a.gektina) a. belskyb) a.vasil’evc) · scintillation efficiency improvement by mixed crystal use...

38
Scintillation efficiency improvement by mixed crystal use A.Gektin a ) , A. Belsky b) , A.Vasil’ev c) a) Institute for Scintillation Materials, 60 Lenin Ave., 61001 Kharkiv, Ukraine b) Institut Lumière Matière, UMR5306 Université Lyon 1CNRS, Université de Lyon, Villeurbanne, 69622, France c) Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory 1(2), 119991, Moscow, Russia

Upload: others

Post on 22-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Scintillation efficiency improvement by mixed crystal use

    A.Gektina),   A. Belskyb),   A.Vasil’evc)

    a)Institute for Scintillation Materials, 60 Lenin Ave., 61001 Kharkiv, Ukraineb)Institut Lumière Matière, UMR5306 Université Lyon 1‐CNRS, Université de Lyon, 

    Villeurbanne, 69622, Francec)Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 

    Leninskie Gory 1(2), 119991, Moscow, Russia

  • Motivation and outlines

    • Can we use advantages of the last years theoretical studies for some practical use?  We mean the model of thermalisation stage responsibility for the later survival of electron excitation

    • What is following from the general model? How to apply  this knowledge to doped crystals?

    • Can we manage the thermalization distance by :– doping (rare solutions)– move to the mixed crystals (heavy solutions)

    • Experimental data… old data, last results,  perspectives

    • Alternative mechanisms

  • 2 4 6 8 10 12 140

    40

    80

    120

    Lu2S3:Ce

    SrI2:Eu

    LuI3:Ce

    Gd2O2S:Tb

    LiI:Eu

    NaI (80K)

    NaI:Tl LaCl3La C l3

    CsILaBr3

    ZnS:Ag

    bromides oxides fluorides sulfides chlorides iodides

    β=2.5

    band gap Eg (eV)

    Phot

    on Y

    ield

    (pho

    tons

    /keV

    )

    LSOCaF2:Eu

    P.Dorenbos, SCINT, 2009

    Scintillator efficiency:

    Nph = β S Q

    β =heE

    E

    γ

    Eγ quantum energyEe-h = ~ 2.4 EgS energy transfer efficiencyQ luminescence center efficiency

    Maximal Maximal scintillatorscintillator light yieldlight yield

    Q is ~ 1 for many typical activators, Ce, Eu etc

    S is also ~1 for many hosts.

    1-5% of uniform distributed activator minimizes the transfer length to 2-5 a (lattice parameters)

    β – e-h creation efficiency is a key to the new material search and investigation

  • Primary stages of scintilltion(track formation and energy relaxation)

    Main contributors to the track theory developments :Main contributors to the track theory developments :

    • R.T.Williams, …. see ‐ SCINT – O2.9, O2.19, O6.6• A.N.Vasil’ev… see – SCINT – O5.6, O5.9• S.Kerisit, Z.Wang,  F.Gao…• A.Canning … see –SCINT – O7.5• V.Nagirnyi, M.Kirm… See – SCINT ‐ O2.2• W.Setyawan… et al

  • Q

    S

    β

    Capture by defects

    Capture by defectswhd

    Density-dependent STH+e→STEreactionweh-ex

    Ionization by fast electrons, e-einelastic scattering, Auger cascade

    elec

    tron

    s

    hole

    s exito

    ns

    STH

    s STE

    s

    γ

    Thermalization, formation of track structure

    Density-dependent STE-STE quenching;Thermal STE quenching; STE quenching on

    defects wexq

    ~90%~10%~90%

    STE emission wexr

    10–14 s

    10–11 s

    10–8 s

    t

    Scintillation process; from the absorption to photon emission

    Nph = β S Q A.Vasil’ev, A.Gektin - O5.6 (yesterday)

  • 6

    R

    R0

    3D3DRecombination probabilityP

    R0 R

    1R/R0

    ⎩⎨⎧

    ><

    =00

    0

    ,,1

    RrrRRr

    Peheh

    ehBlack sphere

    ( )ehOns rRP −−= exp1

    TkRe

    BOns

    2

    Coulomb

    ε=5.7 T=300K ROns=10 nmT=77K ROns=38 nmT=10K ROns=300 nm ???

    For thermalized excitations ROns/reh

  • Spatial distribution of thermalized electrons (binary crystals)

    E0

    r, nm

    CsI

    ROns, 300K Yield, 300K Yield, 77K

    CsI 9.87 nm 0.24 0.44NaI 9.05 nm 0.34 0.58

    0 1 2 3 4 5 60.0

    0.2

    0.4

    0.6

    0.8

    1.0

    CsI NaI

    Rec

    ombi

    natio

    n yi

    eld

    Electron kinetic energy, eV

    Yield vs Ekin, 300K

    Analytical estimation

    ROns, 77K

    ROns, 300K

    ROns, 10K

    0 100 200 300 400 500 600 700 80010-4

    10-3

    10-2 NaI CsI

    Spa

    tial d

    istri

    butio

    n, n

    m-1

    r, nm

    See Vasil’ev, O5.6

  • Electron‐hole separation and recombination

    Thermalization

    Diffusion of thermalized carriers

    Geminate recombination Bimolecular recombination and escape

  • Electron‐hole separation and recombination

    Thermalization

    Diffusion of thermalizedcarriers

    Geminate recombination Bimolecular recombination and escape

    1 2 3 4 5

    0.2

    0.4

    0.6

    0.8

    1.0

    stochastic e‐hrecombination & escape

    geminate e‐hrecombination

    Thermalization length / Onsager radius

  • How we can manage thermalization length?

    Two ways for e-h separation management

    • Doped/activated crystals (rare solutions)

    • Mixed crystals (hard solutions)

    What we have to do to improve the yield?

    The goal is to concentrate e-h pairs at the distance less then Onsager radius, to minimize the volume of stochastic recombination and escape losses.

    Z. Wang, Y. Xie, B. D. Cannon… 2011

    See also S.Gridin…O5.9

    N

    ROns RROns

  • ( ) ( )

    ,4ln3Ei2

    tanh~

    241

    4ln1

    2tanh

    ~

    38

    0

    2

    0*

    2

    22

    0*

    20

    2,

    0

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛Ω⎟

    ⎟⎠

    ⎞⎜⎜⎝

    ⎛ Ω⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=

    Ω′

    Ω′⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛Ω

    ′⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛ Ω⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛= ∫

    Ω

    LO

    e

    B

    LO

    eB

    E

    LOLOLOB

    LO

    eBeLOe

    ETkmm

    a

    EdE

    ETkmm

    aEle

    LO

    h

    h

    hhh

    h

    h

    ε

    ε

    Coupled processes of thermalization and spatial diffusion

    Mean square of the thermalization distance

    Spatial distribution function

    where thermalization length is

    ( )( ) EdESEDr

    e

    kine

    kinee

    E

    E

    R

    EE′

    ′′

    =>< ∫→0

    062

    ( )( )( ) ( )⎟

    ⎟⎠

    ⎞⎜⎜⎝

    ⎛−=

    02

    2

    03

    2

    0 23exp63,

    eeeeee El

    rElrElrf

    π

    ( ) TkEee BerEl →>

  • Possible mechanisms of reduction of electron‐hole separation in solid solutions

    Modification of hot stage of relaxation o Modification of phonon spectrum (additional phonon 

    branches)o Modification of electron spectrum – increasing of elastic 

    scattering (Bragg scattering in case of regular crystal)

    Modification of diffusion of thermalizedcarriers

    o Non‐uniformity of solution (in particular, clusterization) and scattering

    o Anderson localization of carriers in disordered systems

  • Modification of phonon spectrum (additional phonon branches)

    0 10 20 30 40 50 60 700.00.20.40.60.81.00.00.20.40.60.81.00.00.20.40.60.81.00.00.20.40.60.81.00.00.20.40.60.81.0

    0 10 20 30 40 50 60 70

    x=1

    ELO, meV

    x=0.75

    x=0.5

    Den

    sity

    of L

    O s

    tate

    s

    x=0

    x=0.25

    Density of LO states

    Mixed – AxB1-xC crystal model

    0.0 0.2 0.4 0.6 0.8 1.00

    5

    10

    15

    20

    25

    Solid solution of binary crystalsAxB1-xCELO(AC)=50 meVELO(BC)=10 meV

    Mea

    n th

    erm

    aliz

    atio

    n le

    ngth

    , nm

    x

    Electron kinetic energy 0.5 eV 1 eV 3 eV 5 eV

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Pro

    babi

    lity

    of g

    emin

    ate

    reco

    mbi

    natio

    n

    x

    Electron kinetic energy 0.5 eV 1 eV 3 eV 5 eV

    Solid solution of binary crystalsAxB1-xCELO(AC)=50 meVELO(BC)=10 meV

    Mean thermalization length vs X concentration

    Probability of geminate recombination

    Thermalizationlength decrease

    Recombination probability increase

  • Modification of electron spectrum – increasing of elastic scattering (Bragg scattering in case of regular crystal)

    0.0 0.2 0.4 0.6 0.8 1.00

    5

    10

    15

    20

    25

    Solid solution of binary crystalsAxB1-xCELO(AC)=50 meVELO(BC)=10 meV

    Mea

    n th

    erm

    aliz

    atio

    n le

    ngth

    , nm

    x

    Electron kinetic energy 0.5 eV 1 eV 3 eV 5 eV

    0.1

    1

    0 5 10 15 20 25

    Solid solution of binary crystals AxB1-xC ELO(AC)=50 meV ELO(BC)=10 meV

    0.05

    Mean distance 1/2 (nm)

    Ele

    ctro

    n en

    ergy

    (eV)

    x=0 x=0.5 x=0.95 x=1

    kBT

  • 15

    Scintillator kinetics

    ln(I)

    t

    Luminescence quenching due to interaction in the regions with high concentration of

    excitations

    Long component (migration)

    Rising part(migration)

    Modification of kinetics in scintillators

    M. Moszyński, et al. Study of Pure NaI at RT and LNT, IEEE TNS 2003

    ( )B

    ttAI +

    + 201~

    Essentially non-exponential decay kinetics for pure NaI

  • From the theory to experiment

    • The database… Old and new experimental data

    • The yield and decay kinetics analysis…• Selection of proper experimental conditions (the same growth and components, activator content structure etc)

    • No “masked phenomena”

  • Mixed halides.   CsI‐CsBr

    A. Gektin, N. Shiran, V. Shlyahturov and A. Belsky, Proceedings of SCINT’95, Delft, 1995

    UV-luminescence decay kinetics in doped CsI crystals. 1 – CsI; 2 –CsI-RbI; 3 – CsI-CsCl; 4 – CsI-CsBr.

    A.N. Belsky, A.V.Gektin, V.V.Mikhailin et al., Preprint ISC-91-3, Kharkov, 1991

    First note – 1987

    (Kubota… Gektin, Shiran)

    Fast CsI scintillator…

  • Mixed halides.   CsI‐CsBr

    3.0 3.5 4.0 4.5 5.0 5.5

    1 - CsI-10%CsBr2 - CsI- 1%CsBr3 - CsI-99%CsBr

    321

    Люминесценция

    (отн

    .ед.

    )Энергия фотона (эВ)

    Inte

    nsity

    , a.u

    .Photon energy (eV)

    A.N. Belsky, A.V. Gektin et al., Proceedings of SCINT’95, Delft, 1995

    X-ray emission spectra and decay kinetics of CsI1-xBrx solid solutionsC

    OU

    NT

    S

    TIME (ns)

    1988

  • 19

    ( )( ) ( ) ( )( ) ( )rdd

    r

    rlum

    tRn

    tnntIτπ

    ττ erf

    321

    exp,3

    0

    20

    0

    −+

    −=

    r

    rr

    0 1 2 3 4 5

    0.001

    0.01

    0.1

    1

    10 Ilum(t)

    t/τr

    n0Rd-d3=1010.10.01

    Dipole-dipole transfer:

    M. Kirm et al, PRB 79, 233103 (2009)

    Rd‐d=2.1 nm for CdWO4

    R.T.Williams et al, PSS(b) 248, 426 (2011)

    Rd‐d=2.9 nm for CsI

    Interaction of excitations in the regions with high excitation concentration

    M. Kirm, V.Nagirnyi O2.2

    0 20 40 60 80 1000

    1x104

    2x104

    3x104

    4x104

    0 20 40 60 80 100

    101

    102

    103

    104CsI–1% BrCsI–10% Br

    Time, ns

    N

    Time, ns

    lgN

    (2005)CsI-CsBr (data reconstruction)

    * Pulse intensity increase withsimultaneous decay time shortening

    • Similar behavior for CsI:CsCl

    • Problem is the limited solubility

  • Mixed fluorides:  CexLa1‐xF3

    10 20 30 40 500

    1x105

    2x105

    3x105

    4x105

    0 20 40 60 80 1000

    1x105

    2x105

    3x105

    4x105CexLa1-xF3

    Inte

    nsity

    , a.u

    .

    Time, ns

    Ce 0.05% Ce 1% Ce 10% Ce 50% CeF3

    CeF3Ce concentration, %

    LaF3

    Pulse shape and decay kinetics of CexLa1-xF3

    X-ray excitation (10 keV).Left – original linear scale data; right –intensity vs cation mixture rate.

    A.N. Belsky, A.V. Gektin et al., Proceedings of SCINT’95, Delft, 1995

  • Mixed halides 20 years late

    Emission spectra under UV excitation0,0 0,2 0,4 0,6 0,8 1,0

    0

    20

    40

    60

    80

    100

    120

    140

    LaBr3

    activator CeCl3 activator CeBr3 R

    elat

    ive

    light

    out

    put,

    %

    molar ratio of LaCl3/LaBr3LaCl3

    GE Research

  • Sulphides:   Ca1‐xSrxS

    Се3+ luminescence spectra for the solid solution (mixed crystals) of Ca1-xSrxS at X-ray excitation (30 kW, 10 mA)

    0,0 0,2 0,4 0,6 0,8 1,06,0x102

    8,0x102

    1,0x103

    1,2x103

    1,4x103

    1,6x103

    Inte

    nsity

    , a.u

    .

    Sr concentrarion, %

    Ca1-xSrxS: Ce

    X-ray

    Intensity (curve 1) of X-ray luminescence of ZnxCd1-xS-Ag and phosphorescence kinetics (2) from CdS concentration

    [ A.Gurvich – in Russian -А.М.ГурвичРентгенолюминофоры и рентгеновскиеэкраны. М., Атомиздат, 1976]

    1976 !

    [A. Belsky et al., J. Phys.: Condensed Matter 5 (1993) 9417-9422]

  • Oxides: LuYAP

    (2000-2001)

  • Lu0.5Y0.5AlO3‐Се

    Excitation of Lu0,5Y0,5AlO3-Се

    Excitation and luminescence spectra of (Lu,Y)AlO3-Ce

    5 10

    LuAlO3

    YAlO3

    Энергия фотона (эВ)

    Интенсивность

    (отн

    .ед.

    )In

    tens

    ity, a

    .u.

    Energy, eV

    4 5 6 7 8 9 10 11

    III

    ЗП

    Экситон

    Ce 5d(e)

    Ce 5d(t2)

    Ce 4f

    ВЗ

    III

    Энергия фотона (эВ)

    Интенсивность

    (отн

    .ед.

    )

    Energy, eV

    Inte

    nsity

    , a.u

    .

    CB

    Exc

    VB

    [A.N. Belsky, W. Blanc, C. Dujardin et al., Proceedings of SCINT’99, Moscow, 1999]

    0,0 0,2 0,4 0,6 0,8 1,0

    Y3+ concentration, mole fractionYAlO3-Ce

    Inte

    nsity

    , a.u

    .

    LuAlO3-Ce

    excitonic

    consecutive capture of e– and h+

    Luminescence ofLu0,5Y0,5AlO3-Се

  • Scintillation in (Lu,Y)AlO3‐Ce

    Gamma excitation amplitude spectra of (Lu,Y)AlO3-Ce.(Single photon counting)

    Light output of solid solution of (Lu,Y)AlO3-Cedepending on Y cocentration. Bridgemen growth from the same raw material (A.Petrosian) (set one -▼, set 2 - ▲, set 3 - ●)

    0,0 0,2 0,4 0,6 0,8 1,00

    50

    100

    150

    200

    250 Bridgman Czochralski approximation

    Ligh

    t Yie

    ld (B

    GO

    -100

    %)

    Y concentration, %

    (Lu, Y)AlO3: Ce43% Y

    50% Y

    Загрузка канала

    анализатора

    B G O

    0 500 1000 1500 2000

    100% Y0% Y

    К а н а лы а м п л и т уд н о го а н а л и за т о р а

    Channels

    Inte

    nsity

    , a.u

    .

    [A.N. Belsky, W. Blanc, C. Dujardin et al., Proceedings of SCINT’99, Moscow, 1999]

  • Mixed Borates – (Lu‐Sc)BO3:Ce

  • Mixed oxides  ‐ borates ‐ Lu0.75Y0.25BO3:Eu

    [D. Spassky, ISMART 2012, Dubna, 2012]

    Luminescence spectra of

    Lu0.75Y0.25BO3:Eu3+

    Eex = 5.4 eV (1) and Eex = 5.9 eV (2).

  • Mixed oxides  ‐ borates ‐ Lu0.75Y0.25BO3:Eu

    [D. Spassky, ISMART 2012, Dubna, 2012]

    Excitation spectra of

    LuxY1-xBO3:Eu3+

    withx = 0 (curve 1), x = 0.25 (2), x = 0.5 (3), x = 0.75 (4)x = 1 (5),

    λem = 590 nm, T = 300 K.

  • Oxides (intrinsic luminescence) ‐ ZnxMg1‐xWO4

    50

    100

    150

    Zn0.91 0

    10.90.80.70.60.1 0.2 0.40.3 0.5

    MgW

    O4

    Zn0.

    6Mg 0

    .4W

    O4

    Zn0.

    5Mg 0

    .5W

    O4

    Zn0.

    7Mg 0

    .3W

    O4

    Zn0.

    9Mg 0

    .1W

    O4

    ZnW

    O4

    Ligh

    t out

    put,

    %

    0

    0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

    Mg

    I.Tupitsina, D.Spassky, 2013Private communication

    2013D.Spassky – O2.18

    Excitation and luminescence spectra

  • Mixed oxides, (Ce,La)PO4

    Excitation spectra of solid solution (Ce,La)PO4 at Ce absorption area and its intensity vs Ce concentration

    0 20 40 60 80

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    Inte

    nsity

    , a.u

    .Ce concentration, %

    (Ce, La)PO4

    4 6 8 10 12

    0,1

    1

    Ce4++e-CBVB

    5d4f

    Ce05%

    Ce01%

    Ce40%&80%

    Ce1%

    Ce30%Ce50%Ce70%

    Интенсивность

    люмин

    есценц

    ии (о

    тн.ед.

    )

    Энергия фотона (эВ)

    Energy, eV

    Inte

    nsity

    , a.u

    .

    [A.N. Belsky, 2000]

  • 0

    1

    2

    3

    4

    5

    6

    7

    5 10 15 200

    1

    2

    I, a.

    u.LSO

    75% Lu

    50%Lu

    40%Lu

    10% Lu

    GSO

    Eg2Eg

    Ce3+

    A

    Ce3+

    I, a.

    u.

    E, eV

    Eg2Eg

    B

    20 40 60 80

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    4,0

    Ce1 Ce2

    I, ar

    b. u

    n.

    Lu conc, at.%

    Excitation spectra of 400 nm luminescence at Т=300К.

    Important! The best efficiency of carrier multiplication and transfer to luminescence centers corresponds to 50:50 Gd:Lu rate

    Ratio of intensities I(30 eV)/I(7 eV) of Се1 (400 nm) and Се2 (530 nm) excitation.

    Mixed oxides, silicates  ‐ LGSO:Ce

    See details - O.Sidletskiy – O2.5

  • Mixed oxides, silicates  ‐ LGSO:Ce

    Light yield in LGSO:Ce crystals with monoclinic C2/c structure vs. host composition

    1. O. Sidletskiy, V. Bondar, B. Grinyov, et al. J. Cryst Growth, 312 (2010) 6012. O.Sidletskiy, A. Belsky, A. Gektin, et al. Crys Growth & Des, (2012), 12, 441

  • Oxides, garnets – GAGG and YAGG

  • Mixed oxides, garnets  ‐ YAGG:Ce

    [1] O.Sidletskiy, V. Kononets, K. Lebbou, S.Neicheva, O.Voloshina, V.Bondar, V.Baumer, K.Belikov, A. Gektin, M– F.Joubert., Materials Research Bulletin, Vol. 47, No. 11. (2012),

    pp.3249-3252

    Ga concentration, %A

    rea

    unde

    r em

    issi

    on b

    and,

    a.u

    .Integral radioluminescence yield vs Ca concentration

    Scintillation yield and radioluminescence intensity dependence for mixed YAGG

  • Mixed oxides  ‐ YAGG:CeEnergy storage in mixed YAGG:Ce scintillators

    TSL (Thermo luminescence) for YAGG:Ce

    TSL efficiency for YAG:Ce and YAGG:Ce with different Ga concentration

    8

    Ga doping allows to decrease the energy storage in YAGG comparing to YAG:Ce crystals

    Inte

    nsity

    , a.u

    .

    а b

    Tmax, oC Ea, eV Tmax, 

    oC Ea, eV

    YAG: Ce 102 1.17 250 1.75

    YAGG (40%Ga):Ce 80 1.02 217 1.56

    YAGG (60%Ga):Ce ‐ ‐ 119 0.9

    Traps parameters

  • e‐h separation and/or conduction band modification?

    CB

    VB

    CB

    VB

    CB

    VB

    YAG YAGG (40%Ga)

    YAGG (60%Ga)

    E, эВ

    Eg=6.5эВ

    1 эВ

    1.75эВ

    1.17эВ 1.56э

    В 0.9эВ

    Band structure change with Ga doping.

    9

    Ga doping (shift to mixed crystals)

    * Decrease the CB bottom level

    • Decrease of shallow traps influence

    • ….

    M.Nikl …

    * There are some alternativemechanisms that influence to light yield with similar or even higher rate

    ** Crystal performance, initial purity and activator concentration are crucial for theexperimental study of phenomena

    *** Decay time measurement could be moreefficient for the model verification than yield test

    **** We need in more detailed theoretical estimations for dopedand mixed crystals

  • CONCLUSIONS

    CsI-CsBr

    0 20 40 60 80 1000

    1x105

    2x105

    3x105

    4x105

    Inte

    nsity

    , a.u

    .

    CeF3

    Ce concentration, %

    LaF3

    CexLa1-xF3

    Gd2(AlxGa1-x)5O12:Ce

    LGSO:Ce

    YAGG:Ce

    0,0 0,2 0,4 0,6 0,8 1,00,6

    0,8

    1,0

    1,2

    1,4

    1,6

    Inte

    nsity

    , a.u

    .

    Sr concentrarion, %

    X-ray

    Ca1-xSrxS

    0,0 0,2 0,4 0,6 0,8 1,00

    50

    100

    150

    200

    250

    Ligh

    t Yie

    ld (B

    GO

    -100

    %)

    Y concentration, %

    (Lu, Y)AlO3: Ce

    50

    100

    150

    Zn0.91 0

    10.90.80.70.60.1 0.2 0.40.3 0.5

    MgW

    O4

    Zn0.

    6Mg 0

    .4W

    O4

    Zn0.

    5Mg 0

    .5W

    O4

    Zn0.

    7Mg 0

    .3W

    O4

    Zn0.

    9Mg 0

    .1W

    O4

    ZnW

    O4

    Ligh

    t out

    put,

    %

    0

    0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

    Mg

    ZnxMg1-xWO4

    0,0 0,2 0,4 0,6 0,8 1,00

    20

    40

    60

    80

    100

    120

    140

    LaBr3

    activator CeCl3 activator CeBr3

    Rel

    ativ

    e lig

    ht o

    utpu

    t, %

    molar ratio of LaCl3/LaBr3LaCl3

    LaCl3-LaBr3

  • Thank you for your attentions!