a ladder thermoelectric generator

Post on 11-Feb-2022

14 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

A Ladder ThermoelectricA Ladder ThermoelectricParallelepiped Generator

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Parallelepiped Generator

E=mcT E = Energym = Mass

c = Heat Capacity T = Temperature

Flókagata 27

105 Reykjavík

Iceland

gko@islandia.is

Tel: +354 694 7696

Content of this Presentation:Content of this Presentation:

•• Background: Geothermal Source for TEGBackground: Geothermal Source for TEG

•• Economics: Does Low TEG Efficiency Matter?Economics: Does Low TEG Efficiency Matter?

•• Application: Generating Light with a TEGApplication: Generating Light with a TEG

•• Inductive and Capacitive CharacterisationInductive and Capacitive Characterisation

•• Unfamiliar Mathematical Expressions!Unfamiliar Mathematical Expressions!

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Geothermal Harvesting:Geothermal Harvesting:

Nesjavellir, Iceland

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Water as an Energy Medium:Water as an Energy Medium:

The energy released when one kilogram of hot water is cooled by 50°C, is equivalent to:

• 1000 Kg falling down 21 metres, for example in a Hydroelectric Power Plant.

• 1 Kg canonball accelerated to 646 m/s > 2300 Km/h.

• 10 Amper-Hours from a 6 volt Battery.

• 2000 atm pressure in one litre container.

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Hot and Cold Water Community:Hot and Cold Water Community:

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Up to 90% TEG System Efficiency ...Up to 90% TEG System Efficiency ...

... when used before a Heat Exchanger! Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Comparing the Cost of Energy:Comparing the Cost of Energy:

• Electricity for resident homes: 9.7 ¢/KWh = 2.7 ¢/MJ

• Electricity for light industry: 4.8 ¢/KWh = 1.3 ¢/MJ

• Electricity for heavy industry: 2.4 ¢/KWh = 0.68 ¢/MJ

• Geothermal Hot Water for resident homes: 85 ¢/t = 0.33 ¢/MJ

• Geothermal Hot Water for light industry: 43 ¢/t = 0.15 ¢/MJ

Prices in US cents, 15.Aug,2003

Thermal utilasitation: ∆T = 60°C

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Energy Content of Water versus Energy Content of Water versus some other Energy Sources:some other Energy Sources:

•• Boiling Water 100°CBoiling Water 100°C E=0.41 MJ/KgE=0.41 MJ/Kg

•• GasolineGasoline E=48 MJ/KgE=48 MJ/Kg

•• MethanolMethanol E=24 MJ/KgE=24 MJ/Kg

•• CoalCoal E=29.3 MJ/KgE=29.3 MJ/Kg

•• TNTTNT E=4.6 MJ/KgE=4.6 MJ/Kg

•• LeadLead--Acid BatteryAcid Battery E=0.15 MJ/KgE=0.15 MJ/Kg

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Water and Gasoline:Water and Gasoline:

•• The Thermal Energy in 100 liters of boiling The Thermal Energy in 100 liters of boiling water is equivalent to one liter of Gasoline!water is equivalent to one liter of Gasoline!

•• Geothermal Hot Water can compete with Geothermal Hot Water can compete with Gasoline if a Heat Exchanger is Mandatory!Gasoline if a Heat Exchanger is Mandatory!

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Let there be Light!Let there be Light!

Freqency 50 KHz

Power 288 W

Voltage 200 V

Current 1.44 A

Thot 110°C

Tcold 25°C

Geothermal Greenhouse Experiment in Iceland.

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

The presence of Heat Source The presence of Heat Source and Cold Sink introduces and Cold Sink introduces Electrical Capacitors!Electrical Capacitors!

To ground or not to ground, that is the question!

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Grounded Thermoelectric Generator Grounded Thermoelectric Generator Operating at a High Frequency:Operating at a High Frequency:

•Generator (4 pellets shown) •Driver •Load

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Impendance of 4 TE Pellets in a Impendance of 4 TE Pellets in a Grounded Ladder TE Generator:Grounded Ladder TE Generator:

sLRsC

sLRsC

sLRsC

sLRZ

⋅++⋅

+⋅++⋅

+⋅++⋅

+⋅+=

11

11

11

4

s = β + iω

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Impendance of 1, 2, 3 & 4 Pellets in Impendance of 1, 2, 3 & 4 Pellets in a Grounded Ladder TE Generator:a Grounded Ladder TE Generator:

+⋅+⋅++⋅+⋅+

⋅=

+⋅++⋅+

⋅=

++

⋅=

⋅+=

32

32

14

2

2

13

12

1

5616104

3143

12

aaaaaaZZ

aaaaZZ

aaZZ

sLRZ

a = R C s + LC s 2

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

The Ladder TEG Impendance The Ladder TEG Impendance Coefficients for up to 6 Pellets:Coefficients for up to 6 Pellets:

11036563561821205

16104143

121

1928351511715101

1561131

111

:Numerator:rDenominato

Find the general formula ...

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

General Formula for a Grounded General Formula for a Grounded Ladder TEG with n Pellets:Ladder TEG with n Pellets:

( ) ( )( ) ( ) )(

)(3211221

11221

12261

1 aQaPZ

aanannaanannnZZ

n

nnn

nn

n ⋅=

+⋅−⋅++⋅−⋅⋅++⋅−⋅++⋅−⋅⋅+

⋅= −−

−−

( )

( ) ( )( ) ( ) ∏∏

∑∑−

=

=

=−

=

−−−−

⋅⋅

⋅+=

−⋅−⋅

⋅+=

⋅++=⋅+=

⋅++=⋅+===

1

1

21

1

2

1

11

1

1

1111

11

2sin4

12212sin4

)()(1)()(1)(

)(1)()()()()(1)(1)(

n

kn

n

kn

n

kknn

n

kkn

nnnnnn

nkaaP

nkaaQ

aPaaPaPaPaaQ

aPaaQaPaPaaQaQaPaQ

ππ

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Poles & Zeros for a TEG Module:Poles & Zeros for a TEG Module:

The 1st Pole:The 1The 1stst Pole:Pole:

−⋅⋅⋅=⇒

−⋅⋅−=

24sin2

24sin4 01

21 n

ffn

a PPππ

The 1st Zero:The 1The 1stst Zero:Zero:

⋅⋅⋅=⇒

⋅⋅−=

nff

na ZZ 2

sin22

sin4 012

1ππ

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Zeros from the Numerator P(a)Zeros from the Numerator P(a)Numerator polynomials

-25-20-15-10-5051015202530

-6 -5 -4 -3 -2 -1 0 1 2

a

P(a)

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

Poles from the Denominator Q(a)Poles from the Denominator Q(a)Denominator polynomials

-30

-20

-10

0

10

20

30

40

-6 -5 -4 -3 -2 -1 0 1 2

a

Q(a

)

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

-30

-20

-10

0

10

20

30

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

P3/Q3P4/Q4P5/Q5P6/Q6

Poles & Zeros for a TE ModulePoles & Zeros for a TE Module

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

A TEG Module* with 254 Pellets:A TEG Module* with 254 Pellets:

Measure with 100 MHz Spectrum analyzer

Result: Module Pole frequency was 40MHzResult: Module Pole frequency was 40MHzResult: Module Pole frequency was 40MHz

=> 100 TE Modules will have ca 400 KHz Pole which will register as an Inductance.

* 40x40x3mm with 0.6mm Ceramic Isolation

Guðlaugur Kristinn Óttarsson: ICT2003, La Grande Motte, France, 17-21 August 2003

top related