advancedhumanphysiology(( marines(acevedo( ( marimar(de(la ... · advancedhumanphysiology((...

25
Advanced Human Physiology Marines Acevedo Marimar de la Cruz The Kidney The functions of the kidneys o Removal of metabolic wastes from the blood o Maintenance of blood pH o Control of blood volume o Regulation of erythrocyte levels o Metabolism of vitamin D Localization o Posterior to the abdominal wall within an area called retroperitoneum Structures o Renal capsule: the outer region of the entire kidney o Renal fat pad: fat tissue that surrounds the renal capsule and cushions the kidney from mechanical shock. o Renal fascia: connective tissue that attaches the kidneys to the abdominal wall o Hilum: area where the renal veins exits, renal arteries enters and nerves enters. o Renal sinus: contains the renal pelvis, renal calyces, blood vessels, nerves, and fat tissue. o Renal cortex: outer portion of the kidney, occurs between the renal capsule and renal medulla. o Renal medulla: inner portion of the kidney Renal pyramids: striped appearance as a result of parallelarranged nephron tubules. Renal papillae: tips of the renal pyramids Minor calyces: surround a renal papilla. 820 of these occur within a kidney Mayor calyces: formed by the merging of adjacent minor calyces Renal pelvis: enlarged region that results from the merging of mayor calyces Ureter: directs urine from the renal pelvis to the urinary bladder. The Nephron o Basic functional unit of the kidney. o Each nephron function with a systemic arteriole to simultaneously generate blood (with elevated hematocrit) and a fluid (filtrate) o The nephron tubule removes substances from the filtrate that are retained in the body and are return to the high hematocrit blood in the specialized capillaries. At the same time the wastes from the capillary blood are removed and delivered to the filtrate. The nephron and associated components o Afferent arteriole: brings systemic blood to the glomerulus. o Glomerulus: capillaries are fenestrated. Blood from the afferent arterioles enters these capillaries and the pressure favors the passage of components making the blood plasma to enter Bowman’s space (form the initial filtrate)

Upload: others

Post on 04-Jul-2020

22 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

Advanced  Human  Physiology     Marines  Acevedo     Marimar  de  la  Cruz  

The  Kidney    

• The  functions  of  the  kidneys    

o Removal  of  metabolic  wastes  from  the  blood    o Maintenance  of  blood  pH    o Control  of  blood  volume  

o Regulation  of  erythrocyte  levels  o Metabolism  of  vitamin  D    

• Localization    

o Posterior  to  the  abdominal  wall  within  an  area  called  retroperitoneum  • Structures    

o Renal  capsule:  the  outer  region  of  the  entire  kidney    

o Renal  fat  pad:  fat  tissue  that  surrounds  the  renal  capsule  and  cushions  the  kidney  from  mechanical  shock.  

o Renal  fascia:  connective  tissue  that  attaches  the  kidneys  to  the  abdominal  wall  

o Hilum:  area  where  the  renal  veins  exits,  renal  arteries  enters  and  nerves  enters.    o Renal  sinus:  contains  the  renal  pelvis,  renal  calyces,  blood  vessels,  nerves,  and  fat  tissue.    o Renal  cortex:  outer  portion  of  the  kidney,  occurs  between  the  renal  capsule  and  renal  

medulla.  o Renal  medulla:  inner  portion  of  the  kidney  

Renal  pyramids:  striped  appearance  as  a  result  of  parallel-­‐arranged  nephron  

tubules.  • Renal  papillae:  tips  of  the  renal  pyramids    • Minor  calyces:  surround  a  renal  papilla.  8-­‐20  of  these  occur  within  a  kidney  

• Mayor  calyces:  formed  by  the  merging  of  adjacent  minor  calyces  • Renal  pelvis:  enlarged  region  that  results  from  the  merging  of  mayor  calyces  • Ureter:  directs  urine  from  the  renal  pelvis  to  the  urinary  bladder.    

• The  Nephron  o Basic  functional  unit  of  the  kidney.  o Each  nephron  function  with  a  systemic  arteriole  to  simultaneously  generate  blood  (with  

elevated  hematocrit)  and  a  fluid  (filtrate)  o The  nephron  tubule  removes  substances  from  the  filtrate  that  are  retained  in  the  body  

and  are  return  to  the  high  hematocrit  blood  in  the  specialized  capillaries.  At  the  same  time      

the  wastes  from  the  capillary  blood  are  removed  and  delivered    to  the  filtrate.    • The  nephron  and  associated  components  

o Afferent  arteriole:    brings  systemic  blood  to  the  glomerulus.    

o Glomerulus:  capillaries  are  fenestrated.      Blood  from  the  afferent  arterioles  enters  these  capillaries  and  the  pressure  favors  the  passage  of  components  making  the  blood  plasma  to  

enter  Bowman’s  space  (form  the  initial  filtrate)    

Page 2: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

o Efferent  arteriole:  channels  blood  away  from  the  glomerular  capillaries  on  to  the  

peritubular  capillaries.    o Peritubular  capillaries:  branch  and  surround  the  nephron  tubule.  Eventually  join  to  

interlobular  veins.  

o Bowman’s  capsule:  encloses  the  glomerulus.   Parietal  layer:  made  up  of  simple  squamous  epithelium.  Outer  layer.   Visceral  layer:  inner  layer.  Made  up  of  unique  cells  (podocytes  –  form  filtration  slits  

where  plasma  components  can  leave  the  capillary  vessel  and  enter  Bowman’s  space)  o Bowman’s  space:  the  fluid-­‐filled  space  between  the  inner  margin  of  Bowman’s  capsule  

and  the  glomerular  capillaries.    

o Renal  corpuscle:  the  combination  of  Bowman’s  capsule,  space,  and  the  peritubular  capillaries.  

o Proximal  convoluted  tubule:    part  of  the  nephron  tubule  that  is  connected  and  receives  

filtrate  from  Bowman’s  space.     Made  of  single  layer  of  simple  cuboidal  epithelium.     Cells  contain  microvilli  at  the  surface  of  the  nephron  lumen.    

o Henle’s  loop:  made  of  2  segments  (most  is  contain  in  the  renal  medulla)   Descending  limb:  made  up  of  simple  cuboidal  epithelium  (first  part),  then  it  is  made  

of  simple  squamous  epithelium.    

Ascending  limb:  made  up  of  simple  squamous  epithelium.  It  thickens  and  is  made  up  of  simple  cuboidal  epithelium.    

o Distal  convoluted  tubule  

made  up  of  simple  cuboidal  epithelium   have  less  microvilli     directs  the  filtrate  to  the  collecting  duct    

o collecting  duct   made  of  simple  cuboidal  epithelium     directs  the  filtrate  to  the  tip  of  the  renal  pyramid.    

o Blood  is  brought  to  each  kidney  by  a  renal  artery  (branch  off  of  the  abdominal  aorta)   Renal  arteries  branch  to  form  segmental  arteries  that  give  rise  to  interlobar  

arteries.  They  then  branch  and  form  the  afferent  arterioles  (take  blood  to  the  

glomerular  capillaries)    o Blood  exiting  the  glomerular  capillaries  is  carry  by  the  efferent  arterioles.    These  branches  

to  form  the  peritubular  capillaries  (surround  the  nephron  tubule).  The  peritubular  

capillaries  direct  blood  to  the  interlobular  veins,  which  then  takes  the  blood  to  the  arcuate  vein.    This  one  directs  blood  to  interlobar  veins  which  takes  blood  to  the  renal  vein.    

• Production  of  Urine  

o Involves  reabsorption  and  secretion     Reabsorption:  substances  are  transferred  from  the  filtrate  back  into  the  blood  

Secretion:  movement  (active  transport  processes)  of  substances  into  the  nephron  tubule    so  that  these  can  be  part  of  the  filtrate.    

• Filtrate  

Page 3: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

o Renal  flow  rate  1176ml/min  

o Glomerular  filtration  rate/GFR  (totals  about  189L  of  fluid  each  day)  o More  than  99%  of  the  filtrate  is  reabsorbed    o Filtration  barrier:  composed  of  endothelium  of  the  glomerular  capillaries,  the  basilar  

membrane  surrounding  this  epithelium,  and  podocytes.    o Glomerular  capillaries  have  abundant  fenestrae  making  them  more  permeable  than  other  

capillaries.    

o The  protein  hormones  and  albumin  that  pass  to  the  Bowman’s  space  are  then  metabolize  by  the  proximal  convoluted  tubule  (healthy  individuals  have  little  protein  in  urine)    

o Blood  coming  into  the  glomerular  capillaries  have  a  pressure  of  60mmHg.    

32mmHg  colloid  osmotic  pressure  in  the  capillary  lumen  and  18mmHg  pressure  in  Bowman’s  space.  There  is  a  net  force  of  +10mmHg  glomerular  capillary  fluid  pressure  that  causes  components  of  the  plasma  to  cross  the  filtration  barrier  and  

form  filtrate.     Per  minute  this  results  in  125mL  of  the  total  650mL  renal  plasma  flow  to  become  

filtrate.    

o Higher  concentration  of  water  inside  Bowman’s  space.       Osmotic  pressure  favors  water  moving  from  Bowman’s  space  to  the  capillary  

lumen.    

• Nephron  Reabsortion  o Substances  removed  from  the  filtrate  are:  salts,  organic  molecules,  amino  acids,  and  

simple  sugars,  Na+,  K+,  Ca2+,  HCO3-­‐  and  Cl-­‐.    

Secondary  active  transport  processes  move  the  filtrate  solutes  from  the  nephron  tubule  into  the  interstitium.    

o Na  –  K  pump  causes:  low  [Na+]  inside  the  nephron  epithelial  cells  and  high  [Na+]  inside  

the  lumen  of  the  nephron.     Na  concentration  gradient  provides  the  energy  needed  to  move  other  substances  

out  of  the  nephron  lumen  and  into  the  epithelial  cells.  

Carriers  molecules  use  Na+  gradient  energy  to  move  Cl-­‐,  K+,  amino  acids,  and  glucose  from  the  tubule  lumen  to  the  epithelial  cells  (process:  cotransport).  These  substances  then  diffuse  out  of  the  endothelial  cells  of  the  nephron  tubule  

and  enter  the  interstitium.     Cotransport  can  function  with  one  substance  going  in  one  direction  and  the  other  

in  the  opposite  direction.  Ex.  Na+  movement  from  higher  to  lower  concentration  

gives  the  energy  to  transport  H+  from  the  cytosol  of  the  nephron  epithelial  cells  (lower  concentration)  to  the  nephron  lumen  (higher  concentration).  H+  is  a  basic  component  of  urine.    

o Proximal  convoluted  tubule  is  permeable  to  water.  When  the  filtrate  has  reached  the  terminus  of  the  proximal  convoluted  tubule  about  65%  of  the  total  filtrate  water  has  

been  reabsorbed.    o Henle’s  loop  is  very  permeable  to  water  but  less  to  most  ions  and  urea.    

Page 4: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

At  the  end  of  this  tubule  an  additional  15%  of  the  initial  filtrate  water  has  been  

reabsorbed  by  the  body.     Total  of    80%  of  the  filtrate  water  has  been  retain.  This  is  called  obligatory  water  

reabsorption.    

o Now  filtrate  enters  the  ascending  limp  of  Henle’s  loop.     Impermeable  to  water   Active  transport  processes  remove  Na+,  K+,  and  Cl-­‐  from  the  filtrate    

o The  filtrate  enters  the  distal  convoluted  tubule     In  here  only  the  20%  of  the  original  filtrate  volume  remains.     The  amount  of  volume  that  would  be  reabsorbed  would  be  determined  by  the  

level  of  antidiuretic  hormone  (ADH)  present.     The  greater  the  amount  of  ADH  secreted  the  greater  the  level  of  water  

reabsorption  in  the  distal  convoluted  tubule  and  the  collecting  duct.    

o The  concentration  of  urea  progressively  increases  as  the  filtrate  travels  through  the  nephron  tubule.    

Because  it  is  absorbed  at  a  lower  rate  in  comparison  with  water  reabsorption  

rate.     Other  substances  with  slow  reabsorption  rates  are:  creatinine,  phosphate,  

sulfates,  nitrates,  and  urate  ions.    

• Concentration  of  Urine    o When  we  drink  a  large  quantity  of  water  the  kidneys  will  produce  dilute  urine.    o If  we  consume  very  salt  foods  and/or  does  not  drink  water  for  an  extended  time  

period,  the  kidney  would  produce  concentrated  urine.    o Kidney  maintains  an  interstitial  concentration  gradient  of  30mOsm  in  the  cortex  and  of  

1200oMso  in  the  inner  medulla  region.  The  vasa  recta,  urea  distribution,  and  Henle’s  

loop  maintain  the  gradient.    o Vasa  recta:  specialized  capillaries  that  branch  off  from  the  efferent  arterioles  and  

surround  Henle’s  loop.    

When  the  vasa  recta  direct  blood  from  the  cortex  to  the  medulla,  water  moves  out  of  these  capillaries  and  solutes  move  into  them.    

As  blood  flows  through  the  vasa  recta  in  the  direction  of  the  cortex,  water  

moves  into  these  capillaries  and  solutes  diffuse  out.     Vasa  recta  constitute  a  countercurrent  exchange  mechanism  (the  portion  that  

directs  blood  towards  the  medulla  move  in  opposite  direction  to  those  portions  

that  take  blood  in  the  direction  of  the  cortex).     Using  diffusion  processes  the  vas  recta  contributes  in  the  preserving  of  the  

cortex-­‐to-­‐medulla  solute  gradient  that  is  essential  for  kidney  function.    

o  Henle’s  loop  functions  as  a  countercurrent  multiplier  system.     Filtrate  progressing  down  through  the  medulla  by  moving  through  the  

descending  limb  of  Henle’s  loop  loses  water  to  the  interstitium  via  osmosis.  Water  then  diffuses  into  the  vasa  recta  that  is  moving  blood  towards  the  cortex.    

Page 5: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

The  ascending  limb  of  Henle’s  loop  is  mpermeable  to  water.  A  large  amount  of  

solutes  are  actively  transported  from  the  filtrate  and  into  the  medulla  interstitium.  (Contributes  to  maintaining  the  high  solute  concentration  characteristics  of  the  medulla  interstitium).    

o  Urea  also  helps  in  the  maintenance  of  the  high  solute  concentration  in  the  medulla   Urea  diffuses  from  the  medulla  interstitium  into  the  descending  limb  of  Henle’s  

loop.    

The  ascending  limb  and  the  distal  convoluted  tubule  are  impermeable  to  urea,  but  the  collecting  duct  is  permeable.    

Urea  diffuses  out  of  the  collecting  duct  into  the  medulla  interstitium  and  then  

diffuses  back  into  the  descending  limb.  (cycled  several  times)    • Summary  of  what  is  happening  in  blood  filtration  

o  Blood  in  the  afferent  arterioles  enters  the  glomerular  capillaries.    

o  Components  pass  across  the  filtration  barrier  and  enter  Bowman’s  space.    o  Blood  leave  the  glomerular  capillaries  via  the  efferent  arteriole  and  pass  to  the  

peritubular  capillaries  and  vas  recta.    

o Peritubular  capillaries  take  the  blood  about  the  nephron  portions  that  occur  within  the  cortex  and  the  vasa  recta  take  the  blood  to  the  medulla    

o  Filtrate  in  Bowman’s  capsule  exits  this  structure  and  enters  the  proximal  convoluted  

tubule.  Water  is  reabsorb  and  glucose,  amino  acids,  Na+,  Ca2+,  K+,  and  Cl-­‐  are  transported  out  of  the  proximal  convoluted  tubule.    

o  Filtrate  pass  to  the  descending  limb  of  Henle’s  loop.    Water  enters  the  medulla  

interstitium.    o Filtrate  now  goes  to  the  ascending  limb  of  Henle’s  loop.  Solutes  are  move  via  active  

transport  processes  from  the  nephron  lumen  to  the  interstitial  fluid  surrounding  the  

nephron.    o Filtrate  pass  to  the  distal  convoluted  tubule  and  collecting  duct.  In  the  presence  of  

antidiuretic  hormone  both  reabsorb  more  of  the  filtrate  water.    

o High  solute  concentration  of  the  intertitium  is  needed  for  water  reabsoprtion  that  occurs  in  the  cortex  and  medullary  regions  of  the  kidney  

Countercurrent  exchange  mechanism  that  function  to  maintain  the  solute  

gradient  of  the  cortex-­‐to-­‐medulla  interstitium  are:  1)  the  descending  and  ascending  limbs  of  Henle’s  loop,  and  2)  the  vasa  recta.    

Urea  also  contribute  in  maintaining  the  solute  gradient  

• Producing  a  concentrated  urine  o ADH  governs  the  absorption  of  filtrate  volume  from  the  distal  convoluted  tubule  o How  this  is  achieved:  

In  response  to  either  a  drop  in  blood  pressure  or  an  increase  in  blood  plasma  solute  concentration,  hypothalamic  neurons  are  stimulated  to  generate  

impulses  that  produce  an  increase  in  ADH  secretion  from  the  posterior  pituitary.  

Increase  levels  of  secreted  ADH  causes:    

Page 6: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

• Insertion  of  additional  aquaporin  channels  into  the  membrane  walls  of  

the  distal  convoluted  tubule  and  collecting  duct.    • Increase  the  permeability  of  the  collecting  duct  to  urea  • Stimulates  reabsorption  of  Na+  from  the  filtrate  by  the  ascending  limb  

of  Henle’s  loop.  Achieved  by  ADH-­‐mediated  activation  of  a  contrasporter  protein    

o The  filtrate  that  reaches  the  renal  pelvis  is  properly  named  urine.    

• Producing  a  dilute  urine  o The  mechanism  that  causes  filtrate  to  remain  in  the  distal  convoluted  tubule  and  

the  collecting  duct  are:  

Increase  blood  volume  causes  increased  blood  pressure  through  the  body   Elevated  blood  pressure  in  the  right  atrium  causes  this  chamber  to  secrete  

atrial  nitriuretic  hormone  

This  hormone  inhibits  release  of  antidiuretic  hormone  (ADH)   Absence  of  plasma  ADH  results  in  aquaporins  of  the  distal  convoluted  

tubule  and  collecting  duct  becoming  progressively  less  available.  Little  

water  is  reabsorbed.    • Water  conservation  and  blood  pressure  regulation  via  the  Renin-­‐Angiotensin-­‐Aldosterone  

Mechanism  

o This  mechanism  involves  the  function  of  a  nephron  component  called  the  juxtaglomerular  apparatus.    

o The  macula  densa  cells  are  attached  to  the  juxtaglomerular  cells  of  the  afferent  

arteriole.  The  union  of  these  two  tissues  constituted  the  juxtaglomerular  apparatus.    

o Its  role  in  reabsoprtion  of  filtrate  water  is  the  following:    

Macula  desna  cells  senses  increased  blood  sodium  and  chloride  levels  and  respond  by  releasing  an  active  vasopressor  (paracine  function).  Vasopressor  is  an  agent  that  causes  a  blood  vessel  to  constrict.  

Vasopressor  acts  upon  the  adjacent  smooth  muscle  cells  comprising  the  tunica  media  of  the  afferent  arteriol.  Lessened  the  volume  of  blood  that  enters  the  glomerular  capillaries  and  glomerular  filtration  rate  decreases.  

Also  causes  the  efferent  arteriole  to  vasodilate  (lowers  glomerular  capillary  pressure  and  thus  lowers  GFR  ebn  more).    

Less  filtrate  is  form  therefore  there  is  less  Na+  and  Cl-­‐.  This  decrease  in  Na+  

and  Cl-­‐  is  detected  by  the  macula  densa  cells  and  they  respond  by  upregulating  activity  of  the  enzyme  nitric  oxide  synthase.    

Upregulated  activity  of  nitric  oxide  synthase  stimulates  production  of  

prostaglandins  (effect:  contraction  of  smooth  muscle  tissue)     Prostaglandins  diffuse  to  the  juxtaglomerular/granular  cells  and  there  

activate  prostaglandins-­‐specific  Gs  receptors.    

Page 7: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

Gs  receptors  with  bound  prostaglandin  send  a  message  inside  the  

juxtaglomerular  cell  that  cause  the  enzyme  adenylate  cyclase  to  become  activated  (enzyme  converts  ATP  into  cAMP  

Increase  levels  of  cAMP  causes  the  enzyme  renin  to  be  release  from  the  

juxtaglomerular  cells.     Renin  catalyzes  the  removal  of  small  segments  from  the  blood  protein  

angiotensinogen  (remove  segments  are  termed  angiotebsin  I)    

Angiotensin  converting  enzyme  catalyzes  the  transformation  of  angiotensin  I  into  angiotensin  II  

Angiotensin  II  induces  arterioles  and  some  veins  to  constrict  (elevates  

blood  pressure  and  causes  an  increase  in  the  volume  of  blood  being  return  to  the  heart)  and  stmulates  the  release  of  aldosterone.    

Aldosteron  causes  the  kidney  to  reabsorb  water  as  well  as  Na  and  Cl  

(causes  a  decrease  in  urine  production  and  thus  conservation  of  water)    • Autoregulation  of  Glomerular  filtration  rate/  GFR  

o By  regulating  the  contractile  state  of  the  tunica  media  tissue  layer  in  the  afferent  

and/or  efferent  arteriole,  the  kidney  can  largely  self-­‐regulate  GFR.    • Sympathetic  innervation  of  the  kidney  

o Causes  a  decrease  in  filtrate  formation  as  a  consequence  of  vasoconstriction  of  

the  afferent  arterioles  as  well  as  small  arteries  in  the  kidney.  (regulated  by  norepinephrine)    

• Voiding  urine  from  the  body    

o A  hydrostatic  pressure  of  18mmHg  in  Bowman’s  capsule  favores  the  movement  of  filtrate  to  the  renal  pelvis  (pressure  of  0mmHg).  The  smooth  muscles  create  peristaltic  waves  that  move  the  urine  from  the  renal  pelvis  to  the  bladder.    

o Micturition:  process  that  causes  the  smooth  muscles  of  the  urinary  bladder  wall  to  contract  in  response  to  stretching  of  this  organ.  Contraction  moves  the  urine  out  of  the  bladder.    

o The  stretch  response  is  initiated  by  stretch  receptors  in  the  urinary  bladder.  Sends  messages  to  the  sacral  region  of  the  spinal  cord  along  pelvic  nerves.  The  message  pass  to  the  higher  brain  centers  that  cause  one  to  have  a  conscious  urge  to  

urinate.  Parasympathetic  efferent  nerves  fibers  convey  these  messages  to  the  urinary  bladder.  These  cause  the  smooth  muscle  of  the  bladder  to  contract  and  the  urinary  sphincter  to  relax.  Urine  is  thus  voided  from  the  body.    

     

   

     

Page 8: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

 

   

Chapter  XV:  The  Respiratory  System  

• Air  is  drawn  into  the  lungs  so  that  oxygen  can  diffuse  into  the  capillaries  and  carbon  dioxide  can  diffuses  into  the  lungs.  

 

Anatomical  and  Histologial  Features  of  the  Respiratory  System  

• Major  Organs:  o Oral  Cavity  o Upper  Respiratory  Tract  

Nasal  Cavity:  • Nose:  prominent  feature  on  the  face  through  which  air  enters  the  

nasal  cavity  o Cartilaginous  plates  occupy  the  main  portion  of  the  

external  nose.  o Bridge  is  made  up  of  nasal  bones  and  potrusions  of  the  

frontal  maxillary  bones.  o Nasal  cavity  occurs  within  the  external  nose.  

extends  and  merges  with  the  pharynx  o Nares/Nostrils:  outside  openings  to  the  nasal  cavity  o Internal  Nares:  inside  openings  of  the  nasal  cavity  to  the  

pharynx  • Vestibule:  area  inside  the  external  nares  

o lines  with  stratified  squamous  epithelium  that  merges  with  the  skin  

o Mucous  Membrane:  pseudostratifies  columnar  epithelium   Mucus  is  produced  by  goblet  cells.   Hairs  lining  the  vestibule  trap  dust  particles   Cilia  sweep  the  mucus  containing  dust  particles  

down  the  throat  • Olfactory  Epithelium:  confers  the  sense  of  smell,  located  in  the  

superior  portion  of  the  nasal  cavity.  • Nasal  Septum:  divides  the  nasal  cavity  into  two  halves.  • Hard  Palate:  floor  of  the  nasal  cavity  composed  of  bone  covered  in  

mucosa  • Conchae:  three  bony  ridges  that  are  alterations  to  each  lateral  

wall  of  the  nasal  cavity  • Meatus:  air  passageway  occurring  within  each  concha  

Pharynx/Throat:  • Entrance  for  respiratory  and  digestive  systems,  continuos  with  the  

nasal  cavity  and  with  the  respiratory  system  at  the  larynx.  • Three  components:  

Page 9: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

o Nasopharynx:  upper  portion  that  extend  from  the  internal  nares  to  the  uvula.  Has  a  mucous  membrane  lining,  pharyngeal  tonsil  protects  against  infection  in  the  posterior  region  of  the  nasopharynx.  

o Oropharynx:  from  uvula  to  epiglottis  (mucous  covered  membrane-­‐covered  cartilage  that  covers  the  glottis  of  the  larynx  when  swallowing  occurs.  Oral  cavity  opens  into  it  via  the  fauces.  Protects  against  abrasion  by  presence  of  a  layer  of  stratified  squamous  epithelium.  

o Laryngopharynx:  from  terminus  of  the  epiglottis  to  the  larynx  and  esophageal  openings;  stratified  squamous  epithelium  lines  this  structure.  

o Lower  Respiratory  Tract   Larynx  

• voice  box  • Made  up  of  cartilages  (six  paired,  three  unpaired)  joined  to  one  

another  by  muscles  and  ligaments.  o Adam’s  apple  is  the  largest.  o Cricoid:  interior  most  o Epiglottis:  third  unpaired  

Elastic  properties  enable  it  to  flex  and  cover  the  larynx  while  swallowing.  

• Two  ligament  pairs  extend  from  the  arythenoid  cartilages  to  the  thyroid  cartilage.  

o The  superior  one  establishes  vestibular  folds/false  vocal  chords;  come  together  during  swallowing  to  prevent  material  from  entering  the  larynx  and  also  to  keep  air  in  the  lungs  while  holding  your  breath..  

o The  inferior  one  (vocal  ligament)  establishes  the  vocal  folds/true  vocal  chords.  

o Glottis:  true  vocal  chords  and  the  space  between  them.  • Vestibular  folds  and  the  vocal  chords  are  covered  with  stratifie  

swuamous  epithelium  the  remainder  of  the  larynx  is  covered  with  pseudostratified  ciliated  columnar  epithelium.  

• Speech:  vibration  of  the  vocal  chords  resulting  from  air  moving  past  them.  

o Changes  in  pitch:  altering  the  length  of  the  true  vocal  chords,  changing  the  frequency  at  which  they  change.  

o Changes  in  volume:  grater  volume  corresponds  to  greater  amplitude  

• Laryngitis:  inflammation  of  the  mucosal  epithelium  of  the  vocal  chords.  

Trachea/Windpipe:  • comprised  of  15-­‐20  cartilaginous  rings  surrounded  by  smooth  

muscle  and  connective  tissue.  o prevent  the  trachea  from  collapsing  

• Interior  surface  is  covered  with  pseudostrtified  ciliated  columnar  epithelium  and  goblet  cells.  

Page 10: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

• Mucus  is  moved  by  the  cilia  in  the  direction  of  the  larynx,  enabling  it  to  enter  the  esophagus  and  be  swallowed.  

Bronchi  • Primary  Bronchi:  extend  from  the  terminus  of  the  trachea  to  the  

lungs;  right  and  left  primary  bronchi  o right  one  is  shorter  and  greater  in  diameter  o inner  surface  is  covered  in  pseudostratified  ciliated  

columnar  epithelium  and  regularly  spaced  cartilaginous  rings.  

Lungs  • Organs  of  the  body  that  deliver  the  ntrient  oxygen  to  the  blood  

and  receive  the  waste  product  carbon  dioxide  from  the  blood.  • Two  lungs  contained  in  either  the  left  of  right  lteral  portion  of  the  

thoracic  cavity  • Approximately  conical  elongated  shape  • Base  rests  upon  the  diaphragm  (skeletal  muscle  that  separates  the  

thoracic  cavity  from  the  abdominal  cavity).  • Superior-­‐most  part  is  one  inch  above  the  clavicle.  • Right  lung  11%  greater  mass  than  the  left  lung,  comprised  of  three  

lobes,  made  up  of  10  lobules.  • Left  lung  comprised  of  two  lobes,  made  up  of  9  lobules.  • Each  lobe  is  divided  into  lobules  separated  from  one  another  via  

connective  tissue.  • Each  primary  bronchus  branches  into  secondary  bronchi.  • Hilum:  point  of  bronchus  entry  into  the  lung.  • Secondary  bronchi  branch  into  tertiary  bronchi,  which  convey  air  

into  each  lobule,  further,  branching  lead  to  the  bronchioles.  • Bronchioles:  smallest  air  passageways  of  the  lungs.  Are  1mm  or  

less  in  diameter.  o Larger  ones  are  lined  on  the  inside  with  ciliated  simple  

columnar  epithelium  o Smaller  ones  simple  squamous  epithelium  surrounded  by  

elastic  connective  tissue.  o surrounded  by  smooth  muscle  which  can  constrict  to  

block  air  flow.  Continued  constriction  can  cause  asthma.  • Continued  branching  of  the  bronchioles  eventually  result  in  

formation  of  therminal  bronchioles/lobular  bronchioles  which  branch  into  respiratory  bronchioles  which  branch  into  alveolar  ducts  that  lead  to  hollow  air  sacs  called  alveoli.  

• Simple  squamous  epithelium  makes  up  the  walls  o  the  smaller  bronchioles,  alveolar  ducts  and  alveoli.  

o Elastic  connective  tissue  surrounds  these  walls.  • Alveolar  walls:  contain  secretory  cells  that  secrete  a  lipoprotein  

substance  called  surfactant  that  prevents  the  alveoli  from  collapsing  during  exhalation.  

o Macrophages  in  the  inner  surface  maintain  the  area  free  of  foreing  material  facilitating  efficient  gas  exchange.  

 

Page 11: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

Protective  Tissues  Surrounding  the  Lungs  and  Lining  the  thoracic  Cavity  

• Pleura:  protect  the  lungs  • Parietal  Pleura:  lines  the  inner  thoracic  wall  • Pulmonary  Pleura/Viceral  Pleura:  covers  the  lung  • Both  Pleura  transition  into  one  another  at  the  lung  hilum.  • The  pleural  cavity,  between  both  layers,  is  filled  with  pleural  fluid.  

o During  inspiration  and  expiration  it  reduces  abrasion  (that  happens  when  the  lungs  expand  and  contract)  between  the  two  pleural  membranes.  

o It  maintains  both  membranes  in  contact  so  they  can  slide  past  one  another.    

Bringing  Blood  to  the  Lungs  

• The  lung  tissue  must  receive  oxygen-­‐enriched  blood  to  support  their  own  metabolic  needs  as  well.  

• The  thoracic  aorta  forms  a  branch  called  the  bronchial  artery  that  directs  oxygen-­‐enriched  systemic  blood  to  the  lungs.  

o branches  of  this  vessel  bring  blood  to  all  tissues  including  the  bronchi  nad  bronchioles.  

• Blood  is  directed  back  to  the  heart  via  the  bronchial  veins  and  becomes  mixed  with  a  larger  volume  of  blood  that  has  just  been  oxygenated  within  the  capillaries  surrounding  the  alveoli,  bronchial  veins  merge  into  the  pulmonary  veins.  This  results  in  a  minor  reduction  of  oxygen  in  the  blood  in  the  pulmonary  veins.  

 

Muscle  Used  in  Respiration  

• Inhalation:  contraction  of  the  diaphragm  and  the  external  intercostal  muscles  that  cause  air  to  be  drawn  in.  

• Expiration:  Relaxation  of  these  muscles  then  moves  the  air  out.  • Energy,  that  is  needed  for  contraction,  is  required  for  breathing  to  occur.  • Diaphragm:  dome  of  skeletal  muscle  tissue,  when  relaxed  arches  up  into  the  thoracic  

cavity.  contraction  of  this  muscle  enlarges  the  thoracic  cavity.  • The  external  intercostal  muscle  contract  and  rotate  the  ribs  upwards  and  pushes  the  

sternum  away  from  the  spinal  column.  It  also  increases  the  size  of  the  thoracic  cavity  and  thus  the  lungs.  

• Contraction  of  the  Internal  intercostal  muscles  underlies  expiration.    

Inspiration  and  Expiration  

• Boyle’s  Law  (General  Gas  Law):  or  a  given,  fixed  volume  quantity  of  gas  molecules  held  at  constant  temperature,  there  is  an  inverse  relationship  between  volume  and  pressure.  [P=1/V]  

o At  a  grater  volume,  a  fixed  quantity  of  gas  molecules  at  constant  temperature  will  produce  fewer  collisions  with  the  sides  of  a  container  per  unit  time  than  they  would  in  a  smaller  container,  thus  reducing  pressure.  

Page 12: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

• Dalton’s  Law  (Partial  Pressure  of  Gasses  Law):  for  a  given  gas  mixture  at  constant  temperature  and  a  fixed  number  of  molecules,  the  partial  pressure  of  each  molecular  species  comprising  the  gas  mixture  is  directly  proportional  to  the  percentage  of  the  gas  mixture  that  is  made  up  of  that  species  multiplied  by  the  total  pressure  of  the  gas  mixture.  [PT=  P1  +  P2]  

o For  oxygen  to  move  from  the  alveolar  space  into  the  blood  and  CO2  to  move  from  the  blood  to  the  alveolar  space  it  is  required  that  the  partial  pressure  of  each  gas  is  maintained  higher  in  the  area  from  which  it  is  diffusing  and  lower  in  the  area  it  is  diffusing  to.  

• Henry’s  Law:  the  amount  of  gas  that  will  be  absorbed  into  a  liquid  at  a  given  temperature  is  almost  directly  proportional  to  the  partial  pressure  of  that  gas.  

o Although  a  gas  species  at  a  higher  partial  pressure  will  more  readily  diffuse  into  a  liquid,  different  gas  molecular  species  exhibit  differences  in  their  capacities  to  become  solubilized  in  the  first  place.  

• Contraction  of  muscles  will  increase  the  thoracic  cavity  volume  and  thus  lung  volume.  This  will  decrease  the  pressure  in  the  lungs  .  Since  fluids  flow  from  areas  of  greater  to  lower  pressure  through  bulk  flow,  air  will  move  into  the  lungs.  

• Since  the  lungs  are  surrounded  by  the  pulmonary  pleura  and  this  layer  adheres  to  the  parietal  pleura  when  the  thoracic  cavity  changes  in  volume  the  lungs  will  do  the  same.  

• Air  ceases  to  move  in  or  out  of  the  lungs  when  pressure  differences  between  the  air  within  these  organs  is  equal  to  atmospheric  pressure.  Only  1mm  Hg  difference  is  needed  for  efficient  respiration  to  occur.  

• Resistance  to  air  flow  is  usually  minimal  but  may  increase  when  mucus  builds  up  in  the  lungs  or  the  bronchioles  constrict  (asthmatic  attack).  

• Lungs  can  collapse  as  a  result  of  either  recoil  of  elastic  fibers  contained  in  the  alveolar  walls  or  as  a  consequence  of  change  in  the  surface  tension  of  the  very  thin  fluid  layer  on  the  inner  surface  of  the  alveoli.  

 

Compliance  

• Degree  to  which  lungs  and  thorax  can  change  in  volume  as  a  function  of  intrapulmonary  pressure  is  referred  to  as  compliance.  

• Expressed  as  liters  (volume  of  air)  per  cm  of  water  (pressure).  • Average:  0.13/cmH2O  • Greater  compliance  values  correlate  with  greater  ease  in  lung  and  thoracic  volume  

expansions.  Lung  Volume  and  Lung  Capacity  

• Spirometer:  device  that  measures  the  amount  of  air  that  can  be  moved  into  and  out  of  the  lungs  

• Spirometry  can  determine  the  following  (aspects  of  the  volume  of  air  that  is  inspired)  o Tidal  Volume:  amount  of  air  moved  during  one  cycle  of  breathing  at  rest  (0.5L)  o Inspiratory  Reserve  Volume:  amount  of  air  that  can  be  forcefully  inspired  after  a  

normal  inspiration  (3L)  o Expiratory  Reserve  Volume:  amount  of  air  that  can  be  forcefully  expired  after  a  

normal  exhalation.  (1.1L)  o Residual  Volume:  air  volume  remaining  in  the  lungs  after  forceful  exhalation  (1.2L)  

Page 13: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

• Lun  Capacities:  o Inspiratory  Capacity:  tidal  volume  +  Inspiratory  Reserve  Volume  (3.5L)  o Functional  residual  Capacity:  Expiratory  Reserve  volume  +  residual  volume  (2.3L)  o Vital  Capacity:  inspiratory  reserve  volume  +  tidal  colume  +  expiratory  reserve  

volume  (4.6L)  o Total  Lung  capacity:  inspiratory  reserve  volume  +  tidal  volume  +  expiratory  reserve  

volume  +  residual  volume  (5.8L)    

Gas  Exchange:  Applications  of  Dalton’s  and  Henry’s  Law  to  Respiration  

• Gas  molecules  are  in  constant  random  motion,  this  and  the  tendency  of  the  universe  to  proceed  towards  greater  disorder  will  cause  gas  molecules  to  move  from  areas  of  greater  to  lower  concentration.  

o Oxigen  will  difuse  from  the  alveolar  air  space  to  the  capillary  plasma;  from  a  gaseous  to  a  liquid  state  

o Carbon  dioxide  will  move  from  the  capillary  plasma  to  the  alveolar  space;  from  a  liquid  to  a  gaseous  state  

• Partial  Pressure  contributed  by  water  in  alveolar  and  humid  air  reduce  the  partial  pressures  contributes  by  the  other  air  molecules.  

o water  comes  from  the  moist  environment  within  the  lung  air  passageways  and  alveoli;  water  molecules  thus  evaporate  as  air  passes  through  the  lung  passageways;  the  percentage  fo  these  other  air  molecules  are  reduced.  

• CO2  also  contributes  a  significant  amount  of  the  partial  pressure  to  alveolar  air  and  further  reduces  the  partial  pressures  of  the  other  air  molecular  components.  

• Gas  molecules  that  are  in  contact  with  a  liquid  tend  to  diffuse  into  that  liquid.  Degree  to  which  this  occurs  depends:  

o Partial  pressure  of  the  diffusing  gas  molecule  o Solubility  of  the  particular  gas  molecule  within  the  liquid  

• Henry’s  Law:  concentration  of  a  dissolved  gas  is  equal  to  the  partial  pressure  of  that  gas  multiplied  times  the  solubility  coefficient  [p=kHc]  

• Solubility  coefficients:  o O2=0.024,  24mL/Lwater  o CO2=0.57,  570mL/Lwater  o N2=0.012,  12mL/Lwater  

• Gases  have  a  partial  pressure  of  zero  when  dissolved  in  a  liquid.  • Respiratory  membrane  is  0.5  mm  thick,  consists  of  six  components;  

o film  of  fluid  occurring  on  the  inner  alveolar  surface  o alveolar  epithelium  o alveolar  basement  membrane  o interstitial  fluid  separating  the  alveolus  from  the  immediately  adjacent  capillary  o capillary  basement  membrane  o capillary  endothelium  

• How  a  particular  gas  diffuses  across  the  membrane  is  a  function  of:  o respiratory  membrane  thickness  o diffusion  coefficient  for  the  particular  gas  species  (higher  more  diffusion)  o membrane  surface  area  o difference  in  partial  pressure  for  the  gas  

Page 14: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

• Partial  pressure  of  oxygen  is  104mm  Hg  in  the  alveolar  air  space  but  only  40mm  Hg  in  the  blood  plasma.  

• Pco2  difference  is  only  5mm  Hg  but  CO2  has  a  very  high  diffusion  coefficient  enabling  it  to  leave  the  blood  in  enough  quantities.  

• Many  respiratory  illnesses  manifest  themselves  by  affecting  oxygen  and  carbon  dioxide  partial  pressures.  

• Diffusion  of  oxygen  into  capillaries  continues  until  the  plasma  Po2  reaches  104  mm  Hg.  By  the  time  the  blood  is  leaving  the  lungs  it’s  Po2  has  decreased  to  95  mm  Hg  this  resulting  from  the  mixing  with  the  oxygen  depleted  blood  form  the  bronchial  veins.  Po2  within  intersitial  fluid,  40  mm  Hg  and  intracellular  Po2  is  20  mm  Hg.  Oxygen  diffuses  down  this  gradient  where  it  is  metabolically  needed.  

 

The  Role  of  Hemoglobin  in  Blood  via  Oxygen  Transport  

• When  plasma  Po2  is  above  80  mm  Hg  all  hemoglobin  molecules  are  saturated  with  oxygen.  • When  Po2  has  fallen  to  40  mm  Hg  hemoglobin  molecules  are  still  75%  saturated  with  

oxygen.  • Strenous  exercise  causes  Po2  to  be  15  mm  Hg  and  only  25%  of  the  hemoglobin  molecules  

to  be  saturated  with  oxygen.  • There  is  a  non-­‐linear  relationship  between  Po2  values  and  the  tendency  of  oxygen  to  

dissociate  from  hemoglobin.  o Curve  is  steepest    at  Po2  ranging  from  15-­‐35  mm  Hg  o Above  Po2  40  mm  Hg  oxygen  dissociates  from  hemoglobin  at  a  much  slower  rate.  

 

Oxygen-­‐Hemoglobin  Binding  is  affected  by  Po2  values,  Temperature,  and  pH  

• CO2  can  be  carried  in  the  blood  as:  o dissolved  gas  in  blood  plasma  (8%)  o bound  to  hemoglobin  (carbaminohemoglobin  :  20%)  o bicarbonate/HCO3

-­‐  (72%)  • Enzyme  carbonic  anhydrase  converts  carbon  dioxide  and  water  into  carbonic  acid  which  is  

a  weak  acid  tha  loses  its  proton  to  form  bicarbonate.  • Bohr  Effect:  As  carbon  dioxide  levels  increase  in  the  blood  it  accumulates  and  grater  

quantities  of  carbonic  acid  are  produced.  When  it  dissociates  the  increased  [H+]  causes  the  pH  to  decrease  and  this  pH  alters  the  hemoglobin  conformation  to  release  Oxygen.  

• Chloride  Shift:  movement  of  chloride  into  the  erithrocyte  through  an  antiport  protein  that  removes  accumulated  bicarbonate  from  the  cell.  

• The  hydrogen  ions  bind  to  hemoglobin  and  when  the  hemoglobin  becomes  saturated  it  then  releases  the  protons  so  that  the  plasma  pH  does  not  drop  significantly.  

• When  plasma  is  in  the  capillaries  that  surround  the  alveoli  the  process  is  reversed  and  the  pH  increases  slightly.  

• As  temperature  increases  more  oxygen  disassociates  dorm  the  hemoglobin  molecules.    

Respiratory  Regulation:  

Page 15: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

• Respiratory  Center:  located  in  the  medulla  oblongata.  consists  of  inspiratory  and  expiratory  components.  

o inspiratory  center:  two  groups  of  nuclei  that  occur  bilaterally  within  the  dorsal  portion  of  the  medulla  oblongata  

neurons  are  spontaneously  stimulated  and  send  action  potentials  along  the  reticulospinal  tracts,  emerge  within  phrenic  and  intercostal  nerves  (cause  the  diaphragm  and  external  intercostal  muscles  to  contract).  

o Expiratory  Center:  comprised  of  two  nuclei  occurring  bilaterally.  not  active  during  quiet  respiration  (16-­‐18  inhalations  per  minute).  

During  heavy  breathing  it  becomes  regularly  active  sending  action  potentials  along  nerves  along  nerves  that  innervate  muscles  of  expiration.  

o Unidentified  mechanism  links  both  centers  so  that  when  inspiratory  becomes  more  active,  expiratory  is  activated.  

• Apneustic  Center:  of  the  pons  sends  regular  stimulatory  messages  to  the  inspiratory  center.  Ensuring  that  inspiration  occurs  rhythmically.  

•  Pneumotaxic  Center:  aggregation  of  neurons  that  down  regulate  the  inspiratory  and  apneustic  centers  

• During  strenuous  physical  exertion  the  Hering-­‐Breuer  reflex  prevents  the  lungs  from  over-­‐inflating.  Afferent  nerves  convey  messages  along  the  vagus  nerve  inhibiting  the  inspiratory  center.  

• Rate  of  breathing  can  be  consciously  regulated  via  input  from  the  cerebral  cortex.      

   

     

     

     

     

     

     

 

Page 16: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

 

 The  Digestive  System      

• Metabolism    o Total  sum  of  chemical  reactions  require  to  sustain  life  o Basic  biomolecular  nutrients  needed  include  amino  acids,  lipids,  carbohydrates,  and  

nucleic  acid,  water  and  ions.    o The  digestive  system  provides  these  nutrients.  

• Digestive  tract  organs  and  functions  

o  Mouth/Oral  cavity     Food  enters  the  digestive  tract  here   Leads  to  the  pharynx  

Accessory  organs:  salivary  glands  and  tonsils  o Pharynx/throat  

Takes  food  from  the  oral  cavity  to  the  esophagus    

Accessory  components:  mucous  glands  o Esophagus    

Takes  food  from  the  pharynx  to  the  stomach.    

Cardiac  sphincter  controls  the  entrance  of  food  to  the  stomach     Accessory  components:  mucous  glands  

o Stomach    

Function:  stores  ingested  food  and  converts  it  into  a  liquefied  form  (chyme)   Pyloric  sphincter  controls  the  chyme  pass  to  the  small  intestine.     The  chemical  breakdown  begins  here    

o Small  intestine   Function:  nutrient  absorption   Made  of  3  regions:  duodenum,  jejunum,  and  ileum  

o Large  intestine/colon   Salt  and  water  absorption     Chyme  that  has  not  been  absorbed  is  processed  into  feces.    

Accessory  organs:    mucus-­‐secreting  glands    o Rectum    

Final  portion  of  the  digestive  tract    

Terminal  portion  of  the  rectum  is  the  anus.  • Digestive  tract  histology  Four  mayor  tissue  layers  (mucosa,  serosa,  submucosa,  and  muscularis)    

o Mucosa  (3  layers)     Mucous  epithelium  

Moist  stratified  columnar  epithelium  in  the  mouth,  oropharynx,  esophagus,  and  anus.  

Simple  columnar  epithelium  in  other  regions  of  the  digestive  tract.    

Page 17: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

Lamina  propia  

Loose  connective  tissue   Muscularis  mucosae  

Smooth  muscle  layer  

o Submucosa   Connective  tissue  layer  beneath  the  mucosa   Nerves  here  establish  the  submucosal  plexus  (under  parasympathetic  control)  

o Muscularis   Inner  layer  of  smooth  muscle  that  encircles  the  digestive  tract  along  with  

longitudinally  arrange  smooth  muscle.    

Myenteric  plexus:  parasympathetic  cell  bodies  and  nerve  fibers  (occur  between  the  circular  and  longitudinal  smooth  muscle  layers.    

The  submucosal  plexus  and  myenteric  plexus  form  the  intramural  plexus  

(regulates  muscle  contraction  and  secretion  of  substances)    o Serosa/adventitia  (visceral  peritoneum)  

Thin  layer  of  connective  tissue  and  simple  squamous  epithelium.    

o Tree  mayor  glands  associated  with  the  digestive  tract   Unicellular  mucous  glands  of  the  mucosa   Multicellular  glands  of  the  mucosa  and  submucosa  

Multicellular  glands  occurring  outside  of  the  digestive  tract  • Digestive  Physiology  

o Ingestion:  act  of  bringing  food  into  the  stomach  portion  of  the  digestive  tract    

Food  first  enters  the  mouth  where  solid  food  is  masticated  (most  important  of  mechanical  digestion)    

Mouth  arranges  food  being  masticated  in  bolus.  This  bolus  is  then  pushed  into  

the  esophagus.  (movement  of  the  food    to  the  stomach  Is  thanks  to  peristaltic  contractions)    

Liquefied  food  in  stomach  and  small  intestine  needs  to  be  mixed  (mixing  

possible  through  muscle  contraction  of  the  tunica  muscularis     During  the  trajectory  of  food  trough  the  digestive  tract  substances  are  added  to  

the  food  or  the  tract  walls.    

Mucus  produce  by  secretory  cells  lubricate  food  and  the  digestive  tract  (this  facilitate  food’s  passage)      

Enzymes  and  digestion-­‐promoting  chemical  agents  are  added  (important  in  

chemical  digestion)     Water  is  added  to  ingested  food  

o Digestion:  breakdown  of  large  food  molecules  into  their  smaller  constituent  

components.     Adsorption  of  these  breakdown  products  delivers  them  to  the  circulatory  

system.     Unabsorbed  materials  are  voided  from  the  body  via  elimination    

 

Page 18: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

 

 Digestive  tract  anatomical  features  and  functions  • Mouth/oral  cavity    

o Form     Divides  in  2  basic  components:  vestibule  and  oral  cavity  proper  (located  

between  the  alveolar  process)    

Boundaries:  lips,  fauces,  palate  and  cheeks.     Uvula:  hangs  down  from  the  posterior  edge  of  the  soft  palate     Tongue:  muscle  that  makes  the  majority  of  the  oral  cavity.  Taste  buds  identify  

flavors.     Teeth:  32  that  occur  in  two  dental  arches   Palatine  tonsil:  occur  in  lateral  wall  of  fuces  

Salivary  gland:  3  types  (Parotid  glands,  Submandibular  glands,  and  Sublingual  glands)    

Jaw  muscles:  cause  the  teeth  to  move  

o Function   Lips  and  cheeks  maintain  and  manipulate  food  in  the  oral  cavity     Manipulates  food    

Teeth:  masticate  food   Muscle:  move  jaw  and  teeth  for  mastication     Salivary  glands:  secrete  saliva,  helps  chewed  food  to  be  held  together  and  

formed  into  a  bolus,  and  initiates  carbohydrate  digestion.    • Pharynx/throat  (divides  into  3  components)  

o Nasopharynx:  located  above  the  soft  palate  

o Oropharynx:  located  behind  the  oral  cavity  o Laryngopharynx:  occurs  posterior  to  the  larynx    o Function:  

Serves  as  the  opening  to  the  esophagus  and  the  windpipe  • Esophagus    

o Occurs  between  the  pharynx  and  the  stomach    

o Lower  esophageal  sphincter  regulates  passage  of  food  from  the  pharynx  to  the  esophagus.  

o Located  behind  the  trachea  but  in  front  of  the  vertebrae  

o Mucosal  lining:  made  up  of  moist  stratified  squamous  epithelium    o Glands  secrete  mucus  that  lubricate  the  esophagus  o Esophageal  hiatus:  opening  in  he  diaphragm  that  allows  the  sophagous  to  pass  from  the  

thoracic  cavity  into  the  abdominal  cavity  o Cardiac  sphincter/lower  esophageal  sphincter:  area  were  the  esophagus  joins  the  

stomach  o Superior  region  comprise  of  skeletal  muscle  and  the  final  region  is  only  smooth  muscle.    o Function    

Page 19: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

Moves  food  from  the  pharynx  to  the  stomach  

Peristaltic  contractions  (moves  food):  circular  muscles  surrounding  the  esophagus  initiate  the  contraction  at  the  upper  esophageal  sphincter  region.    

• Stomach    

o Occur  in  the  superior  abdominal  region    o Fundus:  located  to  the  let  of  and  superior  to  the  cardiac  sphinter  o Body:  largest  portion  of  the  stomach.  The  upper  portion  has  the  lesser  curvature  and  the  

lower  portion  the  greater  curvature.  o Pyloric  region:  truncates  and  form  the  pyloric  sphincter  that  controls  the  flow  of  food  

from  the  stomach  to  the  duodenum  (compose  of  a  layer  of    thick  smooth  muscle)    

o Stomach  tissues       Serosa  tissue:  inner  portion  =  connective  tissue  and  the  outer  =  simple  squamous  

epithelium    

Muscularis    (3  layers):  longitudinal  (outer),  circular  (middle)  and  oblique  (inner)     Mucosa  and  submucosa:  rugae  =  large  folds  in  this  tissue  that  enable  the  stomach  

to  expand  

o Stomach  mucosa   Gastic  pit:  tube  like  structures     5  forms  of  epithelia  cells  make  the  stomach  mucosa  

Surface  mucous  cells:  secrete  mucus  onto  the  stomach  surface   Mucous  neck  cells:  produce  mucus   Parietal  cells:  produce  hydrochloric  acid  and  intrinsic  factor  

Chief  cells:  produce  the  inactive  precursor  to  the  proteolytic  enzyme  pepsin  

Endocrine  cells:  produce  gastrin  (hormone)  that  induces  hydrochloric  acid  

to  be  secreted    o Functions:    

Ingested  food  is  mixed  with  water  such  that  it  becomes  liquefied  into  chime  

Protein  digestion  thanks  to  the  proteolytic  enzyme  pepsin   3  phases  of  stomach  secretion  regulation    

Cephalic  phase:  gustatory  and  olfactory  receptors  perceive  food  molecules  

-­‐  centers  in  the  medulla  send  messages  along  efferent  parasympathetic  nerve  fibers  –  cholinergic  postganglionic  receptors  cause  cells  of  the  stomach  mucosa  to  secrete  substances    

Hydrochloric  acid:  lowers  pH  of  stomach  (denatures  protein  and  kills  ingested  microorganisms  

Gastrin:  induce  release  of  hydrochloric  acid.  Secreted  by  

endocrine  cells  (transported  by  circulatory  system  until  it  reaches  the  target  cells)        

Intrinsic  factors:  instruct  ileum  to  uptake  vitamine  B12  (require  for  red  blood  cell  production)    

Pepsinogen:  inactive  precursor  to  the  proteolytic  enzyme  pepsin  

Page 20: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

Gastric  phase:  stomach  secretion  (high  level).  Phase  is  induce  by    

Stomach  distension:  activates  stomach  mechanoreceptors     Amino  acids  and  short  amino  acid  sequence  within  the  stomach:  

stimulates  parietal  cell  secretion  of  hydrochloric  acid  

Intestinal  phase:  mediated  through  the  entrance  of  the  acidic  chyme  into  the  duodenum.    

pH  of  chyme  is  below  3    the  intestine  sends  inhibitory  messages  

that  halt  further  gastric  secretion  (result  from  secretion  of  secretin  by  the  duodenum)      

pH  of  chyme  is  above  3  the  intestine  sends  stimulatory  messages  

which  induce  further  gastric  secretion     cholecystokinin  (hormone)  and  gastric  inhibitory  peptide  are  

release  from  the  duodenum  and  the  jejunum  in  response  to  fatty  

acids  and  other  lipid  substances.  Both  inhibit  gastrin  secretion.     Enterogastric  reflex:  inhibition  of  gastrin  release    

o The  pressure  in  the  stomach  only  increases  when  it  becomes  almost  full  to  capacity.    

o Pyloric  pump:  peristaltic  contractions  that  move  chyme  through  the  partially  constricted  pyloric  opening.    

o The  content  of  the  stomach  can’t  be  emptied  too  rapidly  –  result  in  less  nutrient  

absorption  in  the  small  intestine.  o Food  too  much  time  in  the  stomach  becomes  very  acidic  and  could  damage  the  stomach  

wall.    

• Small  intestine  o Function:  chemically  breakdown  large  food  molecules  into  biomolecules  that  cn  be  

absorb  across  the  epithelium.    

o Accessory  glands/organs:  liver  and  pancreas    o Made  up  of  3  sections    

Duodenum    

o Joins  to  the  right  inferior  portion  of  the  stomach  at  the  pyloric  region  o Greater  duodenal  papillae:  the  common  bile  duct  and  pancreatic  duct  merge  to  establish  

the  hepatopancreatic  ampulla  (ampulla  of  Vater).  The  hepatopancreatic  ampulla  sphincter  

is  a  ring  of  smooth  muscle  that  maintains  the  ampulla  of  Vater  close.     The  absorptive  surface  area  is  increase  through  all  of  the:    

Circular  folds:  ringed-­‐structures,  localize  in  the  mucosa  and  submucosa  

tunic  layers   Villi:  extensions  of  the  duodenum  mucosa  that  project  into  the  lumen.  

Contains  blood  capillaries  and  a  lymph  capillary  (lacteal)  

Brush  border:  simple  columnar  epithelial  cells.  Formed  the  microvilli  o lesser  duodenal  papillae    

o 4  types  of  cells  comprise  the  mucosa  of  the  duodenum   Containing  microvilli:  produce  and  secrete  digestive  enzymes,  also  absorb  

substances  

Page 21: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

Goblet  cells:  generate  and  secrete  mucus  

Granular  cells:  produce  antibacterial  proteins  and  protect  the  duodenum   Endocrine  cells:  produce  and  secrete  hormones  

o Crypts  of  Lieberkühn:  glands  where  the  new  mucosa  epithelial  cells  are  located  

Goblet  and  absorptive  cells  migrate  from  the  crypts  of  Lieberkuhn  to  the  portion  of  the  villus  that  projects  farthest  into  the  lumen  of  the  duodenum.  

Jejunum  and  Ileum    

o Most  absorption  of  nutrients  occurs  in  the  duodenum  and  jejunum    o Ileocecal  sphincter:  smooth  muscle  surrounding  where  the  jejunum  joins  to  the  ileum.  Halt  

or  allow  the  passage  of  chyme  

Small  Intestine  Functions  o Primary  organ  of  nutrient  absorption    o Mucosa  layer  secrete    

Mucus:  secreted  by  duodenal  glands,  intestinal  glands  and  goblet  cells.  Protects  the  wall  from  very  acidic  chyme    

Electrolytes  

Water  o secretion  from  the  liver  and  pancreas  enters  the  small  intestine  (include  enzymes  needed  

to  enable  chemical  digestion).  Secreted  in  response  to  2  hormones  (secretin  and  

cholecystokinin)  o bili  from  the  liver  emulsifies  fats  and  facilitates  their  breakdown  into  biomolecules  o movement  of  chyme    

segmental  and  peristaltic  contractions  move  the  chyme     3-­‐5  hours  are  require  for  food  to  move  through  the  small  intestine   Mechanical  and  chemical  stimuli  stimulate  these  muscles  to  contract.  Also  

stimulate  the  associated  parasympathetic  plexuses.  Example:     Intestinal  wall  distension   Chyme  that  is  hyper-­‐  or  hypotonic  

Chyme  having  low  pH   Products  of  chemical  digestion,  including  amino  acids  and  peptides  

o Peristaltic  contractions  cause  the  ileocecal  sphincter  to  open  and  food  passes  from  the  

jejunum  to  the  ileum  o Absorption  of  nutrients  from  the  chyme    

9  l/per  day  enters  the  small  intestine  almost  everything  is  reabsorb    

Water,  ions,  and  water-­‐soluble  products  of  digestion  are  absorb  into  the  hepatic  portal  system    

Products  of  lipid  metabolism    

o Carbohydrates  digestion     Complex  carbohydrates  are  chemically  broken  down  so  the  products  may  be  

absorb  o Lipid  digestion    

Page 22: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

Mostly  hydrophobic.  Lipid  molecules  cluster  together  in  the  presence  of  water,  

this  make  them  inaccessible  to  digestive  enzymes.     Bili  slats  function  to  emulsify  the  large  lipid  droplets  into  micelles  (lipid  

monolayers).  This  makes  all  the  lipid  molecules  available  to  lipase.    

Resulting  product  is  absorbed  across  the  mucosal  epithelium   Simple  diffusion:  brings  the  products  of  lipid  digestion  inside  the  cell    

o Protein  digestion    

Enzymes  that  breakdown  proteins  (proteases)   Pepsin:  secreted  by  the  stomach     Trypsin,  chymotrypsin,  carboxypeptidase,  and  elastase:  produce  by  the  

pancreas   Complete  digestion  results  in  tripeptides,  dipeptides,  and  amino  acids     Amino  acids  are  passed  on  to  the  blood  within  villi  capillaries  that  then  directs  

them  to  the  hepatic  portal  system     Growth  hormone  and  insulin  instruct  cells  to  uptake  amino  acids.    

o Water  and  absoption  

92%  of  the  water  is  reabsorbed  by  the  small  intestine  and  6-­‐7%  is  absorbed  by  the  large  intestine  

Osmotic  gradients  determine  whether  water  moves  into  or  out  of  the  small  

intestine  o Ion  absorption    o Epithelial  mucosa  cells  utilizes  active  transport  mechanisms  to  acquire  ions  from  the  

chyme  (Na+,  K+,  Ca2+,  Mg2+,  and  PO42-­‐)    

Vitamine  D,  parathormone,  and  calcitonin  influence  Ca2+  absorption     Cl-­‐  flows  via  passive  movement    

• Liver  o Porta:  point  of  entry  or  exit  for  the  blood  vessels,  lymphatic  vessels,  ducts,  and  nerves  o Hepatic  portal  vein:  drains  blood  from  the  gastrointestinal  tract  and  pancreas  to  the  liver  

o Hepatic  artery:  delivers  blood  to  the  liver,  gall  bladder,  pancreas,  stomach,  and  duodenal  portion  of  the  small  intestine  

o Hepatic  artery  proper:  branch  of  common  hepatic  artery  that  runs  alongside  the  portal  

vein  and  common  bile  duct.  (3  structures  form  the  hepatic  triad)  o Common  hepatic  duct:  form  from  the  convergence  of    

Right  hepatic  duct:  drain  bile  from  right  lobe  of  liver  

Left  hepatic  duct:  drain  bile  from  the  left  lobe  of  the  liver     Cystic  duct:  joins  the  gall  bladder  to  the  common  bile  duct  

o Hepatocytes:  liver  cells  that  remove  glucose,  amino  acids  and  other  nutrients  and  store  

glucose,  fat,  and  vitamins  (A,  B12,  D,  E,  and  K)    • Liver  histology    

o Liver  surface   Covered  in  connective  tissue  and  peritoneum   Bare  areas:  portion  of  the  liver’s  surface  that  lack  peritoneum  

Page 23: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

Septa:  function  to  divide  the  liver  (divisions    lobules)  and  provide  support    

Each  lobule  has  a  central  vein  that  drains  the  lobule.  The  4  central  veins  unite  to  form  hepatic  veins  (direct  blood  from  the  posterior  and  superior  liver  surface  to  the  inferior  vena  cava.    

Hepatic  cords:  mass  of  cells  that  form  columns  and  plates.  Made  up  of  hepatocytes.    

Hepatic  sinusoids:  space  between  both  hepatic  cords  and  blood  channels  

• Hepatocytes  roles:  o Bile  production    o Biotransformation    

o Storage  o Production  of  blood  components    

• Hepatocytes  take  up  nutrients  from  the  arteries  and  venous  systemic  blood    

o Oxygen,  amino  acids,  simple  sugars,  and  nucleic  acids.    o Hepatocyte-­‐produce  blood  components  are  secreted  into  the  hepatic  sinusoids  or  the  bile  

canaliculi.    

o Blood  in  the  hepatic  sinusoids  pass  to  the  central  vein  and  then  to  hepatic  veins  that  takes  the  blood  out  of  the  liver  and  into  the  inferior  vena  cava  

o Mixing  of  oxygen-­‐rich  and  oxygen-­‐poor  blood  is  necessary  because  oxygen  from  the  

hepatic  arteries  provides  the  hepatocytes  with  the  capacity  to  generate  ATP  energy  (require  for  active  transport)    

o Bile  (made  of  water  and  bile  salts  and  metabolic  byproducts):  moves  through  bile  

canalicilu  to  the  hepatic  triad  and  then  exists  the  liver  by  moving  through  the  hepatic  ducts.    

• Functions  of  the  Liver  

o Bile  production     Bile  (contains  bicarbonate)  entering  the  duodenum  protects  this  portion  from  the  

acidic  chyme.    

Bile  salts  function  to  emulsify  fats  and  facilitate  chemical  digestion     Bilirubin:  product  of  hemoglobin  degradation    

o Regulation  of  bile  secretion  

Involves  parasympathetic  stimulation     Bile  salts  increased  bile  secretion  (positive  feedback  mechanism)  

o Storage  

Simple  sugars:  glucose  that  will  be  incorporated  into  glycogen     Amico  acids,  fat  and  fat  related  substances,  Vitamins  (A,B12,D,E,  and  K),  Cu+2,  and  

Fe2+  

o Interconversion  of  nutrients  o Detoxification  

Toxic  substances  are  modified  so  they  become  less  toxic  or  nontoxic   Ammonia  is  converted  into  urea    

o Phagocytosis  

Page 24: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

Kupffer  cells  remove  dead  and  dying  red  and  with  cells.  Bacteria  can  also  be  

removed.    o Synthesis  

Albumin,  fibrinogen,  globuline,  heparin  and  blood  clotting  factors.    

• Gall  bladder  o Receives  bile  from  the  liver  via  the  cystic  duct  o Absorbs  water  and  electrolytes    

o Cholecystokinin  causes  smooth  cell  of  the  gall  bladder  to  contract,  causing  the  release  of  bile  into  the  cystic  duct  

• Pancreas    

o Produces  digestive  juices-­‐  secreted  via  exocrine  processes  o Juices  consists  of:  

Aqueous  components  generated  by  columnar  epithelial  cells.  Na+  and  K+  

concentrations  are  similar  to  those  of  extracellular  fluids.  Bicarbonate  is  in  high  concentrations  (functions  to  neutralize  chyme  that  enters  the  small  intestine,  this  increase  pH  that  abolish  pepsin  activity  and  promote  activity  of  digestive  enzymes)    

Digestive  enzyme  components:  produced  by  acinar  cells.  There  are  4  pancreatic  digestive  enzymes    

Proteases:  breakdown  proteins.  Secreted  as  inactive  form  (zymogens)  

Trypsin:  enzyme  enterokinase  converts  trypsinogen  into  the  active  form  

Chymotrypsin  

Carboxypeptidase   Amylase:  break  down  complex  carbohydrates     Lipases:  break  down  lipids    

Deoxyribonucleases  and  ribonucleases:  break  down  DNA  and  RNA  • Regulation  of  Pancreas  Exocrine  function    

o Nervous  and  endocrine  mechanisms  regulate  release  of  pancreatic  juices.  

Parasympathetic  innervation  stimulates  release  of  digestive  juice  rich  in  digestive  enzymes.    

o Secretin  causes  a  bicarbonate-­‐rich,  aqueous  digestive  juice  to  be  form.      

o Cholecystokinin:  release  in  response  to  the  presence  of  amino  acids  and  fatty  acids  in  the  small  intestine  lumen.  Causes  bile  and  pancreatic  juice  (enzyme-­‐enriched)  secretion.  

• Large  Intestine    o Chyme  requires  18-­‐24  hours  to  pass  through  the  large  intestine  or  colon.    o Goblet  cells  secrete  the  mucus  that  lubricates  the  epithelial  surface  and  causes  the  

fecal  matter  to  aggregate.    o Feces  are  made  up  of  water,  undigested  food,  microorganism,  and  epithelial  cells.    

o Flatus  results  from  symbiotic  bacteria  converting  certain  molecules  in  methane  and  hydrogen  gases.    

Page 25: AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la ... · AdvancedHumanPhysiology(( Marines(Acevedo( ( Marimar(de(la(Cruz(The(Kidney((• The(functions(ofthe(kidneys((o Removal(of(metabolic(wastes(from(the(blood

o Chyme  progress  through  the  large  intestine  thanks  to  peristaltic  waves.  Peristaltic  

contractions  result  in  mass  movements,  which  occur  3-­‐4  times  a  day.    o Defecation  reflex  is  initiated  in  response  to  distension  of  the  rectal  wall  caused  by  

feces  moving  through  the  rectum.  These  stretch  messages  cause  parasympathetic  

reflexes  to  stimulate  strong  rectal  contractions  that  causes  defecation.    o Large  intestine  consists  of:  cecum,  ascending  colon,  traverse  colon,  descending  colon,  

and  sigmoid  colon.