airfoil design

31
03 May, 2004 1 DUWIND, section Wind Energy, Faculty CiTG Design of Airfoils for Wind Turbine Blades Ruud van Rooij ([email protected]) Nando Timmer Delft University of Technology The Netherlands

Upload: metin-yilmaz

Post on 26-Mar-2015

677 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: Airfoil Design

03 May, 2004 1DUWIND, section Wind Energy, Faculty CiTG

Design of Airfoils for Wind Turbine Blades

Ruud van Rooij([email protected])

Nando Timmer

Delft University of TechnologyThe Netherlands

Page 2: Airfoil Design

03 May, 2004 2DUWIND, section Wind Energy, Faculty CiTG

Delft University of Technology13200 Bsc+ Msc students, 4750 employees

Delft University Wind Energy Research Institute(Coordinator: Section Wind Energy)

Faculties:• Civil Engineering and Geosciences (Wind Energy, Offshore)

http://www.windenergy.citg.tudelft.nl/home/flash/index.html

• Information Technology and Systems (Electrical group)

• Design, Engineering and Production (Systems &Control)

• Aerospace Engineering (Aero, Aeroelastics)

Page 3: Airfoil Design

03 May, 2004 3DUWIND, section Wind Energy, Faculty CiTG

Section Wind Energy (Civil Engineering and Geosciences => Aerospace Engineering)

Aerodynamic research

- Facilities

open-jetwind tunnel research wind turbine

low speed wind-tunnel

Page 4: Airfoil Design

03 May, 2004 4DUWIND, section Wind Energy, Faculty CiTG

Contents

• Background

• Design goals HAWT airfoils

• Design approach• Performance comparison

• Airfoil testing

• Effect on wind turbine power Cp

• Overview HAWT airfoils

Page 5: Airfoil Design

03 May, 2004 5DUWIND, section Wind Energy, Faculty CiTG

Background

Operational area

High Cp80% of Energy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 5.0 10.0 15.0 20.0 25.0

W inds speed (m /s)

Pow er

Variable RPMControl: Power restriction

High max. L/DAirfoil: Max. lift considerations

Page 6: Airfoil Design

03 May, 2004 6DUWIND, section Wind Energy, Faculty CiTG

Background

Blade geometry

- High max. L/D- Insensitive to

roughness- Similar design

angle

Airfoil:

- High max. lift(Rot. Effects)

No Aerodynamicdemands

Outboard: t/= .15-18

Mid span: t/= .25

Inboard: t/> .30

Structural:

Transition piece

Page 7: Airfoil Design

03 May, 2004 7DUWIND, section Wind Energy, Faculty CiTG

Background

Effect of rotation

RFOIL code

• Integral boundary layer eq.

• Extended for radial flow• Radial equations• Cross flow profile

parameter is c/r(= local solidity)

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

-5.0 0.0 5.0 10.0 15.0 20.0 25.0

Angle (deg.)

cl

DU 91-W2-250Re = 3.0x10e6

2d

mid-span

inboard

Stall delay

Page 8: Airfoil Design

03 May, 2004 8DUWIND, section Wind Energy, Faculty CiTG

Design goals HAWT airfoilssteady

Low noise

.21 >.28 - .21> .28Thickness-to-chord ratio

High maximum lift-to-drag ratio

Structural demands

Geometric compatibility

Insensitivity to roughness

Low max. and benign post stall

Page 9: Airfoil Design

03 May, 2004 9DUWIND, section Wind Energy, Faculty CiTG

Design approach(example DU 91-W2-250)

DU 91-W2-250

NACA 63-425

Main features

S-Tail => Aft-loading

Small upper surface thickness => reduced roughness sensitivity

Page 10: Airfoil Design

03 May, 2004 10DUWIND, section Wind Energy, Faculty CiTG

Design approach(pressure distributions DU 91-W2-250, Re = 3.0x106)

- 4. 0

- 3. 0

- 2. 0

- 1. 0

0. 0

1. 00.0 0.2 0.4 0.6 0.8 1.0x/c

Cp

Separation

Aft-loading

TransitionAlpha= 0.0o

7.0o

11.0o

Low roughness sensitivity=> Transition at nose for Cl_max

Low drag=> Aft transition at Cl_design

Page 11: Airfoil Design

03 May, 2004 11DUWIND, section Wind Energy, Faculty CiTG

-0.50

0.00

0.50

1.00

1.50

0 50 100 150cl/cd

cl

-0.50

0.00

0.50

1.00

1.50

-5.0 0.0 5.0 10.0 15.0 20.0Angle (deg.)

cl

DU 91-W2-250

NACA 63-425Re = 3.0x106

Airfoil design(2d performance)

Design lift

Measurements at LST-TU Delft: Clean

Page 12: Airfoil Design

03 May, 2004 12DUWIND, section Wind Energy, Faculty CiTG

-0.50

0.00

0.50

1.00

1.50

0 30 60 90cl/cd

cl

-0.50

0.00

0.50

1.00

1.50

-5.0 0.0 5.0 10.0 15.0 20.0Angle (deg.)

cl

DU 91-W2-250

NACA 63-425Re = 3.0x106

Airfoil design(2d performance)

Design lift

Measurements at LST-TU Delft: Roughness simulatedZZ-Tape at 5% u.s.

Page 13: Airfoil Design

03 May, 2004 13DUWIND, section Wind Energy, Faculty CiTG

Airfoil testing(Low speed low turbulence tunnel)

Test section size 1.80 x 1.25 mMaximum speed 120 m/sTurbulence level 0.015% at 10 m/s

0.07% at 70 m/s

Test section

Page 14: Airfoil Design

03 May, 2004 14DUWIND, section Wind Energy, Faculty CiTG

Airfoil testing(effect of leading edge thickness)

-0.4

0

0.4

0.8

1.2

1.6

-5 0 5 10 15 20 25 30 35 40

angle of attack (degrees)

Lift

coef

ficie

nt

Re=1.0x106

DU 97-W-300

DU 96-W-180

Page 15: Airfoil Design

03 May, 2004 15DUWIND, section Wind Energy, Faculty CiTG

Airfoil testing(effect of high Reynolds numbers)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 5 10Re x10-6

0

20

40

60

80

100

120

0 5 10Re x10-6

Clean

Zigzag tape 0.4 mm

Carborundum 60

Airfoil: DU 97-W-300Mod

(Cl/Cd)max Cl,max

Page 16: Airfoil Design

03 May, 2004 16DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

Page 17: Airfoil Design

03 May, 2004 17DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α=24o

Page 18: Airfoil Design

03 May, 2004 18DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α= 40o

Cl= 1.145

Page 19: Airfoil Design

03 May, 2004 19DUWIND, section Wind Energy, Faculty CiTG

Airfoil testing(360 degrees)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

α=90o

Cl= 0.10 Cd= 1.914

Page 20: Airfoil Design

03 May, 2004 20DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α= 160o

Cl= -.627

Page 21: Airfoil Design

03 May, 2004 21DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α= 194o

Cl= 0.541

Page 22: Airfoil Design

03 May, 2004 22DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α= 224o

Cl= 0.811

Page 23: Airfoil Design

03 May, 2004 23DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α= 270o

Cl= -0.11 Cd= 1.832

Page 24: Airfoil Design

03 May, 2004 24DUWIND, section Wind Energy, Faculty CiTG

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50 0 50 100 150 200 250 300 350 400

angle of attack

Cl, Cd

DU 96-W-180

Re=700,000

Airfoil testing(360 degrees)

α= 316o

Cl=- 0.971

Page 25: Airfoil Design

03 May, 2004 25DUWIND, section Wind Energy, Faculty CiTG

Airfoil testing (aerodynamic devices)

• Stall strips Ø 1.2 mm

DU 93-W-210 R = 2.0x106

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.01 0.02 0.03cd

cl

-1.0

-0.5

0.0

0.5

1.0

1.5

-10 0 10 20α ( o)

cl

no trip wire

wire at 0.5%c l.s.

wire at 0.25%c l.s.

Page 26: Airfoil Design

03 May, 2004 26DUWIND, section Wind Energy, Faculty CiTG

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

0.0 30.0 60.0 90.0 120.0Cl/Cd

Cl

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

-5.0 0.0 5.0 10.0 15.0 20.0 25.0Alpha (deg.)

Cl

VG at x/c= 0.2VG at x/c= 0.3Clean

DU 91-W2-250Re = 2.0x106

Airfoil testing (aerodynamic devices)

• Vortex generators

Page 27: Airfoil Design

03 May, 2004 27DUWIND, section Wind Energy, Faculty CiTG

Effect on wind turbine performance(2d stationary performance)

Calculated optimal element performance at mid-span for TSR= 7.5

ZZ-tape 5% u.s.

CpLoadingCp_elem“Static load”Cl_max*c

L/D-maxc/RClean

-5.1%8%.532.155600.135DU 91-W2-250

-0.24%6%.560.1521190.119NACA 63-425

.212

0.143

0.149

.503

.561

.56

-10.2%48%390.212NACA 63-425

0%0%1250.105DU 91-W2-250

-0.06%4%1220.106AH 93-W-257

* “Static load” reference based on 1 year gust for fixed pitch blades

Page 28: Airfoil Design

03 May, 2004 28DUWIND, section Wind Energy, Faculty CiTG

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0 20 40 60 80 100 120 140max. L/D

local Aero Cp

Effect on wind turbine performance (2d stationary performance)

25% thick airfoil class (mid-span for TSR= 7.5)

“Rough”

DU 91-W2-250

-5%

NACA 63-425

-10%

Page 29: Airfoil Design

03 May, 2004 29DUWIND, section Wind Energy, Faculty CiTG

Overview of HAWT airfoils

General aviation airfoils• NACA 63-4xx and NACA 63-6xx series• NACA 64-4xx

Dedicated airfoils• S8xx series (NREL, USA)

• FFA W-xxx (FOI, Sweden)

• Risø-A1-xxx (also B, P-series, Risø, Denmark)

• DU xx-W-xxx (Delft, Netherlands)

Page 30: Airfoil Design

03 May, 2004 30DUWIND, section Wind Energy, Faculty CiTG

Overview of HAWT airfoils

• Overview of DU-airfoils and users

GE-Wind, REpower, Dewind, Suzlon, Gamesa, LM Glasfiber, NOI Rotortechnik, Fuhrlander, Pfleiderer, EUROS, NEG Micon, Umoe blades, Ecotecnia ……..

DU 97DU 97--WW--300300DU 96DU 96--WW--180180

DU 95DU 95--WW--180180

DU 93DU 93--WW--210210

DU 00DU 00--WW--212212DU 00DU 00--WW--350350

DU 91DU 91--W2W2--250250

Page 31: Airfoil Design

03 May, 2004 31DUWIND, section Wind Energy, Faculty CiTG

Next steps:

Extending to all operational situations :

• Measurements => “high” Reynolds number=> chart unsteady behavior of DU airfoils

New airfoil designs :

• Very thick airfoils for lightweight blades

• Control of rpm only => Low TSRLow Cl-max, benign stall

=> High TSRLow drag

• Aero-elastic tailoring => Dynamic airfoil design(Probably low Cl-max)