06 mpc jbr stanford

Post on 01-Jun-2018

226 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

  • 8/9/2019 06 mpc jbr stanford

    1/25

    Robustness of Suboptimal Model Predictive Control

    James B. Rawlings

    Department of Chemical and Biological EngineeringUniversity of Wisconsin–Madison

    Insitut für Systemtheorie und RegelungstechnikUniversität StuttgartStuttgart, Germany

    June 24, 2011

    Stuttgart – June 2011   Distributed MPC   1 / 50

    Outline

    1   Inherent robustness of suboptimal MPCExponential stability for difference inclusionsNominal exponential stability of suboptimal MPCRobust exponential stability of suboptimal MPCFeasibility issueMain resultsRobust stability in absence of state constraints

    2   Proposal for nonlinear, distributed MPCModelObjective FunctionTerminal ControllerRemoving the terminal constraintCooperative control algorithmStability of distributed nonlinear cooperative controlExample

    Stuttgart – June 2011   Distributed MPC   2 / 50

  • 8/9/2019 06 mpc jbr stanford

    2/25

    Why study robustness of   suboptimal  MPC?

    Cooperative , distributed MPC is a special case of   suboptimal   MPC.Anything we establish about suboptimal MPC can be applied tocooperative, distributed MPC (and optimal MPC!)

    Suboptimal MPC has an interesting feature: a nonunique,point-to-set control law  u  ∈ κN (x ).

    Optimal  solution of nonconvex

    PN (x ) : minu∈U N 

    V N (x , u)

    cannot be computed online for  any  nonlinear model. Practitionersimplement only suboptimal MPC.

    We should know something about its inherent robustness properties.1

    1Pannocchia, Rawlings, and Wright (2011)Stuttgart – June 2011   Distributed MPC   3 / 50

    For suboptimal MPC; again, the basic MPC setup

    The system modelx + = f  (x , u ) (1)

    State and input constraints

    x (k ) ∈ X ,   u (k ) ∈ U   for all k  ∈ I≥0

    Terminal constraint (and penalty)

    φ(N ; x , u) ∈ Xf    ⊆ X

    Stuttgart – June 2011   Distributed MPC   4 / 50

  • 8/9/2019 06 mpc jbr stanford

    3/25

    Feasible sets

    The set of feasible initial states and associated control sequences

    ZN  = {(x , u) | u (k ) ∈ U, φ(k ; x , u) ∈ X for all  k  ∈ I0:N −1,

    and  φ(N ; x , u) ∈ Xf  }

    and  Xf    ⊆ X  is the feasible terminal set.

    The set of feasible initial states is

    X N  = {x  ∈ Rn | ∃u ∈ UN  such that (x , u) ∈ ZN }   (2)

    For each  x  ∈ X N , the corresponding set of feasible input sequences is

     U N (x ) = {u | (x , u) ∈ ZN }

    Stuttgart – June 2011   Distributed MPC   5 / 50

    Cost function and control problem

    For any state  x  ∈ Rn and input sequence  u ∈ UN , we define

    V N (x , u) =N −1k =0

    (φ(k ; x , u), u (k )) + V f   (φ(N ; x , u))

    (x , u ) is the stage cost;  V f   (x (N )) is the terminal costConsider the finite horizon optimal control problem

    PN (x ) : minu∈U N 

    V N (x , u)

    Stuttgart – June 2011   Distributed MPC   6 / 50

  • 8/9/2019 06 mpc jbr stanford

    4/25

    Suboptimal MPC

    Rather then solving  PN (x )  exactly , we consider using any(unspecified) suboptimal algorithm having the following properties.

    Let  u ∈ U N (x ) denote the (suboptimal) control sequence for theinitial state  x , and let  ũ  denote a  warm start  for the successor initialstate  x + = f  (x , u (0; x )), obtained from (x , u) by

    ũ := {u (1; x ), u (2; x ), . . . , u (N  − 1; x ), u +}   (3)

    u +  ∈ U  is any input that satisfies the invariance conditions of Assumption 3 for x  = φ(N ; x , u) ∈ Xf   , i.e., u + ∈ κf   (φ(N ; x , u)).

    Stuttgart – June 2011   Distributed MPC   7 / 50

    Suboptimal MPC

    The warm start satisfies  ũ ∈ U N (x +).

    The suboptimal input sequence for any given  x + ∈ X N   is defined asany  u+ ∈ UN  that satisfies:

    u+ ∈ U N (x 

    +) (4a)

    V N (x +, u+) ≤ V N (x 

    +, ũ) (4b)

    V N (x +

    , u+

    ) ≤ V f   (x +

    ) when  x +

    ∈ r B   (4c)

    in which  r   is a positive scalar sufficiently small that  r B ⊆ Xf   .

    Notice that constraint (4c) is required to hold only if  x + ∈ r B, and itimplies that  |u+| → 0 as   |x +| → 0.

    Condition (4b) ensures that the computed suboptimal cost is nolarger than that of the warm start.

    Stuttgart – June 2011   Distributed MPC   8 / 50

  • 8/9/2019 06 mpc jbr stanford

    5/25

  • 8/9/2019 06 mpc jbr stanford

    6/25

    Basic MPC assumptions

    Assumption 1 (Continuity of system and cost)

    The functions  f   :  Rn × Rm → Rn,   :  Rn × Rm → R≥0  and

    V f    :  Rn → R≥0  are continuous,  f  (0, 0) = 0,  (0, 0) = 0, and  V f   (0) = 0.

    Assumption 2 (Properties of constraint sets)

    1 The set  U  is compact and contains the origin. The sets  X  and  Xf    areclosed and contain the origin in their interiors,  Xf    ⊆ X.

    2 The set  U  is compact and contains the origin. The sets  X =  Rn and

    Xf    = levαV f    = {x  ∈ Rn | V f   (x ) ≤ α}, with  α > 0.

    Stuttgart – June 2011   Distributed MPC   11 / 50

    Basic MPC assumptions

    Assumption 3 (Basic stability assumption)

    For any  x  ∈ Xf    there exists  u  := κf   (x ) ∈ U such that  f  (x , u ) ∈ Xf    andV f   (f  (x , u )) + (x , u ) ≤ V f   (x ).

    Assumption 4

    There exist positive constants  a,  a1,  a2,  af    and r̄ , such that the costfunction satisfies the inequalities

    (x , u ) ≥ a1|(x , u )|a for all (x , u ) ∈ X × U

    V N (x , u) ≤ a2|(x , u)|

    a for all (x , u) ∈ r̄ B

    V f   (x ) ≤ af  |x |a for all  x  ∈ X

    Stuttgart – June 2011   Distributed MPC   12 / 50

  • 8/9/2019 06 mpc jbr stanford

    7/25

    Definition 5 (Exponential stability)

    The origin of the difference inclusion  z + ∈ H (z ) is  exponentially stable (ES) on  Z , 0 ∈ Z , if there exist scalars  b  > 0 and 0  < λ

  • 8/9/2019 06 mpc jbr stanford

    8/25

    Nominal exponential stability

    Theorem 7 (ES)Under Assumptions  1, 2.1, 3, and  4, the origin of the closed-loop system

    x + ∈ F (x ) = {f  (x , u ) | u  ∈ κN (x )}

    is ES on (arbitrarily large) compact subsets of  X N .

    Stuttgart – June 2011   Distributed MPC   15 / 50

    Robust exponential stability of suboptimal MPC

    Definition 8 (RES)

    The origin of the closed-loop system (6) is  robustly exponentially stable (RES) on int(X N ) if there exist scalars  b  > 0 and 0  < λ  0, there exists  δ > 0  such that for all sequences  {d (k )}  and{e (k )}  with  x (0) = x  ∈ C   satisfying:

    maxk ≥0

    |d (k )| ≤ δ,   maxk ≥0

    |e (k )| ≤ δ 

    x m(k ) = x (k ) + e (k ) ∈ X N ,   x (k ) ∈ X N ,   for all  k  ∈ I≥0,

    it follows that

    |φed (k ; x )| ≤ b λk |x | + ,   for all  k  ∈ I≥0.   (8)

    Stuttgart – June 2011   Distributed MPC   16 / 50

  • 8/9/2019 06 mpc jbr stanford

    9/25

    Robust exponential stability of suboptimal MPC

    Definition 9 (SRES)

    The origin of the closed-loop system (6) is  strongly robustly exponentially 

    stable  (SRES) on a compact set  C ⊂ X N , 0 ∈ int(C ), if there exist scalarsb  > 0 and 0  < λ  0, there exists  δ > 0 such that for all sequences  {d (k )}  and  {e (k )}satisfying

    |d (k )| ≤ δ  and  |e (k )| ≤ δ    for all k  ∈ I≥0,

    and all  x  ∈ C , we have that

    x m(k ) = x (k ) + e (k ) ∈ X N ,   x (k ) ∈ X N ,   for all  k  ∈ I≥0,   (9a)

    |φed (k ; x )| ≤ b λk 

    |x | + ,   for all  k  ∈ I≥0.   (9b)

    Stuttgart – June 2011   Distributed MPC   17 / 50

    Feasibility issue

    The warm start  ũ   is feasible for the  predicted  successor state

    x̃ + = f  (x m, u (0; x m))

    i.e., (x̃ +, ũ) ∈ ZN ,

    But it may not be feasible for the  measured  successor state

    x +m   = f  (x , u (0; x m)) + d  + e +

    (The  true  successor state, which is unknown, isx + = f  (x , u (0; x m)) + d .)

    So we have to resolve this infeasibility online. We make the followingassumption

    Assumption 10

    For any  x , x  ∈ X N   and   u ∈ U N (x ), there exists   u ∈ U N (x 

    ) such that|u − u| ≤ σ(|x  − x |) for some  K-function  σ(·).

    Stuttgart – June 2011   Distributed MPC   18 / 50

  • 8/9/2019 06 mpc jbr stanford

    10/25

    Feasibility issue

    Among various options for finding   p, we consider the following  feasibility problem (notice that x̃ + is known):

    Find  p   s.t.   ũ + p ∈ U N (x +m ) and  |p| ≤ σ(|x 

    +m  − x̃ 

    +|),   (10)

    Proposition 11

    Under Assumption 10 , for any  (x̃ +, ũ) ∈ ZN  and x +m   ∈ X N , the set of 

    solutions to   (10)  is nonempty.

    Stuttgart – June 2011   Distributed MPC   19 / 50

    Main results

    Theorem 12 (SRES of suboptimal MPC)

    Under Assumptions  1, 2.1, 3, 4, and  10 , the origin of the perturbed closed-loop system

    x + ∈ F ed (x )

    is SRES on  C ρ.

    Stuttgart – June 2011   Distributed MPC   20 / 50

  • 8/9/2019 06 mpc jbr stanford

    11/25

    Main results

    u

         U      N

    X N 

    S ρS 

    u0(x )

    C ρ

    ρ

    ZN 

    Figure: Sketch of the main sets involved in SRES.

    Stuttgart – June 2011   Distributed MPC   21 / 50

    Robust stability in absence of state constraints

    To this aim, we replace Assumption 2.1 with 2.2.

    Assumption 10 will not be necessary, whereas Assumptions  1, 3 and 4(with  V N (·) replaced by  V 

    βN (·) later defined) are required.

    We modify the cost function as follows:

    V βN (x , u) =N −1k =0

    (φ(k ; x , u), u (k )) + β V f   (φ(N ; x , u))

    Stuttgart – June 2011   Distributed MPC   22 / 50

  • 8/9/2019 06 mpc jbr stanford

    12/25

    Modified suboptimal MPC algorithm in absence of stateconstraints

    u+

    ∈ UN 

    (11a)V βN (x 

    +, u+) ≤ V βN (x +, ũ) (11b)

    V βN (x +, u+) ≤ β V f   (x 

    +) when  x + ∈ r B   (11c)

    Z̄ r   = {(x , u) ∈ Rn × UN  | V βN (x , u) ≤

     V̄ ,

    and  V βN (x , u) ≤ β V f   (x ) if  x  ∈ r B}

    X0  = {x  ∈ Rn

    |∃u ∈ UN 

    such that (x , u) ∈  Z̄ r }   (12)

    Stuttgart – June 2011   Distributed MPC   23 / 50

    Nominal exponential stability

    We have the following nominal stability result.

    Theorem 13 (ES without state constraints)

    Under Assumptions  1, 2.2 , 3, and  4, the origin of the closed-loop system

    x + ∈ {f  (x , u ) | u  ∈ κN (x )}

    is ES on  X0.

    Stuttgart – June 2011   Distributed MPC   24 / 50

  • 8/9/2019 06 mpc jbr stanford

    13/25

    Robust stability in absence of state constraints

    G ed (z ) = {u+ | u+ ∈ UN ,  V βN (x 

    +m , u

    +) ≤ V βN (x +m , ũ),

    V βN (x +m , u

    +) ≤ β V f   (x +m ) if  x 

    +m  ∈ r B}

    V̄ ρN (z m) = maxe ∈ρB

    V βN (z ) s.t.   z  = z m − (e , 0) (13a)

    S̄ ρ  = {z m ∈  Z̄ r   |  V̄ ρN (z m) ≤

     V̄ }   (13b)

    C̄ ρ = {x  ∈ Rn | x  = x m − e , e  ∈ ρB, ∃u   s.t. (x m, u) ∈  S̄ ρ}   (14)

    Stuttgart – June 2011   Distributed MPC   25 / 50

    Robust stability in absence of state constraints

    Theorem 14 (SRES without state constraints)

    Under Assumptions  1, 2.2 , 3  and  4, the origin of the closed-loop system

    x +

    ∈ F ed (x )

    is SRES on  C̄ ρ.

    Stuttgart – June 2011   Distributed MPC   26 / 50

  • 8/9/2019 06 mpc jbr stanford

    14/25

    The robust region of attraction

    The ideal, but unachievable, result would be that the robust region of attraction under nonzero disturbances is the entire nominal feasible

    set,  X N .

    This ideal result is approached reasonably closely, however, whenexcluding state constraints!

    When  |d |, |e | → 0,  C̄ ρ → X0  and SRES holds over a set approachingthe admissible set of initial conditions.

    These results for robustness of  suboptimal nonlinear MPC  all apply tocooperative, distributed MPC .

    Stuttgart – June 2011   Distributed MPC   27 / 50

    Requirements for distributed, nonlinear control

    Now let’s return to the setting of distributed, nonlinear MPC, anddeal with the nonconvexity issue.

    Two criteria in design:1   the optimizers should not  rely on a central coordinator2   the exchange of information between the subsystems and the iteration

    of the subsystem optimizations should be able to terminate beforeconvergence without compromising closed-loop properties.

    Stuttgart – June 2011   Distributed MPC   28 / 50

  • 8/9/2019 06 mpc jbr stanford

    15/25

    Distributed nonconvex optimization

    Consider the optimization

    minu  V (u ) s.t.   u  ∈U

    We require approximate solutions to the following suboptimizations atiterate  p  ≥ 0 for all   i  ∈ I1:M 

    u p i   = arg  minu i ∈Ui 

    V (u i , u p −i )

    in which  u −i   = (u 1, . . . , u i −1, u i +1, . . . , u M ).

    Define the step  υp 

      = u p 

      − u p 

     .

    Stuttgart – June 2011   Distributed MPC   29 / 50

    Algorithm

    To choose the stepsize  αp i  , each suboptimizer initializes the stepsize2

    with  αi 

    V (u p ) − V (u p i   + αp i  υ

    p i   , u 

    p −i ) ≥ −σα

    p i  ∇i V (u 

    p )υp i 

    in which  σ ∈ (0, 1).

    After all suboptimizers finish the backtracking process, they exchangesteps. Each suboptimizer forms a candidate step

    u p +1i    = u p i   + w i α

    p i  υ

    p i    ∀i  ∈ I1:M 

    2Armijo rule: (Bertsekas, 1999, p.230)Stuttgart – June 2011   Distributed MPC   30 / 50

  • 8/9/2019 06 mpc jbr stanford

    16/25

    Algorithm

    Check the following inequality, which tests if  V (u p ) is convex-like

    V (u p +1) ≤i ∈I

    1:M 

    w i V (u p i   + α

    p i  υ

    p i  , u 

    p −i ) (15)

    in which

    i ∈I1:M w i  = 1 and  w i   > 0 for all   i  ∈ I1:M .

    If the condition above is not satisfied, then we find the direction withthe worst cost improvement

    i max = arg maxi 

    {V (u p i   + αp i  υ

    p i   , u 

    p −i )}

    and eliminate this direction by setting  w i max  to zero and repartitioning

    the remaining  w i  so that they sum to 1.At worst, condition  (15)  is satisfied with one direction only.

    Stuttgart – June 2011   Distributed MPC   31 / 50

    Distributed nonconvex optimization — Properties

    Lemma 15 (Feasibility)

    Given a feasible initial condition, the iterates u p  are feasible for all p  ≥ 0.

    Lemma 16 (Objective decrease)

    The objective function decreases at every iterate, that is,V (u p +1) ≤ V (u p ).

    Lemma 17 (Convergence)

    Every accumulation point of the sequence  {u p }  is stationary.

    Stuttgart – June 2011   Distributed MPC   32 / 50

  • 8/9/2019 06 mpc jbr stanford

    17/25

    Distributed nonconvex optimization

    0

    1

    2

    3

    4

    0 1 2 3 4

    u 2

    u 1

    Figure: Nonconvex function optimized with Distributed nonconvex optimizationalgorithm

    Stuttgart – June 2011   Distributed MPC   33 / 50

    Distributed nonlinear cooperative control

    We have the following local models

    x +1   = f 1(x 1, x 2, u 1, u 2)   x +2   = f 2(x 1, x 2, u 1, u 2) (16)

    Collect these models to form the plantwide model

    x + = f  (x 1, x 2, u 1, u 2) = f  (x , u )

    in which

    x  =

    x 1x 2

      u  =

    u 1u 2

      f  (x , u ) =

    f 1(x 1, x 2, u 1, u 2)f 2(x 1, x 2, u 1, u 2)

    for which  x  ∈ Rn,  u  ∈ Rm, and  f   :  Rn × Rm → Rn.

    At each time step  k , we require the inputs to satisfy

    u 1(k ) ∈ U1   u 2(k ) ∈ U2   k  ∈ I0:N −1

    in which each  Ui  ∈ Rmi  is compact, convex, and contains the origin

    in its interior.

    Stuttgart – June 2011   Distributed MPC   34 / 50

  • 8/9/2019 06 mpc jbr stanford

    18/25

    Distributed nonlinear cooperative control

    The objective function for each subsystem   i  ∈ I1:2   is defined

    V i 

    x (0), u1, u2

     =

    N −1

    k =0

    x i (k ), u i (k )

     + V if  

    x (N )

    We define plantwide objective

    x 1(0), x 2(0), u1, u2

     =  ρ1V 1

    x (0), u1, u2

     + ρ2V 2

    x (0), u1, u2

    To simplify notation we use  V (x , u) for the plantwide objective.

    Assumption 18

    For each   i  ∈I

    1:2, there exists a  K ∞   function  αi (·) such that

    i (x i , u i ) ≥ αi (|x i |)   ∀(x i , u i ) ∈ Rni  × Ui    (17)

    Stuttgart – June 2011   Distributed MPC   35 / 50

    Distributed nonlinear cooperative control

    Denote the plantwide terminal penalty  V f   (x ) = ρ1V 1f   (x ) + ρ2V 2f   (x ).

    We define the terminal region  Xf    to be a sublevel set of  V f   . Fora > 0, define

    Xf    = {x   | V f   (x ) ≤ a}

    Assumption 19

    The plantwide terminal penalty  V f   (·) satisfies

    αf   (|x |) ≤ V f   (x ) ≤ γ f   (|x |)   ∀x  ∈ Xf  

    in which  αf   (·) and  γ f   (·) are  K ∞   functions.

    Stuttgart – June 2011   Distributed MPC   36 / 50

  • 8/9/2019 06 mpc jbr stanford

    19/25

    Distributed nonlinear cooperative control

    Defining  (x , u ) = ρ11(x 1, u 1) + ρ22(x 2, u 2), we require the followingstability assumption.

    Assumption 20

    The terminal cost  V f   (·) satisfies

    min(u 1,u 2)∈U1×U2

    V f  

    f  (x , u 1, u 2)

     + (x , u )

    s.t.   f  (x , u 1, u 2) ∈ Xf  

    ≤ V f   (x )   ∀x  ∈ Xf  

    This assumption implies that there exists a  κif   (x ) ∈ Ui   for all   i  ∈ I1:2such that

    V f  

    f  (x , κ1f   (x ), κ2f   (x ))

     +

    x , κ1f   (x ), κ2f   (x )

    ≤ V f   (x ) (18)

    s.t.   f  (x , κ1f   (x ), κ2f   (x )) ∈ Xf  

    Stuttgart – June 2011   Distributed MPC   37 / 50

    Removing the terminal constraint

    To avoid coupled input constraints, must remove the terminal stateconstraint.

    For some  β  ≥ 1, define the modified objective function

    V β(x , u) =

    N −1k =0

    (x (k ), u (k )) + β V f   (x (N )) (19)

    Define the set of admissible initial (x , u) pairs as

    Z0 = {(x , u) ∈ X × UN  | V β(x , u) ≤ V , φ(N ; x , u) ∈ Xf  }   (20)

    The set of initial states  X0   is the projection of  Z0  onto  X

    X0  = {x  ∈ X | ∃u  such that (x , u) ∈ Z0}

    Stuttgart – June 2011   Distributed MPC   38 / 50

  • 8/9/2019 06 mpc jbr stanford

    20/25

    Distributed nonlinear cooperative control

    Proposition 21 (Terminal constraint satisfaction)

    Let  {(x (k ), u(k )) | k  ∈ I≥0}  denote the set of states and control sequences generated by the suboptimal system. There exists a  β > 1  suchthat for all  β  ≥ β , if  (x (0), u(0)) ∈ Z0, then  (x (k ), u(k )) ∈ Z0  withφ(N ; x (k ), u(k )) ∈ Xf    for all k  ∈ I≥0.

    For the remainder of the talk, we replace the plantwide objective with themodified objective  V (·) ← V β(·) and hence the terminal constraint issatisfied.

    Stuttgart – June 2011   Distributed MPC   39 / 50

    Cooperative control algorithm

    Let ũ ∈ U be the initial condition for the cooperative MPC algorithmsuch that  φ(N ; x (0), ũ) ∈ Xf   .

    At each iterate  p , an approximate solution of the followingoptimization problem is found

    minu

    V x 1(0), x 2(0), u1, u2   (21a)s.t.   x +1   = f 1(x 1, x 2, u 1, u 2) (21b)

    x +2   = f 2(x 1, x 2, u 1, u 2) (21c)

    ui   ∈ UN i    ∀i  ∈ I1:2   (21d)

    |ui | ≤ δ i (|x i (0)|) if  x (0) ∈ B r    ∀i  ∈ I1:2   (21e)

    Stuttgart – June 2011   Distributed MPC   40 / 50

  • 8/9/2019 06 mpc jbr stanford

    21/25

    Cooperative control algorithm

    Let the input sequence returned by distributed nonconvexoptimization algorithm be  up̄ (x , ũ).

    The first input of this sequence  κ¯p 

    (x (0)) = u ̄p 

    (0; x (0), ũ) is injectedinto the plant and the state is moved forward.

    To reinitialize the algorithm at the next sampling time, we define thewarm start

    ũ+1   = {u 1(1), u 1(2), . . . , u 1(N  − 1), κ1f  

    x (N )

    }

    ũ+2   = {u 2(1), u 2(2), . . . , u 2(N  − 1), κ2f  

    x (N )

    }

    in which  x (N ) = φ(N ; x (0), u1, u2).

    Stuttgart – June 2011   Distributed MPC   41 / 50

    Nominal stability results

    Theorem 22 (Asymptotic stability)

    Let Assumptions  18 -20  hold and let V (·) ← V β(·)  by Proposition 21.Then for every x (0) ∈ XN , the origin is asymptotically stable for the closed-loop system x + = f  (x , κp̄ (x )).

    Stuttgart – June 2011   Distributed MPC   42 / 50

  • 8/9/2019 06 mpc jbr stanford

    22/25

    A nonlinear example

    Consider the unstable nonlinear system

    x +1   = x 21  + x 2 + u 

    31 + u 2

    x +2   = x 1 + x 22  + u 1 + u 

    32

    with initial condition (x 1, x 2) = (3, −3).

    For this example, we use the stage cost

    1(x 1, u 1) =1

    2(x 1Q 1x 1 + u 

    1R 1u 1)

    2(x 2, u 2) =1

    2(x 2Q 2x 2 + u 

    2R 2u 2)

    For the simulation we choose the parameters

    Q  = I R  = I N  = 2   p  = 3   Ui  = [−2.5, 2.5]   ∀i  ∈ I1:2

    Stuttgart – June 2011   Distributed MPC   43 / 50

    Distributed nonlinear cooperative control

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    0 2 4 6 8 10

    x 1

    x 2

    Figure: State trajectory (p  = 3)

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    0 2 4 6 8 10

    x 1

    x 2

    Figure: Centralized state trajectory(p  = 10)

    Stuttgart – June 2011   Distributed MPC   44 / 50

  • 8/9/2019 06 mpc jbr stanford

    23/25

    Distributed nonlinear cooperative control

    -3

    -2

    -1

    0

    1

    2

    3

    0 2 4 6 8 10

    u 1

    u 2

    Figure: Input trajectory (p  = 3)

    -3

    -2

    -1

    0

    1

    2

    3

    0 2 4 6 8 10

    u 1

    u 2

    Figure: Centralized input trajectory(p  = 10)

    Stuttgart – June 2011   Distributed MPC   45 / 50

    Distributed nonlinear cooperative control

    10−10

    10−810−6

    10−4

    10−2

    100

    102

    104

    0 2 4 6 8 10

    V (x (k ), ū (k ))

    p̄  = 3p̄  = 10

    Figure: Open-loop cost to go versus time on the closed-loop trajectory fordifferent numbers of iterations.

    Stuttgart – June 2011   Distributed MPC   46 / 50

  • 8/9/2019 06 mpc jbr stanford

    24/25

  • 8/9/2019 06 mpc jbr stanford

    25/25

    Further Reading I

    D. P. Bertsekas.   Nonlinear Programming . Athena Scientific, Belmont,MA, second edition, 1999.

    G. Pannocchia, J. B. Rawlings, and S. J. Wright. Conditions under whichsuboptimal nonlinear MPC is inherently robust.  Sys. Cont. Let., 2011.Accepted for publication.

    Stuttgart – June 2011   Distributed MPC   49 / 50

    Acknowledgments

    The author is indebted to Luo Ji of the University of Wisconsin andGanzhou Wang of the Universität Stuttgart for their help in organizing thematerial and preparing the overheads.

top related