ae2104 orbital-mechanics-slides 13

62
1 Challenge the future Flight and Orbital Mechanics Lecture slides

Upload: tu-delft-opencourseware

Post on 25-May-2015

405 views

Category:

Education


1 download

DESCRIPTION

These are the lecture slides to the ninth lecture of the course AE2104 Flight and Orbital mechanics.

TRANSCRIPT

Page 1: Ae2104 orbital-mechanics-slides 13

1Challenge the future

Flight and Orbital Mechanics

Lecture slides

Page 2: Ae2104 orbital-mechanics-slides 13

1AE2104 Flight and Orbital Mechanics |

Flight and Orbital Mechanics

AE2-104, lecture hours 25+26: Launchers

Ron Noomen

October 1, 2012

Page 3: Ae2104 orbital-mechanics-slides 13

2AE2104 Flight and Orbital Mechanics |

Example: Ariane 5

[Arianespace, 2010]

Questions:• what is the

payload of this launcher?

• why does it have 2 stages and 2 boosters?

• what are the characteristics of each stage?

• ….

Page 4: Ae2104 orbital-mechanics-slides 13

3AE2104 Flight and Orbital Mechanics |

Overview

• Ideal single-stage launcher

• Ideal multi-stage launcher

• Real single-stage launcher (gravity, atmosphere)

• Real multi-stage launcher (idem)

• Overall performance (Pegasus)

• Design (Pegasus)

Page 5: Ae2104 orbital-mechanics-slides 13

4AE2104 Flight and Orbital Mechanics |

Learning goals

The student should be able to:• derive, describe and explain Tsiolkovsky’s equation• describe and explain the concept of a multi-stage launcher

and quantify its performance• describe and quantify the performance of a launcher in

realistic conditions, i.e., under the influence of gravity and drag

• make a 1st-order design of a new launcher from scratch• ….

Lecture material:• these slides (incl. footnotes)

Page 6: Ae2104 orbital-mechanics-slides 13

5AE2104 Flight and Orbital Mechanics |

Principles

Principles + performance ideal rocket: partial recap of ae1-102

Page 7: Ae2104 orbital-mechanics-slides 13

6AE2104 Flight and Orbital Mechanics |

Principles (cnt’d)

• vehicle contains payload, structure, propellant• exhaust velocity propellant w• conservation of momentum of system• vehicle accelerates

before

during

afterw

Page 8: Ae2104 orbital-mechanics-slides 13

7AE2104 Flight and Orbital Mechanics |

Principles (cnt’d)

• system = launcher + expelled propellant

• momentum system = constant

Solidification Principle:

• M = instantaneous mass of rocket [kg]• m = expelled (gaseous) mass per unit of time, or mass flow [kg/s]• V = inertial velocity of launcher [m/s]• w = relative exhaust velocity of expelled propellant [m/s]

wmdt

dVMaMF

wdt

dM

dt

dVM

Page 9: Ae2104 orbital-mechanics-slides 13

8AE2104 Flight and Orbital Mechanics |

Ideal single stage rocket

Equation of motion (vacuum, no gravity):

Integration:

Tsiolkovsky’s Equation (a.k.a. ”the rocket equation”)

Note: w = Isp g0

endM

beginMwV ln

wdt

dM

dt

dVM

Page 10: Ae2104 orbital-mechanics-slides 13

9AE2104 Flight and Orbital Mechanics |

Ideal single stage rocket (cnt’d)

Characteristic parameters:

• thrust-to-weight ratio:

• mass ratio:

So:• burn time:

• end velocity

• burnout altitude:

1ln1

0

20

ln0

11

0

000

spIgends

gspIendV

spI

m

endMbeginMbt

endM

beginM

gM

F

Page 11: Ae2104 orbital-mechanics-slides 13

10AE2104 Flight and Orbital Mechanics |

Ideal single stage rocket (cnt’d)

*: impulsive shot: all propellants are ejected in 1 instant

“normal” impulsive shot *

Λ Mbegin / Mend

tb (Isp / Ψ0) (1 – 1/Λ) 0

Ψ0 F / (M0 g0) ∞

Vend Isp g0 ln(Λ)

send g0 Isp2 / Ψ0 (1 – (ln(Λ)-1)/Λ) 0

Page 12: Ae2104 orbital-mechanics-slides 13

11AE2104 Flight and Orbital Mechanics |

Ideal single stage rocket (cnt’d)

Do not forget (cf. ae1-102):

• Ψ0 > 1

• structural loading at burnout

Page 13: Ae2104 orbital-mechanics-slides 13

12AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Definition of parameters:

• Mtotal = total mass (i.e., before firing)

• Mpayload = payload mass ( )

• Mconstr = construction mass ( )

• Mprop = propellant mass ( )

• Mbegin = Mtotal = Mpayload + Mconstr + Mprop

• Mend = Mpayload + Mconstr

Page 14: Ae2104 orbital-mechanics-slides 13

13AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket

0

0

0

ln

ln

exp

totalsp

total prop

totalsp

constr payload

payloadconstr

total total sp

MV g I

M M

MV g I

M M

MM V

M M I g

Page 15: Ae2104 orbital-mechanics-slides 13

14AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 1:

ΔV = 10 km/s, Isp = 400 s, Mconstr/Mtotal = 8 %, Mpayload = 500 kg

• Mtotal = Mbegin = ???

• Mprop = ???

• Mconstr = ???

Page 16: Ae2104 orbital-mechanics-slides 13

15AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 1 (cnt’d):

NO SOLUTION !

Page 17: Ae2104 orbital-mechanics-slides 13

16AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Options:

• reduce required Mpayload

• use engine/propellant with higher Isp

• use lighter construction

• multi-staging

Page 18: Ae2104 orbital-mechanics-slides 13

17AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 2: ΔV = 10 km/s, Isp = 400 s, Mconstr/Mtotal = 8 %, Mpayload = 250 kg

Page 19: Ae2104 orbital-mechanics-slides 13

18AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 3:

ΔV = 10 km/s, Isp = 500 s, Mconstr/Mtotal = 8 %, Mpayload = 500 kg

Page 20: Ae2104 orbital-mechanics-slides 13

19AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 3 (cnt’d):

ΔV = 10 km/s, Isp = 500 s, Mconstr/Mtotal = 8 %, Mpayload = 500 kg

• Mpayload/Mtotal = 0.0502

• Mtotal = Mbegin = 9960 kg

• Mconstr = 797 kg

• Mprop = 8663 kg

• Mprop/Mtotal = 87.0 %

OPTIMAL SOLUTION? FEASIBLE SOLUTION?

Page 21: Ae2104 orbital-mechanics-slides 13

20AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 4:

ΔV = 10 km/s, Isp = 400 s, Mconstr/Mtotal = 4 %, Mpayload = 500 kg

Page 22: Ae2104 orbital-mechanics-slides 13

21AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 4 (cnt’d):

ΔV = 10 km/s, Isp = 400 s, Mconstr/Mtotal = 4 %, Mpayload = 500 kg

• Mpayload/Mtotal = 0.0382

• Mtotal = Mbegin = 13089 kg

• Mconstr = 524 kg

• Mprop = 12065 kg

• Mprop/Mtotal = 92.2 %

OPTIMAL SOLUTION? FEASIBLE SOLUTION?

Page 23: Ae2104 orbital-mechanics-slides 13

22AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 5: no construction mass ………..

Page 24: Ae2104 orbital-mechanics-slides 13

23AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 6a:

ΔV = 5 km/s, Isp = 400 s, Mconstr/Mtotal = 8 %, Mpayload = 500 kg

• Mpayload/Mtotal = 0.1997

• Mtotal = Mbegin = 2504 kg

• Mconstr = 200 kg

• Mprop = 1804 kg

• Mprop/Mtotal = 72.0 %

OPTIMAL SOLUTION? FEASIBLE SOLUTION?

Page 25: Ae2104 orbital-mechanics-slides 13

24AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 6b:

ΔV = 5 km/s, Isp = 400 s, Mconstr/Mtotal = 8 %, Mpayload = 2504 kg

• Mpayload/Mtotal = 0.1997

• Mtotal = Mbegin = 12,539 kg

• Mconstr = 1003 kg

• Mprop = 9032 kg

• Mprop/Mtotal = 72.0 %

OPTIMAL SOLUTION? FEASIBLE SOLUTION?

Page 26: Ae2104 orbital-mechanics-slides 13

25AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Add numbers examples 6a+b:

Example 6a Example 6b total

ΔV [km/s] 5.0 5.0 10.0

Mprop [kg] 1804 9032 10836

Mconstr [kg] 200 1003 1203

Mpayload [kg] 500 2504 500

Mtotal [kg] 2504 12539 12539

stage 2 stage 1

Page 27: Ae2104 orbital-mechanics-slides 13

26AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Compare examples:

Example 1 Example 3 Example 4 Example

6a+b

ΔV [km/s] 10.0

Mpayload [kg] 500

Isp [s] 400 500 400 400

Mconstr/Mtotal [%] 8 8 4 8

# stages 1 1 1 2

Mprop [kg] n.a. 8663 12065 10836

Mconstr [kg] n.a. 797 524 1203

Mtotal [kg] n.a. 9960 13089 12539

Page 28: Ae2104 orbital-mechanics-slides 13

27AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Compare examples:

Conclusion: 50% gain in payload (ratio) !!

Page 29: Ae2104 orbital-mechanics-slides 13

28AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Multi-staging:

Advantages:

• no need to accelerate total construction mass until final velocity upper stages perform more efficiently

o more payload capacity

o more ΔV capacity

Disadvantages:

• more complexity (engines, piping, …)

• more risk (jettison, ignition, …)

Page 30: Ae2104 orbital-mechanics-slides 13

29AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Definition of parameters:

• Mtotal,i = total mass of stage “i” (i.e., before firing)

• Mpayload,i = payload mass of stage “i”

• Mconstr,i = construction mass of stage “i”

• Mprop,i = propellant mass of stage “i”

• Note: Mpayload,i = Mtotal,i+1

Page 31: Ae2104 orbital-mechanics-slides 13

30AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Stage 1 2 3 4

green = payload

Page 32: Ae2104 orbital-mechanics-slides 13

31AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

pgspIV

pconstrMpayloadM

propMconstrMpayloadM

endM

beginM

propMconstrM

beginMpayloadMp

endM

beginMgspIV

1ln0

so

1

then

/

/

define

ln0

:stage single y,Tsiolkovsk

(after [Fortescue, Stark & Swinerd, 2003])

Page 33: Ae2104 orbital-mechanics-slides 13

32AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

pppppp

pp

p

propMpropMp

p

propMp

endM

beginM

propMp

beginM

propMpropMconstrMbeginMp

propMconstrMbeginMpbeginM

propMconstrMbeginMppayloadM

11

)1()1(

1

1

1

1

1

1

1

1

1

:equation sy'Tsiolkovskfor ratio mass

1

1

or

)1()1(

becomeswhich

so

and

Derivation of 4th equation on previous sheet:

Page 34: Ae2104 orbital-mechanics-slides 13

33AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

sip

sgspItotV

si

spIispI

iip

igispIiVtotV

iip

igispIiV

1ln0

so

,

assume

1ln0,

:launcher total

1ln0,

:only i"" stage

(after [Fortescue, Stark & Swinerd, 2003])

Page 35: Ae2104 orbital-mechanics-slides 13

34AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

)}ln()1{ln(0

so

:)derivation (w.o.solution optimal

.....321

:definitionby

NtotPssNgspItotV

NtotPip

ipNpppptotP

(after [Fortescue, Stark & Swinerd, 2003])

Page 36: Ae2104 orbital-mechanics-slides 13

35AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

• #stages typically 3 or 4

• single stage: ΔV/(Ispg0) 1.7 – 2.4 (factor 1.4)

• 4 stages: ΔV/(Ispg0) 2.0 – 5.5 (factor 2.8)

• staging very attractive (for modest P)

• high P: gain multi-staging limited ( 2 stages for Ariane-

5, Delta IV, Titan V, …) real challenge!

N P

Véronique 1 0.044

Ariane-4 2 0.02-0.03

Page 37: Ae2104 orbital-mechanics-slides 13

36AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Question 1

The performance of a rocket (i.e., the ΔV that can be obtained) is determined by the ratio Mbegin/Mend, amongst others. New parameters ”p” and ”σ” can be defined: p=Mpayload/Mbegin and σ=Mconstr/Mprop.

Derive the following equation:

Mbegin/Mend = (1+σ)/(p+σ)

Page 38: Ae2104 orbital-mechanics-slides 13

37AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Question 2

The performance of a rocket (i.e., the ΔV that can be obtained) is determined by the ratio Mbegin/Mend, amongst others. New parameters ”pi” and ”σi” can be defined for each possible stage “i”: pi=Mpayload,i/Mbegin,i and σi=Mconstr,i/Mprop,i.

Derive the following equation which holds for an arbitrary number of stages N (where it is assumed that the parameters σi are equal to “s” for all stages, and the payload fractions of all stages pi are equal to (N)√Ptot (i.e., the Nth root of Ptot):

)}ln()1{ln(0N

totPssNgspItotV

Page 39: Ae2104 orbital-mechanics-slides 13

38AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Question 3

Given the equation

1. What do the various parameters represent?

2. What does the equation express?

3. Make a sketch of the behaviour of ΔVtot/(Isp g0) as a function of parameter N, for the case Ptot = 0.001 and the case Ptot = 0.010 (parameter “s” is equal to 10%). Clearly indicate the

(range of) numerical values for ΔVtot/(Isp g0).

4. Discuss the consequences of increasing N for both cases of Ptot.

)}ln()1{ln(0N

totPssNgspItotV

Page 40: Ae2104 orbital-mechanics-slides 13

39AE2104 Flight and Orbital Mechanics |

Real single-stage launcher

In direction of flight: M dV/dt = F cos(α+δ) – M g sin(γ) - D

[Fortescue & Stark, 1995]

Page 41: Ae2104 orbital-mechanics-slides 13

40AE2104 Flight and Orbital Mechanics |

Real single-stage launcher (cnt’d)

1. Thrust misalignment: α+δ ≠ 0°

(α needed to counteract gravity, δ

for steering cannot be avoided)

2. Gravity loss: γ ≠ 0° (launcher lifts

off in vertical direction

unavoidable)

3. Drag loss: D ≠ 0 (first part of

trajectory through atmosphere

unavoidable)

In direction of flight: M dV/dt = F cos(α+δ) – M g sin(γ) – D

Page 42: Ae2104 orbital-mechanics-slides 13

41AE2104 Flight and Orbital Mechanics |

Real single-stage launcher (cnt’d)

btggV

gspIidealendV

dVgVidealendV

dtM

Ddtg

M

dMwendV

dtM

Ddtg

M

dMwdV

0

)ln(0,

where

,

:nintegratio

:flight vertical

Page 43: Ae2104 orbital-mechanics-slides 13

42AE2104 Flight and Orbital Mechanics |

Real single-stage launcher (cnt’d)

)ln(

:nculminatio until time

11

)ln()(2ln02

1

0

02

:nculminatioat altitude

21

102

11)ln(1

0

02

:burnoutat altitude

11

0

1)ln(0

:burnoutat velocity

spIculmt

gspIculmh

gspIburnouth

gspIburnoutV

• including gravity losses

• w/o drag losses

Page 44: Ae2104 orbital-mechanics-slides 13

43AE2104 Flight and Orbital Mechanics |

Real single-stage launcher (cnt’d)

Data:

• specific impulse Isp = 300 s

• Ψ0 = 1.5

• Λ = 5

Results:w/o gravity with gravity

burn time [s] 160.0

burnout velocity [m/s] 4736.6 3167.0

burnout height [km] 281.4 155.8

culmination time [s] - 482.8

culmination height [km] - 667.0

culmination height for impulsive shot [km]

- 1143.5

Page 45: Ae2104 orbital-mechanics-slides 13

44AE2104 Flight and Orbital Mechanics |

Real single-stage launcher (cnt’d)

Culmination altitudes of single-stage launchers, for Isp = 200 s (left) and 400 s (right). Maximum acceleration = 10g.

Page 46: Ae2104 orbital-mechanics-slides 13

45AE2104 Flight and Orbital Mechanics |

Real single-stage launcher (cnt’d)

Gravity loss: minimize by shifting to horizontal flight a.s.a.p.

Drag loss: minimize by reducing trajectory through atmosphere

CONFLICT !!

Solution 1: start in vertical directory, then turn to (more)

horizontal direction.

Solution 2: use air-launched vehicle.

Page 47: Ae2104 orbital-mechanics-slides 13

46AE2104 Flight and Orbital Mechanics |

Example: Pegasus

Requirements [OSC, 2003]:

• maximum payload 455 kg into LEO

• cost-effective

• reliable

• flexible

• minimum ground support

• multiple payload capability

• short lead time

• (released at 12 km altitude)[OSC, 2010]

Page 48: Ae2104 orbital-mechanics-slides 13

47AE2104 Flight and Orbital Mechanics |

Example: Pegasus (cnt’d)

Pegasus XL mission profile [OSC, 2007]

Page 49: Ae2104 orbital-mechanics-slides 13

48AE2104 Flight and Orbital Mechanics |

Overall performance

[OSC, 2000]

Can we (easily) reproduce these numbers?

Page 50: Ae2104 orbital-mechanics-slides 13

49AE2104 Flight and Orbital Mechanics |

Overall performance (cnt’d)

Specific energy (i.e., energy per unit of mass):

Eorbit = Epot,begin + Ekin,eff – ΔEpot

• Eorbit = total energy in orbit (sum of kinetic+potential)

• Epot,begin = potential energy at launch

• Ekin,eff = effective kinetic energy

• ΔEpot = gain in potential energy

Page 51: Ae2104 orbital-mechanics-slides 13

50AE2104 Flight and Orbital Mechanics |

Overall performance (cnt’d)

Substitution:

2

0 1 2 3

e e

1

2 R 2 Rd g

launch launch

V V V V Va h a h

• μ = gravitational parameter Earth

• a = semi-major axis of orbit

• hlaunch = altitude of launch platform

• V0 = velocity of launch platform

• ΔV1,2,3 = velocity increment delivered by stage 1,2,3

• ΔVd+g velocity loss due to atmosphere and gravity

Page 52: Ae2104 orbital-mechanics-slides 13

51AE2104 Flight and Orbital Mechanics |

Overall performance (cnt’d)

0

cos( )0.463 cos( ) 0.222

cos( )launch

launch

iV

Pegasus carrier:

Pegasus vehicle:

a = f(i, δlaunch, hlaunch, payload mass)

stage Isp [s] Mprop [kg] Mconstr

[kg]

Mbegin [kg]

3 289.3 770 126 Mpayload+Mprop,3+Mconstr,3

2 291.3 3925 416 Mbegin,3+Mprop,2+Mconstr,2

1 295.9 15014 1369 Mbegin,2+Mprop,1+Mconstr,1

velocity L1011velocity Earth

Page 53: Ae2104 orbital-mechanics-slides 13

52AE2104 Flight and Orbital Mechanics |

Overall performance (cnt’d)

[Wertz&Larson, 1991]:

• Drag+gravity losses 1.5-2.0 km/s

• Drag loss: 0.3 km/s

Pegasus: small launcher

• Drag+gravity losses 1.5 km/s

• Drag loss 0.3 km/s

• Gravity loss 1.5 – 0.3 = 1.2 km/s

Page 54: Ae2104 orbital-mechanics-slides 13

53AE2104 Flight and Orbital Mechanics |

Overall performance (cnt’d)

Results for launches due East from KSC (δ=28.5°) and WTR (δ=34.6°):

Page 55: Ae2104 orbital-mechanics-slides 13

54AE2104 Flight and Orbital Mechanics |

Overall performance (cnt’d)

Orbit altitude as a function of carrier velocity (Mpayload = 300 kg, launch at equator):

Page 56: Ae2104 orbital-mechanics-slides 13

55AE2104 Flight and Orbital Mechanics |

Design

Can we (easily) reproduce the overall layout of a launcher?

Example: Pegasus

Page 57: Ae2104 orbital-mechanics-slides 13

56AE2104 Flight and Orbital Mechanics |

Design (cnt’d)

Some data and assumptions:

• 3 stages

• Isp identical for all stages (290 s)

• Mconstr/Mtotal identical for all stages (0.08)

• Vc = 7.784 km/s at h=200 km

• Vearth = 0.464 km/s at equator

• Vcarrier = 0.222 km/s w.r.t. Earth

• Vpegasus,initial = 0.686 km/s

• ΔVideal = 7.784 – 0.686 = 7.098 km/s

Page 58: Ae2104 orbital-mechanics-slides 13

57AE2104 Flight and Orbital Mechanics |

Design (cnt’d)

• Drag loss 0.3 km/s

• Gravity loss 1.2 km/s

1st order approach:

• ΔVideal equally distributed over 3 stages

• Drag loss on account of 1st stage

• Gravity loss equally distributed over 3 stages

• Stage 1: ΔV = 2.366 + 0.3 + 0.4 = 3.066 km/s

• Stage 2 and 3: ΔV = 2.366 + 0.4 = 2.766 km/s (each)

Page 59: Ae2104 orbital-mechanics-slides 13

58AE2104 Flight and Orbital Mechanics |

Design (cnt’d)

Tsiolkovsky’s rocket equation:

0

0

0

ln

ln

exp

totalsp

total prop

totalsp

constr payload

payloadconstr

total total sp

MV g I

M M

MV g I

M M

MM V

M M I g

Page 60: Ae2104 orbital-mechanics-slides 13

59AE2104 Flight and Orbital Mechanics |

Design (cnt’d)

Stage 3:

Mpayload = 455 kg, Isp = 290 s, Mconstr / Mtotal ~ 0.08:

so:

• Mtotal = 1526 kg

• Mconstr = 122 kg

• Mpayload = 455 kg

• Mprop = 949 kg

Next: total mass of stage 3 is equal to payload mass of stage 2.

Page 61: Ae2104 orbital-mechanics-slides 13

60AE2104 Flight and Orbital Mechanics |

Design (cnt’d)

stage 3 stage 2 stage 1

re-eng

[kg]

real

[kg]

Δ

[%]

re-eng

[kg]

real

[kg]

Δ

[%]

re-eng

[kg]

real

[kg]

Δ

[%]

payload 455 455 0.0 1526 1351 12.9 5116 5692 -10.1

constr. 122 126 -3.1 409 416 -1.6 1572 1369 14.8

prop. 949 770 23.2 3181 3925 -19.0 12961 15014 -13.7

total 1526 1351 12.9 5116 5692 -10.1 19649 22075 -11.0

Page 62: Ae2104 orbital-mechanics-slides 13

61AE2104 Flight and Orbital Mechanics |

Further reading

• Koelle, D.E., Cost Analysis of Present Expendable Launch Vehicles as contribution

to Low Cost Access to Space Study. In: (2nd ed.), Technical Note TCS-TN-147

(96), TransCostSystems, Ottobrun, Germany (December 1966).

• Parkinson, R.C., Total System Costing of Risk in a Launch Vehicle. In: 44th

International Astronautical Congress (2nd ed.), AA-6.1-93-735 (16–22 Oct., 1993)

Graz, Austria .

• Isakowitz, S.J.. In: (2nd ed.), International Reference Guide to Space Launch

Systems, American Institute for Aeronautics and Astronautics, Washington DC

(1991).

• “ESA Launch Vehicle Catalogue”, European Space Agency, Paris, Revision 8:

December 1997.

• http://www.orbital.com info on Pegasus, Taurus and Minotaur

• users.commkey.net/Braeunig/space/specs/pegasus.htm

• http://arianespace.com/english/leader_launches/html

• http://www.boeing.com/defence-space/space/delta/record.htm)