advanced channel engineering achieving aggressive ...dec 07, 2011  · 26 summary • deeply...

26
1 Advanced Channel Engineering Achieving Aggressive Reduction of V T Variation for Ultra-Low-Power Applications K.Fujita, Y.Torii, M.Hori, J.Oh, L.Shifren*, P.Ranade*, M.Nakagawa, K.Okabe, T.Miyake, K.Ohkoshi, M.Kuramae, T.Mori, T.Tsuruta, S.Thompson*, T.Ema Fujitsu Semiconductor Ltd. *SuVolta Inc.

Upload: others

Post on 18-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

1

Advanced Channel Engineering Achieving Aggressive Reduction of

VT Variation for Ultra-Low-Power Applications

K.Fujita, Y.Torii, M.Hori, J.Oh, L.Shifren*, P.Ranade*, M.Nakagawa, K.Okabe, T.Miyake, K.Ohkoshi, M.Kuramae,

T.Mori, T.Tsuruta, S.Thompson*, T.Ema

Fujitsu Semiconductor Ltd. *SuVolta Inc.

2

Outline• Introduction• Transistor Structure• Features of Process Flow and

Verification• 65nm 6T-SRAM Evaluation Results• Summary

3

Introduction

complicated

Power crisis

VDD lowering

VT variation

RDF

ETSOI, Tri-gate

Alternative solution

4

Transistor structureDeeply Depleted Channel TM (DDC) Transistor

1

2

3

4

Depleted layer

VT setting offset layer

Screening layer

Anti-punch-through layer

5

Process flowWell ImplantVT / Screen Layer ImplantBlanket Si Epi-layer FormationSTI FormationGate Dielectric Formation for HVGate Dielectric Formation for LVPoly-Si Gate FormationExtension Implant (No Halo)SW FormationS/D Formation

1

2

3

6

TEM of DDC transistor

43.1nm

Uniformity of epitaxial silicon

7

Avg. = 27.2nm, 1sigma = 0.25%

8

TEM of low-temperature STI

S

D

9

-0.5-0.4-0.3-0.2-0.1

00.10.20.30.40.5

0.1 1 10Gate Width [m]

V T [V

]

W-dependence of VT

NMOS

PMOS

L=0.045m

10

NMOSPMOS

I-V characteristics L=0.045m|Vdd|=0.9, 0.1V

1E-111E-101E-091E-081E-071E-061E-051E-041E-031E-02

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5Vg [V]

I d [A

/ m

]

Summary of STI

11

• Excellent STI profile• No anomalous W dependence• Nice sub-threshold characteristics

No concern about low temp. STI

12

Breakdown of low-temperature GOX

-7-6-5-4-3-2-10123

2 3 4 5 6Breakdown Voltage [V]

LN(-L

N(1

-F))

L=0.045mSg=1E-7cm2

13

NBTI of DDC PMOS10 years

1E+001E+011E+021E+031E+041E+051E+061E+071E+081E+091E+10

1 10 Vstress [V]

Life

time@

Id-1

0% [s

ec]

2 3 4 5

T=125ºCL=0.045m

14

HCI of DDC

1E+001E+011E+021E+031E+041E+051E+061E+071E+081E+091E+10

Life

time@

Id-1

0% [s

ec]

1/Vdd [1/V]-1 10-0.5 0.5

AC 10 years @ Duty 2%

NMOSPMOS

T=25ºCL=0.045m

15

Summary of GOX• Excellent distribution of breakdown• Long enough life time for NBTI• Long enough life time for HCI

No concern about low temp. GOX

16

VT distribution of NMOS

-3

-2

-1

0

1

2

3

0.2 0.4 0.6 0.8Pull-down VT [V]

Cum

ulat

ive

Prob

abili

ty [

]

-3

-2

-1

0

1

2

3

0.2 0.4 0.6 0.8Pass-gate VT [V]

Cum

ulat

ive

Prob

abili

ty [

]Baseline Baseline

DDC DDC

17

VT distribution of PMOS

-3

-2

-1

0

1

2

3

-0.8-0.6-0.4-0.2Pull-up VT [V]

Cum

ulat

ive

Prob

abili

ty [

] , Baseline, DDC

18

0.00

0.02

0.04

0.06

0.08

-0.8 -0.4 0 0.4 0.8VT [V]

V T

acr

oss

waf

er [V

]Baseline (pull-down)Baseline (pass-gate)Baseline (pull-up)DDC (pull-down)DDC (pass-gate)DDC (pull-up)

Summary of across-wafer variation

Baseline

DDC

19

-3

-2

-1

0

1

2

3

-0.2 -0.1 0 0.1 0.2Pass-gate VT [V]

Cum

ulat

ive

Prob

abili

ty [

]-3

-2

-1

0

1

2

3

-0.2 -0.1 0 0.1 0.2Pull-down VT [V]

Cum

ulat

ive

Prob

abili

ty [

]VT matching of NMOS

BaselineDDC

BaselineDDC

20

VT matching of PMOS

-3

-2

-1

0

1

2

3

-0.2 -0.1 0 0.1 0.2Pull-up VT [V]

Cum

ulat

ive

Prob

abili

ty [

]BaselineDDC

21

Summary of VT matching

Baseline

DDC

0.00

0.02

0.04

0.06

0.08

-0.8 -0.4 0 0.4 0.8VT [V]

V T /

SQR

T(2)

[V]

Baseline (pull-down)Baseline (pass-gate)Baseline (pull-up)DDC (pull-down)DDC (pass-gate)DDC (pull-up)

22

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0Node 1 [V]

Nod

e 2

[V]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0Node 1 [V]

Nod

e 2

[V]

Butterfly curves of 6T-SRAM

Baseline DDC

23

SNM distribution

-5

-4

-3

-2

-1

0

1

2

3

-100 0 100 200SNM [mV]

Cum

ulat

ive

Prob

abili

ty [

]

BaselineDDC

Vdd=0.4V

24

Vdd dependence of SNM

0123456789

10

0.0 0.2 0.4 0.6 0.8 1.0Vdd [V]

SNM

(mea

n/1σ

) [σ]

BaselineDDC

25

Vddmin of 576K bit SRAM array

0.0 0.2 0.4 0.6 0.8 1.0Vdd [V]

BaselineDDC

100

80

60

40

20

0

Yiel

d of

SR

AM

mac

ro [%

]

26

Summary• Deeply Depleted Channel (DDC) transistor

has been introduced to reduce RDF.

• Process flow of DDC has been established.

• VT matching of SRAM has been reduced to less than half by DDC.

• Near to 0.4V operation of SRAM has been achieved.