2etang02

Post on 13-Apr-2018

216 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

7/26/2019 2etang02

http://slidepdf.com/reader/full/2etang02 1/1

53-rd Mathematical Olympiad in Poland

Second Round, February 22–23, 2002

First Day

1.  Prove that all functions  f   : R→ R  satisfying

∀ x  ∈ R   f (x) = f (2x) = f (1 − x)

are periodic.

2.  In a convex quadrangle  ABCD  the following equalities

<) ADB  = 2<) ACB   and   <) BDC  = 2<) BAC 

hold. Prove that  AD =  C D.

3.  A positive integer  n is given. In an association consisting of  n members work6 commissions. Each commission contains at least  n/4 persons. Prove thatthere exist two commissions containing at least  n/30 persons in common.

Second Day

4.  Find all prime numbers  p  ≤ q  ≤ r  such that all the numbers

 pq  + r , pq   + r2 , qr  + p , qr + p2 , rp + q , rp + q 2

are prime.

5.   Triangle ABC  with <) BAC  = 90◦ is the base of the pyramid ABCD. Moreoverit holds

AD = BD   and   AB = C D .

Prove that  <) ACD  ≥ 30◦.

6.  Find all positive integers n such that for all real numbers x1, x2 . . . xn, y1, y2 . . . yn

the following inequalityx1x2 . . . xn + y1y2 . . . yn  ≤

 x21 + y2

1  · 

x22 + y2

1  · . . . · 

x2n

 + y2n

holds.

top related