useable traces in the crossl ine direct ion.

o This is usually the result of limitedrecording equipment and can becompensated by "double shooting"patches from sides.

Narrow Aperture 3-D Fold

r The surface area of a narrow aperture patchw i l l b e :

7[ R2 - 2 (R2 Cqs't (r / R) - r (R2 - 12)1/2 )

And the fold wil l be :

sur face areal (4 x SL x RL )

Page 42: Adquisicion Sismica 3D_1

Offser Limited 3-D Fold

rThe next two slides illustrate thedifference between fold using alloffsets, and fold using limited offsets.

r Flick back and fcrth between them andnote the differences.

f#

Page 43: Adquisicion Sismica 3D_1

Offset Limited 3-D Fold

r Note the patterns of higher and lowerfold which are evident in the offsetlimited display.

rThese patterns may produce falseimages in the final stacked data sincedata quality depends partly on fold.

o We refer to this as Geometriclmprinting or as seeing a Footprint of

The Fold Histoeram

rThe next diagram is a histogramshowing the relative number of binswhich are imaged by each fold for theoffset limited modet.

r The fairly broad distribution indicatesthat we might expect geometricimprinting in this modet.

iffi.,.f .f

Page 44: Adquisicion Sismica 3D_1

\-

Page 45: Adquisicion Sismica 3D_1

U

i ! r r r r r r r Í ¿ a r : t 2 r r r 2 1 2 r ! r ¡ r

\-,

4ro. 79.68e0,km I 30.77sq.ni. )4822sq.k¡ ( 18.63sc.íd. I

60.5 i6

Fold Cout tl vi Nomin.l s¡o¡t, i¡ot.é i6 S¡qn.t /ttu¡¡.LowFold 180 -f43% 121 -7.1%

Nom¡rl Fold 21 0 0.096 4.SB O.O%Hlch Fold 2,1.0 l¿.3% ,[90 0.9%

Page 46: Adquisicion Sismica 3D_1
Page 47: Adquisicion Sismica 3D_1

v

Page 48: Adquisicion Sismica 3D_1
Page 49: Adquisicion Sismica 3D_1
Page 50: Adquisicion Sismica 3D_1
Page 51: Adquisicion Sismica 3D_1
Page 52: Adquisicion Sismica 3D_1
Page 53: Adquisicion Sismica 3D_1

\-

I

\-.

"Fold Driven"2-D Design versus 3-D Design

Source Interval = #k

"Bin Driven"2-D Design versus 3-D Design

Source Interval = Receiver Interval

\-

Page 54: Adquisicion Sismica 3D_1

3D Parameter Desien

NORM COOPERMUSTAGH RESOURCES LTD.

Design Overview

rOverall suruey size and shaperDeciding on the desired foldoOffset considerationsoSource / Receiver line

spacrngsoBin sizeoBin geometry, scatter

Page 55: Adquisicion Sismica 3D_1

Ri,

{. rr**s a!!i::r!

.,i

5 x 180 km : 900 km2 :)

- Not large

10 li;; p-",.t'¡o -> 1000 channels

-.-.-. *-:t i: l ; i : i-_ t ' t.-._._._fiff i :¡r-*ff i::*.-

\-.

i l r # s d s ' r !

; ¡ : , - j ; : "

30 x 30 km:900 km2 ;";- very lTg. _.

ro lt* p*ftlO rn ni, -

> 6000 channels

One Section of land to be imaeed

l-

Page 56: Adquisicion Sismica 3D_1

- with 800 m low fold margin

Model Before Migration

Page 57: Adquisicion Sismica 3D_1

Detail of Model Before Migration

One Trace Migrated

One Trace Migrated

Page 58: Adquisicion Sismica 3D_1

Three Traces Mierated

Five Traces Migrated

Page 59: Adquisicion Sismica 3D_1

Nine Traces Mierated

Eleven Traces Migrated

Thirteen Traces Migrated

Page 60: Adquisicion Sismica 3D_1

Fifteen Traces Migrated

Seventeen Traces Mierated

Nineteen Traces Migrated

Page 61: Adquisicion Sismica 3D_1

Twentythree Traces Migrated

Page 62: Adquisicion Sismica 3D_1

Twentynine Traces Migrated

Ez

Page 63: Adquisicion Sismica 3D_1

Detail of Model Before Mieration

Model Before Migration

Page 64: Adquisicion Sismica 3D_1
Page 65: Adquisicion Sismica 3D_1

Migration Aperture

Migration Aperture

The horizontaldistance a trace will be movedby migration in a homogeneous medium

would be:

Migration Aperture = Depth x Tan(dip)

For a reflector at 1000 m with a dip of 30 degrees

Migration Aperture = 1000 x Tan(30) = 977 ¡¡

Page 66: Adquisicion Sismica 3D_1

Fresnel Zone

if:#,##

Grid Orientation versus Bin Spacing

spacing = 1.414 x b¡n spacing

trace spacing : 1.0 x bln spaclng

Fresnel Zoner The radius around a reflection point where

irregularities on the reflecting éurface areexpected to effect the nature of the reflection

Fresnel Radius = Sqrt [ ( o * 1t2]u ¡z - gz7

and l, = Vavg I rreq

For a reflector at 1000 m with a velocity of 3OO0 m/sec anddominant frequency of 50 Hz

- (¡, = 60 m)

\--

Page 67: Adquisicion Sismica 3D_1
Page 68: Adquisicion Sismica 3D_1

Out of Plane Effects

Overall Survey Size and Shape

aCover beyond the anomalyrMargin of poor statisticsoMigration aperture and Fresnel ZonerAlignment with Strike / Dip

or Land BoundariesoAvoid irregular shapes (inside

Design Overview

oOverall survey size and shapeoDeciding on the desired foldrOffset considerationsasource / Receiver line

spac¡ngstBin sizeoBin geometry, scatter

r'{ffi

Page 69: Adquisicion Sismica 3D_1

3D Natural ly Emphasizes Far Offsets

. .3-D Patch

2-DSpread

Fold Decimation Experiment (Bouska)

Fold Decimation Experiment (Bouska)

7 fold

Page 70: Adquisicion Sismica 3D_1

\-,Deciding on the Desired Fold

rSignal to noise enhancemento3-D advantages of migrationo3-D advantages of offset

distr ibutionols fold our most important

parameter ?

Design Overview

rOverall suruey size and shaperDeciding on the desired foldrOffset considerationsasource / Receiver line

spacingsoBin sizerBin geometry, scatter'{"ffi

Page 71: Adquisicion Sismica 3D_1

Some Events on a Field Record

Page 72: Adquisicion Sismica 3D_1
Page 73: Adquisicion Sismica 3D_1

- - - . . tMax Offset = Depth ??? iI

Oñ!.r (ml

. 3 B 8 g g $ n * g g g g $ e g0 000

0.500

1.0{x)

: 1 . 5 0 0

2.000

2.500

Stretch Mute(1s%)

A slow layer overlying a fast layer

Air 300 mrs

What happens to the reflected energy ?H C o c f . 4 g

1?oo. loo A¡r roo o/s

- 0. t0

Page 74: Adquisicion Sismica 3D_1

Clean Record - Tilley Area

Noisv Record - Guided Wave

3D Naturally Emphasizes Far Offsets

3-D Patch

2-DSpread

=vgg,

Page 75: Adquisicion Sismica 3D_1

Common Offset Stack - Tunisia

Offset Considerations- Maximum Limits

olnterference with muted first breaksoMoveout stretch muterMode conversionaEnergy loss due to spherical

divergence

Yff i_.7ff

Semblance vs Offset

5000

VELOCITYm / g

2000

0.500

0.600 r'

OFFSET

Page 76: Adquisicion Sismica 3D_1

Offset Considerations- Minimum Limits

oSufficient moveout for velocitvanalysis

rSufficient moveout for multiplediscrimination

oRefraction analysisrAmplitude vs Offset analysis

y,,#

Offset Considerations - Multi Zone

Page 77: Adquisicion Sismica 3D_1

Design OverviewoOverall survey size and shaperDeciding on the desired foldoOffset cons¡derationsasource / Receiver line

spacingsoBin sizeoBin geometry, scatter

Shallow Zone X maxand desired fold

determine Grid Density (Sr and Rr)

Patch Size is determined bythe larger of

Shallow Zone X maxor Deep Zone X min

:'f .ffi,:al/ -.jg

lf a patch cannot be full aperture for all zones,it 's minimum dimension must exceed

X min for the deepest zone of significance t!

Page 78: Adquisicion Sismica 3D_1

"Fold Driven"2-D Design versus 3-D Design

Evolut ion of Megabin 3D

Instructor's Option

Open E:\Courses\Fu I l_Wavefie I d_to_Meg ab i n. ppt

Alternatlvely, openE:\Courses\MegaUn_vs_Orthogonal.pptfor a case hlstory fromsw Ontario

iF.#'' - í : i #

Source / Receiver Line Spacings

oDesired fold within offset limitsrFold at shallow eventsoAspect ratiorDesired wavefield sampling in

a l l doma ins ??

I

Page 79: Adquisicion Sismica 3D_1

"Bin Driven"2-D Design versus 3-D Design

Source Interval = Receiver Interval

SL = RL = 4xSubsurfaoe Bin= 2x Receiver Interval

tt,.f,uf,'.

Design Overview

rOverall survey size and shapeoDeciding on the desired foldr Offset considerationsasource / Receiver line

spacingsoBin size

Page 80: Adquisicion Sismica 3D_1

20 Hz as traces in space

Page 81: Adquisicion Sismica 3D_1

Spatial Sampling at the Surface

X "ppr.nt = },l stnqcg

= Vel / Freq i sin(Cf)

Spatial Sampling at the Surface

Surface Interval=2 x Velocityou.,uu.

,3 x Freqru* x Sin o,

/Desire s ámpes per wavelength.

Surface ¡nterval = 2 x CDP interval

Page 82: Adquisicion Sismica 3D_1

Asymmetric Bins - linear features

$lin ao x zoo m

?ÉF#ffi###gg#ñ.ffi

Page 83: Adquisicion Sismica 3D_1

Asymmetric Bins - linear features

B i n 4 0 x 8 0 m

YffiffiffiWffiffiffiffiffiffiffiffi,

Requ¡red Group Intorvel vs Otfsotfor Olffractlons

To = 1.20O ..c, Vavg ¡ 3(x)0 m/r, Fm.¡ ' 10o lk

Page 84: Adquisicion Sismica 3D_1
Page 85: Adquisicion Sismica 3D_1
Page 86: Adquisicion Sismica 3D_1
Page 87: Adquisicion Sismica 3D_1

, i . . . . . . , : :

. l ' . . ' , ¡

. . . . * . . . - .$ . " " " ;

. ' . 1 , , - - ¡ . . . , '

. . , . . . , ^, . ¿., , . . ;, . . : . ' . ' . i . " . ' i

, ¿ . . - a ¡ " ¡ ¿ . 3 ! " - . " 1

. - " " A " . " - . : . " . . - . :

. , . ' : ' - ^ . ' t . - . ' . ;

, - - " - " . . . ! ! . " " - - '

;i ¡i,i¡¡ ::,i;a j:'r: r: t:

IiffI;i

:..i:i;,:;.ir;i;l:::::r :. ::rl,i;;i.

;iü&;i1-iffiFsgi

¡ ¡ ¡ ¡ ¡ , ! r - ! ¡ , i ' ¡ ¡ ! : ¡ ,

: ; : =l - " * á . . " " a " . - . ¿

! : i ¡¡ . , - - , . , . , . 1 " . . , . "

1 ' ' . . ; ' , ' ^ " - . - . . i .

; . , - , \ . . , ! ' . . - ,

I r a ¿ - a i , , r 4 - : . , " . - ¡

r i ' . . . i . . " . " ¡ " ' " ' . ' .; rí - " " " ¿ . " " . s " . - . ¿

i ! " " " " : . , " " ' : " " , . "

; ¡ . . ^ { ¡ ¡ ¡ ' 1 ; ¿ ¡ . ¡ r - : ¡

' ! - " " " ¿ " " " " ; " " - . " .

I,t.irl:ir:::;Ir::t:'-:h :ri, :, il

Page 88: Adquisicion Sismica 3D_1

\

Page 89: Adquisicion Sismica 3D_1

i , . . : . ; } 4 , f f i : Triple Stagger

More independence oftraces within bins

$

I

Mid-Point Focused

l-imited lndependence oftraces witi'¡in bins

,: . ,,. ,. ' .,.

t t

S L x R L =4 x Desired Fold

S L = 1 . 5 x R L

= 1.5 RL2 - o'r'ul='

1 x 1 5

= R L : 5 2 . 3 m

= S L - 7 8 . 5 m

Page 90: Adquisicion Sismica 3D_1

f 13 Natural Bins (4 x 5 m)

More traces - No better resolution- limit due to bandwidth is about 7 meters

Page 91: Adquisicion Sismica 3D_1

Mid Point vs Reflectin

Page 92: Adquisicion Sismica 3D_1

Bin Balancing - off,set intelligence

Fractionation of bins bymid-point scattering

r I nterleaving orthogonal geometriesrFlexibility in bin sizerFlexibility in bin geometryrFlexibility in foldtBin balancing

Page 93: Adquisicion Sismica 3D_1

\.,

Statistics and Surface Consistent Algorithms

> Diverse statistics come from diversewavefield sampling

> Surface consistent algorithms requirelinearly independent (diverse) statistics

. Amplitude recovery> Deconvolution

> Statics

Simultaneous Equations - Under Constrained

X + Y = 5

oToo many variables, not enough equationsI no unique solution

X = almost anythingY = 5 - a l m o s t a n y t h i n g

Simultaneous Equations - Properly Constrained

X + Y = 5X - Y = 1

o Number of independent variables matchesnumber of equations - one unique solution

X = 3 Y = 2

L

Page 94: Adquisicion Sismica 3D_1

Simultaneous Equations - Over Constrained

X + Y = 5X - Y = 1

X I Y = 1 . 4

o Seldom all measurements agreer No solution

X= 3 Y =2 doesnot f i tex t raequat ion

Simultaneous Equations - Over Constrained

X + Y = 5 + e r r O r lX - Y = 1 + e r r o r 2X i Y = 1 . 4 + e r r o r 3

o Recognize errors in measured valueso Each error becomes another variable

o Now we have 3 equations and 5 variableso Now we are Under Constrained again !!

o Too many solutions - none unique

Simultaneous Equations - Over Constrained

X + Y = 5 + 0 . 0 = 5X - Y = 1 + 0 . 0 = 1X / Y = 1 . 4 + 0 . 1 = 1 . 5

a average absolute error = 0.033

X = 3 Y = 2

Page 95: Adquisicion Sismica 3D_1

Observed = Structure + NMO + Receiver + Source

Example

10 km 2-D l ine100 channels (traces) per SP

Source Interval = 100 m (10 per km)Receiver Interval= 20 m (50 per km)

CDP fold = 10

Statistics and Surface Consistent Algorithms

. t . : , : , : : i

Simultaneous Equations - Over Constrained

X + Y = 5 + 1 . 0 = 6X _ y = 1 + - 1 . 0 = 0X / Y = 1 . 4 + - 0 . 4 = 1

aaverage absolute error = 0.80

X = 3 Y = 3

Page 96: Adquisicion Sismica 3D_1

\-

Surface Consistent Algorithms

rFeed on statistical diversity

l3-D's provide more dimensions ofstatistics and greater diversity

rSome models generate redundantstatistics and should be avoided

Design Considerations - Offset

rShallow objective and first breaksrDeep objective and Velocity Analysis.Deep target and Multiple SuppressionoEnergy Loss.AVO effectsoRefraction Analysis

Observed : Structure + NMO + Receiver * Source

Recorded traces = 10 x 10 x 100 = 10,000Receiver stations = 50 x 10 = 500

Source stations = 10 x 10 = 100C D P l o c a t i o n s = 2 x 5 0 x 1 0 - 1 , 0 0 0Unique Offsets = channels = 100

10,000 equat ions1,000 + 100 + 500 +100 = 1700 variables

we require 10,000 errorterms to be minimized

Page 97: Adquisicion Sismica 3D_1

Design Considerations - Fold

rStatistical Redundancy for processingtGeneral Signal to Noise Ratio of areatEconomicstOffset and Source interual for 2DtOffset 2 and grid density for 3D

Design - Group Interval

rSpatial Aliasing of dipsrSpatial Aliasing of Diffraction patternsoSpatial Aliasing of Coherent NoisetFresnelZoneoTarget SizelNumber of Geophones, Array

Design - Source Interval

aFrom Fold, Offsets, channelslrounded down to integer multiple

of group interval in 2-Daequal to group interval for stack arrayotwice bin size for 3-Dasource Array ?

t-

Page 98: Adquisicion Sismica 3D_1

\-,Design - Spread Geometry

rDetail versus ReconnaissancetDominant dip versus line orientationlRefraction analysis (near offsets)aLand boundaries

Design - Channels Required

.From useable Offset & Group IntervaloFull aperture 3-D Patch (line spacing)oRecording Equipment available

Design - Source Type

tSurface conditionsoProximity to Cultural obstructionsrEquipment availabilityrStack Array - full wavefield sampling ??

Page 99: Adquisicion Sismica 3D_1

\-

Design - Dynamite

Charge SizeHole depth

Surface charge??Single or pattern holes

Pentolite versus NG versus Gelconventional versus shaped charge

SummarytAccount for wavefield samplingtCustom tailor to available

instrumentationtAllow for realistic implementationrOptimize for economics

-the best data comes from surveyswhich are not just designed but arealso recorded !!

Design - VibroseisSize and number of vibrators

Bandwidth of sweepUpsweep or DownsweepDrive Levelversus THDSweep length and tapers

Linearity and tapersNumber of Sweeps

Total effort versus pad time

Page 100: Adquisicion Sismica 3D_1
Page 101: Adquisicion Sismica 3D_1

L-

cgli(JLLtq)

Hf{

6q¡r

. -

6gof-

ñ

a

- Or i - r

0 0 v6 ¡ t r

- I-C. ¡-

Á-oU)

o -

fiñgÁ

H-oU

€)

No -

aÁ-

o -

É

A-

I?a

L,

U

Page 102: Adquisicion Sismica 3D_1

o o ! ot t l

F ( \ o

I I A V

J J JÉ , ú , É

J J Ja a a

T I

ET I

o

a0(1F{

o p {

()

dg\.- ct)

C)?1F{

r p {\

F{

L

Page 103: Adquisicion Sismica 3D_1

\-

t l

O FL

CU ¡I

c D oO ¡ -¡- fit

a -

a 6rt oo ' F-, .9a 6o *:'r L aA A

aot -

t-ñ

I

oA

rlr,

{r,

@cooo¡-

CUJÉ.

Ec$

JQA

lr{

V)()

o pr{

$-{()

o

u

Page 104: Adquisicion Sismica 3D_1

\-

$(,

(-ü{r,

=

E' ñ

rh,

aool-

ñ

J

r \ d ' I

r r l \ l r r

*r, I r rlr,

(t) {r, O)o o o

*r,

c\I

r

t t

EELL

!ó()

aFI-)

aLtC)

.{.-)

C)

${cü

. F.{|)o

F{

0..{

T)O\f,

I

rao

\-,

Page 105: Adquisicion Sismica 3D_1

I ¡

t T1-I

il. t

fT

tr 4,. T

ffi - . r

T

m

üiffia

Page 106: Adquisicion Sismica 3D_1
Page 107: Adquisicion Sismica 3D_1

\-

Page 108: Adquisicion Sismica 3D_1
Page 109: Adquisicion Sismica 3D_1
Page 110: Adquisicion Sismica 3D_1

. , , . , L O' ña\

o+r,

-

CU-i-

oI I

{-,t-oo-ot-

O J ¿A . .t - lo = ,.Sao¡ -t-CU

EOOroT'

o{-,

'13o

.=

EQ

t+r,

oa

tl-' i

o

JU)

X t rcu i-

C U í oo l lA , - r

ñ É ,' F A

A

JaJÉ.

t l-oo

r I

t 'CU

É.

tfr,

C)oo-@

tts¡,

cCUl 'acoOA

JQT)

-

-

o Jó É .

o Frl: t r c )( ) . o

ct) .gt-CU

A

A Eo

LLA

Page 111: Adquisicion Sismica 3D_1

O O q qrd ,-ri l.¡¡ Or)\r, v)

N \._

O O I Oc . j d : d

, - . . e 9 o oF 8 8 8 89 c D c \ ( o Ñ

; 8 8 8 85 N Ñ g Ñ

- O ( o t . c )ñ q f f- + r - O O )\ r ' C \ N

= A O O O1 7 8 $ ñ R

- O O O OF t f ) @ ( o o

€i f\ \t oO cO

a [rO l.* Oo c { ( o OC ) r - T - ( )¡ ¡C\ cD \f, LO

LJa:$h

JÉ.:f,h

=

UJ

U)zEotL

JÉ.

Ja

1'-(oqOt l-o

EOOroY-

il

É.

at{C)

*d()

(1tsF{cü${cünr

L

$

Page 112: Adquisicion Sismica 3D_1

; F o l d : 1 - 6

¡ L

I Fold: 1- 13

J \

Page 113: Adquisicion Sismica 3D_1

\ 1ffi"ffi*:

SD: 1.5 - 7 o/o

' : I i J

,1,,I

] t,l

t'

J n

I

¡f

á

FF,

,]

,,

x

k

I',t

.{t

),'

i '

"l!

t

rlf,

{L

1 ,

'{ h1,

s

{.t

r,l_

I t

í||l

\

, 4 ,

t

rS

\ L j

f,

\

?

ú/

.q

.L .

i.,

Iúr

T '

r*'dr

i { rjt "t

H*if ' . '

i*, ,

T

id.{;

fi.s,

! {l :

T \

.*

D 2.5 - 7o/o

{. ,';s,:r&4

rfir

h;,

'{b'

,Ht " f

.*,

'srt t

hl{{ ' l

"*,

? n r

.*,

rT,s,

*

' iSD: 1 - 4olo

Page 114: Adquisicion Sismica 3D_1

LOG: 500 - 900 m

Page 115: Adquisicion Sismica 3D_1
Page 116: Adquisicion Sismica 3D_1

\-

Page 117: Adquisicion Sismica 3D_1

LJa

Ñ A

A

FIH-{

V)C)

I o p {\'- L'()

0

\.-

Page 118: Adquisicion Sismica 3D_1

( ) q q q,.fi r s- Cf)v r r r s -

e q q q€ f'- l... (o

O O O O- t C ) v OF ( O N ( o ( o

9 e { c \ c { N

? Ñ + Ñ 85 Ñ N Ñ Ñ

s- o) ro !oq q n ' r ?F C \ O T rc \ N C ! C \

g O O O O* i R ñ ñ R

- O O O OF O ) C \ ( O r -

9 C \ c O c D $

O O N OO O ( O ( )q o q q qY - O O O

LJ@:fh

JÉ.:fh

=

tU

Q

z

(oLOROc{l t

EOOl.c)\-

t lÉ.

a${C)+¡)C)11tsF{d${cü

0<

JM

Ja

(U,\*l

Page 119: Adquisicion Sismica 3D_1
Page 120: Adquisicion Sismica 3D_1

J

frá . v

ffi

- t

" ; "F{ ' -

ú ü ,

H:'" . '

,. ix

' - 5t

[tSD:2 .5 -7o /o::--

-ffi:

K.

*r? ' ," ' M

I

- ; {d

Ff

}9::::

t

i¡r'l

.t ..,r'l t"*

. Ea rd-'

H , ' É ' .'rr {...

K -

n

* !! tt. H

{

ü_

üt \

. " _ t ¡

' 1 ¡-*{.¡'-'',.;{ qI

F*'".,É

L - - -- f f i - + i G - b . . @

r v s ., ! ' A ' 1 . SD: 2.5 - 7olo

q,

h"

J f . I

F,*( . j

b. "r

r¡t,A

, JI1ffF"F;I"

, 'Ádür:-

F '

1 {. - 1$rF -{) " 1

I l

!

, . }1

I$I-4

¡

SD:2 .5 - 70 lo

I fid.t

, I

J

'{{

- J. , d

¡

f t

l l -

l i

sfr

&

L h

ñ

!

' " ,

*1{ , 1

. i{l:J

ñ

l

l r ,F4l .

t1

. l

&.

F

,

l rF4f t

¡,

I

I

L rh'flI * '

ü

* .

q

#r i l

it

v' l l

' l

F$t

i

¡1,

1 S D : 2 . 5 - 7 %

+I

! '.r .ryI l

Page 121: Adquisicion Sismica 3D_1
Page 122: Adquisicion Sismica 3D_1
Page 123: Adquisicion Sismica 3D_1
Page 124: Adquisicion Sismica 3D_1

at- q)

f¡- F

()tF' E

$ ' ro - or{- ¡_

. - fl- ¡b-

o - oq=

= - o Eo - ( J- c o

{-,

o c ). g Eg . ab EC I . 9o - c= pA

' l

o

x - o.= cu- - ; -

C U i

o o c u - \h E - c J=

r{-, ¡¡

9 r J= o

(-ñ -

.g .9)E E b É ,q E g E= @ o óC U O + 6- = - d| l n o ) c

,F CU-

a 9l -

¡ -s o+ r ó

c

A

'15F-lctrr

I

a-lF{c

. F l

{-)

cüO

o ¡ {

tr{

HF1

r-{

O+rd

CrK-c$.{$-'{ñz

Page 125: Adquisicion Sismica 3D_1

$

J

(t)

-oJ

V)

r.F{

f ¡I'J-{

tl

c\

l]

V)N

G

H

tl

c)t-.(

.f-¡

LrC)4.,.

)f ¡F¡¡I

ñ¡

HJ J

a v )d - o

l l r l¡

^/.

^/.

c).t-¡

F,

t). F {

{-)V)sa

Foz

J

ú

¡

o.f,

tl

r.Ft

of tl+l

C)f.{

+-¡Lrq)a\

TL

c\

^/

H

3i

Page 126: Adquisicion Sismica 3D_1

L

(!

- l c . ¡

- o l -;z I c\¡

I

7 t ( \ ¡

+

a l

I ' -Z l c \ ¡

-;

V)

( l l l C . ¡

t l

-r

(\¡

N

N

,----_--..^ l

i l oz l

I

J

u)

N

c.¡

J

J

U)iif

tr

ñ¡-r

/z---_\

T

(/)

ñ¡

¡a

a l

: l NA l

IJ

¿d d . = l ^d ( ü €

H l

il il tlJ l-r

ú t v

t l

q

(-€B

!oE gñ !

t/) '5

O c ) U )

.55555 cn

€ B7 0É i z

So l

J l oz l

I

J

V)

* l ñ ¡

t l

á()

g

ctt^d

fl

. É

dv

0.)I

o, FH

IAC)L.

4t i

ñ^

r r

s¿

B

()o' f

u)otr

t l

(-'!

()

F

0.)O' -nIAo¡i

t l

(.)oH

cn0)trd

f r

t l

>0)C)Hta(.)t-.

z t N

Y(t)

Page 127: Adquisicion Sismica 3D_1

,9oÉ.()c)o.o

U'

É.

It-|.r)F-

\v

()

No ¡r{

arr-+

\.,. t-{$-ro0

t.-{vC)X

, r l\+l\r/

o.l

Cr)

s

r''z'tvC)

BoL.r$-idzU)

o ¡r{

(-F-l

C)|)d

r \ ,

ad(.llrlA

. Frl

+)63

o p (

$-rcü

E-{\r,

t-l

cf tl-{

(o

F*r

o)

ON

E. 9 r8 8 .9 , ( ü

E 9o . :* 3< . =p oñ e

Z +t-

9 E1 t ? -o o

l t ( J

€.