adss_oct26_mapping of quantitative trait loci

33
Mapping of Quantitative Trait Loci (QTL) for Grain Cooking and Eating Quality using a Doubled Haploid (DH) Population from Anther Culture of Indica/Japonica Hybrids of Rice (Oryza sativa L.) VICTORIA CHAVEZ LAPITAN T oshi nori Abe , E di lbert o D. Redoña, Darshan S. Bra r 

Upload: lyle-maravilla

Post on 07-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 1/33

Mapping of Quantitative Trait Loci (QTL) forGrain Cooking and Eating Quality using aDoubled Haploid (DH) Population from

Anther Culture of Indica/Japonica

Hybrids of Rice (Oryza sativa L.)

VICTORIA CHAVEZ LAPITANToshinori Abe, Edilberto D. Redoña, Darshan S. Brar 

Page 3: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 3/33

Rice (Oryza sativa L.) is . . .

Most important cereal crop in the worldStaple food for >half of human population

Provides > one fifth of the calories consumedworldwide

Page 4: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 4/33

Consumed in the form of noodles,puffed rice, fermented sweet rice,and snack foods

Used in making beer, rice wine,and vinegar

Grain quality: selection criterion in mostrice breeding programs

Key cooking and eating quality traits:

• Amylose content (AC)

• Gel consistency (GC)

• Gelatinization temperature (GT)

Page 5: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 5/33

Quality improvement thruconventional breeding is difficult

due to quantitative inheritance

DNA marker technology facilitatesunderstanding of complex quantitativetraits.

Doubled haploid (DH) lines excellent

materials for genetic studies because oftheir homozygosity and uniformity

Page 6: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 6/33

OBJECTIVES

To determine the genetic diversity among a set of rice

cultivars

To generate DH lines as mapping population from adiverse cross through anther culture;

To demonstrate the novel use of the DH population forbreeding and genomics through molecular analysis

To identify QTLs for AC, GC, and GT utilizing the DHpopulation

Page 7: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 7/33

Rice cultivars

(different quality traits)

Development of crosses

Anther culture of F1s

Doubled haploid (DH) lines

QTL mapping

•Genetic diversity analysis 

• Selection of best cross 

• Agronomic and molecular characterization 

• Phenotyping for AC, GC, GT 

Activity

1:

Activity

2:

Activity3:

Schematic diagram of the methods used in the study

• Anther culture 

Varietaldevelopment

•Selection of suitable parents 

Page 8: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 8/33

Procedure followed in Activity 1

Rice cultivars (24)

• 164 SSRs 

Genetic diversity analysis

Polymerase Chain Reactions

Electrophoresis

Staining of gels

Gel documentation

DNA extraction Anther culture

Selection ofappropriate parents

•Genetic similarities: NTSYS

•Cluster analysis: UPGMA

•Polymorphism InformationContent

Page 9: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 9/33

Variety Group Variety Group

Azucena 328 Trop. japonica  IR65 Indica Basmati 370 Indica  IR72 Indica 

Milagrosa Indica  IR74 Indica 

Poloy tinawon Trop. japonica  Bordagol 81726 Indica 

Ifugao rice Trop. japonica  PSBRc10 Indica 

Nippon-bare Japonica  PSBRc52 Indica 

Pare baine pulut Trop. japonica  PSBRc60 Indica 

Dinorado Trop. japonica  Burdagol Indica 

IR29 Indica  IR67406 Indica 

IR841-85-1-1-2 Indica  AR32-19-3-3 Indica 

Azucena 47125 Trop. japonica  AR32-19-3-4 Indica 

Reket penjalin Trop. japonica  Membrano Indica 

The 24 quality rice cultivars evaluated for anther cultureresponse and genetic diversity

Page 10: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 10/33

RESULTS

SSR polymorphisms

• 92% polymorphism in SSR markers (151/164)

• 890 alleles detected in 24 genotypes

• Alleles ranged from 2 (RM114, RM312, RM408,RM420, RM451, RM556) to 17 (RM473B)

• Average of 5.89 alleles per locus

Page 11: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 11/33

• Average PIC value was 0.68 per

marker

• PIC ranged from 0.18 (RM420) to 0.91

(RM473B)

• Overall genetic diversity usingShannon’s diversity index was 0.71

PIC and Genetic diversity

Page 13: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 13/33

Selected cultivars to be used as parents in the developmentof crosses

Cultivar GroupKey quality traits % GP *

AC GC GTBasmati 370 Indica  L Soft L 23.3

Milagrosa Indica  L Soft L 14.3

IR29 Indica  L Soft L 7.7

IR72 Indica  H Hard H 9.1IR74 Indica  L Soft L 20.0

PSB Rc10 Indica  H Hard H 12.0

PSB Rc60 Indica  H Hard H 10.8

Nipponbare Japonica  L Soft L 58.8Poloy tinawon Trop. japonica  L Soft I 31.7

Azucena Trop. japonica  I Medium I 33.3

Pare baine pulut Trop. japonica  L Soft L 32.1

*Reckoned from the total number of induced calli

Page 14: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 14/33

•Anther culture 

Albino plants

•Cytological evaluation in 

actively dividing root-tip cells 

Sterile plantsDoubled haploid(DH) plants

• Agro-morphological evaluation 

•Molecular analysis (107/148 SSR)

Mapping population

Procedure followed in Activity 2

Development of crosses

F1sPSB Rc10 X Nipponbare

(selected parents)

Page 15: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 15/33

Crosses developed1. PSB Rc10 X Nipponbare2. IR29 X PSB Rc10

3. Basmati 370 X PSB Rc104. PSB Rc60 X Azucena5. IR72 X Milagrosa6. IR72 X Nipponbare7. Azucena x Poloy tinawon8. IR74 X Pare baine pulut

RESULTS

Page 17: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 17/33

F values for testing variations among DH lines, between parents (PSBRc10 and Nipponbare), and between DH lines and the parents for thedifferent agronomic traits under replicated trial.

Source ofVariation

F values1

PH (cm) PN TN PL (cm) % SF DTH2

Replication

Genotype

DH linesParents

DH vs P

Sampling error

2.36 ns

76.54 **

77.33 **91.37 **

4.83 *

<1

3.65 *

9.49 **

9.50 **16.41 **

2.08 ns

<1

0.34 ns

7.59 **

7.62 **11.77 *

1.87 ns

<1

0.16 ns

35.56 **

35.61 **66.85 **

0.55 ns

<1

0.57 ns

10.50 **

10.60 **3.98 *

10.29 *

<1

16.99 **

51.65 **

49.64 **98.50 **

68.21 **

CV (%) 5.4 14.9 15.9 11.31 8.0 2.6

1Ratio of the mean squares between each source of variation and the experimentalerror; ns = not significant; * P<0.05; ** P<0.00012No sampling error since observation was taken on a plot basis

Page 18: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 18/33

F values for variances within DH lines in comparison withthe checks for five agronomic traits.

Traits F value1

Significance ofdifference

Plant height (cm)

Tiller number

Panicle number

Panicle length (cm)

% Seed fertility

1.46

1.48

0.93

1.27

1.54

NS

NS

NS

NS

NS

1Ratio of an average of within DH line variance versus pooled variance ofthe parents (checks)

NS = not significant

A fi ld i f DH l t h i (A) i ti i i

Page 19: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 19/33

A field view of DH plants showing (A) variations in agronomictraits between lines and (B) uniformity within line (a closerlook of 4 DH lines)

A

B

DH 1 DH 2 DH 3

DH 4

Page 20: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 20/33

Polymorphism survey and distribution ofindica and japonica alleles

Polymorphism between parents = 72.3%(107/148)

Number of polymorphic markers/chromosomevaried from 4 (Chr 9) to 16 (Chr 8)

49.6% PSB Rc10 type, 48.2% Nipponbare type

99.84% of the total marker loci (14,243)

homozygous

Absence of non- parental or polymorphicbands in the DH populations

AC d i d DH li h f ith f th

Page 22: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 22/33

Procedure followed in Activity 3

DH lines (219)

Seeds Leaf samples

•Grain quality 

analyses 

Phenotypic data(AC, GC, GT)

Traitscorrelation

DNA

• DNA extraction 

• Molecular analysis 205 SSR markers 

Genotypic data

QTL mapping

Page 23: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 23/33

Amylose content (AC) (Juliano 1971)

Gel consistency (GC) (Cagampang et al. 1973)

• flow characteristic of milled rice gel in 0.2 M potassiumhydroxide (KOH) measured by the length (in mm) of thecold gel in the culture tube held horizontally

Gelatinization temperature (GT) (Little et al. 1958)

• estimated by the extent of alkali spreading of rawmilled rice in a weak alkali solution (1.7% KOH)

Protocols employed in grain quality analyses

Genetic linkage map constructed using

Page 26: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 26/33

Correlation coefficients among the three traits.

Trait AC GC ASV (GT)

Gel consistency

Alkali spreading value

-0.627**

0.208*

1.000

-0.176*

1.000

*Significant at the 0.05 probability level.**Significant at the 0.01 probability level.

RESULTS

Distribution of AC GC and GT (expressed in ASV) in the

Page 27: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 27/33

Distribution of AC, GC, and GT (expressed in ASV) in theDH population

GC value:25 – 40 mm (Hard)41 – 60 mm (Medium)61 – 100 mm (Soft)

AC value:10 – 20% (Low)20 – 25% (Intermediate)> 25% (High)

ASV value:2 – 3 (High GT)4 – 5 (Intermediate GT)6 – 7 (Low GT)

QTL for cooking and eating quality traits among 219 DH lines

Page 28: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 28/33

TraitLocusname

Chr1 Marker interval LOD2 R2 (%)3 Additiveeffect4

Amylosecontent

qAC6aqAC6bqAC6c

666

RM469-RM170RM170-RM190RM197-RM225

38.6062.3320.91

65.074.043.0

5.886.374.77

Gelconsistency

qGC2qGC6aqGC6b

qGC6cqGC8

266

68

RM71-RM2634RM469-RM170RM170-RM190

RM197-RM225RM350-RM342A

3.2014.4823.81

10.613.59

4.023.035.0

23.04.0

-4.58-11.44-14.15

-11.32-4.80

Alkalispreadingvalue

qGT2qGT6aqGT6b

qGT6cqGT6d

266

66

RM3294-RM6233RM469-RM170RM170-RM190

RM197-RM225RM7023-RM3330

3.4810.9519.39

3.4352.52

3.09.0

16.0

4.062

0.190.350.47

0.23-0.93

QTL for cooking and eating quality traits among 219 DH linesderived from a cross between PSB Rc10 and Nipponbare.

1Chromosome number2Logarithm of odds score3Proportion of the total phenotypic variance explained by QTL4Positive values are associated with an increasing effect from PSB Rc10 alleles and negative

values are associated with an increasing effect from Nipponbare alleles

Page 29: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 29/33

Location of the quantitative trait loci (QTL) for amylosecontent, gel consistency, and gelatinization temperature.

Procedure in varietal development utilizing DH lines

Page 30: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 30/33

Doubled haploid (DH) lines

QTL mapping

• Agronomic and molecular characterization 

Procedure in varietal development utilizing DH lines

Mappingpopulation

Varietal development

•2009 WS, 2010 DS & WS Preliminary Yield Trial (PYT)

Selected 12 DH lines based on highyield, good quality traits, and early to

medium maturityWith MR to R to blast; MS to MR to

BPH and GLH

SUMMARY AND CONCLUSION

Page 31: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 31/33

SUMMARY AND CONCLUSION

PSB Rc 10 and Nipponbare identified and selected as donorparentals for grain quality improvement

Anther culture

• enhanced genetic diversity

• generated homozygous and stable DH lines to constitute amapping population within short period of time

• developed outstanding/improved lines with high yield,resistance to pest, and with good quality traits

• shorten the breeding cycle (to reach PYT) by 1.5 years or 3

seasons)

Molecular marker analysis showed sufficient geneticdiversity among the 24 rice cultivars that could be tapped in

breeding for quality improvement and other variousagronomic traits

Page 32: ADSS_Oct26_Mapping of Quantitative Trait Loci

8/4/2019 ADSS_Oct26_Mapping of Quantitative Trait Loci

http://slidepdf.com/reader/full/adssoct26mapping-of-quantitative-trait-loci 32/33

Identified linked markers to QTLs (RM170, RM190(Wx gene), RM3330, RM7023 (Alk gene)

Identified QTLs and SSRs may be used in MAS breedingfor quality and other agronomic traits

Identified 13 QTLs- 3 (AC) and 5 each (GC and GT)

• Major QTL for AC corresponded very well to the Wx locus

• Major QTL for GT detected on the same locus as thereported Alk in Chr 6 

SSR analysis proved DH lines to be unique geneticresources for developing elite breeding lines, mapping QTLs,

for (future) genomic research