aerodynamics and planetary entry - nasa · lemphasis - the effect of aerodynamic errors,...

78
Aerodynamics and Planetary Entry Leslie A. Yates Gary T. Chapman Presented at JPL June 6, 2002 Copyright © 2002 by AerospaceComputing, Inc.

Upload: others

Post on 14-Apr-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Aerodynamicsand Planetary Entry

Leslie A. YatesGary T. Chapman

Presented at JPLJune 6, 2002

Copyright © 2002 by AerospaceComputing, Inc.

Page 2: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Overview

l Background

l Objectives– General description of planetary entry

– Impact of aerodynamics on trajectory

– Review sources of aerodynamic information

– Review status of aerodynamics

l Concluding remarks, issues, and futuredirections

Page 3: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Background

l Extensive interest in the 1960’s to 70’s– Research– Probes to Venus, Mars, and Jupiter

l Renewed interest in the 90’s– Probes to Mars, Stardust, Huygen, Genesis

l Project driven environment leads to:– Erosion of expertise and database– Limits innovation

l Greater demand on aerodynamics– Increased program requirements– Aeroassist to reduce costs

Page 4: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

lGeneral Description of PlanetaryEntry

lDemonstrate role of aerodynamicson planetary entry

lReview sources of aerodynamicinformation

lReview status of aerodynamics ofplanetary entry shapes

Objectives

Page 5: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

l Entry

– Max. loads

– Max. heating

l Special events

– Parachute deployment

l Unplanned events

– Vehicle breakup

Schematic of Planetary Entry

Page 6: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Planar Planetary Entry

l Equations

where

m ˙ V = −qACD + mgsinγ

mV˙ γ = −qACL + mV2

r− g

cosγ

I ˙ ̇ Θ = qAl Cm∑

CL = CL0 + CLα (α − αt )

Cm∑ = Cmα (α − α t ) + Cmq

˙ Θ lV

+

Cm ˙ α ˙ α lV

+ Cmδδ

Page 7: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Point Mass Behavior

l Equations of motion:

l Important events /issues– Maximum q– Maximum heating– Mach at impact /

parachute deploy– Landing footprint

m ˙ V = −qACD + mgsinγ s

mV˙ γ s = −q A CL0 + CLα (α t + αs )[ ] − m

V2

r− g

cosγ s

Page 8: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Oscillatory Behavior

l Equations of Motion

l Stability Criteria

– Static:

– Dynamic:

l Important events / issues– Control system design– Amplitude at impact /

parachute deploy

Cmα < 0

I˙ ̇ θ 0 = qAl Cmαα + Cmq

˙ θ 0lV

+ Cm ˙ α ˙ α 0lV

ρACD

mK < ∂q ∂s

q+

∂Cmα ∂s

Cmα

K = 1CD

−CLα + lσ

2Cmq + Cm ˙ α ( )

Page 9: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Typical Planetary EntryImportant Events / Effects

Impact velocity /parachutedeploy

Maximumdynamicpressure

Maximum heating

Amplitude growth

Minimumamplitude

Impact angle

Mars Pathfinder Data

Page 10: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

lGeneral Description of PlanetaryEntry

lDemonstrate role of aerodynamicson planetary entry

lReview sources of aerodynamicinformation

lReview status of aerodynamics ofplanetary entry shapes

Objectives

Page 11: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Impact of Aerodynamics onTrajectory

l Impact demonstrated using trajectorysimulations

l Conventions and definitions– Coordinate systems used for aerodynamic

forces / moments

– Nondimensionalization of the aerodynamicforces / moments

– Static and dynamic stability

l Simulations - Description and examples

Page 12: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

l Three coordinate systems used to describe motion:inertial, wind, and body

l Forces - two conventions used– Parallel and normal to flight path

Drag, lift, and side force

– Parallel and normal to body axesAxial, normal, and side force

l Moments– Pitching / yawing referenced to body axes and center of

gravity• Static• Dynamic

– Rolling referenced to body axes and center of gravity

Aerodynamic Forces and Moments

Page 13: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Nondimensionalizationl Reduces number of simulation variables, resulting

terms valid over wider range of conditions

l Forces:

l Moments:

l Rates:

l Caution: Various quantities used to nondimen-sionalize variables (l or d, V or 2V)

CD = D0.5ρV2 A

Cm = M0.5ρV2 Ad

˙ α = ˙ α d2V

Page 14: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Coefficient Math Modelsl Aerodynamic coefficients functions of Mach

Number, Reynolds Number, angles, angular rates,control deflections, …

l Look up tables, polynomials, and complicatedfunctions used to model coefficients

Mars Pathfinder Mars 03, Ballistic Range

Page 15: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

l Static stability

– If displaced from equilibrium vehicle tends toreturn to or pass through equilibrium point

l Dynamic stability

– Amplitude of oscillatory motion decreases withtime

l Limit cycle

– Motion approaches constant amplitude

Definitions

Page 16: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Stability – Limit Cycle

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Calculated, 1 Calculated, 2Measured, 1 Measured, 2

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

0.00 0.05 0.10 0.15 0.20

Calculated, 1 Calculated, 2Measured, 1 Measured, 2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25

Angle(deg)

Mach = 1.25Mach = 1.50Mach = 1.75Mach = 2.00Mach = 2.50Mach = 3.00Mach = 3.50

When damping coefficientis nonlinear function ofangle, Mach, complicatedbehaviors occur.

Mars 03 Unstable

Stable, Limit Cycle

Cmq + Cm ˙ α

Page 17: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Trajectory Simulations

l Brief description of simulations

l Examples

– Linear aerodynamics

– Nonlinear aerodynamics

Page 18: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Linear Aerodynamics Simulations

l Six-degree-of-freedom, nonlinear mathmodels

l Density profiles, gravitational forces, androtational rates consistent with Mars

l Vehicle specifications and aerodynamicsconsistent with axisymmetric probeconfigurations

l Shallow entry for longer flight paths andbetter demonstration of effects

l Not modeled - winds, controls

Page 19: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Linear Aerodynamics Simulations(concluded)

l Emphasis - the effect of aerodynamic errors,uncertainties on the entry

l Varied parameters:– Drag, lift coefficient slope, trim lift, trim angle,

moment coefficient slope, damping, roll

l Comparative effects– Forces, moments proportional to dynamic pressure

• 5% variation in density produces similar effect as 5%variation in aerodynamic coefficient

• 5% variation in velocity produces similar effect as 10%variation in aerodynamic coefficient

Page 20: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Drag CoefficientDynamic Pressure, MachLongitude

1° of longitude translates to ≈60 km

Total Angle

Page 21: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Lift Coefficient SlopeAmplitude Dynamic Pressure

Longitude

Page 22: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Trim Lift Coefficient

Altitude Total Angle

Longitude Dynamic Pressure, Mach

Page 23: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Trim Angle VariationLongitude Dynamic Pressure, Mach

Total Angle

Page 24: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Pitching Moment CoefficientAmplitude Dynamic Pressure

Page 25: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Damping Parameter

Longitude

Amplitude Dynamic Pressure

Page 26: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Roll RateAmplitude Dynamic Pressure

Longitude

Page 27: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Summary of Linear AerodynamicsSimulations

l Landing footprint– Drag, Trim Lift, Trim angle have large effect– Moment, Damping, and Roll have little or no effect

l Amplitude– Drag, Trim Lift, Trim angle have little effect– Moment has little effect– Lift slope has small effect– Roll and damping coefficient have large effect

l If effective damping, K, used, position and angularmotion largely independent of each other

K = 1CD

−CLα + lσ

2Cmq + Cm ˙ α ( )

Page 28: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Effects of NonlinearAerodynamics on Trajectory

Page 29: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Nonlinear Aerodynamics Simulations

l Density profiles, gravitational forcesidentical to those used in linearsimulations

l Vehicle specifications identical to thoseused in linear simulations

l Shallow entry for better demonstration ofeffects

l Nonlinearities consistent with observedfor planetary entry vehicles

Page 30: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Drag Coefficient (CD = 1.5 - 2 sin2σ)Dynamic Pressure, MachLongitude

Total Angle

Page 31: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Damping Parameter (Cmq + Cmα = 1.5 eAsin2σ - 0.5 )Amplitude Dynamic Pressure

Longitude

Difference in small angle limitmay be due to modeltumbling and resulting errors

Page 32: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Summary of NonlinearAerodynamics Simulations

l Landing footprint– Nonlinear drag has effect

– Nonlinear moment, lift effect trim angle and trim lift;therefore they will have an effect

l Amplitude– Nonlinear damping coefficients have significant

impact on amplitude

– Impact of other terms small compared to nonlineardamping coefficient

Page 33: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Impact of Accurate AerodynamicInformation

l Reduce risks– Parachute deployment

– TPS

l Improve landing precision– Minimize foot print

l Expand landing alternatives

l Reduce control propellant mass margin

Page 34: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

lGeneral Description of PlanetaryEntry

lDemonstrate role of aerodynamicson planetary entry

lReview sources of aerodynamicinformation

lReview status of aerodynamics ofplanetary entry shapes

Objectives

Page 35: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Aerodynamic Information

l Effects of uncertainties and nonlinearitiesin aerodynamic coefficients demonstrated

l Sources

– Types

– Availability

– Accuracy

Page 36: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Sources of AerodynamicInformation

l Theories

l Computational Fluid Dynamics – CFD

l Ground based experiments

– Wind tunnels

– Ballistic ranges

l Flight tests

Page 37: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Theories

l Inexpensive

l Limited to high Mach number

l Poorly known and not understood

l Useful in some cases for quick estimatesand trends

l Not validated in all cases

l Examples– Free molecular– Newtonian

Page 38: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

CFD

l For simple configurations provides goodresults for static aerodynamics

l Not thoroughly validated

l Not readily used by non-expert

l Dynamic parameters untried and could beexpensive

l Examples:– Euler - Inviscid– Navier Stokes - Viscid– Navier Stokes - Real Gas

Page 39: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Ground Based Experiments

lWind tunnels

– Standard approach

lBallistic ranges

– More versatile

– Under appreciated

Page 40: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Wind Tunnels

l Many readily available

l No real gas effects

l Wall effects at transonicMach numbers

l Sting effects in lowsupersonic / transonicMach range

l Dynamic testingdifficult / expensive

StingM

Page 41: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Ballistic Ranges

l Overview given since community is less familiar withthese types of facility

l Experimental approach– Free flying model

– Trajectory measurements obtained from series of orthogonalshadowgraphs taken at known times

l Facility– Range & Launcher

• Small model in sabot• Wide range of Mach, Reynolds numbers• Various gases, real gas effects

– 6 DOF, nonlinear data analysis

Page 42: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

NASA Ames HFFAFModel Assortment

Test section interiorTest section exterior andshadowgraph film planesLight-gas gun

Images courtesy of NASA Ames Research Center

Page 43: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Eglin AFB’s ARF

Schematic of the AeroballisticResearch Facility

Interior

Page 44: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Ballistic Range Data

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.05 0.10 0.15 0.20 0.25 0.30

time

Calculated, 1 Calculated, 2Measured, 1 Measured, 2

0

10

20

30

40

50

60

70

80

90

100

0.00 0.05 0.10 0.15 0.20 0.25 0.30time

Calculated, zCalculated, yMeasured, zMeasured, y

SampleShadowgraph Projected angular and swerve motion

Data from Eglin AFBAerodynamic Research Facility

Page 45: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Modern 6-DOF Analysis ofBallistic Range Data

Page 46: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Parameter Estimationl Coefficients found by fitting

calculated trajectories toexperimental measurements

l Trajectory defined by 12, firstorder, coupled, nonlineardifferential equations in threecoordinate systems

l Unknown parameters: nonlinearaerodynamic coefficient termsand initial conditions

l Differentiating equations ofmotion with respect to unknownsprovide method for estimatingcorrections

l Trajectory calculated, correctionsto unknowns estimated, trajectoryre-calculated. Process repeateduntil convergence criteria met

l Single / multi fits

l Error estimates available

Drag: ˙ V = − ρAV2

2m CD − gsinθw

˙ x E = V cosθw cos ψw

Rolling Moment: ˙ p = ρAlV2

2IzCp + Izx

Iz˙ r + pq( ) +

Iy − Iz( )Iz

rp˙ φ w= pw + qw sinφw + rw cos φw( ) tanθw

Pitching, yawing ˙ α = q − qw sec β − p cosα +r sin α( ) tanβmoment: ˙ β = rw secβ + p sinα − rcos α

˙ q = ρAlV2

2IyCM + Izx

Iyr2 − p2( ) +

Iz −Ix( )Iy

rp

˙ r = ρAlV2

2IzCN + Izx

Iz˙ p − qr( ) +

Ix − Iy( )Iz

pq

Lift: ˙ y E = V cos θw sin ψw

˙ z E = −V sin θw˙ θ w= qw cos φw − rw sin φw˙ ψ w= qw sinφw + rw cos φw( ) sec θw

where qw = ρAV2m CL − g cosθw cos φw

rw = − ρAV2m CY + gcosθw sin φw

pw = p cosα + r sin α( ) cosβ + q − ˙ α ( ) sinβ

Equations (6-DOF)

Page 47: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Parameter Identification - Example

-0.40

-0.20

0.00

0.20

0.40

0.00 0.05 0.10 0.15 0.20 0.25 0.30

20

30

40

50

60

0.00 0.05 0.10 0.15 0.20 0.25 0.30

-500

-400

-300

-200

-100

0

100

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Direction sines vs. time

Swerve vs time

Down range distance vs time

CD = CD0 +CD1 + CD3 + CD4 M − 1( )[ ]sin2 α

1 + CD2(M − 1)2

M − 1( )

CL = CL1 +CL2 sin2 α

1 + CL3 sin2 α

sinα

Cm = Cm1 + Cm2 M − 2.5( ) +Cm3 sin2 α

1 + Cm4 sin2 α

sinα

Cmq = Cmq,0 + Cmq,1

exp −Cmq,2 MCmq,3 s in2 α

1 + Cmq,4 M − 1( )[ ]6

Coefficient Expansions

Moment

Damping

Lift

Drag

Page 48: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Sample Ballistic Range Results (MER)

CD = CD0 +CD1 + CD3 + CD4 M − 1( )[ ]sin2 α

1 + CD2(M − 1)2

M − 1( )

c.g. CD0 CD1 CD2 CD3 CD4 x rms (ft)

0.27D 1.327 0.641 8.31 -1.369 -1.92 0.0234± 0.005 0.028 0.40 0.055 0.06

Resultsc.g. CL1 CL2 CL3 y, z rms (ft)

0.27D -1.650 75.02 142.6 0.008± fixed 3.40 fixed

Results

Drag Lift

CL = CL1 +CL2 sin2 α

1 + CL3 sin2 α

sinα

Page 49: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Sample Ballistic Range Results (MER)

Moment Damping

Cm = Cm1 + Cm2 M − 2.5( ) +Cm3 sin2 α

1 + Cm4 sin2 α

sinα

c.g. Cm1 Cm2 Cm3 Cm4 α rms (°)

0.27D -0.1049 0.00000 0.95 160.6 1.36± fixed fixed 0.02 fixed

Resultsc.g. Cmq,0 Cmq,1 Cmq,2 Cmq,3 Cmq,4 α rms (°)

0.27D -0.298 1.177 5.73 4.37 0.40 1.32fixed 0.123 2.77 0.56 fixed

Results

Cmq = Cmq,0 + Cmq,1

exp −Cmq,2 MCmq,3 s in2 α

1 + Cmq,4 M − 1( )[ ]6

Page 50: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Other Applications of Modern6-DOF Analysis Tools

l Vertical Wind Tunnel

l Flight Tests

– Helicopter Drop Tests

– Atmospheric Entry

Page 51: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Flight Tests

l Expensive

l Can be dangerous for lifting bodies

l Time consuming

l Data acquisition difficult

l Analysis subject to unknowns– Winds

– Atmospheric properties

Page 52: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Summary of Data Sourcesl Theory

– Limited

l CFD– Good capability– Validation required in some areas– Need to develop capability for damping

l Ground based testing– Wind tunnels - good static aerodynamics but limited in

damping, real gas– Ballistic ranges - good static and dynamic aerodynamics

for wide range of conditions but model size limited andno onboard instrumentation

l Flight testing– Expensive– Unknown or variable atmospheric conditions

Page 53: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

lGeneral Description of PlanetaryEntry

lDemonstrate role of aerodynamicson planetary entry

lReview sources of aerodynamicinformation

lReview status of aerodynamics ofplanetary entry shapes

Objectives

Page 54: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Aerodynamicsby Flight Regime

Page 55: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Flight Regimes

l Free molecular

l Transition

l Continuum

– Entry• Hypersonic

– After maximum dynamicpressure

• Supersonic

• Transonic

• Subsonic

Page 56: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

l Knudsen number:

l Theory – Free molecular flow

l Direct Monte Carlo simulation – DMS

l Ground base facilities non-existent

l Accuracy not critical in many cases

Free Molecular Regime

Kn = λ d > o(1)

Page 57: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Free Molecular Flow

l Molecules hit surface and are reflected ina specular or diffuse manner with nocollisions

l Example-Sharp cones

– Specular reflection

– No reflection

l Type of reflection depends on surface

CD0= 4sin2 θ

CD0= 2s in2 θ

Page 58: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

l Knudsen number:

l Direct Monte Carlo simulations-DMS

l Low Reynolds number CFD

l Empirical bridging functions

l Experimental facilities non-existent

Transition

Kn = λ d ≅ o(1)

Page 59: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

l Knudsen number:

l Mach number:

l Theory– Newtonian

• Normal component of momentum converted to pressure• Mach number independent• Capable of calculating both static and dynamic coefficients

l CFD

l Ground based experiments– Wind tunnel

– Ballistic range

Continuum Entry-Hypersonic

Kn = λ d << o(1)

M = V a > 5

Page 60: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Examples ofHypersonic

Aerodynamics

Page 61: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Drag and Lift on Simple Shapes(Mach > 5)

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80

Newtonian, Rn/Rb = 0.0Newtonian, Rn/Rb = 0.6Newtonian, Rn/Rb = 0.95Conical Flow TheoryBlunt Cone DataSharp Cone Data

CD

0

Cone Angle

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2

Newtonian TheoryConical Flow TheoryBlunt Cone Data

CLα

CD 0

Lift: CLα = CPmax - 2CDDrag

Page 62: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Center of Pressure (Mach > 5)

-2

-1

0

1

2

3

4

0 20 40 60 80

Sharp ConeSphere SegmentBlunt Cone

xC

p / r b

Cone Half Angle

Page 63: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Dynamic Stability

For Sharp Cones

where

Based on reference length l and l /V (not l / 2V )

Cmqx= Cmq0

+ CNq0

xl

− Cmα0

xl

− CNα0

xl

2

Cm ˙ α x≡ 0

(plunging motion)

Cmq0= − 1 + tan2 θ( ), Cmα0

= −4 / 3

CNα0= 2

1 + tan2 θ, CNq0

= +4 / 3

Cmqx< 0 for large cone angles

Page 64: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Ballistic Range DataMars Smart Lander, Axisymmetric Configuration

(CO2, M ≈ 18, NASA Ames Research Center)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 5 10 15α

Single FitsMulti Fit

-0.040

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.0000 5 10 15

α

Single FitsMulti Fit

-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.000 5 10 15

RMS Pitch Angle

Single FitsMulti Fit

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.000 5 10 15

RMS Pitch Angle

Single FitsMulti Fit

Page 65: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Supersonic/Transonic

l Mach number:

l No theories for blunt bodies

l CFD– Used extensively

– Not used for dynamics, could be expensive

l Ground based experimental– Wind tunnel

– Ballistic range

5 > M > 0.6

Page 66: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Examples ofSupersonic/Transonic

Aerodynamics

Page 67: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Available Data Sets

l Pre 1975– Early research

– PAET /Voyager/Viking

l Post 1985– Huygens Probe

– Stardust

– DS-2

– Genesis

– MER

– Mars Smart Lander

Page 68: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Stardust Ballistic Range Data (Air, Mach ≈ 2)

Axial Force vs Angle of Attack

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 5 10 15

Axi

al F

orce

Coe

ff, C

X

Ames (Re_d =1.55e+06)Eglin (CG = 0.35),Re_d = 3.10e+06

Damping Moment vs Angle of Attack

-1.50

-1.00

-0.50

0.00

0.50

0 5 10 15

Angle of Attack, Deg

Dam

ping

Coe

ff, C

mq

Ames (Re_d = 1.55e+06)

Eglin (CG=0.35), Re_d =3.10e+06Eglin Error Bound

Error Bound

Pitching Moment vs Angle of Attack

-0.040-0.035-0.030-0.025-0.020-0.015-0.010-0.0050.000

0 5 10 15

Angle of Attack, Deg

Ames (Re_d =1.55e=06)Eglin (CG=0.35),Re_d = 3.10e+6

Normal Force vs Angle of Attack

00.010.020.030.040.050.060.070.08

0 5 10 15

Nor

mal

For

ce C

oeff,

CN

Ames (Re_d =1.55e+06)Eglin (CG=0.35,Re_d=3.10e+06)

Page 69: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Stardust Ballistic Range Data (Air, Mach ≈ 2)

Lift vs Angle of Attack

-0.40-0.35-0.30-0.25-0.20-0.15-0.10-0.050.00

0 5 10 15

Angle of Attack, Deg

Lift

Coe

ff, C

L

Nom. Re_d=1.55e+06

Nom. Re=0.27e+06

Pitching Moment vs Angle of Attack

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0 5 10 15

Angle of Attack, Deg

Pitc

h M

omen

t Coe

ff, C

m

Nom. Re_d=1.55e+06

Nom. Re_d=0.27e+06

Damping vs Angle of Attack

-1.50

-1.00

-0.50

0.00

0.50

0 5 10 15

Angle of Attack, Deg

Dam

ping

Coe

ff, C

mq

Nom. Re_d=1.55e+06

Nom. Re_d=0.27e+06

Drag vs Angle of Attack

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 5 10 15

Angle of Attack, Deg

Dra

g C

oeff,

CD

Nom. Re_d=1.55e+06

Nom. Re_d=0.27e+06

Page 70: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Ballistic Range Pitch Damping Data (Air, Mach ≈ 2)

-1

-0.8

-0.6

-0.4

-0.2

0

-20 -15 -10 -5 0 5 10 15 20Angle of Attack, degrees

-0.5

0

0.5

1

1.5

2

2.5

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

4.88° 0.175.55° 0.236.41° 0.337.66° 0.287.69° 0.247.89° 0.368.64° 0.23

9.00° 0.26 9.62° 0.2211.94° 0.4612.66° 0.3714.31° 0.3516.50° 0.1219.50° 0.28

αm Rex10-6 α

m Rex10-6

M∞

Pre 1975

Blunt Probes Linear Results

Post 1985

Huygen’s Probe Noninear Results

Page 71: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Impact of Afterbody on Dynamics (Air, Mach ≈ 2)

Stardust-TB: Damping vs. Angle of Attack

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0 5 10 15

Angle of Attack, deg

Dam

ping

Coe

ff, C

mq

Stardust-TB

Stardust-RB

Stardust-S

TB

RB

S

Page 72: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 5 10 15 20 25 30

P = 110 mmP = 40 mmExperiment

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30

P = 110 mmP = 40 mmExperiment

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0 5 10 15 20 25 30

RMS Pitch Angle

P = 110 mmP = 40 mmExperiment

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0 5 10 15 20 25 30

RMS Pitch Angle

P = 110 mmP = 40 mmExperiment

Pre-testCFD

Ballistic Range DataMars Smart Lander, Tabbed Configuration

CO2, Mach = 2.6, NASA Ames Ballistic Range

Page 73: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Ballistic Range DataMars Smart Lander, Tabbed ConfigurationMach = 2.6, NASA Ames Ballistic Range

PITCH DAMPING

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

10 15 20 25

RMS Pitch Angle

M3C, C02

M3C, AIR

M3C, Mix

Page 74: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Summary of Super/TransonicAerodynamics

l Static aerodynamics– Well understood

l Dynamic aerodynamics– Strong base effects that are not understood

– Potential gas dependence

l Tools– CFD, wind tunnels, and ballistic ranges needed

for high quality data base

Page 75: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Subsonic Aerodynamics

l Mach number:

l No theories

l CFD– Not used for dynamics, would be expensive

l Ground based experimental– Wind tunnel

• Difficult for dynamics• Sting effects

– Ballistic range• Difficult at low speeds

M < 0.6

Page 76: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Summary of Aerodynamicsl Free molecular

– Reasonably well understood– Accuracy not critical

l Transition– DMS and low Reynolds number CFD plus bridging

functions give reasonable estimates

l Continuum hypersonic– Statics: well understood– Dynamics: validated theory and CFD required

l Supersonic - Transonic– Statics: reasonably well understood– Dynamics: strong base effect; possible gas effect

l Subsonic– Shortage of data– Required only for missions without drogues / parachutes

Page 77: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Concluding Remarks

l Aerodynamics plays major role in shapingtrajectory

l Accurate aerodynamics database reduces foot-print size and reduces control fuel mass margins

l Aerodynamic understanding can provide missiondesign flexibility

l CFD, wind tunnels, and ballistic ranges all have arole in database generation

l Today’s project driven environment limitsinnovation and is eroding expertise base

Page 78: Aerodynamics and Planetary Entry - NASA · lEmphasis - the effect of aerodynamic errors, uncertainties on the entry lVaried parameters: – Drag, lift coefficient slope, trim lift,

Leslie A. Yates(650) [email protected]

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Issues and Future Directions

l Loss of expertise– Develop user friendly training tools– Train new personnel

l Database erosion– Develop user friendly tool kits containing database,

theory and simple CFD, and access tools for morecomplicated CFD

l Gaps in aerodynamic database– Pitch damping

• Understand base effects• Determine effect of gas composition• Validate Newtonian Theory• Develop CFD approach / program