orbital mechanics 101, part i

18
Understand basic orbital mechanics and how orbits work Understand the different types of orbits used for different purposes Understand basic principles of Interplanetary Travel mechanics Orbital Mechanics 101, Part I

Upload: gage-hall

Post on 30-Dec-2015

97 views

Category:

Documents


1 download

DESCRIPTION

Orbital Mechanics 101, Part I. Understand basic orbital mechanics and how orbits work Understand the different types of orbits used for different purposes Understand basic principles of Interplanetary Travel mechanics. Newton’s Laws: Gravity. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Orbital Mechanics 101, Part I

Understand basic orbital mechanics and how orbits work

Understand the different types of orbits used for different purposes

Understand basic principles of Interplanetary Travel mechanics

Orbital Mechanics 101, Part I

Page 2: Orbital Mechanics 101, Part I
Page 3: Orbital Mechanics 101, Part I

Newton’s Laws: GravityNewton’s Law of Universal

Gravitation: The force of gravity between two bodies is directly proportional to the product of their two masses and inversely proportional to the square of the distance between them.

F = G M1M2 R2 If we double the distance between

the two masses (R) in the upper part of the figure to (2R) in the lower figure, the gravity force (Fg) is decreased by four (Fg/4).

Page 4: Orbital Mechanics 101, Part I

Spheres of InfluenceA body’s sphere of influence (SOI)

is the surrounding volume in which its gravity dominates a spacecraft. In theory, SOI is infinite. In practice, as a spacecraft gets

farther away, another body’s gravity dominates.

The size of a planet’s SOI depends on:The planet’s massHow close the planet is to the

Sun (Sun’s gravity overpowers that of closer planets)

Page 5: Orbital Mechanics 101, Part I

Escape Velocity Because a body’s size and mass

determine its gravitational pull, escape velocity differs for each object as explained by our pal Newton

F = G M1M2 R2

….Or just think of a baseball

Page 6: Orbital Mechanics 101, Part I

If a baseball player throws a baseball horizontally from a mountain top:Gravity pulls the ball toward the

ground.The faster a ball is thrown horizontally,

the farther it will go before gravity pulls it to the ground.

When an object moves fast enough, it will go far enough as it falls to “miss” the Earth and stay in orbit.

8 Km

5 m

Orbital Motion: Baseballs in Orbit

Page 7: Orbital Mechanics 101, Part I

Orbital Motion: Baseballs in Orbit

For that second of travel, gravity will pull the baseball approximately 5 meters towards the earthFor every 8Km traveled the earth’s surface given that it is curved, drops 5 meters from under the object in motionSo if my baseball is traveling 8Km/sec the distance downward caused by gravity is offset by the curvature drop-off of the earth, hence…. An orbit is sustained

5 Km/sec

8 Km/sec8 Km/sec

5m

12 Km/sec

5 Km/sec 5m

5m

GD

12 Km/sec

Page 8: Orbital Mechanics 101, Part I

Therefore, a baseball thrown fast enough to cover exactly 8 kilometers in the time it takes the ball to fall 5 meters will be in a circular orbit.

Increasing velocity (adding more energy) will make it an elliptical orbit, unless escape velocity is reached

Orbital Motion: Baseballs in Orbit

Page 9: Orbital Mechanics 101, Part I

Orbital Velocity Orbital velocity – the speed an object must maintain to stay in orbit The closer an object is to Earth, the faster it needs to travel to remain in orbit The higher a spacecraft climbs from Earth, the slower it can travel and still

resist gravity

At an altitude of 124 miles the required orbital velocity is just over 17,000 mph (about 27,400 kph). To maintain an orbit that is 22,223 miles above Earth, the satellite must orbit at a speed of about 7,000 mph . That orbital speed and distance permits the satellite to make one revolution in 24 hours.

Page 10: Orbital Mechanics 101, Part I

10

Orbiting Around a Soda CanOn top we have an orbit around a soda can. If we draw a line on the soda can directly

below the orbit we’d get a ground track. If we cut the soda can in half and laid it

flat, the shape of the ground track is as shown in the lower figure.

Page 11: Orbital Mechanics 101, Part I

Non-Rotating EarthHere’s what a ground track would look like for a

non-rotating Earth if we stretch the Earth onto a flat-map projection.

Notice that the ground track is made by a spacecraft in orbit around Earth—this orbit is a great circle.

Page 12: Orbital Mechanics 101, Part I

Add Earth’s Rotation

This is a typical low Earth orbit.

The “map” moves eastward so the second orbit ground track looks like it moved to the west.

Non-Rotating Earth

Rotating Earth

Page 13: Orbital Mechanics 101, Part I

Low-Earth orbit – an orbit up to about 1,240 miles above the Earth Medium-Earth orbit – one with an altitude of about 12,400 miles High-Earth orbit – an orbit at an altitude of about 22,300 miles

Types of Orbits

Page 14: Orbital Mechanics 101, Part I

Types of OrbitsLow Earth Orbit (LEO)• Lowest altitude a spacecraft must

achieve to in order to orbit the Earth (520 km altitude )• Spacecraft in these orbits circle the

Earth approximately every 90 minutes or so.• Used for things that we want to visit often like the

Hubble Space Telescope and the International Space Station• A significant disadvantage is the speed of the

satellite which at 18,000 miles per hour in LEO does not spend very long over any one part of the Earth at a given time.

Apogee

Perigee

Page 15: Orbital Mechanics 101, Part I

Types of OrbitsPolar Orbits•These orbits have an inclination near 90 degrees. •This allows the satellite to see virtually every part of the Earth as the Earth rotates underneath it. •It takes approximately 90 minutes for the satellite to complete one orbit.

90 deg

Page 16: Orbital Mechanics 101, Part I

Types of OrbitsGeosynchronous (Geostationary) Orbits (GEO)• Orbits with a period of about 24 hours.•Since it matches the revolution cycle of the earth, it holds stationary over a given point of the earth’s surface•Disadvantage is the expense in putting a satellite into high orbit nor is it possible to repair it via the space shuttle.•Geosynchronous orbit is over Earth’s equator and is called a Geostationary orbit

Page 17: Orbital Mechanics 101, Part I

Types of Orbits

Page 18: Orbital Mechanics 101, Part I

Understand basic orbital mechanics and how orbits work

Understand the different types of orbits used for different purposes

Orbital Mechanics 101, Part I