aluminum - internet archive

289
STEEL ALUMINUM SPECIAL METALS Specifications & Tolerances Machining & Fabricating Data Chemical & Mechanical Properties Weights & Dimensions Safe Loads, General Data, etc. JOSEPH T. RYERSON & SON, INC.

Upload: others

Post on 13-Apr-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

RYERSON DATA BOOK
Index ... page 2
WEIGHTS .....••.......................... page 107
TITANIUM & SPECIAL METALS
PROPERnU, fABRICA,nON, fOLERANCU ...... """' 226 a GENERAL DATA ............. p ... 245 a
2 Index
Mfg. Practices ....................... .70-72 Tubing Tolerances ..........••.......... 90-92
Alloying Elements, Effect on Steel ..............................•...... .15, 16
Aluminum: Alloy Designations .......................... 226 Bending Radii .......................... 239-241 Characteristics & Applications ...... 227 Chemical Compositions .......... 229, 230 Fabrication Characteristics .......... 228 Finishes .................................. 243, 244 Grating, Safe Loads ...................... 204 Joining Methods .............................. 242 Mechanical Properties .......... 231, 232 Temper Designations ...................... 226 Tolerances:
Bars .................................... 235, 236 Pipe .............................................. 236 Plates .................................. 233, 234 Sheets .................................. 233, 234 Structural Shapes ...................... 236 Tubing .................................. 237, 238 Wire .................................... 235, 236
AISI-SAE Compositions ..................... .7-11 ASTM End-Quench Test ........................ 25 ASTM Standards: .
A36-Structural Steel ...................... 28 A53--Pipe, Welded & Seamless ........ 29 All3-Structural Steel for
Locomotives & Cars · .................... 29 Al20-Pipe, Black & Galv ............... 30 A131-Structural Steel for Ships ... .30 A185-Wire Fabric for
Concrete Reinforcement .............. 31 A193--AIIoy Steel Bolting Mat'ls ..... 31 A240-Stainless for Pressure
Vessels .......................................... 32 A242-High Strength-Low Alloy
Structural Steel ............................ 32 B265-Titanium Strip, Sht., Plate .... 33 A269-Stainless Tubing .................. 33 A276-Stainless Bars ...................... 33 A283-Carbon Steel Plates ............ 35 A285-Piates, Flange & Firebox ...... 35 A306-Bars, Carbon Steel ................ 35 A312-Stainless Pipe ...................... 36 B337-Titanium Pipe ........................ 36 B34S-Titanium Bars & Billets ........ 36 A357-Piates for Pressure Vessels .. 36 A375-High Strength-Low Alloy
Sheets & Strip .............................. 37 A376-Stainless Pipe for High
Temperature Service .................... 37 A387-Chrome-Moly Alloy Plates
for Pressure Vessels .................... 38 A44~Structural Steel, High
Strength ........................................ 38
A441-High Strength-Low Alloy Struct. Mn-V Steel ........................ 39
A442-Carbon Steel Plates for Pressure Vessels ................... .4~
A500-Tubing, Structural ................ 40 A501-Tubing, Structural ............... .41 A514-AIIoy Plate for Welding ........ 41 A515-Carbon Steel Plates
for Pressure Vessels {High Temperature Service) .................. 42
A516-Carbon Steel Plates for Pressure Vessels {Lower Temperature Service) .................. 42
A517 -Alloy Plate for Pressure Vesse Is ......................... .43
A572-High Strength, Low Alloy Columbium-Vanadium- Structural ...................................... 43
A58S-High Strength, Low Alloy Structural w/50,000 psi Yield ....................................•.. .4-4
Angles: Elements of ...............................•.. 83-81: Safe Loads ............................. .173, l7l Tolerances & Standard
Mfg. Practices ........... .73, 75, 83-8E Weights & Dimensions ......•......... 83-Sf
Areas of Circles .......................... 259-271 B
Bars: Alloys & Carbon Steel:
ASTM Specs ............................ 31, 3! Chemical Compositions .......... ..7-1: Machining Data ... .129-138, 141, 14: Mechanical Properties ........... .17-21 Tolerances & Standard
Mfg. Practices .................... 66-7: Stainless Steel:
ASTM Specs .................................. 3 Chemical Compositions ............... .1 Machining Data ......... .129, 139, 14 Mechanical Properties ................ 2 Tolerances & Standard
Mfg. Practices ............... .105, 10 Weights · .................................... 107-11
Beam Loads: Structural Shapes ........... .156, 162-18 Tubing ...................................... 181-18
Beams: ASTM Specs .................... 28, 29, 38, 3 Safe Loads ............................... .163-17 Tolerances & Standard
Mfg. Practices ....................... .73-f Weights & Dimensions ................ 77-f
Boron Steel Compositions ................... .1 Brass
Gauges ·------······--·-····················-····-·2; Tolerances ...................................... 2:
B (Cont'd)
Bursting Pressures: Fluid Line Tubing ............................ 94 Hydraulic Tubing .............................. 94 Stainless Pipe ............................... .127 . c
Cham, Alloy ........................................ 214 Channels:
hemical Compositions: Alloying Elements,
Effect on Steel .................... 15, 16 Alloy_ Steels ............................... :: ... 9-11 Alummum .....•.......................... 229, 230 ~ar~on Steels ................................. .?, 8 T ta1_nless Steels ......................... .12-14
Circ~~~~g ····························•·····················8
Ccofua~nT_~~~~~~efuiiing··::::::::::::::j83~i~~ ompos1t1ons: Aluminum ................................ 229, 230 Steel ................................................ 7-14
Concrete Reinforcing Bars: Dimensions, Sizes, Wts ................. 218 Stand~rd Mfg. Practices .................. 68
Convers1on Tables: Brine!l & Rockwell Hardness ............ 27 Fractions to Decimals .................... 288 Inches to Feet ................................ 287 ~ech. Properties & Hardness .......... 26
C emperature ............................ 27 4, 275 Copper Gauges .................................. 123
c~~~;rs~~~r~~;.e~riiiiiiriies-·oc:::27d~§ Cuttmg Speeds & Feeds ............. .l29-140
D ~e~i~~l Equivalents .......................... 288
D~ mJtJ~ns, Steel ........................ 245-258 1mens10ns: ~~gles .......................................... 83-86 Gr:u~els ...................................... 88, 89
~eads g_:::::::::::::::::::::::::::::::::J~s. ~~ ri~is~mJexii .. iin·a·i··················-·············.77 R • f g .............................. 212 R~'" orcing Bars ............................ 218 RJvetG .... _. ......................................... 213 syex ratmg ............................ 215, 216 Safety Plate Lugs .....•.................... 211 T crew Threads ............................... .156 J-~s .................................................... 87
D . 1 e Flange Beams ................... .78-82
D~~f1a0~~aAc_~~~-s--~~rners ................... ~161 . . ..................... .157 160 Dn II Rod Tolerances ........................... .71
E Edges, Strip Steel ................................ 58
-.
Index 3
E (Cont'd)
Equivalents: Decimal & Fraction ...................... 288 Hardness ........................................ :: .. 27 ·Inches & Feet ................................ 287 Temperature ............................ 274 275
Expanded Metal ............................ 215-217 . F
~ab~1c, ~e~ded Wire ......................... .125 ~~ s an peeds ....................... .129-140
F1mshes: Aluminum ................................ 243, 244
Sheets, ASTM Specifications .......... 35 Flat Rolled Steel:
Size Classification ............................ 65 Weights ........................... .108, 111-120
Floor Plate: Lug Dimensions .............................. 211 Safe Loads ..................................... 205
Fraction and Decimal Equivalents ..... :288 G
Gallon~ in Round Tanks ................ 280-282 Ga lvamzed Sheets:
Minimum Coating .............................. 54 Wts., Tol. & Mfg. Practices ........ Sl-54
Gauges, Sheet: Brass ....................................... .123, 273 Carbon Steel ............................. .45, 123 Copper .............................................. 123 Dec1mal Equivalents ...................... 273 Galvanized Sheet ........................... 51 S~ainless Steel ........................... : .. ..123
G Zmc ................................................. .123 Gauges, Strip & Tubing ...................... 273 G~~~~~j ~~~:: ...................................... 273
A~eas of Circles ...................... 259-272 Circumferences of Circles ...... 259-272 Cross Section Properties ...... 276-279 Dec!mal & Fraction Equivalents .... 288 Dwmal & Gauge Equivalents ........ 273 Defin~tions ................................ 245-258 Feet !nto Inches .............................. 287 Fract10n & Decimal Equivalents 288 Gallons in Round Tanks ............ 2S0~282 raur ~ Decimal Equivalents ........ 273 snc ~fi mJo F~~t .............................. 287
pec1 c rav1t1es ............................ 283 Temperature Conversions ...... 274, 275 Us~ful Information .................. 284-286
G W~1ght of Matter ............................ 283
ratmg: Expanded Metal ...................... 215, 216 Safe Loads ................................ 201-204
H HH-Beams, Mfg. Practices ................... .74
ardness: Conversion Tables ............................ 27 Relation to Mech. Prop ..................... 26
Heads for Pressure Vessels ........ 208-210 Heat Treating:
ASTM Test .......................................... 25
Effect of Mass .................................. 24 Jominy Test -----~------------·····················25
Hexagons: Tolerances & Standard
Mfg. Practices .................. 66, 69-72
Hi~ei~rr~snlii·h~Ca·w--Ai"loy-·siieets- 107-111 & Strip, ASTM Specs ........... .37, 43, 44
Hydraulic Tubing: Bursting Pressures .......................... 94 Standards .......................................... 93
I Beams: Safe Loads ..............................• .163-166 Tolerances and Standard
Mfg. Practices ....................... .75, 77 Weights, Dimensions ....................... .77
Inches into Feet .................................. 287 J
Joists, .................................................. 218 Jominy Test Interpretation .................. 25
K Keyseats in Shafting ......................... .152
L Loads ................................ See Safe Loads
M Machinability Ratings ....................... .129 Machining Data: Allowances:
Alloy Steel Bars ......................... .141 Carbon Steel Bars ..................... .141 Tool Steel Bars ........................... .142 Tubing ......................................... .143
Cutting Speeds & Feeds ............. J29-140 Distances Across Corners ............... .161 Drill Sizes ................................ 157-160 Hourly Production Rates ............... .149 Keyseats in Shafting ..................... .152 RPM of Spindles ..................... .144-148 Screw Threads ............................... .156 Speeds & Feeds ...................... .129-140 Stock Required ..................... .150, 151 Thread & Tap Data ................. .153-155
Manhole Covers .................................. 210 Manufacturing Practices, Tolerances
................ See Standard Mfg. Practices Mass, Effect of in H.L ........................ 24 Measures .................................... 285, 286 Mechanical Properties:
Alloy Steels ................................. .17-21 Aluminum ................................ 231, 232 Carbon Steels ............................. .17-21 Hardness Conversions ...................... 27 Special Metals ................................ 225 Stainless Steels .......................... 22, 23 Tubing ................................................ 21
Mechanical Tubing: Compositions ...................................... 8 Mechanical Properties ...................... 21 Tolerances & Standard
Mfg. Practices ...................... 90-100 Weights ...................... 94, 98, 100, 108
Mesh, Reinforcing ............................. .125
M (Cont'd) Misc. Product Data:
Caisson Rings .................................. 218 Chain, Alloy .................................... 214 Expanded Meta I Sheets .................. 217 Grating .................................... 215, 216 Heads, Steel ............................ 208-210 Manhole Covers .............................. 210 Nuts, Hexagonal .............................. 212 Reinforcing Bars ............................ 218 Rivets, Structural ............................ 213 Safety Plate, lug
Dimensions .................................. 211 Shafts, Power Transmission .... 219, 220
N Nuts, Hexagonal .................................. 212
Open-Web Steel Joists ........................ 218 p
Permissible Variations ................ See Standard Mfg. Practices
Pipe, Steel: ASTM Specs .......................... 30, 36, 3i Mf~. Practices .................................. 9l Weights, Dimensions ....................... .!<
Plates, Steel: ASTM Specs ......... See ASTM Standard! Mechanical Properties .............. 20, 21 Tolerances & Standard
Mfg. Practices ........ 59-64, 103, 1()1 Weights ........................... .108, 113-12(
Power Transmission by Round Shafts .......................... 219, 221
Pressure Vessels, ASTM Standards ...... 32, 36, 38, 40, 4:
Properties: Aluminum ................................ 231, 23: Cross Sections ........................ 276-27! Steel .............................................. 17-2:
R Rectangular Tubing,
Dimensions, Sizes, Wts ................... 21 Mfg. Practices .................................. 6
RPM of Spindles ......................... .144-14 Rivets:
Lengths Required ............................ 21 Weights ............................................ 12
Rockwell Conversions .......................... 2 Rounds, Steel:
Tolerances & Standard Mfg. Practices .......................... 66-7
Weights .................................... 107-11 Ryex Expanded Metal .................. 215-21 Ry-Weld & Ry-Wedg Grating,
Safe Loads .............................. 202, 2( s
SAE-AISI Compositions ..................... .7-: Safe loads:
Angles ...................................... 179, 1! Beams ...................................... 163-1<
Index s
S (Cont'd) S (Cont'd)
Safe Loads: (Cont' d) Stainless Steel: (Cont'd) Buildings .................................. 206, 207 Chain, Alloy .................................... 214 Channels .................................. 176-178 Explanation of:
Hollow Struct. Tubing ....•.......... .181 Structural Shapes ......................... .162 Floor Plates .................................... 205 Grating ...................................... 202-204 Hollow Structural Tubing:
Beam Loads ........... ~ ............ .182-188 Column Loads ..................... .189-201
I Beams ................................... .163-166 Safety Plates .......................•......... 205 Tubing ...................................... 182-188 Wide Flange Beams ................. .167-175
Safety Plates: Lu~ Dimensions ........... ~·················211 Sa e Loads ...................................... 205
Screw Threads ... : .........................•.... .156 Seamless Tubing, Tolerances
& Standard Mfg. Practices .......... 90-94 Shafting:
Keyseats .......................................... 152 Power Transmission ................ 219, 220 Tolerances & Standard
Mfg. Practices ........................ 69, 72 Shapes, Standard ................................. .73 Sheets, Steel:
Gauges ............................................ 273 Hardness ........................................•... 27 Mechanical Properties .............. 20, 21 Stainless, Mfg. Practices ............. .102 Tolerances & Standard
Mfg. Practices ............•.......... .45-55 Weights:
Aluminum Coated .......................... 54 Carbon Steel ...................... ..45, 123 Galvanized Coatings .................... 54 Galvanized Steel .................. 51, 124 Stainless Steel ........................... .123
~pec!fil Meta_!~ .......................•.... 221-225 pec1 c Grav1t1es ................................ 283
Specifications: AISI-SAE ......................................•... 7-11 ASTM .................... See ASTM Standards
Speeds & Feeds .............•.......... .129-140 Spindles, RPM of ....................... .144-148 Square Tubing, Tolerances
& Mfg. Practices ...................... 98-101 Squares:
Tol~rances & Mfg. Practices ...... 66-72 We1ghts ..............................•..... 107-111
Stainless Steel: ASTM Specs .................... 33, 34, 36, 37 Bars, ASTM Specs .............................. 33 Characteristics and Uses ............... .12
Heat Resistance ...................•........... 22 Mechanical Properties ...................... 23 Pipe, ASTM Standards ................ 36, 37 Tolerances and Standard
Mfg. Practices ..............•.... .102-106 Tubing ASTM Standards .................. 33 Wei~hts:
C1rcles .......................................... 122 Pipe ............................................. .127 Plates .......................................... 120 Sheets .......................................... 123
Standard Gauges ....................... .123, 273 Standard Manufacturing
Practices & Tolerances: Bars:
Alloy .......................................... 70-72 Carbon Steel ............................ 66-69 Reinforcing .................................... 68 Stainless ............................. .105, 106 Tool Steel ..................................... .?!
Bar Shapes: Angles .......................... 67, 68, 83-85 Channels ........................................ 68 Tees ........................................ 68, 87
Flat Rolled Carbon Steel ................ 65 Junior Beams ................................... .78 Pipe .................................................... 92 Plates:
Flame Cut ...................................... 62 Floor .............................................. 64 Sheared .....•.............................. 59-63 Universal Mill .......................... 59-63
Reinforcing Bars .............................. 68 Sheets, Carbon Steel:
Aluminum Coated .................... 54, 55 Cold Rolled ..................•.......... .48-50 Galvanized ................................ 5!-54 Gauge, Wt. & Thick ....................... 45 Hot Rolled ................................ 46-48 Long Terne .•............................ ..48-50 Porcelain Enamel .................. ..48-50
Stainless Steel: Bars ................................... .105, 106 Plates ··························-~····.103, 104 Sheets .......................................... 102
St~~bi~~-.:::::::::::::::::::::::::::::::::::::::55~~~ Structural Shapes:
Angles ............................... .75, 83-86 Beams ............................... .? 4, 76-82 Channels ........................... .74, 88, 89 Standard Shapes ................... .73, 7 4
I~~~::::::::::::::::::::::::::::::::::::::::::~::.~~ Tool Steel Bars ............................... .?!
Chemical Compositions ................... .14 Comparative Properties .................... 22 Cuttmg Speeds ............. .129, 139, 140 Electrica I Properties ........................ 22 Finishes ........................•..................... 14
Tubing: Alloy .......................................... 90-92 DOM Welded .................•................ 95 Fluid Line ................................ 93, 94 Hollow Structural ....................... .101
Gauges ........................................... .123 Hydraulic ..................•............. 93, 94
6 Index
Practices & Tolerances: (Cont'd) Machining Allowances ............... .143 Mechanical Properties •.....•...••.... 21 Seamless .................................. 90-92 Special Smooth I.D ....................... 98 Square, Rectangular .............. 99-101 Stainless ...................................... 104 Welded .................................... 95-101
Standards for Meta Is .............................. See ASTM Standards
Strip Steel: Gauges ................... # ••••••••••••••••••••••• 273 Hardness ............................................ 27 Tolerances & Mfg. Practices ...... 55-58
Structural Steel: ASTM Specs ........ 28-30, 32, 38, 39, 43 Tol~rances _& Mf~. Practices ..... .73-89 We1ghts, D1mens10ns ................. .77-89
T Tank Capacity .............................. 280-282 Tees:
Elements of ...................................... 87 Tolerances and Standard
Mfg. Practices ·······-··············· 75, 87 Weights, Dimensions ........................ 87
Temperature Tables ............•....... 274, 275 Tempers, Strip Steel .......................... 58 Tensile Strength:
Aluminum ................................ 231, 232 Steel .........................................•.... 17-21
Thread & Tap Data ..................... .153-155 Threads, Screw ................................... .156 Tolerances, Steel
........................ See Std. Mfg. Practices Tool Steels:
Allowance for Machining ............. .142 Tolerances ........................................ 71
Track Bolts, ASTM Spec ........................ 31 Tubing, Steel:
Chemical Compositions ...................... & Gauges .............................................. 273 Hydraulic Standards .......................... 94 Mechanical Properties .................... 21 Tolerances and Standard
Mfg. Practices .............. 90-101, 104 Weight Formula ............................. .108
u Useful Information ...................... 284-286
Aluminum .................................... 107 Brass ............................................ 107 Reinforcing .................................. 218 Steel ...................................... 107-114
Bar Size Shapes .................. 84, 85. 87 Beams .......................................... 77-82 Channels ...................................... 88, 89 Circles ................................... .121, 122
W (Cont'd) Weights: (Cont'd)
Flat Bars .................................. 111-114 Fluid line Tubing .............................. 94 Formulas .......................................... 108 Gratin~ .................................... 215, 216 Galvamzed Sheets .................... 51, 124 Heads .............................................. 208 Hexagons ................................. .107-111 !-Beams .............................................. 77 Junior Beams ............•...................... .77 Liquids, Gases ................................ 283 Metals .............................................. 123 Octagons .................................. 109-111 Pipe, Carbon Steel ......................... .126 Plates .............................. 111, 113-120 Rectangular Tubing ....................... .100 Reinforcing Bars ............................ 218 Rivets .............................................. 128 Rounds ...................................... 107-111 Sheets:
Aluminum Coated .......................... 54 Brass ............................................ 123 Carbon Steel ...................... ..45, 123 Copper .......................................... 123 Galvanized Coatings ...................... 54 Galvanized Steel .................... 51, 12~ Stainless Steel ........................... .12~ Zinc .............................................. 12;
Solids .............................................. 28; Special Smooth I.D. Tubing ............ 9! Squares .................................... 107-111 Stainless:
Circles .......................................... 12: Pipe .............................................. 12; Plates .......................................... 121 Sheets .......................................... 12:
Tees .................................................... 8; Tubing .................................. 94, 98, 101 Wide Flange Beams ................... .78-8: Wire Fabric ...................................... 12!
Weight Conversions .................... 285, 281 Weights & Specific Gravities .............. 2S: Welded Tubing, Tolerances &
Mfg. Practices .......................... 95-10 Welded Wire Fabric ........................... .12 Wide Flange Beams:
Dimensions & Wts ...................... .78-8 Safe loads ............................... .167 -17 Std. Mfg. Practices ............. .76, 78-8
Wire: Decimal-Thickness .......................... 27 Fabric, Welded ............................... .12 Gauges ............................................ 27
y
z lees. Std. Mfg. Practices .................... i Zinc Gauges ........................................ U
Chemical Compo;itions 7
CARBON STEELS (Revised May, 1964) Standard Steels--Nonresulphurized
AISI P S SAE No. • C Mn Max. Max. No.
1008 ... 0.10 max. •.. 0.30-0.50 .. .. 040 . ... 050 ...... . 1010 0.08-0.13 0.30-0.60 .040 .050 1010 1012 0.10-0.15 0.30-0.60 .040 .050 1012 1015 0.13-0.18 0.30-0.60 .040 .050 1015 1016 ... 0.13-0.18 ... 0.60-0.90 .. .. 040 .. .. 050 ... 1016 1 017 0.15-0.20 0.30-0.60 .040 .050 1 017 1018 0.15-0.20 0.60-0.90 .040 .050 1018 1019 0.15-0.20 ·0.70-1.00 .040 .050 1019 1020 ... 0.18-0.23 ... 0.30-0.60 .. .. 040 . . .. 050 .. . 1020
M 1020 0.17-0.24 0.25-0.60 .040 .050 1 021 0.18-0.23 0.60-0.90 .040 .050 1 021 1 022 0.1 8-0.23 0.70-1.00 .040 .050 1 022 1023 ... 0.20-0.25 ... 0.30-0.60 .. .. 040 . ... 050 ... 1023 1024 0.19-0.25 1.35-1.65 .040 .050 1024 1 025 0.22-0.28 0.30-0.60 .040 .050 1025 1026 0.22-0.28 0.60-0.90 .040 .050 1026 1027 ... 0.22-0.29 ... 1.20-1.50 .. .• 040 . ... 050 ... 1027 1029 .025-0.31 0.6()-0.90 .040 .050 1030 0.28-0.34 0.60-0.90 .040 .050 1030 1035 0.32-0.38 0.60-0.90 .040 .050 1035 1 036 ... 0.30-0.37 ... 1.20-1.50 ... . 040 .... 050 ... 1 036 1 037' 0.32-0.38 0.70-1.00 .040 .050 1037 1 038 0.35-0.42 0.60-0.90 .040 .050 1 038 1039 0.37-0.44 0.70-1.00 .040 .050 1039 1 040 . .. 0.37-0.44 ... 0.60-0.90 ... . 040 .... 050 ... 1 040 1041 0.36-0.44 1.35-1.65 .040 .050 1041 1042 0.40-0.47 0.60-0.90 .040 .050 1 042 1043 0.40-0.47 0.70-1.00 .040 .050 1043 1044 . .. 0.43-0.50 ... 0.30-0.60 ... . 040 . ... 050 ... 1044
M 1044 0.40-0.50 0.25-0.60 .040 .050 1045 0.43-0.5.0 0.60-0.90 .040 .050 1045 1046 0.43-0.50 0.70-1.00 .040 .050 1046 1048 ... 0.44-0.52 . .. 1.10-1.40 .. .. 040 . ... 050 ... 1048 l 049 0.46-0.53 0.60-0.90 .040 .050 1049 1050 0.48-0.55 0.60-0.90 .040 .050 1050 1051 0.45-0.56 0.85-1.15 .040 .050 1052 ... 0.47-0.55 . .. 1.20-1.50 .. .. 040 . ... 050 ... 1052 1053 0.48-0.55 0.70-1.00 .040 .050 1 055 0.50-0.60 0.60-0.90 .040 .050 1 055 1060 ... 0.55-0.65 .. . 0.60-0.90 .. .. 040 .. .. 050 ... 1060 1070 0.65-0.75 0.60-0.90 .040 .050 1070 1 078 0.72-0.85 0.30-0.60 .040 .050 1 078 1080 ... 0.75-0.88 ... 0.60-0.90 .. .. 040 . . .. 050 .. . 1080 1084 0.80-0.93 0.60-0.90 .040 .050 1084 1090 0.85-0.98 0.60-0.90 .040 .050 1090 1095 ... 0.90-1.03 ... 0.30-0.50 .. .. 040 .... 050 . .. 1095
• Prefix M denotes merchant quality grades with wider carbon and manganese ranges than standard steels; all others are basic open hearth or oxygen process steels.
When Silicon Is required, the foiiowing ranges and limits are com­ monly used for basic open-hearth steel grades:
Standard Steel Designation Silicon Ranges or Limits Up to 1015 Excl ..•....••..•.•.•••••••••••.•••••. 0.10 max. 1015 to 1025 incl ......... 0.10 max., 0.10/0.20, or 0.15/0.30 Over 1025 ........................ 0.10/0.20, or 0.15/0.30
When lead or copper are required, they are added elements to a standard steel. Lead is generally added in amounts ranging from 0.15 to 0.35%. Such a steel is identified by inserting the letter "L" between the second and third numerals of the AISI number (ex· ample: lOLlS).
8 Chemical Compositions·
A lSI No.•
Standard Steels-Resulphurized
Max. SAE No.
1109 0 0 .. 08-.13. 0 0 0.60-0.90 0 0 . 0.040 0 0 0 .. 08-.13 0 .. 1109 111 0 .08-.13 0.30-0.60 .040 .08-.13
81111 .13 max. 0.60-0.90 .07-.12 .10-.15 81112 .13 max. .. 0.70-1.00 .... 07-.12 ...• 16-.23 ... 1112 81113 .13 max. 0.70-1.00 .07-.12 .24-.33 1113
1116 .14-.20 1.10-1.40 .040 .16-.23 1117 .14-.20 1.00-1.30 .040 .08-.13 1117 1118. 0 .. 14-.20. 0 01.30-1.60. 0 .. . 040 0 0 0 .. 08-.13 0 0 01118 1119 .14-.20 1.00-1.30 .040 .24-.33 1119 1132 .27-.34 1.35-1.65 .040 .08-.13 1132 1137 .32-.39 1.35-1.65 .040 .08-.13 1137 1139 0 0 .. 35-.43 0 0 0 1.35-1.65 0 0 0 0.040 0 . 0 .• 13-.20 0 0 0 0 0 0 0 1140 .37-.44 0.70-1.00 .040 .08-.13 1140 1141 .37-.45 1.35-1.65 .040 .08-.13 1141 1144 0 0 .• 40-.48 0 0 0 1.35-1.65 0 0 0 0.040 0 0 0 .. 24-.33 0 .. 1144 1145 .42-.49 0.70-1.00 .040 .04-.07 1145 1 146 .42-.49 0.70-1.00 .040 .08-.13 1146 1151.0 .. 48-.55. 0 .0.70-1.00. 0 0 .. 040. 0 0 .• 08-.13. 0 .1151
Standard Steels-Rephosphorized and Resulphurized
1211 .... 13 max. .. 0.60-0.90 .... 07-.12 ...• 10-.15 ..•.... 1212 .13max. 0.70-1.00 .07-.12 .16-.23 1112 1213 .13max. 0.70-1.00 .07-.12 .24-.33 1113 12L 14 .15 max. 0.85-1.15 .04-.09 .26-.35
(Ledloy 300) 1215 .09max. 0.75-1.05 .04-.09 .26-.35
• Prefix B denotes acid bessemer steels; all others are basic open hearth or oxygea process steels.
Whelt lead or copper are required, they are added elements to a standard steel. Lead Is generally added in amounts ranging from 0.15 to 00.35"/o. Such a steel Is Identified by Inserting the letter ''L" between the second -d third numbers of the A lSI number (example 12l14).
Wh81t silicon Is requtred, the following ranges and limits are commonly used for basic open hearth steel grades:
Standard Steel Designation Silicon Ranges or limits
Up to 1110 Ind ......................•...... 0.10 max. 1116 and Over ....... 0.10 max., 0.10/0.20, or 0.15/0.30
AISI No.
c•• Mn p
Max.
1 01 0 0 0 0 0 .. 08-.13 0 .. 0 0 0.30-0.60 .• 0 0 0 .. 040 0 0 0 0 0 0 .. 050 1018 .15-.20 0.60-0.90 .040 .050 1213 ...... 13 max. .... 0.70-1.00 ...... 07-.12 ...... 24-.33
**Cotbon limits are minimum and maximum on check analysis, while the other elements ore subject to A.ISI Standard Variations for check analyses.
Chemical Compositions 9
(Revised February, 1964)
Open Hearth and Electric Furnace
A lSI Other SAE No.* c Mn Ni Cr Mo Elements No.
MANGANESE STEELS
1330 .28-0.33 1.60-1.90 a,b 1330 1335 .33-0.38 1.60-1.90 a,b 1335
1340 .38-0.43 1.60-1.90 a,b 1340 1345 .43-0.48 1.60-1.90 a,b 1345
MOLYBDENUM STEELS
4012 .09-0.14 0.75-1.00 .15-.25 a,b 4012 4023 .20-0.25 0.70-0.90 .20-.30 a,b 4023
4024 .20-0.25 0.70-0.90 .20-.30 b,c 4024 4027 .25-0.30 0.70-0.90 .20-.30 a,b 4027 4028 .25-0.30 0.70-0.90 .20-.30 b,c 4028
4037 .35-0.40 0.70-0.90 .20-.30 a,b 4037 4047 .45-0.50 0.70-0.90 .20-.30 a,b 4047
CHROMIUM_;MOLYBDENUM STEELS
4118 .18-0.23 0.70-0.90 0.40-0.60 .08-.15 a,b 4118 4130 .28-0.33 0.40-0.60 0.80-1.10 .15-.25 a,b 4130
4ll7 .35-0.40 0.70-0.90 0.80-1.10 .15-.25 a,b 4137 4140 .38-0.43 0.75-1.00 0.80-1.10 .15-.25 a,b 4140
4142 .40-0.45 0.75-1.00 0.80-1.10 .15-.25 a,b 4142 4145 .43-0.48 0.75-1.00 0.80-1.10 .15-.25 a,b 4145
4147 .45-0.50 0.75-1.00 0.80-1.10 .15-.25 a,b 4147 4150 .48-0.53 0.75-1.00 0.80-1.10 .15-.25 a,b 4150 4161 .56-0.64 0.75-1.00 0.70-0.90 .25-.35 a,b 4161
NICKEL-CHROMIUM-MOLYBDENUM STEELS
4320 .17-0.22 0.45-0.65 1.65-2.00 0.40-0.60 .20-.30 a,b 4320 4340 .38-0.43 0.60-0.80 1.65-2.00 0.70-0.90 .20-.30 a,b 4340
E4340 .38-0.43 0.65-0.85 1.65-2.00 0.70-0.90 .20-.30 a,b E4340
MANGANESE 0.80%-MOLYBDENUM 0.40% STEELS
4419 .18-0.23 0.45-0.65 .45-.60 a,b 4419
NICKEL 1.75%-MOLYBDENUM 0.25% STEEL
4615 .13-0.18 0.45-0.65 1.65-2.00 .20-.30 a,b 4615 4620 .17-0.22 0.45-0.65 1.65-2.00 .20-.30 a,b 4620
4621 .18-0.23 0.70-0.90 1.65-2.00 .20-.30 a,b 4621 4626 .24-0.29 0.45-0.65 0.70-1.00 .15-.25 a,b 4626
• Prefix E denotes electric furnace steel; all other are open hearth or oxygen process steels.
(a) Phosphorus content for basic open hearth or oxygen process steels is .035o/oi for basic electric furnace steel, .025°/0 • Sulphur content for basic open hearth or oxygen process steels is .040°/0 ; for basic electric furnace steel, .025°/0 •
(b) Silicon content is .20 to .35"/o. (c) Sulphur content is .035 to .050%.
10 Cbemical Compositions
STANDARD ALLOY STEELS, Continued
Open Hearth and Electric: Furnace
A lSI Otber SAE No.• c Mn Ni Cr Mo Elements No.
NICKEL 1.05%--CHROMIUM 0.45% MOLYBDENUM 0.20%
4718 .16-0.21 0.70-0.90 0.90-1.20 0.35-0.55 .30-.40 a,b 4718 4720 .17-0.22 0.50-0.70 0.90-1.20 0.35-0.55 .15-.25 a,b 4720
NICKEL 3.50%-MOLYBDENUM 0.25%
4815 .13-0.18 0.40-0.60 3.25-3.75 .20-.30 a,b 4815 4817 .15-0.20 0.40-0.60 3.25-3.75 .20-.30 a,b 4817 4820 .18-0.23 0.50-0.70 3.25-3.75 .20-.30 a,b 4820
CHROMIUM STEELS
5015 .12-0.17 0.30-0.50 0.30~.50 a,b 5015 5120 .17-0.22 0.70-0.90 0.70-0;90 a,b 5120
5130 .28-0.33 0.70-0.90 0.80-1.10 a,b 5130 5132 .30-0.35 0.60-0.80 0.75-1.00 a,b 5132
5135 .33-0.38 0.60-0.80 0.80-1.05 a,b 5135 5140 .38-0.43 0.70-0.90 0.70-0.90 a,b 5140
5145 .43-0.48 0.70-0.90 0.70-0.90 a,b 5145. 5147 .46-0.51 0.70-0.95 0.85-1.15 a,b 5147
5150 .48-0.53 0.70-0.90 0.70-0.90 a,b 5150 5155 .51-0.59. 0.70-0.90 0.70-0.90 a,b 5155 5160 .56-0.64 0.75-1.00 0.70-0.90 a,b · 5160
E51100 .98-1.10 0.25-0.45 0.90-1.15 a,b 51100 E52100 .98-UO 0.25-0.43 1.30-1.60 a,b 52100
CHROMIUM-VANADIUM STEELS
6ll8 .16-0.21 0.50-0.70 0.50-0.70 .10-.15V a,b 6118 6150 .48-0.53 0.70-0.90 0.80-1.10 .15 min. V a,b 6150
NICKEL 0.55%--CHROMIUM 0.50% MOLYBDENUM 0.20%
8615 .13-0.18 0.70-0.90 0.40-0.70 0.40-0.60 .i5-.25 a,b 8615 8617 .15-0.20 0.70-0.90 0.40-0.70 0.40-0.60 .15-.25 a,b 8617
8620 .18-0.23 0.70-0.90 0.40-0.70 0.40-0.60 .15-.25 a,b 8620 8622 .20-0.25 0.70-0.90 0.40-0.70 0.40-0.60 .15-.25 a,b 8622
8625 .23-0.28 0.70-0.90 0.40-0.70 0..40~.60 .15-.25 a,b 8625 8627 .25-0.30 0.70-0.90 0.40-0.70 0.40-0.60 .15-.25 a,b. 8627
8630 .28-0.33 0.70-0.90 0.40~.70 0.40-0.60 .15-.25 a,b 8630 8637 .35-0.40 0.75-1.00 0.40-0.70 0.40-0.60 .15-.25 a,b 8637
8640 .38-0.43 0.75-1.00 0.40-0.70 0.40-0.60 .15-.25 a,b 8640 8642 .40-0.45 0.75-1.00 0.40-0.70 0.40-0.60 .15-.25 a,b 8642
8645 .43-0.48 0.75-1.00 0.40-0.70 0.40-0.60 .15-.25 a,b 8645 8655 .51-0.59 0.75-1.00 0.40-0.70 0.40-0.60 .15-.25 a,b 8655
• Prefix E denotes electric furnace steel; aiL otlntrs are open hearftl or oxygen process steels.
(a) Phosphorus content for basic open hearth or oxygen process steels is .035°/0 ; for basic electric fumace steel, .025°/o.. Sulphu·r content for basic open heOTth or oxygen process steels is .040°/0 ; for basic electric furnace steel, .025°/0 •
(b) Silicon content. is .20 to .35%.
Chemical Compositions 11
A lSI No.
STANDARD ALLOY STEELS, Continued Open Hearth and .Electric Furnace
Other c Mn Ni Cr Mo Elements
NICKEL 0.55%-CHROMIUM 0.50% MOLYBDENUM 0.25%
.18-0.23 0.70-0.90 0.40-0.70 0.40-0.60 .20-.30 a,b
.38-0.43 0.75-1.00 0.40-0.70 0.40-.0.60 .20-.30 a,b
NICKEL 0.55%-CHROMIUM 0.50% MOLYBDENUM 0.30%
.20-0.25 0.75-1.00 0.40-0.70 0.40-0.60 .30-.40 a,b
SILICON-MANGANESE STEELS (Silicon content i.s 1.8 to 2.2°/0 J
.51-0.59 0.70-0.95 ·························· .56-0.64 0.70-1.00 ··························
9255 9260
(a) Phosphorus content for basic open hearth or oxygen process is .035°/0 ;
for basic electric furnace steel, .025°/0 • Sulphur content for basic open hearth or oxygen process steels is 0.400/0 ; for basic electric furnace steel, .025'%.
(b) Silicon content is .20 to .35%.
STANDARD BORON STEELS These steels can be expected to hove 0.0005o/0 minimum boron content
A lSI SAE .No. c Mn Si Ni Cr Mo No •
50844 .43-0.48 0.75-1.00 .20-.35 • 40-.60 50844 50846 .44-0.49 0.75-1.00 .20-.35 .20-.35 50846 50850 .48-0.53 0.75-1.00 .20-.35 .40-.60 50850 50860 .56-0.64 0.75-1.00 .20-.35 .40-.60 50860 51860 .56-0.64 0.75-1.00 .20-.35 :io.:4o .70-.90 :oa.'.i5 51860 81845 .43-.048 0.75-1.00 .20-.35 .35-.55 81845 94817 .15-0.20 0.75-1.00 .20-.35 .30-.60 .30-.50 .08-.15 94817 94830 .28-0.33 0.75-1.00 .20-.35 .30-.60 .30-.50 .08-.15 94830
NOTE: Phosphorus content is 0.035o/0 maximum, sulphur content 0.040°/0 maximum.
NOTES ON ALLOY STEELS Note 1: Grodes shown with prefix letter E are normally mode
only by the basic electric furnoce process. All others are normally monufactured by the basic open heorth or bosic oxygen processes but moy be monufactured by the basic electric fumace process with adjustments in phosphorus and sulphur.
Note 2: The phosphorus ond sulphur limitotians far eoch proc­ ess are:
Maximum Per Cent Steel Making Process P 5
Bosic electric furnoce ................ 0.025 ......... 0.025 8osic open heorth or bosic oxygen 0.035 0.040 Acid electric furnoce 0.050 0.050 Acid open heorth .................. 0.050 . ........ 0.050
Note 3: Smoll quantities of certoin elements ore present in alloy steels which are not specified or required. These elements are considered as incidentol and may be present to the following maximum amounts: copper, 0.35"/o; nickel, 0.25"/o; chromium, 0.20"/o; and molyb­ denum, 0.06%.
Note 4: Where minimum ond maximum sulphur content is shown it is indicative of resulphurized steel.
Note 5: Standard alloy steels can be produced with a lead ronge of 0.015 to 0.35"/o. Such steels are identified by inserting the letter "l" between the second and third numerals of the AISI number (example: 41l40). A lodle onolysis for lead is not determinoble since lead is odded to the lodle streom while eoch ingot is poured.
12 Chemical Compositions
Chromium Nickel Stainless Steel-Austenitic
Type 201 A Cr.·Ni.·Mn. analysis of approximately 17% Cr., 4.5% Ni., 6% Mn. Has
properties very similar to Type 301. Corrosion resistance is comparable to Type 301 in most applications.
Type 202 A Cr-Ni-Mn analysis of approximately 18% Cr., 4% Ni., 8% Mn. Comparable
to Type 302 in mechanical properties and ease of fabrication. Approaches Type 302 in corrosion resistance.
Type 203 EZ A 17% Cr., 6% Ni., and 6% Mn. grade with best machining characteristics of
the austenitic stainless steels. Mechanical properties and corrosion resistance ore similar to Type 303.
Type 301
A 17% Cr., 7% Ni. grade used primarily in structural applications and where high strength plus high ductility is required. Corrosion resistance is slightly less than Type 302.
Type 302 The ba.sic 18% Cr. 8% Ni. analysis possessing excellent corrosion resistance to
many organic and inorganic acids and their salts at ordinary temperatures. Also has good resistance to oxidation at elevated temperatures. Can be readily fabricated by all methods usually employed with carbon steels. Cr-Ni grades are nonmagnetic in the fully annealed condition and cannot be hardened by conventional heat treatment.
Type 303 The basic 1 8-8 composition with addition of one or more other elements, usually
phosphorus, sulphur and selenium to improve machinability. Also used when minimum galling and seizing is desired. Corrosion resistance under certain conditions may be somewhat lower than Type 302. Special precautions ore usually necessary in welding this grade. ~
Type 304 Similar to Type 302 in chemical analysis except Carbon is .08 Max. The lower
carbon decreases susceptibility to carbide precipitation in the 800 to 1550° F. temperature range, making it useful over a wider range of corrosive conditions than Type 302.
Type 304L An extra low carbon analysis similar to Type 304 except carbon is .03 Max.
Possibility of harmful carbide precipitation is greatly reduced. Thus corrosion resistance is not affected by normal welding and stress relieving applications.
Type 30S A modified type 304 analysis of lower chromium, higher nickel content to reduce
tendency to work harden when severely cold worked. Particularly well suited for difficult spinning, forming, perforating, etc., where rapid work hardening makes fabrication difficult.
Type 309 A 24% Cr. 12% Ni. steel combininQ excellent resistance to oxidation with high
tensile and creep strength at elevated temperatures. It resists oxidation at tempera­ tures up to 2000° F. under normal conditions.
Type 310 A 25% Cr. 20% Ni. analysis having slightly higher oxidation resistance and creep
values than Type 309. lower Coefficient of Expansion gives less tendency to warp and throw scale in fluctuating temperatures.
Type 314 Essentially Type 31 0 with the addition of approximately 2.50% silicon to increase
resistance to oxidation and to retard carburization.
Type 316 A modified 18-8 analysis containing approximately 2.50°/0 molybdenum.
More resistant to corrosive action of most chemicals, especially sulphuric acid and fatty acids; less susceptible to pitting and pin hole corrosion by acetic acid vapors, chloride solutions, etc. •
Type 316L Similar to Type 316 in analysis excep.t carbon is .03 Max. Possibility of
harmful carbide precipitation is greatly reduced.
(Continued)
Type 317 A modified 18-8 stainless containing approximately 3.50o/0 molybdenum.
Resistance to corrosion is somewhat better and susceptibility to carbide precipi­ tation is slightly less than Type 316.
Type 321 A modified 18-8 analysis with titanium (five times carbon content minimum)
added to make it immune to harmful carbide precipitation.
Type 347 A modified 18-8 analysis with columbium {ten times carbon content minimum)
added to make it immune to harmful inter-granular corrosion.
Straight Chromium Stainless Steels-Ferritic Type 405
A low carbon, 12°/0 chromium iron containing approximately 0.2°/0 alumi­ num. Developed for application requiring a non-hardening analysis in this grade. It is particularly well suited for welded construction which cannot con­ veniently be annealed or stress relieved after welding.
Type 430 A low carbon 17o/0 chromium iron superior to Type 410 in oxidation re­
sistance because of its higher chromium content. It is affected very little by heat treatment. It is used primarily for nitric acid equipment, automotive trim, etc. The free machining grade in this analysis is designated as Type 430-F.
Type 442 A straight chromium ferritic stainless steel with good corrosion resistance and
resistance to scaling at high temperatures.
Type 446 A high chromium heat resisting steel recommended for temperatures up to
2150° F under normal conditions. It is superior to Type 310 in oxidation re­ sistance but has lower strength and creep values at elevated temperatures. It is not generally used for applications involving difficult fabrication because of its low ductility.
Straight Chromium Stainless Steels-Martensitic Type 410
A basic 12°/0 chromium, corrosion and heat resisting grade, which can be readily heat treated to provide a wide range Of mechanical properties. It is fairly resistant to mild forms of corrosion. Its ability to resist atmospheric cor­ rosion is due to the formation of a tightly adherent oxide film which protects the surface.
Type 414 A 12°/0 chromium grade with a small addition of nickel for higher strength
and toughness. Other properties are similar to Type 410.
Type 416 The 12°/0 chromium grade to which one or more other elements, usually phos­
phorus and sulphur, have been added to improve machinability. It is similar to Type 410 in mechanical properties, but has slightly lower corrosion resistance.
Type 420 A 12°/0 chromium grade with approximately .35°/0 carbon to give it more
responsiveness to heat treatment than Type 410. Widely used in the mfr .. of stainless cutlery. It must be hardened and ground to obtain max. corrosion resistance.
Type 440 A hardenable 17°/0 chromium steel offering better resistance to wear than
Type 420. Grade 440-A contains approximately .65 carbon, 440-8 approxi­ mately .85 carbon, and 440-C approximately 1.10 carbon. The lower carbon content provides the best ductility, but maximum hardness results from the higher carbon content. Type 440-C can be hardened to approximately 60/62 Rockwell C and is used for ball and roller bearings, valve parts, etc., requiring high hardness combined with good corrosion resistance.
Type 17-4 PH This grade, containing 17°/0 chromium and 4°/0 nickel, is normally superior
in corrosion resistance to the regular martensitic chromium types of stainless steel shown above. 4°/0 copper is added to promote its precipitation hardening capacity.
Type 17-7 PH Another precipitation hardening stainless steel developed primarily for sheet,
plate, strip and wire applications. Contains approximately 17°/0 chromium, 7°/0
nickel and 1°/0 aluminum.
Low Chromium Steels-Type 501-2 A 5°/0 chromium intermediate alloy steel, related to the stainless family,
possessing corrosion and oxidation resistance decidedly better than the carbon steels but not comparable to the stainless steels. Molybdenum is usually added to retard grain growth and improve creep strength at elevated temperatures.
14 Chemical Compositions
STAINLESS STEEL COMPOSITIONS
A lSI No. 201 202 203EZ 301 302 3028 303 303Se 304 304l 305 308 309 309$ 310 310$ 314 316 316l 317 318 0·319 Al·320t 321 330 347 348 A·286 AM·350 AM·355 19·9Dl 19·9DX 11·7PH 17-4PH 403 405 410 414 416 416Se 420 420F 430 430F 430FSe 431 433
434 435 436
Mn. Si. Carbon Max. Max. Chromium
.15 Max. 1.00 16.00/18.00
.15 Max. •• 1.00 17.00119.00
.15 Max. 2.00 1.00 16.00/18.00
.15 Max. 2.00 1.00 17.00119.00 .15 Max. 2.00 2.13. 17.00119.00 .15 Max. 2.00 1.00 17.00119.00 ,15 Max. 2.00 1.00 17.00119.00 .08 Max. 2.00 1.00 18.00120.00 .03 Max. 2.00 1.00 18.00120.00 .12 Max. 2.00 1.00 17.00119.00 .08 Max. 2.00 1.00 19.00121.00 . 20 Max. 2.00 1.00 22.00124.00 .08 Max. 2.00 1.00 22.00124.00 .25 Max. 2.00 1.50 24.00126.00 . 08 Max. 2.00 1.50 24.00126.00 . 25 Max. 2.00 1.513. 23.00126.00 .08 Max. 2.00 1.00 16.00118.00 .03 Max. 2.00 1.00 16.00/18.00 .08 Max. 2.00 1.00 18.00/20.00 .08 Max. 2.50 1.00 17.00119.00 .07 Max. 2.00 1.00 17.50119.50
.037 .80 .37 14.46 .08 Max. 2.00 1.00 17.00119.00 . 25 Max. . . . . . . 14.00/16 .. 00 . 08 Max. 2.00 1.00 17.00119.00 .08 Max. 2.00 1.00 17.00119.00 . 08 Max. 2.00 1.00 13.50116.00 .081 .12 1.25 0.50 16.00117.00 .101 .15 1.25 0.50 15.00116.00 .281 .35 1.50 .31.8 18.00121.00 .281 .35 1.50 .31.8 18.00121.00 .09 Max. 1.00 1.00 16.00118.00 .07 Max. 1.00 1.00 15.50117.50 .15 Max. 1.00 0.50 11.50113.00 .08 Max. 1.00 1.00 11.50114.50 .15 Max. 1.00 1.00 11.50113.50 .15 Max. 1.00 1.00 11.50113.50 .15 Max. 1.25 1.00 12.00114.00 . 15 Max. 1.25 1.00 14.00118.00 Over .15 1.00 1.00 12.00114.00 Over .15 1.25 1.00 12.00114.00 .12 Max. 1.00 1.00 14.00118.00 . 12 Max. 1.25 1.00 14.00118.00 .12 Max. 1.25 1.00 12.00114.00 .20 Max. 1.00 1.00 15.00117.00 . 12 Max. 14.00/18.00
.12 Max.
.9511.20 1.00 1.00
.9511.20 1.25 1.00 .25 Max. 1.00 1.00 .20 Max. 1.50 1.00 Over .10 1.00 1.00 .10 Max. 1.00 1.00
14.00118.00 14.00118.00 14.00118.00
4.001 6.00 4.00/ 6.00
Other Nickel Elements
3.50 I 5.50 N 0.25 Max. 4.001 6.00 N 0.25 Max. 5.001 6.00 Cu 1.75/2.15 6.001 8.00 .......... . 8.00/10.00 .......... . 8.00110.00 .......... . 8.00110.00 • 8.00110.00 Se. 15 Min. 8.00 I 12.00 .......... . 8.00112.00 .......... .
10.00113.00 .......... . 10.00112.00 .......... . 12.00115.00 .......... . 12.00115.00 .......... . 19.00122.00 .......... . 19.00122.00 .......... . 19.00122.00 1o.oo114.oo Mo:2.oo/3.oo 10.00114.00 Mo.2.00I3.00 11.00115.00 Mo.3.0014.00 13.00115.00 Mo.2.0013.00 11.00115.00 Mo.2.2513.00
17.91 Mo.377,Cu.3.32 9.00112.00 Ti. 6xC. Min .
33.00136.00 9.ool13.oo c1i.t· ·ra:lo'xc· . 9.00113.00 Cb. OxC. Min .
24.00127.00 4.001 5.00 4.001 5.00 8.00111.00 8.00111.00 6.501 7.75 3.001 5.00
I
::::::: ·.:: Aium: ·.io/.3o ·i.2si ·2.so ··········· .
Mo .. 9011.10 Cb .. 251.75
Mo .. 9011.10 Cb .. 25/.40
Mo.O. 75 Max. Mo.0.75 Max. Mo.O. 75 Max. . N2 0.25 Max.
Mo .. 451.65 Mo .. 45/.65
•Type 303, 416, 420 F, 430 F and 440 F-Phosphorus or Sui· phur .07 Min., Molybdenum or Zirconium .60 Max.
••Manganese range on Type 201 is 5.50/7.50; on Type 202, 7.50110.00. Phosphorus content is 0.06 max.; Sulphur 0.03 max.
tType A-286--Phosphorus and sulphur .04 max.; Moly. 1.00/ 1.50. Note: Phosphorus .04 Max. and Sulphur .03 Max.-all Types except 201, 202, 303, A·286, 416, 420 F, 430 F, and 440 F.
*Compositions shown for AL-320 are typical. STANDARD STAINLESS STEEL SHEET FINISHES
No. 1 Finish-Hot rolled, annealed and pickled. No. 28 Finish-Annealed, pickled, and bright cold rolled. No. 2BX Finish-Intermediate grind. No. 20 Finish-Annealed, pickled and dull cold rolled. No. 3 Finish-Intermediate polish on one side or both sides. No. 4 Finish-Standard polish on one side or both sides.
Chemical Compositions 1 5
EFFECT OF ALLOYING ELEMENTS Aluminum
Aluminum is probably the most active deoxidizer in common use in producing steel. It is used in controlling inherent grain size.
Boron Boron is odded to steel in amounts of 0.0005 to 0.003% to improve
hordenobility. In combination with other alloying elements, boron octs os on "intensifier", increasing the depth of hardening during quenching.
Carbon When a small amount of carbon is added to iron, the properties
which give steel its great value begin to appear. As the amount of carbon increase• up to .80 or .90%, the metal becomes harder, pos­ sesses greater tensile strength, and, what is most important, becomes increa•ingly responsive to heat treatment with corresponding develop­ ment of very high strength and hardness.
If carbon were to be increased beyond certain limits in plain car· bon •teel, the ability to be worked either hot or cold would disappear almost entirely, and it would begin to assume the characteri51ic• of cast iron, which usually ha• 1.7 to 4.5% carbon.
Chromium Chromium increa•e• respon,e to heat treatment. It also increases
depth of hardness penetration. Most chromium-bearing allays ·can· tain .50 to 1.50% chromium. Stainles• steel• contain chromium in large quantitie• (12 to 25%), frequently in combination with nickel, and posse55 increased resi•tance to oxidation and corrosion.
Columbium
Columbium in 18-8 51ainless 5teel ha• a similar effect to titanium in making the steel immune to harmful carbide precipitation and resultant inter-granular corrosion. Columbium bearing welding elec· trades are U5ed in welding both titanium and columbium bearing 51ainle55 steels •ince titanium would be lost in the weld arc whereas columbium is carried over into the weld deposit.
Copper
Copper is normally added in amounts of .15 to .25% to improve resistance to atmo•pheric corro•ion and to increa•e ten•ile and yield 5lrength5 with only a slight lo55 in ductility. Higher 5trength properties can be obtained by precipitation hardening copper-bearing 51eel.
Iron
Iron i• the chief element of steel. Normally commercial iron con· tain• other elements pre5ent in varying quantities which produce the required mechanical propertie•. Iron lack• •trength, i• very ductile and •oft and doe• not re•pond to heat treatment to any appreciable degree. It can be hardened •omewhat _by cold working, but not nearly a• much a• even a plain low carbon steel.
Lead
Lead in •feel greatly improve• its machinability. When the lead is finely divided and uniformly distributed it ha• no known effect on the mechanical propertie• of the •feel in the strength level• mo•l commonly specified. It is usually added in amounts from .1 5% to .35%.
Manganese
Next in importance to carbon is manganese. It is normally present in all steel and functions both as a deoxidizer and also to impart •trength and respon•iveness to heat treatrr.ent. Manganese is usually present in quantities from V.% to 2%, but certain special steel• are made in the range of 10% to 15%.
(Continued)
EFFECT OF ALLOYING ELEMENTS, cont'd Molybdenum
Molybdenum adds greatly to the penetration of hardness and increases toughness. Molybdenum tends to help steel resist softening at high temperatures and is an important means of assuring high creep strength. It is generally used in comparatively small quantities ranging from .1 0 to .40%.
Nickel
Nickel increases strength and toughness but is one of the least effective elements for increasing hardenability. The most general quantity addition is from 1 to 4%, although for certain applications, percentages os high as 36% are used. Steels containing nickel usu· ally have more impact resistance, especially at low temperatures. Cer­ tain stainless steels employ nickel up to about 20%.
Phosphorus
Some phosphorus is present in all steel. In addition to increasing yield strength and reducing ductility at low temperatures, phosphorus is believed to increase resistance to atmospheric corrosion.
Silicon
Silicon is one of the common deoxidizers used during the process of manufacture. It also may be present in varying quantities up to 1% in the flnished steel and has a beneficial effect on certain proper· ties such as tensile strength. It is also used in special steels in the range of 1.5% to 2.5% silicon to improve the hardenability. In higher percentages, silicon is added as an alloy to produce certain electrical characteristics in the so-called silicon electrical steels and also flnds certain applications in some tool steels where it seems to have a hardening and toughening effect.
Sulphur
Sulphur is an important element in steel because when present in relatively large quantities, it increases machinability. The amount generally used for this purpose is from .06 to .30%. Sulphur is detri­ mental to the hat forming properties.
Tellurium
The addition of approximately .05% Tellurium to leaded steel improves machinability over the leaded only steels.
Titanium
Titanium is added to 1 8-8 stainless steels to make them immune to harmful carbide precipitation. It is sometimes added to low carbon sheets to make them more suitable for porcelain enameling.
Tungsten
Tungsten is used as an alloying element in tool steel and tends to produce a flne, dense grain and keen cutting edge when used in relatively small quantities. When used in larger quantities of 17 to 20% and in combination with other alloys, it produces a high speed steel which retains its hardness at the high temperatures developed in high speed cutting. Tungsten is also used in certain heat resisting steel where the retention of strength at high temperatures is important. It is usually used in combination with chrome or other alloying elements.
Vanadium
Vanadium, usually in quantities from .15 to .20%, retards grain growth, even after hardening from high temperatures or after periods of extended heating,. Tool steels containing vanadium seem to resist shock better than those which do not contain this element.
Mechanical Properties 17
MECHANICAL PROPERTIES OF STEEL The figures shown below are the result of many tests and
indicate the probable median mechanical expectancy of the steels listed, based on a 1" round section. In individual tests these steels may develop results differing widely from those shown. The size of the section, rolling temperature, permissi· ble variation within analysis limits and the atmospheric tern· perature at time of rolling all influence the final mechanical properties of any steel.
All hot rolled and cold drawn steels are in the as.rolled condition except where noted. Yield Point shown for Quenched and Tempered Condition is determined by the "Dividers Method" of ASTM Spec. E8 (latest).
AISI No. and
Hardness Machin- Condi- % % a; ability tion Tensile Yield Elong. Red. ~ ~
Rating of Strength Strength in of (81112
Steel PSI PSI 2" Area "' 0 =100) "" Hot R'd. 63,000 35,000 38 62 126 872 50
Hot R'd. 69,000 40,000 38 62 143 879 52 Cold Dr. 82,000 70,000 20 57 163 885 65 Carburized at 1700° F., cooled in box, reheated to 1425° F.,
water quenched, tempered at 350° F.-tore properties: 92,000 56,000 27 48 197 891
10L18 Cold Dr. Green w;Purple Dot
82,000 70,000 20 57 163 885 85
1020 Hot R'd. 69,000 40,000 38 62 143 879 52 Green
1025 Turned Red & Ground & Green Polished 67,000 45,000 36 58 143 879 50 LediOJ 300 Purple Cold Dr. 79,000 71,000 16 52 163 886 180 Led IOJ 375 White W/ Purple Dot Cold Or. 70,000 60,000 15 50 155 880 230
LediOJ AX Purple w; Gold Dot Cold Dr. 79,000 71,000 16 52 165 885 300
1215 Orange Cold Dr. 76,000 68,000 18 53 156 883 136
Rrcase Hot R'd, 71,000 42,000 33 64 143 878 90 and Cold Dr. 86,000 75,000 22 52 170 887 95 1117 Carburized at 1700° F., cooled in box, reheated to 14504 F., Gold water quenched, tempered at 350° F.-tore properties:
96,500 59,300 23 53 197 893
Leaded Hot Rd. 72,000 46,000 33 64 143 878 100 RJcase Cold Or. 86,500 75,000 22 53 179 889 125 and Carburized at 1700° F., cooled in box, reheated to 1450° F., 11L17 water quenched, tempered at 350° F.-tore properties: Gold w;Purple Dot 97,000 60,000 23 53 197 893
RJCUt 20 Hot R'd. 91,000 66,000 25 64 187 890 88 & Cold Dr. 103,000 86,000 23 58 212 C16 92 8&L20 Carburized at 1700° F., cooled in box, reheated to 1550° F., oil Purple&. quenched, tempered at 300° F.-tore properties: Green 135,000 105,000 21 54 262 C26 4615-17 White & Green
4620 E4620 White & Green
Hot R'd. 82,000 62,000 28 65 183 890 58 Cold Dr. 99,000 84,600 19 61 207 895 64 Carburized at 1700° F., cooled in box, reheated to 1550° F., oil
quenched, tempered at 300° F.-tore properties: 110,000 80,000 25 61 229 C20
Hot R'd. 85,000 63,000 28 64 183 890 58 Cold Dr. 101,000 85,000 22 60 207 C15 64
. · 0,000 89,000 22 55 248 C24 ....
Carburized at 1700° F., cooled in box, reheated to 1550° F., oil quenc~ed, tempered at 300° F.-tore properties:
(Continued)
18 Mechanical Properties
MECHANICAL PROPERTIES OF STEEL Case Hardening or Low Carbon Bars, Cont'd.
AISI No. Hardness Machin- and Condi- % % .. ability
Ryerson tion Tensile Yield Elong. Red. ~ !1: Rating Color of strenph Strength in of ~ (Bll12
Marking Steel PS PSI 2" Area "' 0 =100) "' E8615 Hot R'd. 8617
82,000 60,000 31 62 149 B81 70
Orange & Carburized at 1700° F. for 8 hours, pot cooled, reheated to Green w/ 1550°F., oil quenched, tempered at 300°F.-tore properties: White Dot 109,000 76,000 17 52 255 C25 8620 Hot R'd. 89,000 65,000 25 63 192 B90 60 Orange Cold Dr. 102,000 85,000 22 58 212 Cl6 63 & Carburized at 1700• F., cooled in box, reheated to 1550° F., oil Green quenched, tempered at 300• F.-tore properties:
129,000 99,000 21 52 255 C25
Medium Carbon or Direct Hardening Bars 1035 Hot R'd. 85,000 54,000 30 53 183 Blue Water Quenched 1550° F.-Tempered 1ooo• F.
103;000 72,000 23 59 201 1042 Cold Dr. 102,000 89,000 16 40 207 Yellow Water Quenched 1550° F.-Tempered 1000• F.
116,000 90,000 22 60 235 M1044 Yellow Hot R'd. 90,000 59,500 26 50 1045 Hot R'd. 98,000 59,000 24 45 212 Yellow Water Quenched 1550• F.-Tempered 1000• F.
120,000 90,000 18 52 240 1045 TGP Turned, Red & Ground & Yellow Polished 98,000 59,000 24 45 212 1137 Cold Dr. 105,000 90,000 15 38 207 Brown Oil Quenched 1550° F.-Tempered 1000• F.
112,000 88,000 21 56 255 Rytense Hot R'd. 99,000 61,000 25 51 207 & 1141 Cold Dr. 112,000 95 000 16 40 223 Brown Oil Quenched 1550° F.-Tempered 10oo• F.
126,000 100,000 19 54 277 1141 TGP Turned, Red & Ground & Brown Polished 99,000 61,000 25 51 207 1141 DGP Red & CD Brown DGP 112,000 95,000 16 40 223 Leaded Hot R'd. 99,000 61,000 25 51 207 Rytense & 11l41
Cold Dr. 112,000 95,000 16 41 Oil Quenched 1550° F.-Tempered 1000• F.
223
Brown w;Purple Dot 126,000 101,000 20 54 277 1144 Cold Dr. 114,000 97,000 14 36 235 Brown w/ Oil Quenched 1550° F.-Tempered 1000• F. Black Dot 129,000 100,500 18 53 278 E4130 *Hot R'd. 86,000 56,000 29 57 183 Black *Cold Dr. 98,000 87,000 21 52 201 & Blue Water Quenched 1575• F.-Tempered 1ooo• F.
146,000 133,000 17 50 293 4140 *Hot R'd. 89,000 62,000 26 58 Black & *Cold Dr. 102,000 90,000 18 50 Yellow Oil Quenched 155o• F.-Tempered 1000• F.
153,000 131,000 16 45 4147-50 *Hot R'd. 100,000 66,000 21 51 Black & Oil Quenched 1550° F.-Tempered 1000• F. Pink 158,000 134,000 14 42 e.t.d.-150 Dr. at ele- 150,000**130,000**
~ated temp. lOt 35t
*Hot R'd. 91,000 63,000 *Cold Dr. 103,000 93,000 19 51
Purple & Oil Quenched 1550° F.-Tempered 1000• F. Yellow 156,000 133,000 16
(Continued}
44
Mechanical Properties 19
MECHANICAL PROPERTIES OF STEEL Medium Carbon or Direct Hardening Bars, Cont'd.
AISI No. Hardness Machin- and Condi- % % -; R~erson tion Tensile Yield Elong. Red. ~ olor of Strength strenfh in of '<:: ~
Marking Steel PSI PS 2" Area m 0
"' Rycut 40 AX •cold Dr. 103,000 93,000 19 51 223 C19 Purple & Oil Quenched 1550" F.-Tempered 1000• F. Yellow 156,000 133,000 16 44 311 C33 W/Gold Dot Rycut 50 *Hot R'd, 103,000 69,000 23 51 212 C16 41L4'!(s50 *Cold Dr. 112,000 95,000 16 43 223 C19 Roun s Oil Quenched 1550" F.-Tempered 1000" F. Purple & Pink
162,000 138,000 14 40 311 C34
Rycut 50 RS *Hot R'd. 103,000 69 000 23 51 & 4150 RS Oil Quenched 1550" F.-Tempered 1000" F.
212 C16
Flats, Sqs. 160,000 135,000 14 41 311 C34 Purple & Pink w/Biack Dot 4340 *Hot R'd. 101,000 69,000 21 45 207 C15 E4340 •cold Dr. lll,OOO 99,000 16 42 223 C19 White & Oil Quenched 1550" F.-Tempered 1000• F. Yellow 182,000 162,000 15 40 363 C39 E&150 *Hot R'd. 91,000 58,000 22 53 183 B90 Gold & Oil Quenched 1550" F.-Tempered 1000" F. Pink 155,000 132,000 15 44 302 C32 E8740 *Cold Dr. 107,000 96 000 17 48 223 C19 Orange & Oil Quenched from 1525' F.-Te~ered at 1000" F. Yellow Ht. Tr'td 152,000 129,000 44 302 C32
High Carbon or Direct Hardening Bars 1095 Hot R'd. 142,000 83,000 8 18 293 C28 Pink Water Quenched 1450" F.-Tempered sao• F.
52100 Brown & Pink W/ White Dot
Hot R'd. Spher. Ann I'd
200,000 138,000 12 37 388 C42
100,000 81,000 25 57 192
Heat Treated Bars
50
66
The properties shown for heat treated steels are the result of many tests. They indicate the probable median mechanical properties, or, in some cases, minimum mechanical proper­ ties (designated by an **) based on the size range shown. Properties are at center of bars up to 1%", and at half radius of bars over 1%". Yield Point for bars determined by "Dividers Method" of ASTM Spec. E8 (latest).
AISI No. and Condi- % %
Ryerson tion Tensile Yield Elong. Red. Color of Strength Strength in
Marking Steel PSI PSI 2"
CMV Hot Rolled Gr. 81& 2112" & Black & under 125,000**105,000** 18** Brown w/ Over Yellow Dot 21/,"-3'' 120,000**105,000** 18**
Over 3"-5" 110,000** 95,000** 17** Over 5"-7" 100,000** 85,000** 16**
Stress- Cold Dr. proof Brown & Yellow
125,000* 100,000** 10**
Fatigue Dr. at ele- 140,000**125,000** 10** Proef vated temp. Brown w/White Dot
9310 Gold & Green 131,000 88,000 19 (Continued)
*Annealed. **Indicates min. properties. :j:lndicates min. aim properties.
of Area
269 27** 83
Ryerson tion Tensile Yield Elong. Red. Q;
~ Rating c Color of Stre~h Point in of ·;;: (B1112
Marking Steel in I in PSI 2" Area "' 0 =100) a::
IIJCIIt Cold Finished Hut 1" 144,000 129,000 21.5 62.3 293 31 70 Treated 2" 134,000 115,000 18.0 61.1 293 31 70 Purple w/ 3" 133,000 110,000 17.5 54.7 293 31 70 Yellow Dot 4" 130,500 108,000 18.0 56.0 293 31 70 IIJcllt Hot Rolled Heat 1" 144,000 129,000 21.5 62.3 293 31 70 Treated 2" 134,000 115,000 18.0 61.1 293 31 70 4" & under: 3" 133,000 110,000 17.5 54.7 293 31 70 Pu~le W/ 4" 130,500 108,000 18.0 56.0 293 31 70 Vel ow- 5" 137,000 110,500 16.0 51.9 293 31 68 Dot 6" 136,000 109,500 17.5 51.9 293 31 68 Over 4": 7" 138,000 111,000 16.0 47.8 293 31 68 Pur~le w/ 8" 135,000 110,200 16.0 50.5 293 31 68 Pin Dot 9'' 131,000 102,000 16.5 51.0 293 31 68 RJcut RS H.R. Squares Heat 2lh" & under 140,000**120,000**15**50** 341 max. 32/37 62 Treated Over 21h Purple & to 4" incl. 135,000**110,000**15**45** 341 max. 29/37 62 Black w/ H.R. Flats 136,500 105,000 17.5 51.9 241/302 22/32 62 Pink Dot Rycut RS Hot Rolled** Heat Treatd Under 3" Rd. 125,000 100,000 16 50 262/311 62 Purple & 3"-under 6" 120,000 95,000 16 45 262/311 62 Black w/ 6"-under 8" 115,000 85,000 15 40 262/311 62 Pink Dot B"-9W' incl. 110,000 80,000 15 40 262/311 62 IIJcreme Hot Rolled & Cold Finished** Black 21h" & under 125,000 105,000 16 50 269/321 27/34 55 W/ Over21hto4" 115,000 95,000 16 50 269/321 27/34 55 Yellow Dot Over 4" Rd. 110,000 85,000 16 45 269/321 27/34 55 ~crome Cold Finished**
ad. Black & 2'12" & under 125,000 105,000 16 50 285/331 55 White, Over 21h" -4" 115,000 95,000 16 50 285/331 55 Yellow Dot Hikrome Hot Rolled** White W/ All Sizes 138,000 118,000 20 57 269/321 27/34 57 Yellow Dot Nikrome Hot Rolled UM" Yellow w/ All Sizes 130,000 110,000 15 45 285/341 .. 55 White Dot Nitre II OJ Hot Rolled 135 3" & less 120,000 85,000 16 50 311 max ... 50 Modified Over 3" 120,000 85,000 15 40 311 max ... 50 Blue w/ Yellow Dot **Indicates minimum properties.
High Strength Plates & Sheets Minimum Properties These properties are given as a general guide only. Refer to producers' literature and specifications shown for specific mechanical and fabrication properties--also for availability of strip, bars and structurals.
Ryerson Tensile Yield % Color strenf}h strenmh Elong. Specifi-
Trade name Marking in P I in P I in 8" cation INX~O White & Green 70,000 50,000 18 A572 (50) Ex-ten 50 SAE J410B INX-'0 White & Blue 80,000 60,000 16 A572 (60)
SAE J410B INX-70 White-Blue-White 90,000 70,000 14 A572 (70)
SAE J410B Tri-5teel White up thru %" 70,000 50,000 18 A242, A441 &
& Tri-Ten Orange :Y4"-11f•" 67,000 46,000 19 M I l -S-12505A Cer-Ten White 70,000 50,000 19 A242, SAE J410B
& M ll-S-12505A
MECHANICAL PROPERTIES OF STEEL Alloy Plates & Sheets Typical Properties
Type & Approx. Ryerson Condition Tensile Yield % % Brine II Color of Strength Strength Elong. Red. Hard-
Marking Steel in PSI in PSI in 2" of Area ness
4140 Annealed 95,000 60,500 26 57 197 Yellow-Black-Yellow
E6150 Annealed 96,750 60,000 23 48.5 197 Pink & Gold
8615 E8S15 As Rolled 90,000 52,000 28 62 179 Orange-White-Green
8620 E8620 As Rolled 90,000 52,000 28 62 179 Orange & Green
E4130AQ Normalized Black Up to .187" 95,000 min. 75,000 min. 8/12 White Over .187"-.749'' 90,000 min. 70,000 min. 15/16 Blue Over .749" 90,000 min. 70,000 min. 18
E4130AQ Annealed 85,000 max. Black and Blue
E-Z Cut As Rolled 67,000 38,000 31 33 133 20
Gold
E-Z Cut As Rolled 78,000 40,000 32 33 137 20l
Purple
E-Z Cut 45 Fremax 45 As Rolled 92,000 45,000 20 42 162 Gold and Yellow
E-Z Cut 45LAs Rolled 92,000 45,000 20 42 162 Gold & Purple
T-1 Regular & H. T. 115/135,000 100,000 min. 18 min.• 50 min.•• 235/ Firebox 293 Quality RQ100A Green & Yellow (Regular), Green-Yellow-Blue (Firebox)
T-1 Ty,e A Regular H. T. 115/135,000 100,000 min. 18 min.• 50 min.•• 235/ & 293 Firebox Quality Green & Pink (Regular), Green-Pink-Blue (Firebox)
Type B Regular Quality H. T. 115/135,000 100,000 min. 18 min.• 50 min. •• 235/ T-1 293 Green & Blue
Ryerson AR 360 Orange, Black & Gold
75/95,000 45,000 min. 22 min.
*Elongation for plates under '.4"-15% min. **Reduction of area for plates '.4" and under--40% min.
Carbon Steel Tubing Minimum Properties
A lSI Designation Condition
Seamless 1010 .Hot Rolled .. -----47,000 ________________ 30,000 .................. 30 ............. --.... 91
Cold Drawn 65,000 50,000 6 128 Annealed & Stress Rei. 60,000 45,000 10 116
1018... ........... Cold Drawn ....... .82,000t ............... 70,000t .............. 20t ................ 163t
Welded Hollow Structurai ...... Hot Rolled ......... 58,000t ................ 36,000j ................ 24t ................ l21:j:
_:j:Typical properties.
STAINLESS STEEL FINDER-ANALYSES AND PROPERTIES I~ STAINLESS TYPE NUMBER, 201 202 301 302 303 304 309 310 316 321 410 416 440C 430
Chemical Composition (%) s: Chromium. . ...... 16-18 17-19 16-18 17-19 17-19 18-20 22-24 24-26 16-18 17-19 11.5-1 3.5 12-14 16-18 14-18 Nickel ........ 3.5-5.5 4-6 6-8 8-10 8-10 8-11 12-15 19-22 10-14 8-11 .5 max. .5 max. .5 max. .5 max. "' Carbon (max.)_. ... .15 .15 .15 .15 .15 .08 .20 .25 .08 .08 .15 .15 .95-1.2 .12 <')
;::s-. Manganese (max.). 5.5/7.5 7.5/10 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.25 1.0 1.0 Ill Silicon (max.). 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 ~ Other elements (a). N. 25 N. 25 (n) Mo. Ti5xC (n) Mo. 75
.... ······· .... . .... . .... . .... . .... . .... ...... g_ max. max. min. max.
Physical Data: '"'lj Melting range-°F. ..... 2550- 2550- 2550- 2550- 2550- 2550- 2500- 2550- 2700- 2700- 2500- 2600- ...
2590 2590 2590 2650 2650 2650 2550 2600 2790 2790 2750 2750 C> Density-lb./in,3 ... ........... 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.28 0.28 0.28 0.28 ~ Spec. heat, Btuf"F/Ib.(32-212°F.) 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 "' ... Thermal conductivity: ....
<-,
932° F .................. ····· 12.4 12.4 12.4 12.4 10.8 10.8 12.4 12.8 16.6 16.6 Mean coefficient of thermal
expansion-in./°F.x 1 ()-6 68-212° F. 9.2 9.4 9.2 9.2 9.2 9.2 8.7 8.0 9.2 8.3 5.5 5.6 5.8 5.6 68 to indicated temp., °F . 11.3 10.9 11.0 11.0 11.0 11.0 10.9 10.9 10.7 10.6 6.4 6.8 6.2 6.6
(1600) Electrical Properties:
(1600) (1600) (1600) (1600) (1600) (2100) (2100) (1600) (1700) (1300) (1300) (1600) (1500)
Magnetic permeability at 200 H annealed . ..... 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.02 1.02 Mog. Mag. Mag. Mag.
max, max. Elect. resistivity, microhm, em
68° F: ... ............ 69.0 69.0 72.0 72.0 72.0 72.0 78.0 78.0 74.0 72.0 57.0 57.0 60.0 60.0 12ooo F ................ ..... . ..... 116.0 116.0 116.0 116.0 114.8 ······ 116.0 ····· 108.7
Heat resistance: Max. operating temp.-° F
1600 Intermittent service.,, .. 1500 1500 1600 1600 1400 1600 1800 1900 1600 1500 1400 1500 1600 Continuous service .... 1550 1550 1700 1700 1700 1700 2000 2100 1700 1700 1300 1250 1400 1500 (Continued}
(a) Sulfur and phosphorus not shown unless significant.
STAINLESS STEEL FINDER-Continued STAINLESS TYPE NUMBER, 201 202 301 302 303 304 309 310 316 321 410 416 440C 430
Temperatures-working and treating, Of.: Forging-start. 2300 2300 2200 2200 2250 2200 2150 2150 2200 2200 2100 2200 2100 2100 Forging-finish. 1700 1700 1700 1700 1700 1700 1800 1800 1700 1700 1600 1600 1600 1300 Annealing-ranges 1850- 1850- 1950- 1850- 1800- 1800- 2050- 2050- 1975- 1800- 1500- 1500- 1550- 1400-
2000 2000 2050 2050 2000 1950 2150 2150 2150 2000 1650 1650 1650 1500 Annealing-cooling (b). ...... WQ(AC) WQ(AC) WQ(AC) WQ(AC) WQ WQ(AC) WQ(AC) WQ(AC) WQ(AC) WQ(AC) SFC sc FC FC Hardening-ranges. Hordenoble only by cold working 1700- 1700- 1850-
1850 1800 1900 Quenching (0) Oil, (A) Air. ... .. .... 0 or A 0 or A 0 or A Tempering-For intermediate
hardness. ..... .... -Temper over 1100 F.- Drawing-For relieving stresses. -Draw under 700 F.- Mechanical properties-annealed: Structure annealed (c) ..... A A A A A A A A A A F-C F-C F-C F-C Yield strength-lb/in.2 min ...... 40,000 40,000 35,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 32,000 50,000 60,090 35,000 Ultimate strength-lb/in.2 min ... 115,QOO 100,000 100,000 80,000 75,000 80,000 75,000 75,000 75,000 75,000 60,000 85,000 100,000 60,000 Elongation-% in 2 in., min 40.0 40.0 50.0 50.0 40.0 50.0 40.0 40.0 40.0 40.0 20.0 15.0 8.0 20.0 Reduction in area-%, min. 60.0 60.0 50.0 60.0 50.0 50.0 50.0 50.0 50.0 40.0 35.0 40.0 S: Modulus of elasticity in
tension-lb/in.2xl Q6 ..... 29.0 29.0 29.0 29.0 29.0 29.0 29.0 30.0 29.0 29.0 29.0 29.0 30.0 29.0 "" Hordness-Brinell (max.) 210 210 180 180 160 min. 180 200 180 200 200 200 180 min. 260 200 ~ Hardness-Rockwell (max.). 895 895 890 890 880 min. 890 895 890 895 895 895 890 min. 8105 895 ;:,. Impact values-lzod, ft.~lb. (min.) 85 85 85 85 60 85 80 80 70 80 85 low 3-85 ~ ..... Mechanical properties-heat treated1 ~ Yield strength-lb./in,2 .... 35,000- 50,000- 60,000- -In the case of the chromium~nickel types, mechanical properties higher thon in the on· \80,000 115,000 275,000 :p Ultimate strength-lb/in.2 ... nealed condition are only produced by cold rolling or cold drawing, and ultimate 60,000- 90,000- 1 00,000-
strengths up to 350,000 psi for wire and 250,000 psi for strip con be obtained. 200,000 140,000 285,000 <:;) ~
Elongation-% in 2 inches. Within those limits standard requirements of ~ hard, Y2 hard, * hard and full 25-2 25-15 8-1 "" Hardness-Brine!!. hard are furnished. 120-400 180-280 200-600 ... ...... Hardness-Rockwell ........... B70-C45 B90-C30 B95-C58 ..... Creep strength-lb./in.2, 1000 F.1 "" ..., 1% flow in 10,000 hr .. 19,000 19,000 .... 17,000 22,000 32,000 24,000 18,000 12,000 . . . . . . . ... 8500 1% flow in 1 00,000 hr. 13,000 13,000 10,800 12,000 17,000 15,000 10,800 11,000 6500
(b) AC Air Cool. FC - Furnace Cool. SFC Slow Furnace Cool. WQ - Water Quench. I~ {c) F = Ferrite. C =Carbide. A = Austenite.
24 Mechanical Properties
EFFECT OF MASS IN THE HEAT TREATMENT OF STEEL
Effect of heot treatment is governed by the composition of the steel and by the rate of cooling, It is obvious that a 6" round bar can not be cooled as rapidly as a 1" round bar and therefore the difference in tlie rate of cooling will affect not only the hardness of the steel but alsa the depth of penetration of the heat treatment.
Therefore, as the size or mass of steel of the same composition under similar conditions of heat treatment increases, there develops a proportionate change in the physical• properties produced by the heat treatment.
The following table indicates the approximate relationship between the physical properties developed In different diameters of several alloys treated under similar conditions. This is offered as a guide to show effect of size on heat treatment properties of alloys 1" to 6" round. All tensile specimens were taken at mid-radius (half way between center and O.D.).
When specifying heat treatment, be sure to take into consideration the effect of mass on the physical properties of heat treated steel in the larger sizes.
Size % % Steel In Tensile Yield Red. Elong. Brine II
Inches Strength Point Area in 2" Hardness
A.I.S.I. 1045 1 106,000 71,000 52 22 220 Water Quench 2 95,000 65,000 -48 21 210 1000• F. Draw 3 90,000 60,000 -47 20 200
4 90,000 55,000 46 20 190 5 89,000 52,000 -45 20 185 6 82,000 -49,000 « 20 170
A.I.S.1. 31-40 1 135,000 114,000 54 18 285 Oil Quench 2 124,000 98,000 52 20 260 1000" F. Draw 3 115,000 90,000 50 21 2-45
4 112.000 85,000 50 22 235 5 110,000 83,000 50 21 230 6 108,000 81,000 49 21 225
A.I.S.1.4UO 1 142,000 125,000 59 19 302 Oil Quench 2 135,000 120,000 51 20 290 1000" F. Draw 3 130,000 115,000 56 21 272
4 125,000 110,000 55 22 26, 5 123,000 108,000 49 22 260 6 121,000 106,000 49 22 260
A.I.S.I. 43-40 1 166,000 148,000 51 17 352 Oil Quench 2 16-4,000 145,000 52 17 352 1 ooo• F. Draw 3 160,000 143,000 54 17 341
" 158,000 1-40,000 54 18 341 5 155,000 136,000 55 18 331 6 151,000 132,000 56 19 321
Rycut 50 1 178,000 161,000 50 15 375 011 Quench 2 165,000 147,000 51 16 352 1 ooo• F. Draw 3 155,000 136,000 54 18 331
" 151,000 132,000 55 19 321 5 146,000 126,000 57 19 311 6 142,000 121,000 58 20 302
Mechanical Properties 25
ASTM-A255 TEST INTERPRETATION How the Jominy End-Quench Hardenability Test Can be
Interpreted in Terms af Other Mechanical Properties
Standard ASTM-A255 (Jominy) Test
The Jominy sample is normalized and then finish machined to size: 1" diameter for a length of 3 'l's "; with a '/a" flange, 1 'h" in diameter. This sample is heated Ia the steel's proper quenching temperature and immediately inserted in the test fixture (see sketch below). The water is turned on and allowed to flow for about ten minutes, coming in contact with the bottom of the specimen only.
After quenching, a flat surface 0.015"" deep is ground lengthwise on the sample. Along this surface, Rockwell "C" Hardness read­ ings are taken at ){6" intervals for a distance af about 2", starting at the quenched end. This method of quenching only the end of the specimen provides a very rapid rate of cooling at the quenched end with progressively slower cooling all the way up to the other end. Results in all commercial rates of cooling for both oil and water quenching are thus shown.
The Standard Jominy Test usually serves as a comparison for hardenability of steels. The test is somewhat limited, in !hat it reveals only the harden­ ability of the steel in its asquenched state. Since most alloy steels are used in a quenched and drawn condition, it is highly desirable to know the properties obtainable after such treatment.
Amplifying tlte ASTM-A255 (Jominy) Test
ASTM Test fixture
By amplifying the Jominy Test, it is possible to determine the approximate mechanical properties of alloy steels after quenching and tempering at various temperatures. The method is to first quench the Jominy sample in the standard way. Next we subject it to a tempering operation before we grind it and take hardness read­ ings. Then by using Tables of mechanical properties, we interpret the tensile strength, yield point, elongation, reduction of area and Brinell hardness from the hardness readings which represent the condition of the steel after having been quenched and tempered.
Example
For example: Here is the step by step method for determining the mechanical properties at the center of a 3" round bar, oil quenched and tempered at 1000 o F.
Prepare the Jominy Sample. Harden it in the Jominy fixture and temper it at 1000° F. Grind the surface of the sample and take Rockwell "C" Hardness readings.
In Table A you will find that a 3" round, oil quenched, cools at a rate of 12.4° F. per second at the half radius.
In Table B you will find that a Jominy sample has a cooling rate of 12.4 ° F. per second at a point 'l's" from the quenched end.
Note the Rockwell reading at the point 'l's" from the quenched end, because at that point the Jominy sample has the same cool­ ing rate as the half radius of a 3" round bar, oil quenched. Let us assume that the Rockwell reading at this point was 40.
Table C gives the relationship between Rockwell Hardness and the other mechanical properties. In this case, with Rockwell "C" reading 40, the other mechanical properties would be: Brinell Hard­ ness 379; Tensile Strength P.S.I. 178,000 to 201,000; Yield Point P.S.I. 163,000 to 179,000; % Elongation in 2 inches 12.5 to 16; and % Reduction of Area 40 to 49. (Continued on next page)
26 Mechanical Properties
ASTM-A255 TEST INTERPRETATION-(Cont'd) The cooling rates of various sized bars, at different locations as
listed in Table A, frequently do not correspond exactly with the Jominy cooling rates furnished in Table B. Judgment must be used in these instances in selecting figures in between those listed. This suggestion also applies to interpretations for intermediate size bars.
Table A-Cooling Rate of Round Bars Rate of cooling in degrees Fahrenheit per second for the surface,
X radius and center of 1", 2", 3" and 4" round-both water and oil quenched.
Quench 1" 2" 3" .... Posi- Media Rd. Rd. Rd. Rd. tion
Water 850° F. 55o• F. 400° F. 135° F. '""-:® Oil 250° F. 81° F. 32° F. ts• F. Water 250• F. 68° F. 26° F. ts• F. X Radius Oil too• F. 24° F. 12° F. 6X" F. Water 195° F. 46• F. 18" F. 9" F. Center Oil n• F. 18" F. 9" F. s• F.
Table a-cooling Rate In ASTM-A255 (Jomlny) Test Rate of cooling in degrees Fahrenheit per second at the distance
indicated from the water cooled end of a standard Jominy end­ quenched specimen. The Jominy Test uses a water quench because water is a constant quench media which produces all oil and water cooling rates.
K,---489" F. Ya-56.3" F. Y.-21.4" F. tYa-8.2" F. Ye-307" F. K~1.9"F. ~-16.3" F. t-Ya-7" F. ~.-195" F. X-32.3° F. ~-12.4" F. tYJ-5• F. Ya-124" F. U.-26" F. 1 -10° F. 2 -3.5" F. '<,- 77.2" F.
Table C-Approx~mate Mechanical Properties in Relation to Hardneu
These figures are based entirely on hardness and show only prob­ able mechanical properties usually associated with hardness. These flgures are reasonably accurate for properly quenched steels but will be misleading if interpreted to apply to steels of lower than 15 or higher than 42 Rockwell C hardness. This table is apt to be mare accurate for alloy steels of .30 carbon or higher. Low carbon steels produce yield points less than those indicated.
Rockwell Brinell C Hard-
Yield Point P.S.I.
% Elong. in 2"
% Red. of Area
'14 •• 197 ••• 93,000-103,000 ..• 69,00G- 78,000 .• 22 -28 .•• 60 -68 16 207 98,000-108,000 73,000- 84,000 21.5-27.5 59 -67 18 217 103,00G-114,000 76,000- 90,000 21 -27.5 58 -66 20 223 106,000-117,000 79,000- 93,000 20.5-26.3 57.5-65.5 22 .. 235 .• 112,000-124,000 .•. 85,000- 99,000 . • 20 -25.5 •• 56.5-64.5 24 248 118,000-131,000 92,000-107,000 19.5-24.5 55 -63 26 262 124,000-138,000 99,000-114,000 18.5-24 54 -61.5 28 277 131,000-146,000 107,000-122,000 18 -22.5 52 -60 30 293 138,000-154,000 116,000-131,000 17 -22 51 -59 32 •• l11 .• 146,000-164,000 .. 125,000-141,000 •• 16 -20.5 • • 49 ·57 34 321 151,000-170,000 131,00G-146,000 15.5-20 48 -56 36 341 160,000-180,000 141,000-157,000 14.5-111.5 46 -54 38 363 171,000-193,000 153,000-170,000 13.5-17 43.5-51.5 40 379 178,000-201,000 163,00G-179,000 12.5-16 42 -SO 42 •• 401 .. 188,000-222,000 .. 176,00G-185,000 .. 11 -15 •• • 40 -49
Mechanical Properties 27
Based on Rockwell Hardness
~ L o .. Ct 0 .. 8.c ., ~!.! 0 ~l'.! 0 .! ~ :-0 Q. - ~
Ct J: 8 .,. J= u o - u a - a _ "' c ., e»CD g .c _ -;;"' .u "';:;, ~ ..,o en _;~ _g "' ci~ _g tX JO .. ""l:l ~ E -· o o, tT ... ... Z~a Ct Z::w::g Ct .... ::w::UI .g ~:0 eo E ...l(.uG_ Ct e - cC/)
~~~ :~~ ~~~: gg;g~ ~g~ ~~J s~~ > ~j ]~? 68 .......... 93.2 ... 84.4 ...................... 940 ... 97 ..... . 67 92.9 83.6 900 95 66 92.5 82.8 865 92 65 92.2 81.9 . . . 739 832 91 .. . 64 .......... 91.8 ... 81.1 ......... 722 ... 2.28 ... 800 ... 88 ..... . 63 91.4 80.1 705 2.31 772 87 62 91.1 79.3 688 2.33 746 85 61 . . . 90.7 78.4 . . . 670 2.36 720 83 .. . 60 .........• 90.2 ... 77.5 .••...... 654 ... 2.40 ... 697 ... 81 ..... . 59 89.8 76.6 634 2.43 674 80 326 58 89.3 75.7 615 2.47 653 78 315 57 . . . 88.9 74.8 . . . 595 2.51 633 76 305 56.... . .... 88.3 ... 73.9 •........ 577 . .. 2.55 ... 613 .. . 75 . .. 295 55 87.9 73.0 560 2.58 595 74 287 54 87.4 72.0 543 2.63 577 72 278 53 86.9 71.2 . . . 525 2.67 560 71 269 52 .......... 86