agn jets and glast - pennsylvania state universitypersonal.psu.edu/nnp/grb_tata04.pdfmészáros,...

52
Mészáros, Tata grb 04 Peter Mészáros Pennsylvania State University & Institute for Advanced Study, Princeton

Upload: nguyenphuc

Post on 15-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Mészáros, Tata grb 04

Peter MészárosPennsylvania State University &

Institute for Advanced Study, Princeton

Mészáros, Tata grb 04`

Short(tg d 2 s)

Long(tgt 2 s)

GRB:→ (current paradigm)

Mészáros, Tata grb 04

Are ultra-relativistic jets possible? • 3-D hydro simul’n

(Aloy et al 00 ; Zhang,Woosley, McFadyen 02;Zhang, Woosley03)

• So far:SR, no MHD; jet vh→c as in

analyt. calc → OK - G up to 150 → OK- KH instab: variablepower outp., var G

• Prelim (num) concl: jets emerge only

from Rød1011cm; (but larger stars not done num’ly);

• However: analytical calc. indicates jets may emerge from larger stars, e.g.BSG (Meszaros, Rees 02, ApJ 55L37)

W. Zhang & Woosley 03 `

Mészáros, Tata grb 04

MHD Jetsimulation• Axysim MHD

(ZEUS-2D, non-rel) of collapsar model pre-SN 25 MŸ star w. init. rotat and weak Br, realistic EOS, n-coolg, He photodis, resist. htg

• → MHD effects alone can launch, accel & sustain strong Poyntingdominated jet

• But: Newtonian, stop @ 0.3c(Proga, McFadyen, Armitage, Begelman astro-ph/0310002)

Mészáros, Tata grb 04

Collapsar & SN :Outstanding questions:- Only SN Ib/c Ø GRB?(can fast jets emerge from SN II,..others?)

- Are “jetted SN” weak,or off-axis GRB, or non-relativisticc jet…other watered-down relative?

- To what z does one expect SN Ib/c? Do pop.III SN ØGRB?

- …. etcCollapsar & SN (ANIMATION!)Credit: Derek Fox & NASA Ø

Mészáros, Tata grb 04

Jet Shapes& Energetics

• Obs. inv. corr. Lg(iso) ∂ qj-2

• → Lg(tot) ~ const.• Can be understood as

- a) Uniform jet on-beam E(qj)~const, P(qj)∂qj

2

- b) Structured (PL) jet on/off axis, E(q) ∂ q-2, P(q) ~cons

- c) Structured (Gauss) jet w. charact. q0 with dispersion log(q0 /rad)~-1.0±0.2

Frail etal 01

Mészáros, Tata grb 04

X-ray Flashes - XRF• Similar in all properties to GRB, except that they are softer

Ep d 40 keV (to ~3 keV) (Heise et al 02, Kippen et al 02)

• Several possibilities:(a) Usual int. shock, but w.low G and/or high z (Heise etal ’02; Kippen etal’02)

(b) Pair-thick internal shocks (Meszaros et al, a-ph/0205144; Kobayashi et al aph/0110080)

(c) Jet/bubble break-out therm.emiss. (Ramirez-Ruiz etal, a-ph/0111342, a-ph/0205108)

(d ) Uniform jet seen on-beam but w. larger opening angle (Kobayashi etal a-ph/0110080, Lamb et al 03, aph/0312634 )

(e) Uniform jet seen off-beam (Yamazaki, etal 03 & 04, aph/0401044)

(f) Universal power-law jet at large angles (Perna etal 03 ApJ594:379; Nakar etalaph/0311545)

(g) Quasi-Universal Gaussian jet at intermed. angle (Zhang etal aph/0311190)

Mészáros, Tata grb 04

Epk –Eiso:GRB .. & XRF?

• ¨ Epk ∂ Eiso1/2 obs. for GRB

(Amati et al, 02 AA390:81)• Reason? E.g., internal shocks

predict Epk ∂ L1/2 G-2 tv-1

(Zhang & M ‘02 apj581:1236) ;but G-2 tv-1 ~ const? (not obvious)

• Question: can one extrapolate this relation down to XRF?

• If add 1.5 XRF with known/constr. z, Epk ∂ Eiso

1/2, may extend down. An Epk-Fluence plot of 40 HETE-2 GRB+XRF w. & w/o z also suggests so (Lamb etal aph/0312634)

Mészáros, Tata grb 04

Uniform vs. Structured:Epk-Eiso and Eiso-qj ?

Lamb etal aph/0312634 Zhang etal aph/0311190

UNIF

STR-PL STR-GAUSS

STR-GAUSS

Epk –Eiso :YEiso -qj : N

Epk –Eiso :NEiso -qj : Y

Epk –Eiso :Y

Eiso -qj : Y

YN

NY

YY

Mészáros, Tata grb 04

OPT. POLEM pol vector is perp. to ring(N-S sector gives N-S pol)

Ghisellini, Lazzati 99 MN 309, L7Sari 99 apj 524, L43

STR-PL

UNIFORM

F

tLight curve

P

(same both)

Rossi etal aph/0401109

Mészáros, Tata grb 04

New development: g-ray polarization• RHESSI (solar g-ray obs):

9x300 cm3 Ge dets. coaxial with Sun, rotation P=4 s, @ 0.15-2 MeV see scattering events in 2 or more dets.

Ascatt,eff ~ 20 cm2 , mod.factor ~0.2.• Figure 1 : GRB 021206:

Fluence~1.6x10-4 erg/cm2 , Dtobs,pol =5s :

80% ± 20% pol. (!)(Coburn & Boggs, Nat 2003, 423, 415)

• Figure 2 : if Synchrotron →ô(a) strong polarization suggests magnetic field is ordered, provided the line-of-sight is close to the jet axis.

ô(b) But if line-of-sight near edge of jet light cone, similar deg. of polarizat’npossible even for random. mag. fields (can look ordered inside q~1/G <<qjet )

(Waxman, Nature 2003, 423, 388 )

Mészáros, Tata grb 04

g- polarizationOrdered Mag. Sy

DisordMagSy

Granot 03 ApJ 596, L17; Nakar, Piran, Waxman aph/0307290Lazzati aph/0312331

y=(gq)2 , In ~na , e=1+a

IC

Waxman 03 Nat 423, 338

•Upshot: no model can make 80% LP;•Ordered mag. 30-75%;problems•Disordered mag synch. : 20-50 %•IC, if very organized: 30-70%•But, even these values require optimn

Mészáros, Tata grb 04

g-ray Polarization: Interpretations & Implications

• A) for Synchrotron (electron index p): P=(p+1)/(p+7/3)d75% i) if Poynting jet (magnetar, BH/disk mag. wind), eB ~ 1; → P d30-75% (Granot, Koenigl 03, Granot 03, Lyutikov 03)

ii) if strong but sub-dominant random mag. field, eB d1 : → P~20-50%(Nakar,Piran, Waxman 03, Granot 03)

• B) If IC scattering of photons on jet: → P=(1-cos2q)/(1+cos2q) ~ 30-70% (Eichler, Levinson 03, Lazzati et al 03)

• If Poynting interpretation (eB ~ 1) → unresolved issues: 1) low baryon-load is easier; but internal shock difficult (alternatively: reconnection? more model-dependent than shocks)2) Reverse shocks: problematic for optical flash - alternative?3) Short variability? Perhaps OK in “int. recon.” but not “ext.recon.”4) Long-term light-curve wiggles: less likely from “refreshed shocks”-?

• BUT: serious criticism of high PL : PL <4% @ 90% CL? (Rutledge & Fox astro-

ph/0310385) ; and partial rebuttal of criticism : PL >15% (Boggs & Coburn astroph/0310515)

Mészáros, Tata grb 04

X-Ray Lines in GRB• 6-7 det. so far, w.

BeppoSAX, ASCA, Chandra, XMM, @2.4-4.5s(dep.on fit)

• One prompt (abs) rest at>0.5dy(em)

• 5 interpreted as Fe Ka;

• Several (e.g. GRB 011211) interpreted as Mg, Si, S, Ar, Ca, w. no signif. Fe;

( From Piro ‘02 Woods Hole Conf.Proc.)

Mészáros, Tata grb 04

GRB 991216 : Chandra

• Rossi XTE det, one of brightest BATSE Sg~2.5x10-4 erg/cm2

→z~1.0 opt. det.• Chandra (t+37 hrs) :ACIS+grating sp →Fe Ka + K-edge6.97, 9.28 keV @ 4.5s

• No signif. Ca, S, Si

Piro et al ’00 Sci.290:955

ACIS

Gratings

Mészáros, Tata grb 04

GRB 011211 (XMM)• BeppoSAX det → opt

det. @ z~2.141• XMM Newton (t+11hr)Lx~7x1045 erg/s, ∂ t -1.75

(~low Lx, steep dec & sp. )• Det. Mg, Si, S, Ar, Ca@ 3s joint (thermal) fit(req. v/c~0.1, n~1015/cc,r~1015cm,Dr/r~10-6 orDr/r~106 - v. clumpy, andv. short cooling time

• NO significant Fe, but perhaps Ni at 1.5s(?)

Reeves etal 02 Nat 416:512

1st 5 ks exp, EPIC-pn

27 ks exp

EPIC-pn

EPIC-MOS

Mészáros, Tata grb 04

Collapsar Jet & SN Shell XR Lines

• “Nearby” model : Collapsar w., e.g. decaying jet(tdy),e.g from fall -back BH accretion, or magnetar

• Timescale: intrinsic, R~1013 cm• Lx~1047 erg/s, ∂t-1.3-1.5, n~1018/cc, • x~103 → Fe Ka, LFe ~1045 erg/s • Need MFe ~10-5 MŸ -solar or enrich. OK

(Rees & Mészáros 00, ApJ 545:L73)

“nearby” “distant”

•“Distant” model: super(supra)novashell (wind? or from comp. remnant?)•Timescale: geom., r~1015-1016 cm, t~(r/c)(1-cos q) ~dy•Need MFe ~0.1-1 MŸ , 10-102 x solar•70 day for Ni→Fe?

(Piro etal 00, Sci.290:955; Vietri etal 01, ApJ 550:L43)

Mészáros, Tata grb 04

Jet + Bubble XR Line Model

• “Nearby” model (b):jet produces cocoon→relativistic “bubble” of

magn. relativistic plasma, • At breakout ~0.5-1 dyB ~105 G, sy.cont. on

n~1018/cc envelope, →LFe ~1044.5 x FeŸ ,

need MFe~10-4 MŸ

• Bubble scatt. depth: need v. high clumpiness for XR line + PL

(Mészáros, Rees 01 ApJ 556:L37)

Mészáros, Tata grb 04

What next?High z GRB distance measures?

Ø Fe Ka

∞ Gal.H abs

Lamb, Reichart 00

ò Meszaros, Rees 03 ApJ 591, L91

•XR cont: detect with Swift for zd 20 @ t d 1 dy•Fe Ka XR line unabsorbed by gal. for zd20•Swift det. Fe Ka to zd3 @ td3 hrs , 3s level•XMM det. Fe Ka to zd15 @ td1day, 3s level

•Positive K-correction: → flux ~ constant at zt5

•Optical/UV: Ly a cutoff →redshift out to zd5 for Swift•Forward shock exp. fluxesØ

Mészáros, Tata grb 04

Rerverse Shocklight-curve

• At high z, bright brief reverse opt. l.c. Øbright longer IR l.c

nFn

n

Sy (rev)

Sy (forw)

0 X,g

Gou, et al, ApJ in press aph/0307489

R

F

V-band

K-band

Mészáros, Tata grb 04

IR & XR hi-z detectability

X-ray detection ØV-band

K-band

JWST

ROTSE

Mészáros, Tata grb 04

Swift• Sched Launch Fall 04• Goddard, Penn State,

Leicester, Milan, MSSL, Rome collab.

• BAT: 10-150 keVCdZnT, q~1-4’ posit’n

• XRT: 0.2-10 keVCCD, q~1” res./positn

• UVOT: 170-650 nm, q~0.5” res./positnExpect ~150-200 GRB/yr localized

& followed up in gamma/XR/Opt

Mészáros, Tata grb 04

Swift• BAT: coded mask CdZnT det., 5x

BATSE sensitivity, spectra R~20 (10-150keV) , FOV 2 srposition (q~1-4’) to ground in ~5 s

• XRT: ccd det q~0.3-2.5” pos (in 25-70s), FOV 23’x23’, FE ~2.10-14

erg/cm2/keV/s (in 104 s), spectra (0.2-10keV) R~20

• UVOT: fov 17’x17’ f/13, 30cm, mvd21(10s), gratings: sp R~300-600 mvd17, 6 color photom. redshifts 1.5dzd4(5) mvd24 (103s)

What Swift will do:(courtesy: HETE2)

Mészáros, Tata grb 04

Two EGRET spark chamber GeV Bursts

• >10 GeV photon flux can last for t 1 hr,

start with MeV trigger• Energy Fluence

F0.1-10 GeV ~ F0.1-10 MeV

GRB 970217

GRB 930131

Mészáros, Tata grb 04

Simplest “delayed” GeV g mech.

• GeV emission seen, start ~ same time as MeV trigger, but lasting t 1 hr: → could be a) internal shock synchrotron

→ normal duration MeV to dGeVb) external shock (moder. G, low next)

IC → t GeV to TeV, lasts ~mins-hr(Meszaros & Rees 1994 MNRAS 269, L41)

• Other possib (Katz 94) : proton impact on bin. comp.* pp → g

Mészáros, Tata grb 04

GeV-TeV photons from GRB• Internal shocks: gg→e≤ ,

tgg¥1 @ Egt G2300 GeV

→ pair cutoff in spectrï get info about r sh(compactness,tgg)

• In ext.shock, tgg§1 on GRB target g;

• test if shock is int. or ext;test bulk Lorentz factor,

shock accel efficiency, magnetic field in shock (max. e≤ energy? →size of accel region)

Baring 1999

Mészáros, Tata grb 04

GRB 941017 : pg signature?• Hard (10-200 MeV) comp. in

EGRET TASC calorimeter notcompatible w. BATSE MeV fit(but in 26 other bursts a single BATSE/TASC fit works well)

• Hard comp. more prominent in time → pg signature? might explain delay, hardness

• Alternative: could be IC, in regime where IC sp is harder than sync PL ; e.g. scatt. of lower energy synch. asymptote; or observe IC region where electrons with a range of energies scatter off a range of photon energies (Granot,Guetta, astroph/0309231)

t<14 s

t <47 s

t < 80 s

t < 113 s

t < 211 s

Gonzalez, Dingus et al, 03, Nature 424, 749

Mészáros, Tata grb 04

GLAST : LAT (Stanford +)

• LAT: launch exp ’05,Delta II, 2-300 GRB/2yr

• Pair-conv.mod+calor.• 20 MeV-300 GeV, DE/Ed10%@1 GeV

• fov=2.5 sr (2xEgret), q~30”-5’ (10 GeV)

• Sens t2.10-9ph/cm2/s(2 yr; > 50xEgret)

• 2.5 ton, 518 W Also on GLAST: GBM (next slide)

Mészáros, Tata grb 04

What next in Energy – tTeV?basic p,g→ UHE n,g

• If protons present in jet → they are also Fermi accelerated (as are e-)• p,g→ π±→µ± ,nµ→e±,,ne,nµ (∆-res.: Ep Eg ~ 0.3 GeV2) • → En,br ~ 1014 eV for MeV gs (int. shock)

→ En,br ~ 1018 eV for 100 eV gs (ext. rev. sh.) ICECUBE

• →p0 →2g→ gg cascade GLAST, ACTs..(Waxman-Bahcall 1997;99; Boettcher-Dermer 1998; 00; )

• Test hadronic content of jets (are they pure MHD/e≤ …?)• Test acceleration physics (injection effic., ee, eB..)• Shock radius: gg cascade cut-off: eg d GeV (internal shock)

eg d TeV (ext shock/IGM)Different gg cut-off due to π compactness param. (tgg , Rsh)

→ photon cut-off: diagnostic for int. vs. ext-rev shock

Mészáros, Tata grb 04

GeV-TeV g experiments underway

Veritas

MILAGRO

HESS

VERITAS

MAGIC& HEGRA

CherenkovTelescopes

≠ Water

Air →∞ ∞

Mészáros, Tata grb 04

Point Source Sensitivities• MAGIC: La Palma (Munich)

Monoc. 1x17m, >30 GeV, ‘01• HESS: Namibia (Heidelberg)

Stereo 4x12m, > 50 GeV, ’02 • CANGAROO-III: Austral(Tokyo)

Stereo 4x10m, >50 GeV, ’03• VERITAS: Arizona (SAO)

Stereo 7x10m, >50 GeV, ’05• STACEE: Sandia (UCLA/Chic)

solar tower, 20-300GeV, ’01• MILAGR(ITO)O, LANL, NM

water, > 20 GeV, A~5.107 cm2

• GLAST (LAT): space (Stanford)Silicon, 20 MeV-300 GeV, ‘06

HESS

Mészáros, Tata grb 04

TeV g Detection Status

• Milagrito :Tentative ò (3s) TeV detection ;FTeV ~10 FMeV ; but, no z (abs? dd100 Mpc?)

Atkins etal, 00, ApJL..

• Tibet array: superpose 50-60 ∫ bursts in time-coincid. w. MeV: joint TeVdet. significance 6s ?

(Amenomori et al AA ‘96)

• GRAND: GRB 971110ò TeV reported at 2.7s

(Poirier et al PRD 03, aph/0004379)

Log10(prob)

Num

ber

of G

RB

s

0

2

4

6

8

10

12

14

-6 -5 -4 -3 -2 -1 0

GRB 970417a

Mészáros, Tata grb 04

gg Opacity of the Universe• In all but the densest

(veiled) AGN sources (e.g. gal.nuc?), tgg§1 for >TeV on “local”target photons, but..

• In IGM, tgg¥1 for >TeVon IR bkg g(Dd100Mpc) →test IR bkg spectral density,

• constrain early star formation rate & z-distr of SFR, LSS, cosmology

Coppi & Aharonian ‘97

g

Mészáros, Tata grb 04

UHE n (&g) in GRB4 possible collapsar-jet sites• 0) ôat collapse, make GW + thermal ns• 1) ô If jet outflow is baryonic, have p,n

→ p,n relative drift, pp/pn collisions→ inelastic nuclear collisions→ VHEn (GeV)

• 2) ôShocks while jet is inside ø can accel. protons → pg, pp/pn collisions→ UHEn (TeV)

• 3) ôShocks outside ø accel. protons→ pg collisions (+pp/pn - if supranova )→ UHECR , UHEn, UHEg

(d1020 , 1014-1018, t109 eV)

• 4) If supranova (SN >2 days before GRB)→ pg, pp of jet protons on shell targets→ UHEn (> TeV)

GW

p,n

pg, pp

pg

1

2

3

Mészáros, Tata grb 04

(2) Jet inside star:

GRB n,g Precursor

4 5 6 7 8 9

�9.5

�9

�8.5

�8

�7.5

�7

�6.5

�6

1010

3

(GeV)νE

−10

ICECUBE

Afterglow

Burst

10−8

−910

910

81010

510

610 10

74

WB Limit

Atmospheric

10

−710

−6

pp

pγ (head)

(shocks)γp

(shocks)pp pγ (head)

10 bursts/yr5

He H

E(G

eV

cm

s

s

r )

νε o

p−1

−1−2

−12

νΦ

(stellar)

• Jet propagating through progenitor,BEFORE emerging from stellar envelope,

can have int. shocks which accel. p+ →pg on unobserved X-rays , → p±, npp, pn on stellar envelope → p±, n

~ few TeV neutrino precursor• If progenitor has Rø~1012 cm (BSG) →

Rate( nm , TeV ) prec > Rate( nm , 100 TeV )int.shock( easier to detect in ICECUBE )

• but, if WR, Rø~1011 cm →Rate( nm , TeV) prec < Rate( nm , 100 TeV ) int.shock→ test progen. size (e.g. @ high z : popIII?)

• At jet break-out: → photon flashes (Ramirez-Ruiz, McFadyen, Lazzati 02; Waxman, Meszaros 02)

i ) thermal keV g flashii) non-therm.10-100 MeV g ( IC upscatt of XR)→ precursors (d few sec.) of “usual” MeV g

• (3) ò Blue n- spectrum: t100 TeVp,g→n from shocks outside star

Meszaros , Waxman 01 PRL 17 1102

Razzaque, PM, EW 03 PRD in press, astro-ph/0303505)

WR

H

Mészáros, Tata grb 04

GRB w. pre-supernova shell ?• GRB may be (one case: are) assoc.

w. supernova → SNR shell;• But simultaneous or precursor SN?

“supranova” hypothesis: optically unconstrained for d few days

• If precursor, SNR is a beam dump for p accel. in jet shocks (→ MeV g) (Granot, Guetta 03 PRL 90,191102; 201103)

• Below the pg(D-res) thr. have pp, above thr. have pg; both →pmen ;

precursor & supranova pp n-signature prominent at TeV

Razzaque, Meszaros, Waxman 03, PRL 90, 241103)

• Hard g spectrum: supranova & precursor: beam dump:gg cascades and high bandpassCompton transm. → p0 decayg spectrum (10-100 MeV) escape

Neutrino fluxes:Short (30 sec) Precursor TeV:

→ progenitor (WR,BSG)?Simult. 100 TeV → int.shockSimult. TeV → int. shock p on SN shell?Simult 10 PeV-ZeV→ ISM/stell. wind?Long(wks) Precursor TeV

→PSR wind, “supranova”?

p+ →

SNR

Mészáros, Tata grb 04

GRB 030329: SN shell & precursor with ICECUBE

Razzaque, PM, EW 03 PRD in press, astro-ph/0303505)

Burst of Lg~1051 erg/s, ESN ~1052.5 erg, @ z~0.17, q~68o

4 5 6 7 8 9 10 11

�5

�4

�3

�2

�1

log10[ / GeV]Eν

νlo

g1

0[

/

(Ge

V c

m

s

)

]−

1−

2

Supranova

1 d

−flux from GRB 030329ν

Precursor I

Precursor II

0.1 d

Afterglow (wind)Burst

8 dAfterglow (ISM)

Prob.of n interaction

Flux of n

Mészáros, Tata grb 04

Diffuse UHE n from pop.III collapse

• At z~5-30(?) pop.III ,M~ 30-300 MŸ , Eiso~1054-1056(?) erg

• Buried jets→pg→nm , → n-bursts,

AMANDA/ICECUBE

• “low-z” GRB, AGN etc too

• Detect highest z øform’n,get primordial IMF,

Schneider, Guetta, Ferrara aph/0201342

Mészáros, Tata grb 04

ICECUBE:km3

• Extension of Amanda0.15 km3 → km3=1Gton

• Initial funding approved √• 80 strings , 4800 PMTs (ice)

+ air shower surface array • Design for det.all flavor n’s ,

from 107 eV (SN) to 1020 eV

Mészáros, Tata grb 04

ôAntares

• Km3 water Cherenkov detector• Deployment approx. 2010• Complement ICECUBE: lsc,abs~(100,10) H20, lsc,abs~(20,100) Ice• Northern site: at lower E complementary sky coverage

•French/Italian/UK….collaboration•Site off Toulon• Also: NESTOR xGreek/German/Russian…

Mészáros, Tata grb 04

Diffuse UHE n : CR bound and sensitivity, bckg

Mészáros, Tata grb 04

CR Protons fromGRB

• Internal & extern.(rev) shocks NR Fermi acc. →spectrum N(E)∂E-2

• Can reach E~1020 eV(for xBxe“0.02, G“130)

• CR energy input at1020eVdE/dtdV~1044zerg/Mpc3/yrwhere z~0.5-3 (z-evol.)

• Entire >1020eV CR flux from GRB? yes/no/possib

(Waxman NucPhS 87:345’00; Stecker APPh 14:207 ’00)

1018

1019

1020

1016

1017

E [eV]

J× E

2.61

[eV

1.61

/m2 s

r s]

GRB flux

GRB flux + Fly’s Eye

Galactic (heavy) component

AGASA

Fly’s Eye

Yakutsk

(Waxman, Neutrino 2000, hep-ph/0009152)

Mészáros, Tata grb 04

UHECR total power in GRB?• Previous (1995-00): Eg~1051 erg, R(z=0)~30/Gpc3/yr,

dE/dtdV~0.3x1044 erg/Mpc3/yr• New (>2000): Eg~2.5x1053 erg (isot.equiv);

R (z=0) ~5x10-10 /Mpc3/yr, dE/dtdV~1.3x1044 z erg/Mpc3/yr . (z ~ 3-8 to z~1, evol)

Jets: 4p/500 (Eg ∞, RÆ, √ )• → Ee

2 dneGRB/dEe dt ~1044 z erg/Mpc3/yr

• UHECR exg obs: dEpCR/dt ~ 3x1044 erg/Mpc3/yr

→ Ep2 dnp

CR/dEpdt ~0.7x1044 erg/Mpc3/yr, √, OK.(Waxman, astro-ph/0210638)

Mészáros, Tata grb 04

UHE Cosmic Rays

• d (t?) 1020 eV (GZK) energy (~4 cal ~ 17 J, ~fast base/cricketball)

• Slam into upper Earth atmosphere →electromagn. shower of secondary particles

• Detect fluoresc. light,Cherenkov light, ioniz/excit/charge

• Origin: GRB, AGN, SN..?

Mészáros, Tata grb 04

Pierre AugerUltra-high energy cosmic

ray observatory

• NSF & international, South station: (Argentina) partly complete – North: planned• Planned area 3,000 km2 , sensitive to CR energies >1020 eV (GZK lim)• GRB: expect Ep,max~ 1020 eV from Fermi accel. in same shocks where e,B →g• 1600 ground detectors, 11 kliters ea., 1.5 km apart + 4 air fluoresc. telescope • current: 100 ground det. (70 sq. mile) & 2 air fluoresc. tel. installed, 10/03• Also: tau-nu (horiz.l shower capability: Earth-skimming & through Andes)

Mészáros, Tata grb 04

AUGER

• Prototype fluorescent telescope mirror & camera (440 pmt)

• Based on Fly’s Eye concept & experience

• Imbedded in and complementing ground particle detector array

Mészáros, Tata grb 04

EUSO• ISS project ESA/NASA/RSA/JSA ;

precursor study for OWL (larger free-flyer)• 5.1019 – 1021 eV EECRs, EENUs• Detector: monocular 2.5m Fresnel lens,

measure EAS through atmos. fluorescense• Threshold: 3.1019 eV• Full efficiency: 1020 eV (300-1000 event/yr)• Alt: 380 km, FOV: 60o , Rsurf=230 km;

Geom. Factor: 5.105 km2 sr, air mass 1012 tons

• Begin op: 2009? (as of last summer)

Mészáros, Tata grb 04

Gravitational Waves:GRB “best” estimates in 1 yr (LIGO II)

• DNS: likely detectable in one year (advanced LIGO) (g or no;- g helps)• BH-BH: similar or somehwta higher rates (no g coincidences to help)• Collapsar/SN (coincid. w. g): perhaps detect. for optim. cond. in 1 year

f [Hz]

hc

100

101

102

103

104

105

10−24

10−23

10−22

10−21

10−20

DNS

f [Hz]h c

100

101

102

103

104

105

10−24

10−23

10−22

10−21

Collapsar

(Kobayashi & Mészáros 03, ApJ 589, 861

Mészáros, Tata grb 04

ôLIGO

• Science goals: test GR +• Compact bin. inspiral (dns,dbh,nsbh)• GRB, core-coll. SN, NS r-mode osc.• Stochastic GW backgr (inflation)• Also : Geo-600, TAMA

•≠Hanford (WA) site,+ Livingstone (LA)

• 4 km Michelson interf.,vacuum laser refl.

• Sci. runs t7/02 (6 wks); Valentine’s Day 03 (>mo)

VIRGO→• Italian/French: @ Cascina, Pisa →• 2x3 km arms laser interf.• Completed June 03, comissioning

Mészáros, Tata grb 04

Summary & Prospects• GRB, XXR, XRF may form a continuum; jet geometry

unknown, but unlikely to be very narrow• Polarization (O, g?) will provide important clues• X-ray lines may serve as very high z (d15) distance gauge• GRB continuum (if present) detectable to z d30• UHE g,n will test proton/MHD content of jets, shock

accel.physics, magnetic field generation, turbulence• Probe hadron/EM interactions at t TeV-PeV energies• Investigate stellar evolution & death, star formation rates

and large scale structure at redshifts of first objects• Test strong field gravity, ultrahigh mass/energy densities

Mészáros, Tata grb 04

Mészáros, Tata grb 04

Other Implications of GRB/AGN UHE n

• Special relativity: simultaneity of arrival of n,gtested to Dt d 1 s (10-3 s in short bursts)

• Time delay due to ni mass:Dt (ni )~10-12(D/100Mpc)(Eni/100TeV)-2(mni /eV)2 s

(whereas for SN 1987a Dt (ni )~ 10-8 s )

• Vacuum oscillations: at source exp. Nnm ~ 2Nne ,at observer exp. º ratios , and upgoing t appear.

• → sensitive to Dm2 t10-16 (En/100TeV)(100Mpc/D) eV2 (for mn t0.1 eV due to finite pion life mixing is caused by decoherence rather than oscillation)